
J. Appl. Math. Comput.
DOI 10.1007/s12190-016-1065-0

ORIGINAL RESEARCH

Numerical comparisons based on four smoothing
functions for absolute value equation

B. Saheya1 · Cheng-He Yu2 · Jein-Shan Chen2

Received: 24 March 2016
© Korean Society for Computational and Applied Mathematics 2016

Abstract The system of absolute value equation, denoted by AVE, is a non-
differentiable NP-hard problem. Many approaches have been proposed during the
past decade and most of them focus on reformulating it as complementarity problem
and then solve it accordingly. Another approach is to recast the AVE as a system of
nonsmooth equations and then tackle with the nonsmooth equations. In this paper, we
follow this path. In particular, we rewrite it as a system of smooth equations and pro-
pose four new smoothing functions along with a smoothing-type algorithm to solve
the system of equations. The main contribution of this paper focuses on numeri-
cal comparisons which suggest a better choice of smoothing function along with the
smoothing-type algorithm.

Keywords Smoothing function ·Smoothing algorithm ·Singular value ·Convergence

Mathematics Subject Classification 26B05 · 26B35 · 65K05 · 90C33

B Jein-Shan Chen
jschen@math.ntnu.edu.tw

B. Saheya
saheya@imnu.edu.cn

Cheng-He Yu
60240031S@ntnu.edu.tw

1 College of Mathematical Science, Inner Mongolia Normal University, Hohhot 010022,
Inner Mongolia, People’s Republic of China

2 Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12190-016-1065-0&domain=pdf
http://orcid.org/0000-0002-4596-9419

B. Saheya et al.

1 Introduction

The absolute value equation (AVE) is in the form of

Ax + B|x | = b, (1)

where A ∈ Rn×n, B ∈ Rn×n, B �= 0, and b ∈ Rn . Here |x |means the componentwise
absolute value of vector x ∈ Rn . When B = −I , where I is the identity matrix, the
AVE (1) reduces to the special form:

Ax − |x | = b. (2)

It is known that the AVE (1) was first introduced by Rohn in [20] and recently has been
investigated by many researchers, for example, Hu and Huang [8], Jiang and Zhang
[9], Ketabchi and Moosaei [10], Mangasarian [11–15], Mangasarian and Meyer [16],
Prokopyev [17], and Rohn [22].

In particular, Mangasarian and Meyer [16] show that the AVE (1) is equivalent to
the bilinear program, the generalized LCP (linear complementarity problem), and the
standard LCP provided 1 is not an eigenvalue of A. With these equivalent reformu-
lations, they also show that the AVE (1) is NP-hard in its general form and provide
existence results. Prokopyev [17] further improves the above equivalence which indi-
cates that the AVE (1) can be equivalently recast as LCP without any assumption
on A and B, and also provides a relationship with mixed integer programming. In
general, if solvable, the AVE (1) can have either unique solution or multiple (e.g.,
exponentially many) solutions. Indeed, various sufficiency conditions on solvability
and non-solvability of the AVE (1) with unique and multiple solutions are discussed in
[16,17,21]. Some variants of theAVE, like theAVE associatedwith second-order cone
and the absolute value programs (AVP), are investigated in [5] and [23], respectively.

As for its numerical solvers, many numerical methods for solving the AVEs (1)–(2)
have been proposed. A parametric successive linearization algorithm for the AVE (1)
that terminates at a point satisfying necessary optimality conditions is studied in [12].
The generalized Newton algorithm for the AVE (2) is investigated in [13], in which it
was proved that this algorithm converges linearly from any starting point to the unique
solution of the AVE (2) under the condition that ‖A−1‖ < 1

4 . The generalized Newton
algorithmwith semismooth and smoothing Newton steps combined into the algorithm
is considered in [24]. The smoothing-type algorithms for solving the AVEs (1)–(2) are
studied in [1,8,9]. A branch and bound method for the AVP, which is an extension of
the AVE, is studied in [23].

Among the aforementioned approaches, many of them focus on reformulating it
as complementarity problem and then solve it accordingly. An alternative approach
is to recast the AVE as a system of nonsmooth equations and then tackle with the
nonsmooth equations by applying nonsmooth Newton algorithm [18] or smoothing
Newton algorithm [19]. In this paper, we follow the latter pathway. More specifically,
we rewrite it as a system of smooth equations and propose four new smoothing func-
tions along with a smoothing-type algorithm to solve the system of equations. To see

123

Numerical comparisons based on four smoothing functions...

this, motivated by the approach in [1,9], we define Hi : Rn+1 → Rn+1 as

Hi (μ, x) =
[

μ

Ax + B�i (μ, x) − b

]
for μ ∈ R and x ∈ Rn (3)

where �i : Rn+1 → Rn is given by

�i (μ, x) :=

⎡
⎢⎢⎢⎣

φi (μ, x1)
φi (μ, x2)

...

φi (μ, xn)

⎤
⎥⎥⎥⎦ for μ ∈ R and x ∈ Rn (4)

with four various smoothing functions φi : R2 → R that will be introduced later. The
role of φi looks similar to the function φp used in [9]. However, they are substantially
different. More specifically, the function φp employed in [9] is strongly semismooth
on R2, whereas each φi proposed in this paper is continuously differentiable on R2.
Now, we present the exact form for each function φi , which is defined as below:

φ1(μ, t) = μ
[
ln

(
1 + e− t

μ

)
+ ln

(
1 + e

t
μ

)]
(5)

φ2(μ, t) =

⎧⎪⎪⎨
⎪⎪⎩

t if t ≥ μ
2 ,

t2

μ
+ μ

4
if −μ

2 < t <
μ
2 ,

−t if t ≤ −μ
2 .

(6)

φ3(μ, t) =
√
4μ2 + t2 (7)

φ4(μ, t) =
⎧⎨
⎩

t2

2μ
if |t | ≤ μ,

|t | − μ
2 if |t | > μ.

(8)

Someof the smoothing functions have appeared in other contexts for other optimization
problems, but they are all novel ones for dealing with the AVE (1). The main idea in
this paper is showing that the AVE (1) has a solution if and only if Hi (μ, x) = 0, φi

is continuously differentiable at any (μ, t) ∈ R++ × R, and limμ↓0 φi (μ, x) =
|x |. Then, with these four new smoothing functions, we consider the smoothing-type
algorithm studied in [7,25] to solve the AVE (1). In other words, we reformulate
the AVE (1) as parameterized smooth equations and then employ a smoothing-type
algorithm to solve it. In addition, we show that the algorithm is well-defined under the
assumption that the minimal singular value of the matrix A is strictly greater than the
maximal singular value of the matrix B. We also show that the proposed algorithm
is globally and locally quadratically convergent no matter which smoothing function
φi is used. Numerical implementations and comparisons based on these four different
φi are reported as well. From the numerical results, we conclude that φ2 is the best
choice of smoothing function when we apply the proposed smoothing-type algorithm.
More detailed reports will be seen in Sect. 4.

123

B. Saheya et al.

Fig. 1 Graphs of |t | and all four φi (μ, t) with μ = 0.1

2 Smoothing Reformulation

In this section, we depict the graphs of φi for i = 1, 2, 3, 4 and investigate their
properties. Then, we show the equivalent reformulation that Hi (μ, x) = 0 if and only
if x solves the AVE (1), and talk about the condition to guarantee the unique solvability
of the AVE (1). We begin with showing the pictures of φi for i = 1, 2, 3, 4, see Fig. 1.

FromFig. 1, we see thatφ2 is the onewhich best approximates the function |t | under
the sense that it is closest to |t | among all φi for i = 1, 2, 3, 4. To see this, we adopt
the max norm to measure the distance of two real-valued functions. In other words,
for given two real-valued functions f and g, the distance between them is defined as

‖ f − g‖∞ = max
t∈R

{ f (t) − g(t)} .

Now, for any fixed μ > 0, we know that

lim|t |→∞
∣∣φi (μ, t) − |t |∣∣ = 0, for i = 1, 2, 3.

This implies that

max
t∈R

∣∣φi (μ, t) − |t |∣∣ = |φi (μ, 0)| , for i = 1, 2, 3.

Since, φ1(μ, 0) = (2 ln 2)μ ≈ 1.4μ, φ2(μ, 0) = μ
4 , and φ3(μ, 0) = 2μ, we obtain

∥∥φ1(μ, t) − |t |∥∥∞ = (2 ln 2)μ ≈ 1.4μ∥∥φ2(μ, t) − |t |∥∥∞ = μ

4∥∥φ3(μ, t) − |t |∥∥∞ = 2μ

123

Numerical comparisons based on four smoothing functions...

On the other hand, we see that

lim
t→∞

∣∣φ4(μ, t) − |t |∣∣ = μ

2
and φ4(μ, 0) = 0,

which says

max
t∈R

∣∣φ4(μ, t) − |t |∣∣ = μ

2
.

Hence, we obtain

∥∥φ4(μ, t) − |t |∥∥∞ = μ

2
.

From all the above, we conclude that

∥∥φ3(μ, t)−|t |∥∥∞ >
∥∥φ1(μ, t)−|t |∥∥∞ >

∥∥φ4(μ, t) − |t |∥∥∞ >
∥∥φ2(μ, t)−|t |∥∥∞.

(9)
This shows that φ2 is the function among φi , i = 1, 2, 3, 4 which best approximates
the function |t |. In fact, for fixed μ > 0, there has the local behavior that

φ3(μ, t) > φ1(μ, t) > φ2(μ, t) > |t | > φ4(μ, t). (10)

A natural question arises here, does the smoothing algorithm based on φ2 perform
best among all φ1, φ2, φ3, φ4? This will be answered in Sect. 4.

Proposition 2.1 Let φi : R2 → R for i = 1, 2, 3, 4 be defined as in (5), (6), (7) and
(8), respectively. Then, we have

(a) φi is continuously differentiable at (μ, t) ∈ R++ × R;
(b) limμ↓0 φi (μ, t) = |t | for any t ∈ R.

Proof (a) In order to prove the continuous differentiability of φi , we need to write out
the expressions of ∂φi (μ,t)

∂t and ∂φi (μ,t)
∂μ

; and then show the continuity of ∂φi (μ,t)
∂t and

∂φi (μ,t)
∂μ

.

(i) For i = 1, we compute that

∂φ1(μ, t)

∂t
= 1

1 + e− t
μ

− 1

1 + e
t
μ

,

∂φ1(μ, t)

∂μ
=

[
ln

(
1 + e− t

μ

)
+ ln

(
1 + e

t
μ

)]
+ t

μ

[
−1

1 + e− t
μ

+ 1

1 + e
t
μ

]
.

Then, it is clear to see that ∂φ1(μ,t)
∂t and ∂φ1(μ,t)

∂μ
are continuous. Hence, φ1 is

continuously differentiable.

123

B. Saheya et al.

(ii) For i = 2, we compute that

∂φ2(μ, t)

∂t
=

⎧⎨
⎩

1 if t ≥ μ
2 ,

2t
μ

if −μ
2 < t <

μ
2 ,

−1 if t ≤ −μ
2 .

∂φ2 (μ, t)

∂μ
=

⎧⎪⎨
⎪⎩

0 if t ≥ μ
2 ,

−
(

t
μ

)2 + 1
4 if −μ

2 < t <
μ
2 ,

0 if t ≤ −μ
2 .

Then, it can be verified that ∂φ2(μ,t)
∂t and ∂φ2(μ,t)

∂μ
are continuous because

lim
t→ μ

2

∂φ2(μ, t)

∂t
= lim

t→ μ
2

2t

μ
= 1,

lim
t→− μ

2

∂φ2(μ, t)

∂t
= lim

t→− μ
2

2t

μ
= −1.

and

lim
t→ μ

2

∂φ2(μ, t)

∂μ
= lim

t→ μ
2

[
−

(
t

μ

)2

+ 1

4

]
= 0,

lim
t→− μ

2

∂φ2(μ, t)

∂μ
= lim

t→− μ
2

[
−

(
t

μ

)2

+ 1

4

]
= 0.

Hence, φ2 is continuously differentiable.
(iii) For i = 3, we compute that

∂φ3(μ, t)

∂t
= t√

4μ2 + t2
,

∂φ3(μ, t)

∂μ
= 4μ√

4μ2 + t2
.

Again it is clear to see that ∂φ3(μ,t)
∂t and ∂φ3(μ,t)

∂μ
are continuous. Hence, φ3 is

continuously differentiable.
(iv) For i = 4, we compute that

∂φ4(μ, t)

∂t
=

⎧⎨
⎩
1 if t > μ,
t
μ

if −μ ≤ t ≤ μ,

−1 if t < −μ.

∂φ4(μ, t)

∂μ
=

⎧⎪⎨
⎪⎩

− 1
2 if t > μ,

− 1
2

(
t
μ

)2
if −μ ≤ t ≤ μ,

− 1
2 if t < −μ.

123

Numerical comparisons based on four smoothing functions...

Then, we conclude that ∂φ4(μ,t)
∂t and ∂φ4(μ,t)

∂μ
are continuous by checking

lim
t→μ

∂φ4(μ, t)

∂t
= lim

t→μ

t

μ
= 1,

lim
t→−μ

∂φ4(μ, t)

∂t
= lim

t→−μ

t

μ
= −1.

and

lim
t→μ

∂φ4(μ, t)

∂μ
= lim

t→μ

[
−1

2
×

(
t

μ

)2
]

= −1

2
,

lim
t→−μ

∂φ4(μ, t)

∂μ
= lim

t→−μ

[
−1

2
×

(
t

μ

)2
]

= −1

2
.

Hence, φ4 is continuously differentiable.

Fromall the above,weprove thatφi is continuously differentiable at (μ, t) ∈ R++×R.
(b) For i = 1, 2, 3, 4, we always have the following:

lim
μ→0

∂φi (μ, t)

∂t
=

{
1 if t > 0,

−1 if t < 0,

which verifies part (b). ��

For subsequent needs in convergence analysis and numerical implementations, we
summarize the gradient of each φi as below.

∇φ1(μ, t) =
⎡
⎢⎣

[
ln(1 + e− t

μ) + ln(1 + e
t
μ)

]
+ t

μ

[
−1

1+e− t
μ

+ 1

1+e
t
μ

]
1

1+e− t
μ

− 1

1+e
t
μ

⎤
⎥⎦ .

∇φ2(μ, t) =
[

ξ1
ξ2

]
, where ξ1 =

⎧⎪⎨
⎪⎩

0 if t ≥ μ
2 ,

−
(

t
μ

)2 + 1
4 if −μ

2 < t <
μ
2 ,

0 if t ≤ −μ
2 .

ξ2 =
⎧⎨
⎩

1 if t ≥ μ
2 ,

2t
μ

if −μ
2 < t <

μ
2 ,

−1 if t ≤ −μ
2 .

∇φ3(μ, t) =
⎡
⎣

4μ√
4μ2+t2
t√

4μ2+t2

⎤
⎦ .

123

B. Saheya et al.

∇φ4(μ, t) =
[

v1
v2

]
, where v1 =

⎧⎪⎪⎨
⎪⎪⎩

− 1
2 if t > μ,

− 1
2

(
t
μ

)2
if −μ ≤ t ≤ μ,

− 1
2 if t < −μ.

v2 =
⎧⎨
⎩

1 if t > μ,
t
μ

if −μ ≤ t ≤ μ,

−1 if t < −μ.

In fact, Proposition 2.1 can be also depicted by geometric views. In particular, from
Figs. 2, 3, 4 and 5, we see that when μ ↓ 0, φi is getting closer to |t |, which verifies
Proposition 2.1(b).

Now, in light of Proposition 2.1, we obtain the equivalent reformulation Hi (μ, x)
= 0 for the AVE (1).

Fig. 2 Graphs of φ1(μ, t) with μ = 0.01, 0.1, 0.3, 0.5

Fig. 3 Graphs of φ2(μ, t) with μ = 0.01, 0.1, 0.3, 0.5

123

Numerical comparisons based on four smoothing functions...

Fig. 4 Graphs of φ3(μ, t) with μ = 0.01, 0.1, 0.3, 0.5

Fig. 5 Graphs of φ4(μ, t) with μ = 0.01, 0.1, 0.3, 0.5

Proposition 2.2 Let �i (μ, x) for i = 1, 2, 3, 4 be defined as in (4). Then, we have

(a) Hi (μ, x) = 0 if and only if x solves the AVE (1);
(b) Hi is continuously differentiable onRn+1\ {0} with the Jacobian matrix given by

∇Hi (μ, x) :=
[

1 0
B ∇1�i (μ, x) A + B ∇2�i (μ, x)

]
(11)

where

∇1�i (μ, x) :=

⎡
⎢⎢⎢⎢⎣

∂φi (μ,x1)
∂μ

∂φi (μ,x2)
∂μ
...

∂φi (μ,xn)
∂μ

⎤
⎥⎥⎥⎥⎦ ,

123

B. Saheya et al.

∇2�i (μ, x) :=

⎡
⎢⎢⎢⎢⎣

∂φi (μ,x1)
∂x1

0 · · · 0

0 ∂φi (μ,x2)
∂x2

· · · 0
...

...
. . .

...

0 · · · 0 ∂φi (μ,xn)
∂xn

⎤
⎥⎥⎥⎥⎦ .

Proof This result follows from Proposition 2.1 immediately and the computation of
the Jacobian matrix is straightforward. ��

For completeness, we also talk about the unique solvability of the AVE (1), which
is presumed in our numerical implementations. The following assumption and propo-
sition are both employed from [9]. Assumption 2.3 will be also used to guarantee that
∇Hi (μ, x) is invertible at any (μ, x) ∈ R++ × Rn , see Proposition 3.2 in Sect. 3.

Assumption 2.3 The minimal singular value of the matrix A is strictly greater than
the maximal singular value of the matrix B.

Proposition 2.4 ([9, Proposition 2.3])TheAVE (1) is uniquely solvable for anyb ∈ Rn

if Assumption 2.3 is satisfied.

3 A smoothing-type algorithm

From Proposition 2.2, we know that the AVE (1) is equivalent to Hi (μ, x) = 0.
Accordingly, in this section, we consider the smoothing-type algorithm as in [1,9] to
solve Hi (μ, x) = 0. In fact, this type of algorithm has been also proposed for solving
other kinds of problems, see [2,7,25] and references therein.

Algorithm 3.1 (A smoothing-type algorithm)

Step 0 Choose δ, σ ∈ (0, 1), μ0 > 0, x0 ∈ Rn. Set z0 := (μ, x0). Denote e0

:= (1, 0) ∈ R × Rn. Choose β > 1 such that
(
min

{
1, ‖Hi (z0)‖

})2 ≤ βμ0.
Set k := 0.

Step 1 If ‖Hi (zk)‖ = 0, stop.
Step 2 Set τk := min

{
1, ‖Hi (zk)‖

}
, and compute �zk := (�μk,�xk) ∈ R × Rn

by using
∇Hi (z

k)�zk = −Hi (z
k) + (1/β)τ 2k e

0, (12)

where ∇Hi (·) is defined as in (11).
Step 3 Let αk be the maximum of the values 1, δ, δ2, · · · such that

‖Hi (z
k + αk�zk)‖ ≤ [1 − σ(1 − 1/β)αk] ‖Hi (z

k)‖ (13)

Step 4 Set zk+1 := zk + αk�zk and k := k + 1. Back to Step 1.

Following the same arguments as in [6,7], the line search (13) in the above scheme
is well-defined. In other words, the Algorithm 3.1 is well-defined and possesses some
nice properties.

123

Numerical comparisons based on four smoothing functions...

Proposition 3.2 (a) Suppose that Assumption 2.3 holds. Then, the Algorithm 3.1 is
well-defined.

(b) Let the sequence
{
zk

}
be generated by Algorithm 3.1. Then,

(i) both
{‖Hi (zk)‖

}
and {τk} are monotonically decreasing;

(ii) τ 2k ≤ βμk holds for all k;
(iii) the sequence {μk} is monotonically decreasing, and μk > 0 for all k.

Proof Please refer to [7, Remark 2.1] or [9, Proposition 3.1]. ��

The key point in the above scheme is the solvability of Newton equations (12) in
Step 2. The following result is regarding this issue. Since the�i function plays almost
the same role as the function�p used in [9], the below Proposition 3.3 can be obtained
by mimicking the same arguments as in [9, Theorem 3.2]. We omit its proof and only
state it.

Proposition 3.3 Let Hi and ∇Hi be given as in (3) and (11), respectively. Suppose
that Assumption 2.3 holds. Then, ∇Hi (μ, x) is invertible at any (μ, x) ∈ R++ ×Rn.

Next, we discuss the global and local convergence. Again, although the function
�i here is continuously differentiable and the function �p used in [9] is only semi-
smooth, their roles in the proof are almost the same. Consequently, the arguments for
convergence analysis are almost the same. Hence, we also omit the detailed proof and
only present the convergence result.

Proposition 3.4 Suppose that Assumption 2.3 holds and that the sequence
{
zk

}
is

generated by Algorithm 3.1. Then,

(a)
{
zk

}
is bounded;

(b) any accumulation point of
{
zk

}
is a solution of the AVE (1).

(c) The whole sequence
{
zk

}
convergence to z∗ with ‖zk+1 − zk‖ = o

(‖zk − z∗‖)
and μk+1 = μ2

k .

4 Numerical implementations

In this section, we report the numerical results of Algorithm 3.1 for solving the AVE
(1) and (2). All numerical experiments are carried out in Mathematica 10.0 running on
a PC with Intel i5 of 3.00GHz CPU processor, 4.00GBMemory and 32-bit Windows
7 operating system.

In our numerical experiments, the stoping criteria for Algorithm 3.1 is ‖Hi (zk)‖ ≤
1.0e−6. We also stop programs when the total iteration is more than 100. Throughout
the computational experiments, the following parameters are used:

δ = 0.5, σ = 0.0001, μ0 = 0.1, β = max
{
1, 1.01 ∗ τ 20 /μ

}
.

123

B. Saheya et al.

4.1 Experiments on the AVE Ax − |x| = b

In this subsection we consider the simplified form of AVE (2). Consider the ordinary
differential equation [4, Example 4.2]:

d2x

dt2
− |x | = (1 − t2), x(0) = −1, x(1) = 0, t ∈ [0, 1]. (14)

As explained in [4, Example 4.2], after descretization (by using finite difference
method), the above ODE can be recast an AVE in form of

Ax − |x | = b, (15)

where the matrix A is given by

ai, j =

⎧⎪⎨
⎪⎩

−242, i = j,

121, |i − j | = 1,

0, otherwise.

(16)

We implement the aboveproblemsbyusingφi , i = 1, 2, 3, 4andn = 2, 5, 10, 20, . . . ,
100, respectively. Every starting point x is randomly generated 10 times from a uni-
form distribution on x ∈ [−2, 2]. The results are put together in Table 1, where Dim
denotes the size of problem, N_φi denotes the average number of iterations, T_φi

denotes the average value of the CPU time in seconds, Ar_φi denotes the average
value of ‖H(zk)‖ when Algorithm 3.1 stop.

FromTable 1, in terms of the average number of iterations, the efficiency ofφ2(μ, t)
is best, followed byφ4(μ, t), φ3(μ, t) andφ1(μ, t). This is especially true for the prob-
lem of high dimension ordinary differential equation (14). In terms of time efficiency,
φ1(μ, t) is still better than other functions too. In other words, for the AVE (2) arising
from the ODE (15), we have

φ2(μ, t) > φ4(μ, t) > φ3(μ, t) > φ1(μ, t)

where “>” means “better performance”.
To compare the performance of smoothing function φi (μ, t), i = 1, 2, 3, 4, we

adopt the performance profile which is introduced in [3] as a means. In other words,
we regardAlgorithm3.1 corresponding to a smoothing functionφi (μ, t), i = 1, 2, 3, 4
as a solver, and assume that there are ns solvers and n p test problems from the test
set P which is generated randomly. We are interested in using the iteration number as
performance measure for Algorithm 3.1 with different φi (μ, t). For each problem p
and solver s, let

f p,s = iteration number required to solve problem p by solver s.

123

Numerical comparisons based on four smoothing functions...

Ta
bl
e
1

T
he

nu
m
er
ic
al
re
su
lts

of
or
di
na
ry

di
ff
er
en
tia

le
qu

at
io
n
(1
4)

D
im

N
_φ

1
T
_φ

1
A
r_

φ
1

N
_φ

2
T
_φ

2
A
r_

φ
2

N
_φ

3
T
_φ

3
A
r_

φ
3

N
_φ

4
T
_φ

4
A
r_

φ
4

2
5.
1

0.
09

67
3.
30

E
−0

7
3.
9

0.
00

15
6.
92

E
−0

8
5.
1

0.
00

16
5.
93

E
−0

8
4

0.
00

62
5.
99

E
−0

8

5
5.
9

0.
36

97
2.
23

E
−0

7
4.
1

0.
00

31
7.
47

E
−0

8
5.
6

0.
00

62
2.
21

E
−0

8
4.
2

0.
00

16
6.
54

E
−0

8

10
6.
4

0.
48

51
2.
98

E
−0

7
4.
3

0.
00

94
2.
10

E
−0

7
5.
9

0.
00

31
1.
05

E
−0

7
4.
5

0.
00

31
4.
67

E
−0

8

20
5.
2

0.
42

90
2.
41

E
−0

7
4.
9

0.
00

78
1.
10

E
−0

8
6.
3

0.
00

78
2.
13

E
−0

9
5

0.
00

94
2.
46

E
−0

9

40
8.
8

4.
41

17
4.
66

E
−0

7
6.
1

0.
52

10
5.
28

E
−0

8
7.
3

0.
01

72
6.
59

E
−0

8
6.
3

0.
01

56
1.
88

E
−0

7

60
9.
1

2.
42

89
2.
31

E
−0

7
6.
8

0.
02

81
4.
49

E
−0

8
9

0.
03

12
1.
20

E
−0

8
7.
7

0.
03

12
1.
31

E
−0

7

80
9.
8

2.
05

14
3.
61

E
−0

7
7.
4

0.
03

74
3.
21

E
−1

0
9.
3

0.
04

52
3.
21

E
−0

8
9.
2

0.
05

93
3.
15

E
−0

8

10
0

9.
8

8.
23

06
4.
44

E
−0

7
7.
8

0.
05

77
8.
78

E
−0

8
10

0.
06

71
2.
26

E
−0

7
9.
5

0.
08

27
2.
83

E
−0

8

123

B. Saheya et al.

We employ the performance ratio

rp,s := f p,s
min

{
f p,s : s ∈ S} ,

where S is the four solvers set. We assume that a parameter rp,s ≤ rM for all p, s are
chosen, and rp,s = rM if and only if solver s does not solve problem p. In order to
obtain an overall assessment for each solver, we define

ρs(τ) := 1

n p
size

{
p ∈ P : rp,s ≤ τ

}
,

which is called the performance profile of the number of iteration for solver s. Then,
ρs(τ) is the probability for solver s ∈ S that a performance ratio f p,s is within a factor
τ ∈ R of the best possible ratio.

We then need to test the four functions for ODE (14) at random starting points. In
particular, starting points for each dimension are randomly chosen 20 times from a
uniform distribution on x ∈ [−2, 2]. In order to obtain an overall assessment for the
four functions, we are interested in using the number of iterations as a performance
measure for Algorithm 3.1 with φ1(μ, t), φ2(μ, t), φ3(μ, t), and φ4(μ, t), respec-
tively. The performance plot based on iteration number is presented in Fig. 6. From
this figure, we see that φ2(μ, t) working with Algorithm 3.1 has the best numerical
performance, followed by φ4(μ, t). In other words, in view of “iteration numbers”,
there has

φ2(μ, t) > φ4(μ, t) > φ3(μ, t) > φ1(μ, t)

where “>” means “better performance”.
We are also interested in using the computing time as performance measure for

Algorithm 3.1 with different φi (μ, t), i = 1, 2, 3, 4. The performance plot based on

Fig. 6 Performance profile of iteration numbers of Algorithm 3.1 for the ODE (14)

123

Numerical comparisons based on four smoothing functions...

Fig. 7 Performance profile of computing time of Algorithm 3.1 for the ODE (14)

computing time is presented in Fig. 7. From this figure, we can also see the function
φ2(μ, t) has best performance, then followed by φ3(μ, t). Note that the time efficiency
of φ1(μ, t) is very bad. In other words, in view of “computing tim”, there has

φ2(μ, t) > φ3(μ, t) > φ4(μ, t) > φ1(μ, t)

where “>” means “better performance”.
In summary, for the special AVE (2) arising from the ODE (14), no matter the

number of iterations or the computing time is taken into account, the function φ2(μ, t)
is the best choice for the Algorithm 3.1.

4.2 Experiments on the general AVE Ax + B|x| = b

In this subsection we consider the general AVE (1): Ax + B|x | = b. Here matrix A
(or B) is equal to a normal distribution random matrix minus another one so that we
can randomly generate the testing problems.

In order to ensure that Assumption 2.3 holds, we further modify the matrix A in
light of the below conditions.

• If min{wi i : i = 1, . . . , n} = 0 with {u, w, v} = SingularValueDecomposition
[A], then we set A = u(w + 0.01 × IdentityMatrix[n])v.

• Set A = λmax(BTB)+0.01
λmin(ATA)

A.

Then, it is clear to verify that Assumption 2.3 is satisfied for such A. Moreover, we
set p =2RandomVariate [NormalDistribution[],{n, 1}] and b = Ap + B|p| so that
the testing problems are solvable.

We implement the above problems for φi , i = 1, 2, 3, 4 and n = 2, 5, 10, 20, . . . ,
100, respectively. Every case is randomly generated 10 times for testing. The numerical
results are listed in Table 2. From Table 2, in terms of the number of iterations and
computation time, the efficiency ofφ2(μ, t) is best, followed byφ4(μ, t). The iteration

123

B. Saheya et al.

Ta
bl
e
2

T
he

nu
m
er
ic
al
re
su
lts

of
ex
pe
ri
m
en
ts

D
im

N
_φ

1
T
_φ

1
A
r_

φ
1

N
_φ

2
T
_φ

2
A
r_

φ
2

N
_φ

3
T
_φ

3
A
r_

φ
3

N
_φ

4
T
_φ

4
A
r_

φ
4

2
6.
2

0.
45

96
5.
00

E
−7

3.
6

0.
00

31
8.
56

E
−8

7.
1

0.
00

16
1.
79

E
−7

3.
9

0
8.
04

E
−8

5
7.
4

0.
22

46
6.
05

E
−7

4.
1

0.
00

31
8.
39

E
−8

9.
6

0.
00

94
4.
73

E
−7

4.
3

0.
00

16
7.
53

E
−8

10
10

.2
1.
07

33
2.
23

E
−7

4.
3

0.
00

62
8.
26

E
−8

17
.2

0.
01

87
4.
79

E
−7

4.
7

0.
00

31
7.
53

E
−8

20
19

.8
3.
78

30
5.
00

E
−7

4.
8

0.
00

62
9.
95

E
−8

26
.3

0.
04

99
1.
86

E
−7

5.
9

0.
00

94
1.
06

E
−7

30
28

.7
5.
05

75
4.
46

E
−7

5.
6

0.
01

40
1.
00

E
−7

43
.2

0.
12

95
5.
22

E
−8

9.
3

0.
02

65
1.
82

E
−7

40
38

.6
3.
09

35
6.
52

E
−7

7.
1

0.
02

34
5.
60

E
−8

54
.1

0.
21

37
1.
65

E
−7

11
.9

0.
03

74
9.
14

E
− 8

50
42

.7
1.
90

16
5.
37

E
-7

5.
3

0.
02

18
7.
73

E
−8

61
.5

0.
31

20
1.
93

E
−8

10
.4

0.
04

37
5.
88

E
−8

60
52

.1
2.
52

72
5.
61

E
−7

6.
6

0.
03

59
5.
90

E
−8

78
.7

0.
49

76
1.
05

E
−8

13
.9

0.
07

18
1.
15

E
−7

70
60

.2
3.
70

50
6.
10

E
−7

9.
9

0.
06

24
1.
12

E
−7

94
.4

0.
73

32
1.
80

E
−7

18
.7

0.
12

64
1.
26

E
−7

80
58

.0
4.
12

46
4.
31

E
−7

8.
9

0.
06

40
6.
03

E
−8

98
.5

0.
88

45
3.
88

E
−8

17
.5

0.
14

20
5.
35

E
−8

90
78

.2
11

.1
70

6.
28

E
−7

10
.0

0.
09

05
2.
23

E
−7

11
4.
3

1.
27

45
1.
46

E
−7

20
.9

0.
20

28
1.
46

E
−7

10
0

72
.2

12
.2
11

4.
77

E
−7

7.
5

0.
07

09
1.
62

E
−7

11
0.
8

1.
64

77
1.
31

E
−7

16
.9

0.
18

81
1.
34

E
−7

123

Numerical comparisons based on four smoothing functions...

Fig. 8 Performance profile of iteration numbers of Algorithm 3.1 for general AVE

number of φ1(μ, t) is less than φ3(μ, t), but the computing time of φ1(μ, t) is more
than φ3(μ, t).

Figure 8 shows the performance profile of iteration number in Algorithm 3.1 in the
range of τ ∈ [1, 15] for four solvers on 100 test problemwhich are generated randomly.
The four solvers correspond to Algorithm 3.1 with φ1(μ, t), φ2(μ, t), φ3(μ, t), and
φ4(μ, t), respectively. From this figure, we see that φ2(μ, t) working with Algorithm
3.1 has the best numerical performance, followed by φ4(μ, t). In summary, from the
viewpoint of “iteration numbers”, we conclude that

φ2(μ, t) > φ4(μ, t) > φ1(μ, t) > φ3(μ, t)

where “>” means “better performance”.
Finally, we are also interested in using the computing time as performance measure

for Algorithm 3.1 with different φi (μ, t), i = 1, 2, 3, 4. The performance plot based
on computing time is presented in Fig. 9. From this figure, we can also see the function

Fig. 9 Performance profile of computing time of Algorithm 3.1 for general AVE

123

B. Saheya et al.

φ2(μ, t) has best performance, then followed by φ4(μ, t). Note that the time efficiency
of φ1(μ, t) is very bad. Again, from the viewpoint of “computing time”, we conclude
that

φ2(μ, t) > φ4(μ, t) > φ3(μ, t) > φ1(μ, t)

where “>” means “better performance”.

5 Conclusion

In this paper, we recast the AVE (1) as a system of smooth equations. Accordingly,
we have proposed four smoothing functions along with a smoothing-type algorithm
studied in [1,9] to solve it. As mentioned in Sect. 2, there holds the local behavior
shown as in (10):

φ3(μ, t) > φ1(μ, t) > φ2(μ, t) > |t | > φ4(μ, t).

and φ2(μ, t) is the one which best approximates the function |t | shown as in (9), i.e.,
∥∥φ3(μ, t) − |t |∥∥∞ >

∥∥φ1(μ, t) − |t |∥∥∞ >
∥∥φ4(μ, t) − |t |∥∥∞ >

∥∥φ2(μ, t) − |t |∥∥∞.

Surprisingly, φ2(μ, t) is also the best choice of smoothing function no matter when
the iteration number or the computing time is taken into account. For the “iteration”
aspect, the order of numerical performance from good to bad is

{
φ2(μ, t) > φ4(μ, t) > φ1(μ, t) > φ3(μ, t), for th AVE (1).
φ2(μ, t) > φ4(μ, t) > φ3(μ, t) > φ1(μ, t), for th AVE (2).

whereas for the “time” aspect, the order of numerical performance from good to bad
is

{
φ2(μ, t) > φ4(μ, t) > φ3(μ, t) > φ1(μ, t), for th AVE (1).
φ2(μ, t) > φ3(μ, t) > φ4(μ, t) > φ1(μ, t), for th AVE (2).

In other words, φ2(μ, t) is the best choice of smoothing function to work with the
proposed smoothing-type algorithm, meanwhile it also best approximate the function
|t |. This is a very interesting discovery which may be helpful in other contexts. One
of future directions is to check whether such phenomenon occurs in other types of
algorithms.

Acknowledgements The author B. Saheya’s work is supported by Natural Science Foundation of Inner
Mongolia (Award No. 2014MS0119). The author J.-S. Chen’s work is supported by Ministry of Science
and Technology, Taiwan.

123

Numerical comparisons based on four smoothing functions...

References

1. Caccetta, L., Qu, B., Zhou, G.-L.: A globally and quadratically convergent method for absolute value
equations. Comput. Optim. Appl. 48, 45–58 (2011)

2. Chen, J.-S., Ko, C.-H., Liu, Y.-D., Wang, S.-P.: New smoothing functions for solving a system of
equalities and inequalities. Pac. J. Optim. 12, 185–206 (2016)

3. Dolan, E.D., More, J.J.: Benchmarking optimization software with performance profiles. Math. Pro-
gram. 91, 201–213 (2002)

4. Haghani, F.K.: On generalized traubs method for absolute value equations. J. Optim. Theory Appl.
166, 619–625 (2015)

5. Hu, S.-L., Huang, Z.-H., Zhang, Q.: A generalized Newton method for absolute value equations asso-
ciated with second order cones. J. Comput. Appl. Math. 235, 1490–1501 (2011)

6. Huang, Z.-H.: Locating a maximally complementary solution of the monotone NCP by using non-
interior-point smoothing algorithms. Math. Methods of Oper. Res. 61, 41–45 (2005)

7. Huang, Z.-H., Zhang, Y., Wu, W.: A smoothing-type algorithm for solving system of inequalities. J.
Comput. Appl. Math. 220, 355–363 (2008)

8. Hu, S.-L., Huang, Z.-H.: A note on absolute value equations. Optim. Lett. 4, 417–424 (2010)
9. Jiang, X., Zhang, Y.: A smoothing-type algorithm for absolute value equations. J. Ind. Manag. Optim.

9, 789–798 (2013)
10. Ketabchi, S., Moosaei, H.: Minimum norm solution to the absolute value equation in the convex case.

J. Optim. Theory Appl. 154, 1080–1087 (2012)
11. Mangasarian, O.L.: Absolute value programming. Comput. Optim. Appl. 36, 43–53 (2007)
12. Mangasarian, O.L.: Absolute value equation solution via concave minimization. Optim. Lett. 1, 3–5

(2007)
13. Mangasarian,O.L.:A generalizedNewtonmethod for absolute value equations.Optim. Let. 3, 101–108

(2009)
14. Mangasarian, O.L.: Primal-dual bilinear programming solution of the absolute value equation. Optim.

Lett. 6, 1527–1533 (2012)
15. Mangasarian, O.L.: Absolute value equation solution via dual complementarity. Optim. Lett. 7, 625–

630 (2013)
16. Mangasarian, O.L., Meyer, R.R.: Absolute value equation. Linear Algebra Appl. 419, 359–367 (2006)
17. Prokopyev, O.A.: On equivalent reformulations for absolute value equations. Comput. Optim. Appl.

44, 363–372 (2009)
18. Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res.

18, 227–244 (1993)
19. Qi, L., Sun, D., Zhou, G.-L.: A new look at smoothing Newton methods for nonlinear complementarity

problems and box constrained variational inequality problems. Math. Program. 87, 1–35 (2000)
20. Rohn, J.: A theorem of the alternatives for the equation Ax + B|x | = b. Linear Multilinear Algebra

52, 421–426 (2004)
21. Rohn, J.: Solvability of systems of interval linear equations and inequalities. In: Fiedler, M., Nedoma,

J., Ramik, J., Rohn, J., Zimmermann, K. (eds.) Linear Optimization Problems with Inexact Data, pp.
35–77. Springer, New York (2006)

22. Rohn, J.: An algorithm for solving the absolute value equation. Electron. J. Linear Algebra 18, 589–599
(2009)

23. Yamanaka, S., Fukushima, M.: A branch and bound method for the absolute value programs. Opti-
mization 63, 305–319 (2014)

24. Zhang, C., Wei, Q.-J.: Global and finite convergence of a generalized Newton method for absolute
value equations. J. Optim. Theory Appl. 143, 391–403 (2009)

25. Zhang, Y., Huang, Z.-H.: A nonmonotone smoothing-type algorithm for solving a system of equalities
and inequalities. J. Comput. Appl. Math. 233, 2312–2321 (2010)

123

	Numerical comparisons based on four smoothing functions for absolute value equation
	Abstract
	1 Introduction
	2 Smoothing Reformulation
	3 A smoothing-type algorithm
	4 Numerical implementations
	4.1 Experiments on the AVE Ax-|x|=b
	4.2 Experiments on the general AVE Ax+B|x|=b

	5 Conclusion
	Acknowledgements
	References

