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a b s t r a c t

Given a Hilbert space H , the infinite-dimensional Lorentz/second-order cone K is
introduced. For any x ∈ H , a spectral decomposition is introduced, and for any function
f : R → R, we define a corresponding vector-valued function f H (x) on Hilbert space H
by applying f to the spectral values of the spectral decomposition of x ∈ H with respect to
K. We show that this vector-valued function inherits from f the properties of continuity,
Lipschitz continuity, differentiability, smoothness, as well as s-semismoothness. These
results can be helpful for designing and analyzing solution methods for solving infinite-
dimensional second-order cone programs and complementarity problems.
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1. Introduction

Let H be a real Hilbert space endowed with an inner product ⟨·, ·⟩, and we write the norm induced by ⟨·, ·⟩ as ‖ · ‖. For
any given closed convex cone K ⊆ H ,

K ∗
:= {x ∈ H | ⟨x, y⟩ ≥ 0, ∀y ∈ K}

is the dual cone of K . A closed convex cone K in H is called self-dual if K coincides with its dual cone K ∗; for example, the
non-negative orthant cone Rn

+
and the second-order cone (also called Lorentz cone) Kn

:= {(r, x′) ∈ R × Rn−1
| r ≥ ‖x′

‖}.
As discussed in [1], this Lorentz cone Kn can be rewritten as

Kn
:=


x ∈ Rn

| ⟨x, e⟩ ≥
1

√
2
‖x‖


with e = (1, 0) ∈ R × Rn−1.

This motivates us to consider the following closed convex cone in the Hilbert space H :

K(e, r) := {x ∈ H | ⟨x, e⟩ ≥ r‖x‖}

where e ∈ H with ‖e‖ = 1 and r ∈ R with 0 < r < 1. It can be seen that K(e, r) is pointed, i.e., K(e, r) ∩ (−K(e, r)) = {0}.
Moreover, by denoting

⟨e⟩⊥ := {x ∈ H | ⟨x, e⟩ = 0},

we may express the closed convex cone K(e, r) as

K(e, r) =


x′

+ λe ∈ H | x′
∈ ⟨e⟩⊥ and λ ≥

r
√
1 − r2

‖x′
‖


.
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When H = Rn and e = (1, 0) ∈ R × Rn−1, K(e, 1
√
2
) coincides with Kn. In view of this, we shall call K(e, 1

√
2
) the infinite-

dimensional second-order cone (or infinite-dimensional Lorentz cone) in H determined by e. In the rest of this paper, we
shall only consider any fixed unit vector e ∈ H , and denote

K = K

e,

1
√
2


since two infinite-dimensional second-order cones K(e1) and K(e2) associated with different unit elements e1 and e2 in H
are isometric. This means there exists a bijective isometry P which maps K(e1) onto K(e2) such that ‖Px‖ = ‖x‖ for any
x ∈ K(e1). For example, let e1 = (1, 0, 0) and e2 = (0, 0, 1). Then, for any x ∈ K(e1) and y ∈ K(e2), we have the following
relation:

y = Px =

0 0 1
0 1 0
1 0 0


x.

Moreover, this mapping preserves the Jordan algebra structure, i.e., P(x ◦ y) = Px ◦ Py. In the infinite-dimensional Hilbert
space, P is indeed a unitary operator. In light of this fact, we can consider the infinite-dimensional second-order cone
associated with a fixed arbitrary unit element in H .

Unless specifically stated otherwise, we shall alternatively write any point x ∈ H as x = x′
+ λe with x′

∈ ⟨e⟩⊥ and
λ = ⟨x, e⟩. In addition, for any x, y ∈ H , we shall write x≻K y (respectively, x≽K y) if x− y ∈ intK (respectively, x− y ∈ K).
Now, we introduce the spectral decomposition for any element x ∈ H . For any x = x′

+ λe ∈ H , we can decompose x as

x = α1(x) · v(1)
x + α2(x) · v(2)

x , (1)

where α1(x), α2(x) and v
(1)
x , v

(2)
x are the spectral values and the associated spectral vectors of x, with respect to K, given by

αi(x) = λ + (−1)i‖x′
‖, (2)

v(i)
x =


1
2


e + (−1)i

x′

‖x′‖


, x′

≠ 0

1
2
(e + (−1)iw), x′

= 0
(3)

for i = 1, 2withw being any vector inH satisfying ‖w‖ = 1.With this spectral decomposition, for any function f : R → R,
the following vector-valued function associated with K is defined:

f H (x) = f (α1(x))v(1)
x + f (α2(x))v(2)

x ∀x ∈ H . (4)

The above definition is analogous to the one in finite-dimensional second-order cone case [2,3].
The motivation of studying f H defined as in (4) is from concerning with the complementarity problem associated with

infinite-dimensional second-order cone K, i.e., to find an x ∈ H such that

x ∈ K, T (x) ∈ K and ⟨x, T (x)⟩ = 0, (5)

where T is a mapping from H to H . We denote this problem (5) as CP(K, T ). More specifically, when dealing with
such complementarity problem by nonsmooth function approach, i.e., recasting it as a nonsmooth system of equations,
we need to check what kind of properties of f can be inherited by f H so that we can know to what extent the
convergence analysis of solutions methods based on such nonsmooth system can be obtained. Indeed, the format of the
aforementioned complementarity problem CP(K, T ) indeed follows the direction of complementarity problems associated
with symmetric cones in Euclidean Jordan algebra. Recently, nonlinear symmetric cone optimization and complementarity
problems in finite-dimensional spaces such as semidefinite cone optimization and complementarity problems, second-
order cone optimization and complementarity problems, and general symmetric cone optimization and complementarity
problems, become an active research field of mathematical programming. Taking second-order cone optimization and
complementarity problems for example, there have proposedmany effective solutionmethods, including the interior-point
methods [4–7], the smoothing Newton methods [8,3,9], the semismooth Newton methods [10,11], and the merit function
method [12,13]. However, there are very limitedworks about nonlinear symmetric cone optimization and complementarity
problems in infinite-dimensional spaces, for instance [14], in which with the JB algebras of finite rank primal–dual interior-
point methods are presented for some special type of infinite-dimensional cone optimization problems.

It is our intention to extend the above methods for infinite-dimensional complementarity problem CP(K, T ), in which
the vector-valued function f H will play a key role. In this paper, we study the continuity and differential properties of
the vector-valued function f H in general. In particular, we show that the properties of continuity, strict continuity (locally
Lipschitz continuity), Lipschitz continuity, directional differentiability, differentiability, continuous differentiability, and
s-semismoothness are each inherited by f H from f . These results can give some concept in designing solutions methods
for solving infinite-dimensional second-order cone programs and infinite-dimensional second-order cone complementarity
problems.
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2. Preliminaries

For any x = x′
+ λe ∈ H and y = y′

+ µe ∈ H , we define the Jordan product of x and y by

x ◦ y := (µx′
+ λy′) + ⟨x, y⟩e, (6)

and write x2 = x ◦ x. Clearly, when H = Rn and e = (1, 0) ∈ R × Rn−1, this definition coincides with the one given
in [15, Chapter II] which is the case of finite-dimensional second-order cone associated with Euclidean Jordan algebra. The
following technical lemmas will be frequently used in the subsequent analysis.

Lemma 2.1. Let α1(x), α2(x) be the spectral values of x ∈ H and α1(y), α2(y) be the spectral values of y ∈ H . Then we have

|α1(x) − α1(y)|2 + |α2(x) − α2(y)|2 ≤ 2‖x − y‖2, (7)

and hence, |αi(x) − αi(y)| ≤
√
2‖x − y‖, ∀i = 1, 2.

Proof. The proof can be obtained by direct computation like in [2, Lemma 2]. �

Lemma 2.2. Let x = x′
+ λe ∈ H and y = y′

+ µe ∈ H .
(a) If x′

≠ 0 and y′
≠ 0, then we have

‖v(i)
x − v(i)

y ‖ ≤
1

‖x′‖
‖x − y‖ ∀i = 1, 2, (8)

where v
(i)
x , v

(i)
y are the spectral vectors of x and y, respectively.

(b) If either x′
= 0 or y′

= 0, then we can choose v
(i)
x , v(i)

y such that the left hand side of inequality (8) is zero.

Proof. The proof is similar to [16, Lemma 3.2], so we omit it here. �

Lemma 2.3. For any x ≠ 0 ∈ H , the following hold.

(a) If g(x) = ‖x‖, we have g ′(x)h =
⟨x,h⟩
‖x‖ .

(b) If g(x) =
x

‖x‖ , we have g ′(x)h =
h

‖x‖ −
⟨x,h⟩
‖x‖3

x.

Proof. (a) See Example 3.1(V) of [1].
(b) First, we compute that

g(x + h) − g(x) =
x + h

‖x + h‖
−

x
‖x‖

=
h

‖x + h‖
−


1

‖x‖
−

1
‖x + h‖


· x

=
h

‖x + h‖
−

√
⟨x + h, x + h⟩ −

√
⟨x, x⟩

√
⟨x, x⟩ ·

√
⟨x + h, x + h⟩

· x

=
h

‖x + h‖
−

2⟨x, h⟩ + ⟨h, h⟩
√

⟨x, x⟩ ·
√

⟨x + h, x + h⟩(
√

⟨x + h, x + h⟩ +
√

⟨x, x⟩)
· x

=
h

‖x‖
−

⟨x, h⟩
‖x‖3

x + o(‖h‖).

From the above, it is clear that g ′(x)h =
h

‖x‖ −
⟨x,h⟩
‖x‖3

x. �

Semismooth function, as introduced by Mifflin [17] for functionals and further extended by Qi and Sun [18] for vector-
valued functions, is of particular interest due to the central role it plays in the superlinear convergence analysis of certain
generalized Newton methods, see [18,19] and references therein. Given a mapping F : Rn

→ Rm, it is well known that if F
is strictly continuous (locally Lipschitz continuous), then F is almost everywhere differentiable by Rademacher’s Theorem
— see [20] and [21, Sec. 9J]. In this case, the generalized Jacobian ∂F(x) of F at x (in the Clarke sense) can be defined as the
convex hull of the B-subdifferential ∂BF(x), where

∂BF(x) :=


lim
xj→x

∇F(xj)|F is differentiable at xj ∈ Rn


.

The notation ∂B is adopted from [19]. In [21, Chap. 9], the case of m = 1 is considered and the notations ‘‘∇̄ ’’ and ‘‘∂̄ ’’ are
used instead of, respectively, ‘‘∂B’’ and ‘‘∂ ’’. Assume F : Rn

→ Rm is strictly continuous, then F is said to be semismooth at x
if F is directionally differentiable at x and, for any V ∈ ∂F(x + h) and h → 0, we have

F(x + h) − F(x) − Vh = o(‖h‖). (9)
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Moreover, F is called ρ-order semismooth at x (0 < ρ < ∞) if F is semismooth at x and, for any V ∈ ∂F(x + h) and h → 0,
we have

F(x + h) − F(x) − Vh = O(‖h‖1+ρ).

The Rademacher theoremdoes not hold in function spaces, see [22]. Hence, the aforementioned definitions of generalized
Jacobian and semismoothness cannot be used in infinite-dimensional spaces. To overcome this difficulty, in the paper [22],
so-called slanting functions and slant differentiability of operators in Banach spaces are proposed and used to formulate a
concept of semismoothness in infinite-dimensional spaces. We shall introduce them as below. Let X, Y ⊂ H . A function
F : X → Y is said to be directionally differentiable at x if the limit

δ+F(x; h) := lim
t→0+

F(x + th) − F(x)
t

(10)

exists, where δ+F(x; h) is called the directional derivative of F at x with respect to the direction h. A function F : X → Y is
said to be B-differentiable at x if it is directionally differentiable at x and

lim
h→0

F(x + h) − F(x) − δ+F(x; h)
‖h‖

= 0 (11)

in which we call δ+F(x; ·) the B-derivative of F at x. In finite-dimensional Euclidean spaces, Shapiro [23] shows that a locally
Lipschitz continuous function F is B-differentiable at x if and only if it is directionally differentiable at x. From (9) and (11)
(also see [18]), it can be seen that F is semismooth at x if and only if F is B-differentiable (hence directionally differentiable)
at x and, for each V ∈ ∂F(x + h), there has

δ+F(x; h) − Vh = o(‖h‖).
As mentioned earlier, these results do not hold in infinite-dimensional spaces. Therefore, the slant differentiability is
introduced to circumvent this hurdle. In what follows, we state its definition.

Definition 2.1. Let D be an open domain in X and L(X, Y ) denote the set of all bounded linear operators from X onto Y .
(a) A function F : D ⊂ X → Y is said to be slantly differentiable at x ∈ D if there exists a mapping f ◦

: D → L(X, Y )
such that the family {f ◦(x+h)} of bounded linear operators is uniformly bounded in the operator norm for h sufficiently
small and

lim
h→0

F(x + h) − F(x) − f ◦(x + h)h
‖h‖

= 0. (12)

The function f ◦ is called a slanting function for F at x.
(b) A function F : D ⊂ X → Y is said to be slantly differentiable in an open domain D0 ⊂ D if there exists a mapping

f ◦
: D → L(X, Y ) such that f ◦ is a slanting function for F at every x ∈ D0. In this case, f ◦ is called a slanting function for

F in D0.

Definition 2.2. Suppose that f ◦
: D → L(X, Y ) is a slanting function for F at x ∈ D We denote the set

∂SF(x) :=


lim
xk→x

f ◦(xk)


(13)

and call it the slant derivative of F associated with f ◦ at x ∈ D. Note that f ◦(x) ∈ ∂SF(x) which says ∂SF(x) is always
nonempty.

A function F may be slantly differentiable at all points of D, but there is no common slanting function of F at all points
of D. Moreover, a slantly differentiable function F at x can have infinitely many slanting functions at x. A slanting function
f ◦ for F at x is a single-valued function, but not continuous in general. In addition, a continuous function is not necessarily
slantly differentiable. For more details about slanting functions and slantly differentiability, please refer to [22].

Definition 2.3. Amapping F : X → Y is said to be s-semismooth at x if there is a slanting function f ◦ for F in a neighborhood
Nx of x such that f ◦ and the associated slant derivative satisfy the following two conditions.
(a) limt→0+ f ◦(x + th)h exists for every h ∈ X and

lim
‖h‖→0

lim
t→0+

f ◦(x + th)h − f ◦(x + h)h

‖h‖
= 0.

(b) f ◦(x + h)h − Vh = o(‖h‖) for all V ∈ ∂SF(x + h).

We point it out that the function F defined in Definition 2.3 was called semismooth in [22]. However, we here rename
it as ‘‘s-semismooth’’ because when X, Y are both finite-dimensional spaces it does not reduce to the original definition
introduced by Qi and Sun [18] in finite-dimensional spaces. The main key causing this is the limits in ∂SF(x) and ∂BF(x) are
approached by different ways. In order to distinguish such difference, we hence use the term ‘‘s-semismooth’’ to convey
concept of semismoothness in infinite-dimensional spaces.
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3. Continuous properties of f H

In this section,we showproperties of continuity and (local) Lipschitz continuity of f H . The arguments are straightforward
by checking their definitions.

Proposition 3.1. Suppose x = x′
+ λe ∈ H with spectral values α1(x), α2(x) and spectral vectors v

(1)
x , v(2)

x . Let f H be defined
as in (4). Then, f H is continuous at x ∈ H if and only if f is continuous at α1(x), α2(x).

Proof. (⇒) This part of proof is similar to the argument of [2, Proposition 2(a)].
(⇐) This direction of proof is also similar to [16, Proposition 2.2(a)], we omit it. �

Proposition 3.2. Suppose x = x′
+ λe ∈ H with spectral values α1(x), α2(x) and spectral vectors v

(1)
x , v(2)

x . Let f H be defined
as in (4). Then, the following hold.

(a) f H is strictly continuous at x ∈ H if and only if f is strictly continuous at α1(x), α2(x).
(b) f H is Lipschitz continuous (with respect to ‖ · ‖) if and only if f is Lipschitz continuous.

Proof. (a) (⇐) Suppose f is strictly continuous at α1(x), α2(x). Then, there exist κi > 0 and δi > 0 for i = 1, 2, such that

|f (ξ) − f (ζ )| ≤ κi|ξ − ζ | ∀ξ, ζ ∈ [αi(x) − δi, αi(x) + δi] i = 1, 2.

Let δ =
1

√
2
min{δ1, δ2} and for any y, z ∈ B(x, δ), we have

f H (y) − f H (z) = (f (α1(y))v(1)
y + f (α2(y))v(2)

y ) − (f (α1(z))v(1)
z + f (α2(z))v(2)

z )

= f (α1(y))(v(1)
y − v(1)

z ) + (f (α1(y)) − f (α1(z)))v(1)
z

+ f (α2(y))(v(2)
y − v(2)

z ) + (f (α2(y)) − f (α2(z)))v(2)
z (14)

where y = α1(y)v
(1)
y + α2(y)v

(2)
y and z = α1(z)v

(1)
z + α2(z)v

(2)
z . By Lemmas 2.1 and 2.2 and the similar argument in

[2, Proposition 6(a)], the proof can be obtained.
(⇒) This part of proof is quite simple and similar to [2, Proposition 6(a)], we omit it here.
(b) The argument of proof is similar to [2, Proposition 6(c)]. �

4. Differential properties of f H

In this section, we show properties of directional differentiability, differentiability, continuous differentiability and
B-differentiability of f H . For simplicity, in the arguments we sometimes abbreviate αi(x) as αi when there is no ambiguity
in the context. Note that, unlike in finite-dimensional second-order cone case [2], Propositions 4.1 and 4.2 are proved by
different approaches since the chain rule for directional differentiability in infinite-dimensional space does not hold in
general, see [23].

Proposition 4.1. Suppose x = x′
+ λe ∈ H with spectral values α1(x), α2(x) and spectral vectors v

(1)
x , v(2)

x . Let f H be defined
as in (4). Then, f H is directionally differentiable at x ∈ H if and only if f is directionally differentiable at α1(x), α2(x).

Proof. (⇐) Suppose f is directionally differentiable at α1(x), α2(x). Fix x = x′
+λe ∈ H and any direction h = h′

+ le ∈ H ,
we discuss two cases as below.
Case (i). If x′

≠ 0, thenwe have f H (x) = f (α1(x))v
(1)
x +f (α2(x))v

(2)
x whereαi(x) = λ+(−1)i‖x′

‖ and v
(i)
x =

1
2 (e+(−1)i x′

‖x′‖ )

for i = 1, 2. Now x + th = (x′
+ th′) + (λ + tl)e with spectral values αi(x + th) = λ + tl + (−1)i‖x′

+ th′
‖ and spectral

vectors v
(i)
x+th =

1
2 (e + (−1)i x′+th′

‖x′+th′‖
) for i = 1, 2. We consider Eq. (14) again in which replacing ywith x + th, then we have

f H (x + th) − f H (x) = f (α1(x + th))(v(1)
x+th − v(1)

x ) + (f (α1(x + th)) − f (α1(x)))v(1)
x

+ f (α2(x + th))(v(2)
x+th − v(2)

x ) + (f (α2(x + th)) − f (α2(x)))v(2)
x . (15)

Because the process of checking argument is similar to [2, Proposition 3], we only present the result here.
By denoting

ã =
f (α2(x)) − f (α1(x))

α2(x) − α1(x)
,

b̃ =
δ+f (α2(x); k2) + δ+f (α1(x); k1)

2
, (16)

c̃ =
δ+f (α2(x); k2) − δ+f (α1(x); k1)

2
,
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where ki = ⟨h, e⟩ + (−1)i ⟨x
′,h⟩

‖x′‖ for i = 1, 2, we can write the expression of δ+f H (x; h) as

δ+f H (x; h) = ã

h − ⟨h, e⟩e −

⟨x′, h⟩
‖x′‖2

x′


+ b̃e + c̃

x′

‖x′‖
. (17)

Case (ii). If x′
= 0, we compute the directional derivative δ+f H (x; h) at x ∈ H for any direction h by definition. Let

h = h′
+ le ∈ H with h′

∈ ⟨e⟩⊥ and l ∈ R. We discuss two subcases.
Subcase (a). If h′

≠ 0, from the spectral decomposition, we choose v
(i)
x =

1
2 (e + (−1)i h′

‖h′‖
) for i = 1, 2 such that

f H (x + th) = f (λ + th1)v
(1)
x + f (λ + th2)v

(2)
x

f H (x) = f (λ)v(1)
x + f (λ)v(2)

x

where hi = l + (−1)i‖h′
‖ for i = 1, 2. Now, we compute

lim
t→0+

f H (x + th) − f H (x)
t

= lim
t→0+

f (λ + th1) − f (λ)

t
v(1)
x + lim

t→0+

f (λ + th2) − f (λ)

t
v(2)
x

= δ+f (λ; l − ‖h′
‖)v(1)

x + δ+f (λ; l + ‖h′
‖)v(2)

x . (18)

This shows that δ+f H (x; h) exists under this subcase.
Subcase (b). If h′

= 0, we choose v
(i)
x =

1
2 (e + (−1)iw) for any w ∈ H with ‖w‖ = 1. Analogous to (18), we have

lim
t→0+

f H (x + th) − f H (x)
t

= lim
t→0+

f (λ + tl) − f (λ)

t
v(1)
x + lim

t→0+

f (λ + tl) − f (λ)

t
v(2)
x

= δ+f (λ; l)v(1)
x + δ+f (λ; l)v(2)

x . (19)

Hence, δ+f H (x; h) exists under this subcase.
From all the above, we have proved that f H is directionally differentiable at x ∈ H when x′

= 0 and its directional derivative
δ+f H (x; h) is either in form of (18) or (19).
(⇒) Suppose f H is directionally differentiable at x ∈ H , we will prove that f is directionally differentiable at α1, α2. For
α1 ∈ R and any direction d1 ∈ R, let h = d1v

(1)
x + 0v(2)

x where x = α1v
(1)
x + α2v

(2)
x . Then, x + th = (α1 + td1)v

(1)
x + α2v

(2)
x

and
f H (x + th) − f H (x)

t
=

f (α1 + td1) − f (α1)

t
v(1)
x .

Since f H is directionally differentiable at x, the above equation implies that

δ+f (α1; d1) = lim
t→0+

f (α1 + td1) − f (α1)

t
exists.

This means f is directionally differentiable at α1. Similarly, it can be verified that f is also directionally differentiable at
α2. �

Proposition 4.2. Suppose x = x′
+ λe ∈ H with spectral values α1(x), α2(x) and spectral vectors v

(1)
x , v(2)

x . Let f H be defined
as in (4). Then, f H is differentiable at x ∈ H if and only if f is differentiable at α1(x), α2(x).

Proof. (⇐) Suppose f is differentiable at α1, α2. Fix x = x′
+ λe ∈ H and h = h′

+ le ∈ H , we discuss two cases as below.
Case (i). If x′

≠ 0, then we have f H (x) = f (α1)v
(1)
x + f (α2)v

(2)
x where αi = λ + (−1)i‖x′

‖ and v
(i)
x =

1
2 (e + (−1)i x′

‖x′‖ ) for
i = 1, 2. By using Lemma2.3 and the chain rule and product rule for differentiation, the argument is similar to [2, Proposition
4] so we omit the process and present the result as following. Denoting

a =
f (α2) − f (α1)

α2 − α1
, b =

f ′(α2) + f ′(α1)

2
, c =

f ′(α2) − f ′(α1)

2
. (20)

We can write the expression of (f H )′(x)h as

(f H )′(x)h = ah + (b − a)


⟨h, e⟩e +
⟨x′, h⟩
‖x′‖2

x′


+

c
‖x′‖

(⟨x′, h⟩e + ⟨h, e⟩x′). (21)

Case (ii). The proof is identical to that of Case (ii) in Proposition 4.1, but with th replaced by h. We omit it and only present
the formula of (f H )′(x)h as below. If x′

= 0, then

(f H )′(x)h = f ′(λ)h. (22)

(⇒) This part of proof is similar to [16, Proposition 2.2(c)]. �
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Proposition 4.3. Suppose x = x′
+ λe ∈ H with spectral values α1(x), α2(x) and spectral vectors v

(1)
x , v(2)

x . Let f H be defined
as in (4). Then, f H is continuously differentiable (smooth) at x ∈ H if and only if f is continuously differentiable at α1(x), α2(x).

Proof. (⇐) This part of proof is similar to [16, Proposition 2.2(d)], so we omit it.
(⇒) This direction of proof is some variant of argument in [2, Proposition 5], we also skip it here. �

Proposition 4.4. Suppose x = x′
+ λe ∈ H with spectral values α1(x), α2(x) and spectral vectors v

(1)
x , v(2)

x . Let f H be defined
as in (4). Then, f H is B-differentiable at x ∈ H if and only if f is B-differentiable at α1(x), α2(x).

Proof. (⇐) If f is B-differentiable at α1(x), α2(x), f is directionally differentiable at α1(x), α2(x). By Proposition 4.1, f H is
directionally differentiable at x. It remains to verify that

lim
h→0

f H (x + h) − f H (x) − δ+f H (x; h)
‖h‖

= 0.

We write x = x′
+ λe and h = h′

+ le ∈ H . Again, two cases will be discussed.
Case (i). If x′

≠ 0, considering Eq. (15) in which we replace x + th with x + h, it yields

f H (x + h) − f H (x) = f (α1(x + h))(v(1)
x+h − v(1)

x ) + (f (α1(x + h)) − f (α1(x)))v(1)
x

+ f (α2(x + h))(v(2)
x+h − v(2)

x ) + (f (α2(x + h)) − f (α2(x)))v(2)
x . (23)

Indeed, sum of the first and third can be simplified as

f (α1(x + h))(v(1)
x+h − v(1)

x ) + f (α2(x + h))(v(2)
x+h − v(2)

x )

= (f (α2(x + h)) − f (α1(x + h))) ·
1
2

·


x′

+ h′

‖x′ + h′‖
−

x′

‖x′‖


=

f (α2(x + h)) − f (α1(x + h))
2‖x′‖


h′

−
⟨x′, h′

⟩

‖x′‖2
x′

+ o(‖h′
‖)


=

f (α2(x + h)) − f (α1(x + h))
α2(x) − α1(x)


h − ⟨h, e⟩e −

⟨x′, h⟩
‖x′‖2

x′
+ o(‖h′

‖)


, (24)

where the second equality is due to Lemma 2.3(b) and the last equality uses the fact that α2(x) − α1(x) = 2‖x′
‖. From (17),

we know that

δ+f H (x; h) =
f (α2(x)) − f (α1(x))

α2(x) − α1(x)


h − ⟨h, e⟩e −

⟨x′, h⟩
‖x′‖2

x′


+ δ+f (α1(x); k1)v(1)

x + δ+f (α2(x); k2)v(2)
x (25)

where ki = ⟨h, e⟩ + (−1)i ⟨x
′,h⟩

‖x′‖ for i = 1, 2. Since limh→0(h − ⟨h, e⟩e −
⟨x′,h⟩
‖x′‖2

x′) = 0, following almost the same arguments
as in Proposition 4.1 gives

αi(x + h) − αi(x) = l + (−1)i(‖x′
+ h′

‖ − ‖x′
‖)

= ⟨h, e⟩ + (−1)i


⟨x′, h′
⟩

‖x′‖
+ o(‖h′

‖)


= ki + (−1)io(‖h′

‖) ∀i = 1, 2.

Let Ti := ki + (−1)io(‖h′
‖) = αi(x + h) − αi(x) for i = 1, 2, we obtain

lim
h→0

f (αi(x + h)) − f (αi(x))
‖h‖

= lim
h→0

f (αi(x) + Ti · 1) − f (αi(x))
Ti

·
ki + (−1)io(‖h′

‖)

‖h‖

= δ+f (αi(x); 1) ·ki
= δ+f (αi(x);ki),

where the last equality uses the positive homogeneity property of δ+f (αi(x); ·) again andki := limh→0
ki

‖h‖ . We notice that
0 < ‖ki‖ ≤ 2 andki can be viewed as a directional vector here. By the above discussion, we have

lim
h→0

1
‖h‖


f (α1(x + h))(v(1)

x+h − v(1)
x ) + f (α2(x + h))(v(2)

x+h − v(2)
x )

−
f (α2(x)) − f (α1(x))

α2(x) − α1(x)


h − ⟨h, e⟩e −

⟨x′, h⟩
‖x′‖2

x′


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= lim
h→0

(f (α2(x + h)) − f (α2(x))) − (f (α1(x + h)) − f (α1(x)))
‖h‖ · (α2(x) − α1(x))

·


h − ⟨h, e⟩e −

⟨x′, h⟩
‖x′‖2

x′


+ lim

h→0

f (α2(x + h)) − f (α1(x + h))
α2(x) − α1(x)

·
o(‖h′

‖)

‖h‖

=
δ+f (α2(x); k2) − δ+f (α1(x); k1)

α2(x) − α1(x)
· 0 + 0

= 0. (26)

By assumption, f is B-differentiable at α1(x), α2(x) and employ almost the same arguments, we compute

lim
h→0

f (αi(x + h)) − f (αi(x)) − δ+f (αi(x); ki)
‖h‖

· v(i)
x

= lim
h→0


f (αi(x) + Ti) − f (αi(x)) − δ+f (αi(x); Ti)

‖Ti‖
·
‖ki + (−1)io(‖h′

‖)‖

‖h‖

+
δ+f (αi(x); Ti) − δ+f (αi(x); ki)

‖h‖


· v(i)

x

=


0 · lim

h→0
‖ki‖ + lim

h→0
δ+f


αi(x); (−1)i

o(‖h′
‖)

‖h‖


· v(i)

x = 0 ∀i = 1, 2. (27)

Now from Eqs. (23) and (25)–(27), we see that

lim
h→0

f H (x + h) − f H (x) − δ+f H (x; h)
‖h‖

= 0

which says that f H is B-differentiable at x.

Case (ii). If x′
= 0, we need to further consider the following two subcases:

Subcase (a). If h′
≠ 0, we choose v

(i)
x =

1
2 (e + (−1)i h′

‖h′‖
) for i = 1, 2 such that v

(i)
x+h = v

(i)
x . Then,

f H (x + h) − f H (x) = (f (α1(x + h)) − f (α1(x)))v(1)
x + (f (α2(x + h)) − f (α2(x)))v(2)

x ,

and from Case (ii)(a) of Proposition 4.1, we have

δ+f H (x; h) = δ+f (λ; l − ‖h′
‖)v(1)

x + δ+f (λ; l + ‖h′
‖)v(2)

x ,

where λ = α1(x) = α2(x). Again by the B-differentiability of f at α1(x) and α2(x), we have

lim
h→0

f H (x + h) − f H (x) − δ+f H (x; h)
‖h‖

= lim
h→0

f (α1(x + h)) − f (α1(x)) − δ+f (α1(x); l − ‖h′
‖)

‖h‖
· v(1)

x

+ lim
h→0

f (α2(x + h)) − f (α2(x)) − δ+f (α2(x); l + ‖h′
‖)

‖h‖
· v(2)

x

= 0,

which implies the B-differentiability of f H at x.

Subcase (b). If h′
= 0, we choose v

(i)
x =

1
2 (e+ (−1)iw) with any w ∈ H with ‖w‖ = 1. With almost the same arguments as

in Case (ii)-(b) of Proposition 4.1, the B-differentiability of f H can be verified, we omit the detail here.

(⇒) If f H is B-differentiable at x, then f H is directionally differentiable at x by definition. Then, f is also directionally
differentiable at αi(x), α2(x) by Proposition 4.1. In order to prove the B-differentiability of f at αi(x), α2(x), all we have
to do is proving the following condition:

lim
t→0

f (αi(x) + t) − f (αi(x)) − δ+f (αi(x); t)
|t|

= 0 ∀i = 1, 2.

Since f H is B-differentiable at x, the following condition is true:

lim
h→0

f H (x + h) − f H (x) − δ+f H (x; h)
‖h‖

= 0.

Again, we write x = x′
+ λe and h = h′

+ le ∈ H and discuss two cases.
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Case (i). If x′
≠ 0, from the proof of first part, we know

lim
h→0

f H (x + h) − f H (x) − δ+f H (x; h)
‖h‖

= lim
h→0

[
(f (α2(x + h)) − f (α2(x))) − (f (α1(x + h)) − f (α1(x)))

‖h‖ · (α2(x) − α1(x))
·


h − ⟨h, e⟩e −

⟨x′, h⟩
‖x′‖2

x′


+

f (α2(x + h)) − f (α1(x + h))
α2(x) − α1(x)

·
o(‖h′

‖)

‖h‖
+

2−
i=1

f (αi(x + h)) − f (αi(x)) − δ+f (αi(x); ki)
‖h‖

· v(i)
x



where ki = ⟨h, e⟩ + (−1)i ⟨x
′,h⟩

‖x′‖ for i = 1, 2.

Because limh→0(h − ⟨h, e⟩e −
⟨x′,h⟩
‖x′‖2

x′) = 0 and v
(1)
x ⊥ v

(2)
x , we must have

lim
h→0

f (αi(x + h)) − f (αi(x)) − δ+f (αi(x); ki)
‖h‖

= 0 ∀i = 1, 2. (28)

Note that h ∈ H is arbitrary, we can choose h = te where t ∈ R is also arbitrary. Then, we have

ki = αi(x + h) − αi(x) = t ∀i = 1, 2.

This together with the fact that t → 0 as h → 0 gives

lim
t→0

f (αi(x) + t) − f (αi(x)) − δ+f (αi(x); t)
|t|

= 0 ∀i = 1, 2,

which means that f is B-differentiable at αi(x) for i = 1, 2.
Case (ii). If x′

= 0, we consider the two subcases of h′
= 0 or h′

≠ 0. The proof is routine check as earlier verifications, so
we omit it. �

5. S-semismooth properties of f H

In this section, we show s-semismooth properties of f H . To this end, we first present some equivalent criteria for
s-semismooth functions in infinite-dimensional spaces. In fact, we immediate obtain the following criteria from the very
basic definition and combining some known results in [22].

Proposition 5.1. Suppose that F : X → Y is slantly differentiable on a neighborhood Nx of x. Let f ◦ be a slanting function for
F in Nx and ∂SF be the slant derivative associated with f ◦ in Nx. Then, F is s-semismooth at x if and only if one of the following
holds:

(a) limt→0+ f ◦(x + th)h exists for every h ∈ X,

lim
‖h‖→0

lim
t→0+

f ◦(x + th)h − f ◦(x + h)h

‖h‖
= 0, (29)

and

f ◦(x + h)h − Vh = o(‖h‖) ∀V ∈ ∂SF(x + h). (30)

(b) F is B-differentiable at x, and

δ+F(x; h) − Vh = o(‖h‖) ∀V ∈ ∂SF(x + h). (31)

(c) F is B-differentiable at x, and

F(x + h) − F(x) − Vh = o(‖h‖) ∀V ∈ ∂SF(x + h). (32)

Proof. (a) This is clear from the original definition of s-semismooth function given as in Definition 2.3.
(b) This is result of [22, Theorem 3.3].
(c) Using part(a) and [22, Theorem 2.9] yield F being B-differentiable at x, and

δ+F(x; h) − f ◦(x + h)h = o(‖h‖). (33)

Then, by definition of F being B-differentiable, condition (31) holds. �
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The conditions in Proposition 5.1 are indeed hard to be verified since it is difficult to write out the set ∂SF(x+ h). Hence,
we further establish some equivalent conditions which are useful in subsequent analysis regarding s-semismooth property
which is the main contribution of this paper. We also want to point out the following observation. Suppose that F : X → Y
is slantly differentiable on a neighborhood Nx of x. Let f ◦ be a slanting function for F with uniform bound ‖f ◦

‖ ≤ L in Nx. It
is easy to derive that ‖F(y) − F(z)‖ ≤ 2L‖y − z‖ for any y, z ∈ Nx. However, we have no idea whether it is true or not for
the opposite direction.

Proposition 5.2. Suppose that F : X → Y is slantly differentiable on a neighborhood Nx of x. Let f ◦ be a slanting function for F
in Nx and ∂SF be the slant derivative associated with f ◦ in Nx. Then, the following hold.

(a) If F is s-semismooth at x, then F is B-differentiable at x, and

F(x + h) − F(x) − δ+F(x + h; h) = o(‖h‖) (34)

for all x + h at which F is B-differentiable.
(b) If F is B-differentiable on a neighborhood Nx of x and (34) holds for all x + h at which F is B-differentiable, then F is

s-semismooth at x.

Proof. (a) The B-differentiability of F at x is clear by Proposition 5.1. It remains to claim that when F is B-differentiable at
x + h, there has

‖F(x + h) − F(x) − δ+F(x + h; h)‖
‖h‖

→ 0 as h → 0. (35)

If not, there exist a δ > 0 and a sequence hi → 0 such that F is B-differentiable at x + hi for each i = 1, 2, . . . , and

‖F(x + hi) − F(x) − δ+F(x + hi; hi)‖

‖hi‖
≥ δ. (36)

By assumption, F is s-semismooth at x, then for each i ≥ 1 there exist Vi ∈ ∂SF(x + hi) and yi ∈ Nx+h such that

‖Vi − f ◦(yi)‖ ≤ ‖hi‖, ‖yi − (x + hi)‖ ≤ ‖hi‖
2 (37)

and

‖F(x + hi) − F(x) − Vihi‖

‖hi‖
→ 0 as hi → 0. (38)

By [22, Proposition 2.8], for each hi there exist ti > 0 with 0 < ti ≤ ‖hi‖ such that

‖f ◦(x + hi + tihi)hi − δ+F(x + hi; hi)‖ ≤ ‖hi‖
2. (39)

Now we compute

f ◦(yi)hi − f ◦(x + hi + tihi)hi = (F(x + hi + tihi) − F(x) − f ◦(x + hi + tihi)(hi + tihi))

− (F(yi) − F(x) − f ◦(yi)(yi − x)) + (F(yi) − F(x + hi + tihi))

+ f ◦(yi)(x + hi − yi) + f ◦(x + hi + tihi)(tihi). (40)

Because F is slantly differentiable at x, the first and second term of (40) implies

F(x + hi + tihi) − F(x) − f ◦(x + hi + tihi)(hi + tihi)

‖hi + tihi‖
→ 0 as i → ∞

and

F(yi) − F(x) − f ◦(yi)(yi − x)
‖yi − x‖

→ 0 as i → ∞

which lead to

F(x + hi + tihi) − F(x) − f ◦(x + hi + tihi)(hi + tihi)

‖hi‖

=
F(x + hi + tihi) − F(x) − f ◦(x + hi + tihi)(hi + tihi)

‖hi + tihi‖
·
‖hi + tihi‖

‖hi‖

→ 0 as i → ∞ (41)



5776 C.-Y. Yang et al. / Nonlinear Analysis 74 (2011) 5766–5783

and

F(yi) − F(x) − f ◦(yi)(yi − x)
‖hi‖

=
F(yi) − F(x) − f ◦(yi)(yi − x)

‖yi − x‖
·
‖yi − x‖

‖hi‖

→ 0 as i → ∞. (42)

Here we use that fact that ‖hi + tihi‖ = (1+ ti)‖hi‖ and ‖yi − x‖ = ‖yi − x−hi +hi‖ ≤ ‖yi − x−hi‖+‖hi‖ ≤ ‖hi‖
2
+‖hi‖.

Besides, for the third, fourth and fifth term of (40), since F is slantly differentiable in a neighborhood Nx of x, ‖f ◦(x)‖ is
uniformly bounded in Nx, say ‖f ◦(x)‖ ≤ M in Nx. Hence we have

‖F(yi) − F(x + hi + tihi)‖ ≤ M‖yi − (x + hi + tihi)‖

≤ M(‖hi‖
2
+ ti‖hi‖),

‖f ◦(yi)(x + hi − yi)‖ ≤ M‖x + hi − yi‖ ≤ M‖hi‖
2

and

‖f ◦(x + hi + tihi)(tihi)‖ ≤ M‖tihi‖ ≤ M‖hi‖
2

which implies

‖F(yi) − F(x + hi + tihi)‖

‖hi‖
→ 0 as i → ∞, (43)

‖f ◦(yi)(x + hi − yi)‖
‖hi‖

→ 0 as i → ∞, (44)

‖f ◦(x + hi + tihi)(tihi)‖

‖hi‖
→ 0 as i → ∞. (45)

Combining (41)–(45) all together, we have

‖f ◦(yi)hi − f ◦(x + hi + tihi)hi‖

‖hi‖
→ 0 as i → ∞. (46)

Now consider

F(x + hi) − F(x) − δ+F(x + hi; hi) = [F(x + hi) − F(x) − Vihi] + [Vihi − f ◦(yi)hi]

+ [f ◦(yi)hi − f ◦(x + hi + tihi)hi]

+ [f ◦(x + hi + tihi)hi − δ+F(x + hi; hi)].

From (38), (37), (46) and (39), we have

‖F(x + hi) − F(x) − δ+F(x + hi; hi)‖

‖hi‖
→ 0 as hi → 0.

This is a contradiction to Eq. (36), hence (35) holds for all x + h at which F is B-differentiable.
(b) By Proposition 5.1(c), it suffice to show that for each V ∈ ∂SF(x + h), there has

‖F(x + h) − F(x) − Vh‖
‖h‖

→ 0 as ‖h‖ → 0.

If not, there exist δ > 0 and a sequence hi → 0, Vi ∈ ∂SF(x + hi) and yi ∈ Nx+hi such that ‖yi − (x + hi)‖ ≤ ‖hi‖
2,

‖Vi − f ◦(yi)‖ ≤ ‖hi‖ and

‖F(x + hi) − F(x) − Vihi‖

‖hi‖
≥ δ.

By assumption, F is B-differentiable in a neighborhood of x and satisfies (34) which yields

‖F(x + hi) − F(x) − δ+F(x + hi; hi)‖

‖hi‖
→ 0 as ‖hi‖ → 0.

Then, we consider

F(x + hi) − F(x) − Vihi = [F(x + hi) − F(x) − δ+F(x + hi; hi)] + [f ◦(yi)hi − Vihi]

+ [f ◦(x + hi + tihi)hi − f ◦(yi)hi] + [δ+F(x + hi; hi) − f ◦(x + hi + tihi)hi].
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With similar argument and choice of ti in part (a), we have

‖F(x + hi) − F(x) − Vihi‖

‖hi‖
→ 0 as i → ∞.

This leads to a contradiction. Thus, the proof is complete. �

Lemma 5.1. f H has the continuity or differential properties in a neighborhood Nx of x with spectral values α1(x), α2(x) if and
only if f has the continuity or differential properties in neighborhoods Nαi(x) of αi(x) for all i = 1, 2.

Proof. (⇐) Suppose f has the continuity or differential properties in neighborhoods B(αi(x), δi) of αi(x). By taking δ =

min{δi}, we may assume that f has the continuity or differential properties in neighborhoods B(αi(x), δ) of αi(x). Then, for
any y ∈ B(x, δ

√
2
) with ‖y − x‖ ≤

δ
√
2
, applying Lemma 2.1 gives

|αi(y) − αi(x)| ≤
√
2‖y − x‖ ≤ δ, ∀i = 1, 2,

which means αi(y) ∈ B(αi(x), δ). From assumption we know that f has the continuity or differential properties at αi(y).
Then by previous propositions of this article, f H has the continuity or differential properties at y ∈ B(x, δ

√
2
).

(⇒) Suppose f H has the continuity or differential properties in a neighborhood B(x, δ) of x. For any s ∈ B(αi(x), δ), say
s = αi(x) + k, 0 ≤ |k| < δ, let y = x + ke with ‖y − x‖ = |k| < δ. That is, y ∈ B(x, δ), by assumption and previous
propositions of this article, we know that f has the continuity or differential properties at αi(y) = αi(x + ke) = s. �

Lemma 5.2. Let x = x′
+ λe ∈ H with spectral values α1(x), α2(x) and spectral vectors v

(1)
x , v(2)

x . If x′
≠ 0, then the following

hold.

(a) (αi(x))′ is a slanting function for αi(x) in a neighborhood Nx of x for all i = 1, 2.
(b) (v

(i)
x )′ is a slanting function for v

(i)
x in a neighborhood Nx of x for all i = 1, 2.

Proof. As usual, we write y = y′
+ µe ∈ Nx.

(a) If x′
≠ 0, for any nonzero (y − x) ∈ H , since αi(y + y − x) = (2µ − λ) + (−1)i‖2y′

− x′
‖ and αi(y) = µ + (−1)i‖y′

‖,
there has

αi(y + y − x) − αi(y) = (µ − λ) + (−1)i(‖2y′
− x′

‖ − ‖y′
‖)

= (µ − λ) + (−1)i
⟨x′

+ 2(y′
− x′), x′

+ 2(y′
− x′)⟩ − ⟨x′

+ (y′
− x′), x′

+ (y′
− x′)⟩

‖x′ + 2(y′ − x′)‖ + ‖x′ + (y′ − x′)‖

= (µ − λ) + (−1)i
2⟨x′, y′

− x′
⟩ + 3⟨y′

− x′, y′
− x′

⟩

‖x′ + 2(y′ − x′)‖ + ‖x′ + (y′ − x′)‖

= ⟨y − x, e⟩ + (−1)i
⟨x′, y′

− x′
⟩

‖x′‖
+ o(‖y′

− x′
‖).

This implies

(αi(y))′(y − x) = ⟨y − x, e⟩ + (−1)i
⟨x′, y′

− x′
⟩

‖x′‖
∀i = 1, 2. (47)

On the other hand,

αi(y) − αi(x) = (µ − λ) + (−1)i(‖y′
‖ − ‖x′

‖)

= ⟨y − x, e⟩ + (−1)i
⟨x′

+ (y′
− x′), x′

+ (y′
− x′)⟩ − ⟨x′, x′

⟩

‖x′ + (y′ − x′)‖ + ‖x′‖

= ⟨y − x, e⟩ + (−1)i
⟨x′, y′

− x′
⟩

‖x′‖
+ o(‖y′

− x′
‖) ∀i = 1, 2. (48)

Then, the fact that ‖y′
− x′

‖ ≤ ‖y − x‖ together with Eqs. (47)–(48) yields

αi(y) − αi(x) − (αi(y))′(y − x) = o(‖y − x‖) ∀i = 1, 2,

which says the condition (12) in Definition 2.1(a) is satisfied.
Now, it remains to show that {(αi(x))′} is uniformly bounded. To see this, for any z ∈ H , we estimate it as following.
If x′

≠ 0, then

(αi(x))′z = ⟨z, e⟩ + (−1)i
⟨x′, z⟩
‖x′‖

∀i = 1, 2.
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Hence,

‖(αi(x))′‖ = sup
z≠0

‖(αi(x))′z‖
‖z‖

=

 z
‖z‖

, e

+ (−1)i


x′

‖x′‖
,

z
‖z‖

 ≤ 2 ∀i = 1, 2.

From all the above, we prove (αi(x))′ is a slanting function for αi(x) in a neighborhood Nx of x for all i = 1, 2.
(b) The verification is routine, we only list the key steps here.

v(i)
y − v(i)

x =
(−1)i

2‖x′‖


(y′

− x′) −
⟨x′, y′

− x′
⟩

‖x′‖2
x′


+ o(‖y′

− x′
‖) ∀i = 1, 2.

(v(i)
y )′(y − x) =

(−1)i

2‖x′‖


(y′

− x′) −
⟨x′, y′

− x′
⟩

‖x′‖2
x′


∀i = 1, 2.

For any z = z ′
+ ξe ∈ H , there hold

sup
z≠0

‖(v
(i)
y )′z‖
‖z‖

=
1

2‖y′‖

 z ′

‖z‖
−


y′

‖y′‖
,

z
‖z‖


y′

‖y′‖

 ≤
1

‖y′‖
. �

As in finite-dimensional case, we were hoping to establish that f is s-semismooth at α1(x), α2(x) if and only if f H is
s-semismooth at x ∈ H . However, it is not possible to achieve this due to some essential difference between concepts
of s-semismoothness and semismoothness. As shown in the following proposition, we need some additional condition to
carry it.

Proposition 5.3. Suppose x = x′
+ λe ∈ H with spectral values α1(x), α2(x) and spectral vectors v

(1)
x , v(2)

x . Let f H be defined
as in (4). Then, the following hold.

(a) If f is s-semismooth at α1(x), α2(x) and f is B-differentiable on neighborhood of α1(x), α2(x), then f H is s-semismooth at
x ∈ H .

(b) If f H is s-semismooth at x ∈ H and f H is B-differentiable on neighborhood of x, then f is s-semismooth at α1(x), α2(x).

Proof. (a) Since f is s-semismooth at α1(x), α2(x), by Definition 2.3, there exists slanting functions f ◦

i for f in neighborhood
Nαi(x) of αi(x) for i = 1, 2. Denote f ◦(z) = f ◦

1 (z) if z ∈ Nα1(x) and f ◦(z) = f ◦

2 (z) if z ∈ Nα2(x), then f ◦ is a slanting function
for f in Nα1(x)


Nα2(x). For any y ∈ Nx, since |αi(y) − αi(x)| ≤

√
2‖y − x‖ by Lemma 2.1, we have αi(y) ∈ Nαi(x) and

f (αi(y)) − f (αi(x)) − f ◦(αi(y))(αi(y) − αi(x)) = o(|αi(y) − αi(x)|) = o(‖y − x‖), (49)

where αi(y) ∈ Nαi(x) for i = 1, 2. From definition of slanting function, we know

‖f ◦(αi(y))‖ ≤ L, (50)

where L is a positive number and αi(y) ∈ Nαi(x) for i = 1, 2. In addition, by Lemma 5.2(a),

αi(y) − αi(x) − (αi(y))′(y − x) = o(‖y − x‖) ∀i = 1, 2,

and hence Eq. (49) turns into

f (αi(y)) − f (αi(x)) − f ◦(αi(y))(αi(y))′(y − x) = o(‖y − x‖), ∀i = 1, 2. (51)

Now for any y ∈ Nx, we define

(f H )◦(y)(h) =


2−

i=1

(f ◦(αi(y))(αi(y))′(h)v(i)
y + f (αi(y))(v(i)

y )′(h)), if x′
≠ 0,

2−
i=1

f ◦(αi(y))αi(y − x)v(i)
y , if x′

= 0,
(52)

we will show that (f H )◦ is a slanting function for f H in a neighborhood Nx of x. We write y = y′
+µe ∈ Nx and discuss two

cases.
Case (i). If x′

≠ 0, considering Eq. (23) in which we replace x + hwith y gives

f H (y) − f H (x) = f (α1(y))(v(1)
y − v(1)

x ) + (f (α1(y)) − f (α1(x)))v(1)
x

+ f (α2(y))(v(2)
y − v(2)

x ) + (f (α2(y)) − f (α2(x)))v(2)
x . (53)
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In fact, the sum of first and third terms in (53) can be simplified as

f (α1(y))(v(1)
y − v(1)

x ) + f (α2(y))(v(2)
y − v(2)

x ) = (f (α2(y)) − f (α1(y))) ·
1
2

·


y′

‖y′‖
−

x′

‖x′‖


=

f (α2(y)) − f (α1(y))
2‖x′‖

((y′
− x′) −

⟨x′, y′
− x′

⟩

‖x′‖2
x′

+ o(‖y′
− x′

‖)). (54)

Now, we compute

(f H )◦(y)(y − x) = f ◦(α1(y))(α1(y))′(y − x)v(1)
y + f (α1(y))(v(1)

y )′(y − x)

= f ◦(α2(y))(α2(y))′(y − x)v(2)
y + f (α2(y))(v(2)

y )′(y − x). (55)

By Lemma 5.2(b), the sum of second and fourth terms in (55) becomes

f (α1(y))(v(1)
y )′(y − x) + f (α2(y))(v(2)

y )′(y − x) = (f (α2(y)) − f (α1(y)))(v(2)
y )′(y − x)

= (f (α2(y)) − f (α1(y))) ·
1

2‖x′‖
·


(y′

− x′) −
⟨x′, y′

− x′
⟩

‖x′‖2
x′


. (56)

Next subtracting the first/third term of (55) from the second/fourth term of (53), we obtain

‖(f (αi(y)) − f (αi(x)))v(i)
x − f ◦(αi(y))(αi(y))′(y − x)v(i)

y ‖

≤ ‖f (αi(y)) − f (αi(x)) − f ◦(αi(y))(αi(y))′(y − x)‖‖v(i)
x ‖ + ‖f ◦(αi(y))(αi(y))′(y − x)‖ · ‖v(i)

y − v(i)
x ‖ (57)

≤
1

√
2

· o(‖y − x‖) + L · 2‖y − x‖ ·
1

‖x′‖
· ‖y − x‖

= o(‖y − x‖) ∀i = 1, 2, (58)

where the second inequality comes from (50)–(51), Lemma 2.2 and Lemma 5.2(a). The third inequality is due to the fact that
x′

≠ 0. Now putting (53)–(57) all together yields

f H (y) − f H (x) − (f H )◦(y)(y − x) = o(‖y − x‖), (59)

where y ∈ Nx.
Case (ii). If x′

= 0, and if y′
≠ 0, we choose y′

‖y′‖ ≠ 0 such that v(i)
x =

1
2 (e+ (−1)i y′

‖y′‖ ) = v
(i)
y . If y′

= 0, we choose a same unit

vector w with ‖w‖ = 1 such that v
(i)
x =

1
2 (e + (−1)iw) = v

(i)
y , for all i = 1, 2. In this case, Eq. (54) becomes zero because

of v(i)
x = v

(i)
y , ∀i = 1, 2, when x′

= 0. From (49) and the fact that αi(y − x) = αi(y) − αi(x) when x′
= 0, we have

f H (y) − f H (x) − (f H )◦(y)(y − x) =

2−
i=1

[f (αi(y)) − f (αi(x)) − f ◦(αi(y))(αi(y) − αi(x))]v(i)
x

= o(‖y − x‖).

Now since f ◦, (αi(y))′ and (v
(i)
y )′ are slanting functions of f , αi(y) and v

(i)
y for all i = 1, 2, we can easily check that (f H )◦ is

uniformly bounded in a neighborhood Nx of x. From above discussion, (f H )◦ is a slanting function for f H in a neighborhood
Nx of x. In addition, because of the assumption that f is B-differentiable on neighborhood ofα1(x),α2(x), we obtain the result
that f H is B-differentiable on neighborhood of x by Lemma 5.1.
In order to prove that f H is s-semismooth at x, by Proposition 5.2(b), all we need to do is to identify (34) holds for all x + h
at which f H is B-differentiable. Let h = h′

+ le.
Case (i). If x′

≠ 0, From Eqs. (23) and (24), we have

f H (x + h) − f H (x) =
f (α2(x + h)) − f (α1(x + h))

α2(x) − α1(x)


h − ⟨h, e⟩e −

⟨x′, h⟩
‖x′‖2

x′
+ o(‖h′

‖)



+

2−
i=1

(f (αi(x + h) − f (αi(x))))v(i)
x . (60)

From (25), we further have

δ+f H (x + h; h) =
f (α2(x + h)) − f (α1(x + h))

α2(x + h) − α1(x + h)


h − ⟨h, e⟩e −

⟨x′
+ h′, h′

⟩

‖x′ + h′‖2
(x′

+ h′)



+

2−
i=1

δ+f (αi(x + h); ki)v
(i)
x+h, (61)
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where ki = ⟨h, e⟩ + (−1)i ⟨x
′
+h′,h′

⟩

‖x′+h′‖
, for all i = 1, 2. Since α2(x) − α1(x) = 2‖x′

‖ and α2(x+ h) − α1(x+ h) = 2‖x′
+ h′

‖, the
first term of (60) becomes

f (α2(x + h)) − f (α1(x + h))
2


h′

‖x′‖
−

⟨x′, h′
⟩

‖x′‖3
x′

+ o(‖h′
‖)


and the first term of (61) becomes

f (α2(x + h)) − f (α1(x + h))
2


h′

‖x′ + h′‖
−

⟨x′, h′
⟩ + ⟨h′, h′

⟩

‖x′ + h′‖3
(x′

+ h′)


=

f (α2(x + h)) − f (α1(x + h))
2


h′

‖x′‖
−

⟨x′, h′
⟩

‖x′‖3
x′

+ o(‖h′
‖)


.

Hence the first terms of (60) and (61) are equal. Now we consider the second/third terms of (60) and (61). For all i = 1, 2,

f (αi(x + h) − f (αi(x)))v(i)
x − δ+f (αi(x + h); ki)v

(i)
x+h

= (f (αi(x) + Ti) − f (αi(x)) − δ+f (αi(x); Ti))v(i)
x + (δ+f (αi(x); Ti)v(i)

x − δ+f (αi(x + h); ki)v
(i)
x+h), (62)

where Ti = ki + (−1)io(‖h′
‖) = ⟨h, e⟩+ (−1)i ⟨x

′,h⟩
‖x′‖ + (−1)io(‖h′

‖). Since f is B-differentiable at αi(x), the first term of (62)
is equal to o(‖h‖). Let us consider the second term of (62), we separate it into three parts as following:

δ+f (αi(x); Ti)v(i)
x − δ+f (αi(x + h); ki)v

(i)
x+h = (δ+f (αi(x); Ti) − δ+f (αi(x + h); Ti))v(i)

x

+ (δ+f (αi(x + h); Ti) − δ+f (αi(x + h); ki))v(i)
x + δ+f (αi(x + h); ki)(v(i)

x − v
(i)
x+h). (63)

From the assumption that f is B-differentiable at α(x) + Ti and Eq. (34), we have

f (αi(x) + Ti) − f (αi(x)) − δ+f (αi(x) + Ti; Ti) = o(‖Ti‖).

That is,

f (αi(x + h)) − f (αi(x)) − δ+f (αi(x + h); Ti) = o(‖Ti‖).

Now, the first part of (63) turns into

(δ+f (αi(x); Ti) − δ+f (αi(x + h); Ti))v(i)
x = −(f (αi(x) + Ti) − f (αi(x)) − δ+f (αi(x); Ti) − o(‖Ti‖))v(i)

x

= −(o(‖Ti‖) − o(‖Ti‖))v(i)
x

= o(‖h‖).

Moreover, since limh→0
Ti

‖h‖ = limh→0
ki

‖h‖ , the second part of (63) becomes

lim
h→0

δ+f (αi(x + h); Ti) − δ+f (αi(x + h); ki)v
(i)
x

‖h‖
= lim

h→0


δ+f


αi(x + h);

Ti
‖h‖


− δ+f


αi(x + h);

ki
‖h‖


v(i)
x

= 0,

while the third part of (63) becomes

lim
h→0

δ+f (αi(x + h); ki)(v
(i)
x − v

(i)
x+h)

‖h‖
= lim

h→0
δ+f (αi(x + h); ki) ·

1
‖h‖

·


−

(−1)i

2


h′

‖x′‖
−

⟨x′, h′
⟩

‖x′‖3
+ o(‖h′

‖)


= lim

h→0
δ+f (αi(x + h); ki) ·


−

(−1)i

2


1

‖x′‖

h′

‖h‖
−


x′

‖x′‖
,

h′

‖h‖


x′

‖x′‖2
+

o(‖h′
‖)

‖h‖


= 0,

due to limh→0 ki = limh→0(⟨h, e⟩ + (−1)i ⟨x
′
+h′,h′

⟩

‖x′+h′‖
) = 0.

From above discussion, we can obtain the result that

f H (x + h) − f H (x) − δ+f H (x + h; h) = o(‖h‖).
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Case (ii). If x′
= 0, we consider the following two subcases:

Subcase (a). If h′
≠ 0, we can choose v

(i)
x =

1
2 (e + (−1)i h′

‖h′‖
) for all i = 1, 2 such that v

(i)
x+h = v

(i)
x , αi(x) = λ and

αi(x + h) = λ + l + (−1)i‖h′
‖ = λ + hi where hi = l + (−1)i‖h′

‖. From Eq. (23), we have

f H (x + h) − f H (x) =

2−
i=1

[f (αi(x + h)) − f (αi(x))]v(i)
x

=

2−
i=1

[f (λ + hi) − f (λ)]v(i)
x (64)

and

δ+f H (x + h; h) = lim
t→0+

1
t
(f H (x + h + th) − f H (x + h))

= lim
t→0+

2−
i=1

1
t
(f (λ + hi + thi) − f (λ + hi))

=

2−
i=1

δ+f (λ + hi; hi)v
(i)
x . (65)

Combining Eqs. (64), (65) and the fact that f satisfies Eq. (34), we have

f H (x + h) − f H (x) − δ+f H (x + h; h) =

2−
i=1

(f (λ + hi) − f (λ) − δ+f (λ + hi; hi))v
(i)
x

= o(‖h‖).

Subcase (b). If h′
= 0, we can choose v

(i)
x =

1
2 (e + (−1)iω) by any ω ∈ H with ‖ω‖ = 1. With almost the same argument,

we only list the result as following:

f H (x + h) − f H (x) =

2−
i=1

(f (λ + l) − f (λ))v(i)
x

δ+f H (x + h; h) =

2−
i=1

δ+f (λ + l; l)v(i)
x .

From above discussion, f H satisfies condition (34) for all x + h at which f H is B-differentiable. Hence, f H is s-semismooth
at x by Proposition 5.2(b).
(b) Since f H is s-semismooth at x, by Definition 2.3, there is a slanting function (f H )◦ for f H in a neighborhood Nx of x. Now
we define a function f ◦

: R → L(R, R) by

f ◦(αi(x))t = 2⟨(f H )◦(x)(te), v(i)
x ⟩.

We will argue that f ◦ is a slanting function for f in a neighborhood Nαi(x) of αi(x), i = 1, 2. To see this, we fix some i = 1, 2
and any αi(y) ∈ Nαi(x) with αi(y) − αi(x) = t ∈ R. Without loss of generality, we can choose y = x + te ∈ H . Since (f H )◦

is a slanting function for f H at y ∈ Nx, we know that {(f H )◦(x + te)} is uniformly bounded in the operator norm. With the
following calculation

|f ◦(αi(x) + t)t̄|
|t̄|

=
|2⟨(f H )◦(y)(t̄e), v(i)

y ⟩|

|t̄|
≤

2‖(f H )◦(y)(t̄e)‖
‖t̄e‖

=
2‖(f H )◦(x + te)(t̄e)‖

‖t̄e‖
,

it implies that {f ◦(αi(x)+ t)} is uniformly bounded in the operator norm for t . Now from the definition of slanting function,
we have

f H (y) − f H (x) − (f H )◦(y)(y − x) = o(‖y − x‖).

That is,

f H (x + te) − f H (x) − (f H )◦(x + te)(te) = o(|t|). (66)

Due to the fact that v
(i)
y = v

(i)
x+te = v

(i)
x and from Eq. (15), we have

f H (x + te) − f H (x) =

2−
i=1

(f (αi(x + te)) − f (αi(x)))v(i)
x . (67)
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After combining (66)–(67), there hold

(f H )◦(x + te)(te) =

2−
i=1

(f (αi(x + te)) − f (αi(x)))v(i)
x − o(|t|). (68)

Now, recalling the definition of f ◦,

f ◦(αi(x + te))t = f ◦(αi(y))t = 2⟨(f H )◦(y)(te), v(i)
y ⟩ = 2⟨(f H )◦(x + te)(te), v(i)

y ⟩. (69)

With the fact v
(1)
x ⊥ v

(2)
x and apply (68) into (69), we have

f ◦(αi(y))t = 2(f (αi(x + te)) − f (αi(x)))‖v(i)
x ‖

2
− ⟨o(|t|), v(i)

y ⟩

= f (αi(y)) − f (αi(x)) − o(|t|),

which says

f (αi(y)) − f (αi(x)) − f ◦(αi(y))(αi(y) − αi(x)) = o(|αi(y) − αi(x)|).

That means f ◦ is a slanting function for f in a neighborhood Nαi(x) of αi(x) for i = 1, 2.
Because of the assumption that f H is B-differentiable at neighborhood of x, we know that f is also B-differentiable at
neighborhood of αi(x), i = 1, 2 by Lemma 5.1. Now for any t ∈ R, te ∈ H , after replacing h with te in Eq. (61) and the
fact that v

(i)
x+te = v

(i)
x and αi(x + te) = αi(x) + t , we obtain

δ+f H (x + te; te) =

2−
i=1

δ+f (αi(x + te); t)v(i)
x+te =

2−
i=1

δ+f ((αi(x) + t); t)v(i)
x . (70)

Since f H is s-semismooth at x, by Proposition 5.2(a), f H must satisfy Eq. (34) for te ∈ H . That is,

f H (x + te) − f H (x) − δ+f H (x + te; te) = o(‖te‖) = o(|t|).

This together with (67) and (70) gives

2−
i=1

(f (αi(x + te)) − f (αi(x)) − δ+f ((αi(x) + t); t))v(i)
x = o(|t|).

Since we know that v
(1)
x ⊥v

(2)
x , it implies

f (αi(x) + t) − f (αi(x)) − δ+f ((αi(x) + t); t) = o(|t|)

for all i = 1, 2. Thus, by Proposition 5.2(b), f is s-semismooth at αi(x), i = 1, 2. �
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