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This paper conducts variational analysis of circular programs, which form a new
class of optimization problems in nonsymmetric conic programming, important
for optimization theory and its applications. First, we derive explicit formulas in
terms of the initial problem data to calculate various generalized derivatives/co-
derivatives of the projection operator associated with the circular cone. Then
we apply generalized differentiation and other tools of variational analysis to
establish complete characterizations of full and tilt stability of locally optimal
solutions to parameterized circular programs.
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1. Introduction

The circular cone [1,2] is a pointed, closed, convex cone having hyperspherical sections
orthogonal to its axis of revolution about which the cone is invariant to rotation. Let its
half-aperture angle be θ ∈ (0, π

2 ). Then the n-dimensional circular cone denoted by Lθ can
be expressed as follows (see Figure 1):

Lθ : =
{

x = (x1, x2) ∈ IR × IRn−1
∣∣ ‖x‖ cos θ ≤ x1

}
=
{

x = (x1, x2) ∈ IR × IRn−1
∣∣ ‖x2‖ ≤ x1 tan θ

}
. (1.1)

When θ = 45◦, the circular cone reduces to the well-known second-order cone (SOC
for short, also known as the Lorentz cone and the ice-cream cone) given by

Kn : =
{

x = (x1, x2) ∈ IR × IRn−1
∣∣ ‖x2‖ ≤ x1

}
=
{

x = (x1, x2) ∈ IR × IRn−1
∣∣ ‖x‖ cos 45◦ ≤ x1

}
. (1.2)
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Figure 1. The graphs of circular cones.

Concerning SOC, for any vector x = (x1, x2) ∈ IR × IRn−1 we can decompose it as

x = λ1(x)u(1)
x + λ2(x)u(2)

x , (1.3)

where λ1(x), λ2(x) and u(1)
x , u(2)

x are the spectral values and the associated spectral vectors
of x relative to Kn defined by, respectively,

λi (x) : = x1 + (−1)i‖x2‖,

u(i)
x : =

⎧⎨⎩
1
2

(
1, (−1)i x2

‖x2‖
)

if x2 �= 0,

1
2

(
1, (−1)iw

)
if x2 = 0, i = 1, 2,

with w being any unit vector in IRn−1. If x2 �= 0, decomposition (1.3) is unique. Using this
decomposition, for any f : IR → IR we consider [3,4] the vector function associated with
Kn , n ≥ 1 by

f
soc

(x) := f (λ1(x))u(1)
x + f (λ2(x))u(2)

x , x = (x1, x2) ∈ IR × IRn−1. (1.4)

If f is defined only on some subset of IR, then f
soc

is defined on the corresponding subset
of IRn . Definition (1.4) is unambiguous whether x2 �= 0 or x2 = 0.

Note that circular cone systems described by (1.1) with θ �= 45◦ naturally arises in
many real-life engineering problems. In particular, we refer the reader to the recent paper
[5] and the bibliographies therein to the important class of optimal grasping manipulation
problems for multi-fingered robots in which the grasping force of the i th finger is subject
to a contact friction constraint given by∥∥(ui2, ui3)

∥∥ ≤ μui1, (1.5)

where ui1 is the normal force of the i th finger, ui2 and ui3 are the friction forces of the i th
finger, ‖ · ‖ is the 2-norm and μ is the friction coefficient; see Figure 2.

It is easy to see that (1.5) is a circular cone constraint corresponding to the description
ui = (ui1, ui2, ui3) ∈ Lθ in (1.1) with the angle θ = tan−1 μ < 45◦.

Observe that a possible way to deal with circular cone constraints is to scale Lθ as SOC
by

Lθ = A−1Kn and Kn = ALθ with A =
[

tan θ 0
0 I

]
, (1.6)
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Figure 2. The grasping force forms a circular cone where α = tan−1 μ < 45◦.

which is justified in [2, Theorem 2.1]. However, this approach may not be acceptable from
both theoretical and numerical viewpoints. Indeed, the ‘scaling’ step can cause undesirable
numerical performance due to round-off errors in computers, which has been confirmed by
experiments. Furthermore, we will see in what follows that applying (1.6) does not help to
obtain some major results of the paper while being useful in deriving the other ones.

Optimization problems with both SOC and circular cone constraints belong to a broad
and important class in modern optimization theory known as conic or cone-constrained pro-
gramming; see, e.g. [6–8] and the references therein. However, the main difference between
circular cone constraints and those given by SOC and most of the other constraint systems
in conic programming is that the circular cone Lθ is non-self-dual, i.e. nonsymmetric, which
makes its study more challenging and rather limited.

In contrast to symmetric conic programming, we are not familiar with a variety of
publications devoted to their nonsymmetric counterparts. Referring the reader to [9–12]
and the bibliographies therein, observe that there is no unified way to handle nonsymmetric
cone constraints, and each study uses certain specific features of the nonsymmetric cones
under consideration. The previous papers [2,13] concerning the circular cone show that some
properties holding in the SOC framework can be extended to the circular cone setting. At
the same time, some other SOC properties fail to be satisfied for the general nonsymmetric
circular cone, where the angle θ �= 45◦ plays a crucial role; see [14].

This paper is mainly devoted to two major interrelated issues of variational analysis
and optimization for problems involving circular cone constraints. Our first goal is to
calculate, entirely in terms of the initial circular cone data, some generalized differential
constructions of variational analysis that have been proven to be important for various
aspects of optimization. Namely, we derive explicit formulas to calculate generalized
differential constructions for the (metric) projection operator associated with the general
circular cone that are known as the B-subdifferential, directional derivative, graphical
derivative, regular derivative, regular coderivative, and (limiting) coderivative. Except
the B-subdifferential and the (regular and limiting) coderivatives, the results obtained are
new even for the symmetric SOC case. The obtained calculations allow us, in particular, to
prove the strong semismoothness of the projection operator onto the circular cone, which is
important for many applications including those to numerical optimization. Furthermore,
we establish new relationships between these generalized differential constructions for the
projection operator onto the circular cone and the metric projection onto the orthogonal
spaces to the spectral vectors in the circular cone representation.



116 J. Zhou et al.

The second major goal of this paper is to completely characterize the notions of tilt
stability and full stability of mathematical programs with circular cone constraints. These
fundamental stability concepts were introduced in optimization theory by Rockafellar and
his collaborators [15,16] and then have been intensively studied by many researchers,
especially in the recent years, for various classes of optimization problems; see, e.g.
[7,8,16–27] and the references therein. The construction of the second-order subdifferen-
tial/generalized Hessian in the sense of Mordukhovich [28] (i.e. the coderivative of the first-
order subgradient mapping) plays a crucial role in the characterization of tilt and full stability
obtained in the literature. In this paper we establish, by using the obtained second-order
calculations and the recent results of [25], complete characterizations of full and tilt stability
for locally optimal solutions to mathematical programs with circular cone constraints
expressed entirely in terms of the initial program data via certain second-order growth
and strong sufficient optimality conditions under appropriate constraint qualifications.

The rest of the paper is organized as follows. In Section 2 we recall and briefly discuss
the generalized differential constructions of variational analysis employed in deriving the
main results of this paper. Section 3 is devoted to calculating the generalized derivatives
listed above for the projection operator onto the circular cone. In Section 4 we represent
these generalized differential constructions for the aforementioned projection operator via
the orthogonal projections generated by the spectral vectors of the circular cone. Finally,
Section 5 applies the second-order subdifferential of the indicator function associated with
the circular cone and related to the above coderivative calculations to establish complete
characterizations of full and tilt stability of mathematical programs with circular cone
constraints.

Throughout the paper we use the standard notation and terminology of variational
analysis; see, e.g. [29,30]. Given a set-valued mapping/multifunction F : R

n →→ R
m , recall

that the constructions

Lim sup
x→x̄

F(x) :=
{

y ∈ R
m
∣∣∣ ∃ sequences xk → x̄, yk → y such that

yk ∈ F(xk) for all k ∈ IN := {1, 2, . . .}
}
,

(1.7)

Lim inf
x→x̄

F(x) :=
{

y ∈ R
m
∣∣∣ for any xk → x̄, ∃ yk → y such that

yk ∈ F(xk) for all k ∈ IN
} (1.8)

are known as the (Painlevé–Kuratowski) outer limit and inner limit of F as x → x̄ ,

respectively. For a set � ⊂ R
n , the symbol x

�→ x̄ signifies that x → � with x ∈ �.

2. Tools of variational analysis

In this section we briefly review those tools of generalized differentiation in variational
analysis, which are widely used in the subsequent sections. We start with geometric notions.

Given a set � ⊂ IRn locally closed around x ∈ �, the (Bouligand–Severi) tan-
gent/contingent cone to � at x̄ ∈ � is defined by

T�(x̄) := Lim sup
t↓0

� − x̄

t
=
{

d ∈ IRn
∣∣∣ ∃tk ↓ 0, dk → d with x̄ + tkdk ∈ �

}
(2.1)
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via the outer limit (1.7), while the (Clarke) regular tangent cone to � at x̄ ∈ � is given by

T̂�(x̄) := Lim inf
x

�→x̄

T�(x) (2.2)

via the inner limit (1.8). The (Fréchet) regular normal cone to � at x̄ ∈ � is

N̂�(x̄) :=
{

z ∈ IRn
∣∣∣ 〈z, x − x̄〉 ≤ o

(‖x − x̄‖) for all x ∈ �
}

, (2.3)

and the (Mordukhovich, limiting) normal cone to � at x̄ ∈ � can be equivalently defined
by

N�(x̄) := Lim sup
x

�→x̄

N̂�(x) = Lim sup
x→x̄

{
cone

[
x − ��(x)

]}
, (2.4)

where �� denotes the (Euclidean) projection operator onto �, and where ‘cone’ stands for
the conic (may not be convex) hull of the set in question.

Consider next a set-valued mapping H : IRn ⇒ IRm with its graph and domain given
by

gph H := {(x, y) ∈ IRn × IRm
∣∣ y ∈ H(x)

}
and dom H := {x ∈ IRn

∣∣ H(x) �= ∅},
respectively. The graphical derivative of H at (x̄, ȳ) ∈ gph H is defined by

DH(x̄, ȳ)(w) := {z ∈ IRm
∣∣ (w, z) ∈ TgphH (x̄, ȳ)

}
, w ∈ R

n, (2.5)

via the tangent cone (2.1), while the (limiting) coderivative is defined via the normal cone
(2.4) by

D∗ H(x̄, ȳ)(y∗) := {x∗ ∈ IRn
∣∣ (x∗,−y∗) ∈ NgphH (x̄, ȳ)

}
, y∗ ∈ R

m, (2.6)

where we drop ȳ in the derivative/coderivative notion if H is single-valued at x̄ . Simi-
larly, the regular derivative and the regular coderivative of H at (x̄, ȳ) are defined via,
respectively, (2.2) and (2.3) by

D̂H(x̄, ȳ)(w) := {z ∈ IRm
∣∣ (w, z) ∈ T̂gphH (x̄, ȳ)

}
, w ∈ R

n, (2.7)

D̂∗ H(x̄, ȳ)(y∗) := {x∗ ∈ IRn
∣∣ (x∗,−y∗) ∈ N̂gphH (x̄, ȳ)

}
, y∗ ∈ R

m . (2.8)

Now let f : IRn → R := (−∞,∞] be an extended real-valued function finite at
x̄ ∈ R

n . To define the second-order subdifferential construction needed in what follows,
we proceed in the way of [28,29] and begin with the first-order (limiting) subdifferential of
f at x̄ given by

∂ f (x̄) := {v ∈ R
n
∣∣ (v,−1) ∈ Nepi f

(
x̄, f (x̄)

)}
(2.9)

via the normal cone (2.4) of the epigraph {(x, μ) ∈ R
n × R| μ ≥ f (x)} of f . Observe

the representation N�(x̄) = ∂δ�(x̄) the normal cone (2.4) via the subdifferential (2.9) of
the indicator function δ�(x) of � equal to 0 if x ∈ � and ∞ otherwise. The second-order
subdifferential (or generalized Hessian) of f at x̄ relative to ȳ ∈ ∂ f (x̄) is defined as the
coderivative (2.6) of the first-order subdifferential (2.9) by

∂2 f (x̄, ȳ)(u) := (D∗∂ f )(x̄, ȳ)(u), u ∈ IRn . (2.10)
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Finally in this section, consider a single-valued mapping F : IRn → IRm locally
Lipschitzian around x̄ and recall that F is almost everywhere differentiable in a neigh-
bourhood of x̄ with the derivative ∇F(x) by the classical Rademacher theorem; see [30].
Then the B-subdifferential of F at x̄ is defined by

∂B F(x̄) :=
{

lim
xk→x

∇F(xk)

∣∣∣ F is differentiable at xk

}
. (2.11)

Recall also that F is directionally differentiable at x̄ if the limit

F ′(x; h) := lim
t→0+

F(x + th) − F(x)

t
exists for all h ∈ IRn . (2.12)

Having this, F is said to be semismooth at x̄ if F is locally Lipschitzian around x̄ , direc-
tionally differentiable at this point, and satisfies the relationship

V h − F ′(x; h) = o
(‖h‖) for any V ∈ co ∂B F(x + h) as h → 0. (2.13)

Furthermore, F is ρ-order semismooth at x with 0 < ρ < ∞ if (2.13) is replaced above by

V h − F ′(x; h) = O
(‖h‖1+ρ

)
for any V ∈ co ∂B F(x + h) as h → 0. (2.14)

The case of ρ = 1 in (2.13) corresponds to strongly semismooth mappings.

3. Generalized differentiation of the projection operator onto the circular cone

In this section we derive precise formulas for calculating the above generalized derivatives
of the projection operator onto the circular cone (1.1). First we recall the following spectral
decomposition from [2, Theorem 3.1] of any vector x = (x1, x2) ∈ IR × IRn−1 relative to
the circular cone Lθ :

x = λ1(x)u1
x + λ2(x)u2

x , (3.1)

where the spectral values λ1(x) and λ2(x) are defined by

λ1(x) := x1 − ‖x2‖ctanθ, λ2(x) := x1 + ‖x2‖ tan θ, (3.2)

and where the spectral vectors u1
x and u2

x are written as

u1
x := 1

1 + ctan2θ

[
1 0
0 ctanθ

] [
1

−x̄2

]
, u2

x := 1

1 + tan2 θ

[
1 0
0 tan θ

] [
1
x̄2

]
(3.3)

with x̄2 := x2/‖x2‖ if x2 �= 0 and x̄2 equal to any unit vector w ∈ IRn−1 otherwise. Given
any f : R → R we construct the vector function

f Lθ (x) := f
(
λ1(x)

)
u1

x + f
(
λ2(x)

)
u2

x . (3.4)

associated with circular cone. It follows from [2] that the projection �Lθ (x) of x onto
Lθ , which is a single-valued and Lipschitzian operator, corresponds to f (t) := (t)+ =
max{t, 0} in (3.4), i.e. we have

�Lθ (x) = (x1 − ‖x2‖ctanθ
)
+u1

x + (x1 + ‖x2‖ tan θ
)
+u2

x . (3.5)
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Our first result in this section provides a complete calculation of the B-subdifferential
(2.11) of the projection operator (3.5) entirely in terms of the initial data of the general
circular cone (1.1). This result is widely used in what follows.

Lemma 3.1 (calculating the B-subdifferential of the projection operator) For any x ∈
IRn with the spectral decomposition (3.1), the B-subdifferential of the projection operator
�Lθ is calculated as follows:

(a) If λ1(x)λ2(x) �= 0, then �Lθ is differentiable at x and ∂B(�Lθ )(x) = {∇�Lθ (x)}.
(b) If λ1(x) = 0 and λ2(x) > 0, then

∂B(�Lθ )(x) =
{

I, I + 1

tan θ + ctanθ

[ − tan θ x̄2

x̄2 −ctanθ x̄2 x̄ T
2

]}
.

(c) If λ1(x) < 0 and λ2(x) = 0, then

∂B(�Lθ )(x) =
{

0,
1

tan θ + ctanθ

[
ctanθ x̄ T

2
x̄2 tan θ x̄2 x̄ T

2

]}
.

(d) If λ1(x) = λ2(x) = 0, then

∂B(�Lθ )(x) =
{

1

tan θ + ctanθ

×
[

ctanθ wT

w
(

tan θ + ctanθ
)

aI +
[

tan θ − a(ctanθ + tan θ)
]
wwT

]

×
∣∣∣∣ a ∈ [0, 1]

‖w‖ = 1

}⋃{
0, I

}
.

Proof In case (a) the function f (t) = (t)+ is differentiable at λi (x) for i = 1, 2. Hence,
it follows from [13, Theorem 2.3] that �Lθ is also differentiable at x . Furthermore, in this
case we have by (3.5) that

�Lθ (x) =
⎧⎨⎩

x if λ1(x) > 0 and λ2(x) > 0,

0 if λ1(x) < 0 and λ2(x) < 0,

(x1 + ‖x2‖ tan θ)u2
x if λ1(x) < 0 and λ2(x) > 0.

In particular, ‖x2‖ �= 0 when λ1(x) < 0 and λ2(x) > 0, and thus ∇‖x2‖ = x̄2. This gives
us

∂B�Lθ (x) = {∇�Lθ (x)
}
,

where the derivative of �Lθ at x is calculated by

∇�Lθ
(x)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
I if λ1(x) > 0 and λ2(x) > 0,

0 if λ1(x) < 0 and λ2(x) < 0,

1

tan θ + ctanθ

⎡⎣ ctanθ x̄ T
2

x̄2
x1 + ‖x2‖ tan θ

‖x2‖ I − x1

‖x2‖ x̄2 x̄ T
2

⎤⎦ if λ1(x) < 0 and λ2(x) > 0.

(3.6)



120 J. Zhou et al.

In case (b) we have ‖x2‖ �= 0, and so it follows from [13, Theorem 3.1] that

∂B
(

f Lθ
)
(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[

ξ �x̄ T
2

�x̄2 aI + (η − a)x̄2 x̄ T
2

] ∣∣∣∣∣∣∣∣∣∣
a = f

(
λ2(x)

)− f
(
λ1(x)

)
λ2(x) − λ1(x)

ξ − �ctanθ ∈ ∂B f (λ1(x))

ξ + � tan θ ∈ ∂B f (λ2(x))

η = ξ − �(ctanθ − tan θ)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

This implies by the obvious calculation

∂B(t)+ =
⎧⎨⎩

1 for t > 0,

{0, 1} for t = 0,

0 for t < 0

that the B-subdifferential of the projection operator is represented as

∂B(�Lθ )(x) =

⎧⎪⎪⎨⎪⎪⎩
[

ξ �x̄ T
2

�x̄2 aI + (η − a)x̄2 x̄ T
2

] ∣∣∣∣∣∣∣∣
a = 1
ξ − �ctanθ ∈ {0, 1}
ξ + � tan θ = 1
η = ξ − �(ctanθ − tan θ)

⎫⎪⎪⎬⎪⎪⎭ . (3.7)

Analysing (3.7) in the case of ξ −�ctanθ = 1 and ξ +� tan θ = 1 shows that ξ = 1, � = 0,
and η = 1. Hence (3.7) reduces in this case to I . For ξ − �ctanθ = 0 we know that

ξ = ctanθ

tan θ + ctanθ
, � = 1

tan θ + ctanθ
, and η = tan θ

tan θ + ctanθ
,

and so Equation (3.7) in this case takes the form of

⎡⎢⎣
ctanθ

tan θ + ctanθ

1

tan θ + ctanθ
x̄ T

2

1

tan θ + ctanθ
x̄2 I +

(
tan θ

tan θ + ctanθ
− 1

)
x̄2 x̄ T

2

⎤⎥⎦
= I + 1

tan θ + ctanθ

[
− tan θ x̄ T

2

x̄2 −ctanθ x̄2 x̄ T
2

]
,

which gives us the B-subdifferential representation

∂B
(
�Lθ

)
(x) =

{
I, I + 1

tan θ + ctanθ

[ − tan θ x̄2

x̄2 −ctanθ x̄2 x̄ T
2

]}
.

In case (c) we also have x2 �= 0. Similarly to case (b), it is not hard to verify that

∂B
(
�Lθ

)
(x) =

{
0,

1

tan θ + ctanθ

[
ctanθ x̄ T

2

x̄2 tan θ x̄2 x̄ T
2

]}
.
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It remains to consider case (d) when x = 0. Then the result of [13, Theorem 3.4] tells
us that

∂B
(
�Lθ

)
(x)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
[

ξ �wT

�w aI + (η − a)wwT

]
∣∣∣∣∣∣∣∣∣∣∣∣

either a = ξ ∈ {0, 1}, � = 0
or a ∈ [0, 1]
ξ − �ctanθ = 0
ξ + � tan θ = 1
η = ξ − �(ctanθ − tan θ)

‖w‖ = 1

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=
{

1

tan θ + ctanθ

[
ctanθ wT

w
(

tan θ + ctanθ
)

aI +
(

tan θ − a(ctanθ + tan θ)
)
wwT

]

×
∣∣∣∣ a ∈ [0, 1]

‖w‖ = 1

}⋃{
0, I

}
,

which thus completes the proof of the lemma. �

Our next goal is to verify the directional differentiability of the projection operator
(3.5) and derive formulas for calculating its directional derivative (2.12). Observe to this
end that the result of [13, Theorem 2.2] tells us that the vector function f Lθ from (3.4) is
directionally differentiable at x provided that f is directionally differentiable at λi (x) for
i = 1, 2. Moreover, for x2 = 0 we have(

f Lθ

)′
(x; h) = 1

1 + ctan2θ
f ′(x1; h1 − ‖h2‖ctanθ

) [ 1 0
0 ctanθ

] [
1

−h̄2

]
+ 1

1 + tan2 θ
f ′(x1; h1 + ‖h2‖ tan θ

) [ 1 0
0 tan θ

] [
1
h̄2

]
= f ′(x1; h1 − ‖h2‖ctanθ

)
u1

h + f ′(x1; h1 + ‖h2‖ tan θ
)

u2
h . (3.8)

On the other hand, for x2 �= 0 we denote

Mx2 :=
⎡⎣ 0 0

0 I − x2xT
2

‖x2‖2

⎤⎦
and arrive at the following relationships:(

f Lθ

)′
(x; h)

= 1

1 + ctan2θ
f ′
(

λ1(x); h1 − xT
2 h2

‖x2‖ ctanθ

)[
1 0
0 ctanθ

] [
1

−x̄2

]
− ctanθ

1 + ctan2θ

f (λ1(x))

‖x2‖ Mx2 h

+ 1

1 + tan2 θ
f ′
(

λ2(x); h1 + xT
2 h2

‖x2‖ tan θ

)[
1 0
0 tan θ

] [
1
x̄2

]
+ tan θ

1 + tan2 θ

f (λ2(x))

‖x2‖ Mx2 h
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= f ′
(

λ1(x); h1 − xT
2 h2

‖x2‖ ctanθ

)
u1

x + f ′
(

λ2(x); h1 + xT
2 h2

‖x2‖ tan θ

)
u2

x

+ f (λ2(x)) − f (λ1(x))

λ2(x) − λ1(x)
Mx2 h. (3.9)

This leads us to calculate the directional derivative (2.12) of the projection operator
(3.5).

Lemma 3.2 (calculating the directional derivative of the projection operator) The pro-
jector operator (3.5) is directionally differentiable at any point x ∈ IRn with the spectral
decomposition (3.1), and its directional derivative at x in any direction h ∈ R

n is calculated
as follows:

(a) If λ1(x)λ2(x) �= 0, then �′
Lθ

(x; h) = ∇�Lθ (x)h.

(b) If λ1(x) = 0 and λ2(x) > 0, then �′
Lθ

(x; h) = h − (1 + ctan2θ)
(
(u1

x )
T h
)
−u1

x .

(c) If λ1(x) < 0 and λ2(x) = 0, then �′
Lθ

(x; h) = (1 + tan2 θ)
(
(u2

x )
T h
)
+u2

x .

(d) If λ1(x) = λ2(x) = 0, then �′
Lθ

(x; h) = �Lθ (h).

Proof The directional differentiability of (3.5) at x follows from the discussions above.
Moreover, in case (a), corresponding to f (t) = (t)+ in (3.4), we get the differentiability of
�Lθ at this point, and hence �′

Lθ
(x; h) = ∇�Lθ (x)h for all h ∈ R

n .
In case (b) we have x2 �= 0. It follows from (3.9) that

�′
Lθ

(x; h) =
(

h1 − xT
2 h2

‖x2‖ ctanθ

)
+

u1
x +

(
h1 + xT

2 h2

‖x2‖ tan θ

)
u2

x + Mx2 h

= (1 + ctan2θ)
(
(u1

x )
T h
)
+u1

x + h

+

⎛⎜⎜⎜⎜⎝
tan2 θ

1 + tan2 θ

(
−h1 + xT

2 h2

‖x2‖ ctanθ

)
[

tan θ

1 + tan2 θ

(
h1 + xT

2 h2

‖x2‖ tan θ

)
− xT

2 h2

‖x2‖

]
x̄2

⎞⎟⎟⎟⎟⎠
= (1 + ctan2θ)

(
(u1

x )
T h
)
+u1

x + h

−

⎛⎜⎜⎜⎝
tan2 θ

1 + tan2 θ

(
h1 − xT

2 h2

‖x2‖ ctanθ

)
tan2 θ

1 + tan2 θ

(
h1 − x̄ T

2 h2ctanθ
)(− ctanθ x̄2

)
⎞⎟⎟⎟⎠

= (1 + ctan2θ)
(
(u1

x )
T h
)
+u1

x + h

− tan2 θ

1 + tan2 θ
(1 + ctan2θ)

(
(u1

x )
T h
) [ 1 0

0 ctanθ

] [
1

−x̄2

]
= (1 + ctan2θ)

(
(u1

x )
T h
)
+u1

x + h − (1 + ctan2θ)
(
(u1

x )
T h
)
u1

x

= h − (1 + ctan2θ)
(
(u1

x )
T h
)
−u1

x ,
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where the representations t = (t)+ + (t)− for all t ∈ IR are used together with

tan θ

1 + tan2 θ

(
h1 + xT

2 h2

‖x2‖ tan θ

)
− xT

2 h2

‖x2‖

= tan θ

1 + tan2 θ

(
h1 + xT

2 h2

‖x2‖ tan θ − 1 + tan2 θ

tan θ

xT
2 h2

‖x2‖

)

= tan θ

1 + tan2 θ

(
h1 − xT

2 h2

‖x2‖ ctanθ

)
, and

(
(u1

x )
T h
)
+ − ((u1

x )
T h
) = −((u1

x )
T h
)
−.

In case (c) we employ (3.9) again to get the conclusion claimed. The final case (d) yields
x = 0, and hence representation (3.8) gives us the equalities

�′
Lθ

(x; h) = (h1 − ‖h2‖ctanθ)+ u1
h + (h1 + ‖h2‖ tan θ)+ u2

h = �Lθ (h),

which therefore complete the proof of the lemma. �

The following theorem uses the previous considerations to establish the strongly semis-
moothness property of the projection operator �Lθ . It has been well recognized the impor-
tance of this property of Lipschitzian mappings in many aspects of variational analysis and
optimization; in particular, to establish the quadratic rate of convergence of the so-called
semismooth Newton method; see [31,32].

Theorem 3.3 (strong semismoothness of the projection operator) The projection oper-
ator �Lθ in (3.5) is strongly semismooth over R

n.

Proof The proof is inspired by [33, Proposition 4.5]. Note first that the directional differ-
entiability of the Lipschitz continuous projection operator �Lθ from Lemma 3.2, and thus
it remains to show that representation (2.14) holds for it with ρ = 1.

To verify our claim, deduce from the proof of Lemma 3.1 that

�Lθ (x) =

⎧⎪⎪⎨⎪⎪⎩
x if λ1(x) ≥ 0 and λ2(x) ≥ 0,

1

1 + tan2 θ
(x1 + ‖x2‖ tan θ)

[
1 0
0 tan θ

] [
1
x̄2

]
if λ1(x) < 0 and λ2(x) > 0,

0 if λ1(x) ≤ 0 and λ2(x) ≤ 0.
(3.10)

Then we split the subsequent proof into two cases: x2 �= 0 and x2 = 0.
Case 1 When x2 �= 0, we can easily observe that in all the formulas from (3.10)

corresponding to this case, the projection operator �Lθ is a piecewise C2-smooth mapping
whose strong semismoothness is well known in optimization.[34] It verifies the claim in
this case.

Case 2 For x2 = 0, suppose first that x1 �= 0. Then λi (x) = x1 �= 0, i = 1, 2. Since
λi (y) is Lipschitz continuous by [13, Lemma 2.1], we get from (3.10) that �Lθ (y) is either
0 or y when y is in a neighbourhood of x . Thus �Lθ is surely strongly semismooth at x
in this setting. In the remaining setting of x1 = 0 we have x = 0. Note that the projection
operator �Lθ is obviously positively homogeneous, i.e. �Lθ (t z) = t�Lθ (z) for z ∈ R

n



124 J. Zhou et al.

and t ≥ 0. This implies that �′
Lθ

(h; h) = �Lθ (h) and �′
Lθ

(0; h) = �Lθ (h). Hence
∇�Lθ (h

′)(h′) = �Lθ (h
′) as h′ ∈ D�Lθ

. Since D�Lθ
is a dense subset of R

n , for any
fixed h �= 0 and V ∈ ∂B�Lθ (h), there exists h′ ∈ D�Lθ

such that ‖h′ − h‖ ≤ ‖h‖2 and
‖V − ∇�Lθ (h

′)‖ ≤ ‖h‖. Hence for h sufficiently close to 0 we have

‖V h − �′
Lθ

(0; h)‖ = ‖V h − ∇�Lθ (h
′)(h′) + �Lθ (h

′) − �′
Lθ

(0; h)‖
= ‖V h − ∇�Lθ (h

′)(h) + ∇�Lθ (h
′)(h) − ∇�Lθ (h

′)(h′)
+�Lθ (h

′) − �Lθ (h)‖
≤ ‖V − ∇�Lθ (h

′)‖‖h‖ + ‖∇�Lθ (h
′)‖‖h − h′‖ + ‖h − h′‖

≤ (r + 2)‖h‖2,

where r is a bounded from above of ‖∂B�Lθ (·)‖ near 0 since �Lθ is Lipschitz. Thus

L := lim sup
h→0

‖V h − �′
Lθ

(0; h)‖
‖h‖2

< ∞, i.e. (3.11)

V h − �′
Lθ

(0; h) = O(‖h‖2) for all V ∈ ∂B�Lθ (h).

Now let us show that V h − �′
Lθ

(0; h) = O(‖h‖2) for any V ∈ co ∂B�Lθ (h), i.e. for any
hk → 0 and Vk ∈ co ∂B�Lθ (hk) we have Vkhk − �′

Lθ
(0; hk) = O(‖hk‖2). Since Vk ∈

co ∂B�Lθ (hk), it follows from the Carathéodory theorem that there are V i
k ∈ ∂B�Lθ (hk)

and λi
k ≥ 0 for i = 1, . . . , n + 1 such that

Vk =
n+1∑
i=1

λi
k V i

k and
n+1∑
i=1

λi
k = 1.

Since V i
k ∈ ∂B�Lθ (hk), it follows from (3.11) that

lim sup
k→0

‖V i
k hk − �′

Lθ
(0; hk)‖

‖hk‖2
≤ L .

Due to the boundedness of {λi
k}, we can assume without loss of generality that {λi

k} converge
to some λ̄i for i = 1, . . . , n + 1. Hence

lim sup
k→0

‖Vkhk − �′
Lθ

(0; hk)‖
‖hk‖2

= lim sup
k→0

∥∥∥∥∥n+1∑
i=1

λi
k V i

k hk − �′
Lθ

(0; hk)

∥∥∥∥∥
‖hk‖2

≤ lim sup
k→0

n+1∑
i=1

λi
k

‖V i
k hk − �′

Lθ
(0; hk)‖

‖hk‖2

≤
n+1∑
i=1

λ̄i L = L .

Thus V h − �′
Lθ

(0; h) = O(‖h‖2) for any V ∈ co ∂B�Lθ (h), i.e. �Lθ is strongly
semismooth at 0. �
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The next result, which easily follows from Lemma 3.2, provides the calculation of the
graphical derivative (2.5) for the projection operator onto the circular cone.

Proposition 3.4 (calculating the graphical derivative of the projection operator) For
any x ∈ R

n with decomposition (3.1), the graphical derivative of �Lθ (x) is calculated by

D�Lθ (x)(w) = {�′
Lθ

(x;w)
}

for any w ∈ IRn . (3.12)

Proof It follows from [30, formula 8(14)] that the graphical derivative of any closed graph
operator, and hence of �Lθ in particular, can be equivalently represented as

D�Lθ (x)(w) = Lim sup
τ↘0

w′→w

�Lθ (x + τw′) − �Lθ (x)

τ
. (3.13)

By Lemma 3.2 the Lipschitzian mapping �Lθ is directionally differentiable at x . Thus the
right-hand side of (3.13) reduces to �′

Lθ
(x;w), which justifies (3.12). �

Based on the calculations provided in Lemmas 3.1 and 3.2, we are now ready to establish
precise formulas for computing the regular and limiting coderivatives of the projection
operator �Lθ onto the general circular cone (1.1). We proceed similarly to the proofs of the
main results of the paper [35] by Outrata and Sun while using our calculations given above
as well as in the proofs of the theorems. Taking into account relationships (1.6) between the
circular and second-order cones, it is appealing to reduce deriving coderivative formulas for
the projection onto the circular cone to those obtained for the second-order one. However,
it does not seem to be possible; see more discussions in Remark 4.7.

Theorem 3.5 (calculating the regular coderivative of the projection operator) For any
x ∈ R

n with decomposition (3.1) and any y∗ ∈ R
n, the regular coderivative (2.8) of the

projection operator �Lθ (x) onto the circular cone (1.1) is calculated as follows:

(a) If λ1(x)λ2(x) �= 0, then D̂∗�Lθ (x)(y∗) = {∇�Lθ (x)y∗}.
(b) If λ1(x) = 0 and λ2(x) > 0, then

D̂∗�Lθ (x)(y∗) = {x∗ ∈ R
n
∣∣ y∗ − x∗ ∈ IR+u1

x , 〈x∗, u1
x 〉 ≥ 0

}
.

(c) If λ1(x) < 0 and λ2(x) = 0, then

D̂∗�Lθ (x)(y∗) = {x∗ ∈ R
n
∣∣ x∗ ∈ IR+u2

x , 〈y∗ − x∗, u2
x 〉 ≥ 0

}
.

(d) If λ1(x) = λ2(x) = 0, then

D̂∗�Lθ (x)(y∗) = {x∗ ∈ R
n
∣∣ x∗ ∈ Lθ , y∗ − x∗ ∈ L π

2 −θ

}
.

Proof Due to the well-known duality between the regular coderivative and the graphical
derivative of a mapping (see [30]) and by the established directional differentiability of the
projection operator onto the circular cone, we have the equivalence

x∗ ∈ D̂∗�Lθ (x)(y∗) ⇐⇒ 〈x∗, h〉 ≤ 〈y∗,�′
Lθ

(x; h)
〉

for all h ∈ IRn . (3.14)
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Employing (3.14) and the calculation of the directional derivative of �Lθ in Lemma 3.2
allows us to derive the claimed formulas for the regular coderivative of �Lθ in all the cases
(a)–(d) of the theorem.

In case (a), pick any x∗ ∈ D̂∗�Lθ (x)(y∗) and get by using Lemma 3.2(a) and duality
(3.14) that

〈x∗, h〉 ≤ 〈y∗,�′
Lθ

(x; h)〉 ⇐⇒ 〈x∗, h〉 ≤ 〈y∗,∇�Lθ (x)h〉
⇐⇒ 〈x∗ − ∇�Lθ (x)y∗, h〉 ≤ 0,

where the last step comes from the fact that the operator ∇�Lθ is self-adjoint by (3.6).
Hence, we have x∗ = ∇�Lθ (x)y∗, i.e. D̂∗�Lθ (x)(y∗) = {∇�Lθ (x)y∗}.

In case (b) we employ Lemma 3.2(b), which gives us together with (3.14) that

x∗ ∈ D̂∗�Lθ
(x)(y∗) ⇐⇒ 〈x∗, h〉 ≤

〈
y∗, h − (1 + ctan2θ)

(
(u1

x )T h
)
−u1

x

〉
⇐⇒ 〈x∗ − y∗, h〉 + (1 + ctan2θ)

〈
y∗,
(
(u1

x )T h
)
−u1

x

〉
≤ 0

⇐⇒
{ 〈x∗ − y∗, h〉 ≤ 0, (u1

x )T h ≥ 0
〈x∗ − y∗, h〉 + (1 + ctan2θ)(u1

x )T h(y∗)T u1
x ≤ 0, (u1

x )T h ≤ 0

⇐⇒ ∃ α ≥ 0 and β ≥ 0 such that y∗ − x∗ = αu1
x

and x∗ − y∗ + (1 + ctan2θ)
(
(y∗)T u1

x
)
u1

x = βu1
x

⇐⇒ ∃ α ≥ 0 and β ≥ 0 such that y∗ − x∗ = αu1
x

and (1 + ctan2θ)
(
(y∗)T u1

x
)
u1

x = (α + β)u1
x

⇐⇒ ∃ α ≥ 0 such that y∗ − x∗ = αu1
x

and (1 + ctan2θ)〈y∗, u1
x 〉 ≥ α (3.15)

⇐⇒ ∃ α ≥ 0 such that y∗ − x∗ = αu1
x and 〈x∗, u1

x 〉 ≥ 0. (3.16)

The last equivalence above comes from the following arguments: if (3.16) holds, then

(1 + ctan2θ)〈y∗, u1
x 〉 = (1 + ctan2θ)〈x∗ + αu1

x , u1
x 〉 ≥ α(1 + ctan2θ)‖u1

x‖2 = α;
conversely, the validity of (3.15) implies that

〈x∗, u1
x 〉 = 〈y∗, u1

x 〉 − α〈u1
x , u1

x 〉 ≥ 1

1 + ctan2θ
α − 1

1 + ctan2θ
α = 0.

In case (c) we have the equivalencies by using Lemma 3.2(c) and duality (3.14):

x∗ ∈ D̂∗�Lθ (x)(y∗) ⇐⇒ 〈x∗, h〉 ≤
〈
y∗, (1 + tan2 θ)

(
(u2

x )
T h
)

+u2
x

〉
⇐⇒

{ 〈x∗, h〉 ≤ 0, (u2
x )

T h ≤ 0,〈
x∗ − (1 + tan2 θ)

(
(y∗)T u2

x

)
u2

x , h
〉
≤ 0, (u2

x )
T h ≥ 0

⇐⇒ ∃α ≥ 0 such that x∗ = αu2
x and (1 + tan2 θ)(y∗)T u2

x ≥ α

⇐⇒ ∃α ≥ 0 such that x∗ = αu2
x and 〈y∗ − x∗, u2

x 〉 ≥ 0,

which readily justify the claimed result in this case.



Optimization 127

In case (d) we have x = 0 and then proceed by using Lemma 3.2(d) together with
(3.14). This yields

x∗ ∈ D̂∗�Lθ (0)(y∗) ⇐⇒ 〈
x∗, h

〉 ≤ 〈y∗,�Lθ (h)
〉

for all h ∈ IRn

⇐⇒ 〈
x∗,�Lθ (h) + �Lθ

◦(h)
〉 ≤ 〈y∗,�Lθ (h)

〉
for all h ∈ IRn

⇐⇒ 〈
x∗ − y∗,�Lθ (h)

〉+ 〈x∗,�Lθ
◦(h)

〉 ≤ 0 for all h ∈ IRn

(3.17)

⇐⇒ x∗ ∈ Lθ and y∗ − x∗ ∈ L π
2 −θ , (3.18)

where the last equivalence is justified as follows. Relationship (3.18) =⇒ (3.17) is implied
by the inclusion x∗ − y∗ ∈ −L π

2 −θ = (Lθ )
◦. For the converse implication, observe that the

validity of (3.17) gives us 〈x∗ − y∗, h〉 ≤ 0 for all h ∈ Lθ and 〈x∗, h〉 ≤ 0 for all h ∈ (Lθ )
◦,

which yields in turn the fulfillment of x∗ − y∗ ∈ (Lθ )
◦ = −L π

2 −θ and x∗ ∈ ((Lθ )
◦)◦ = Lθ

since Lθ is a closed and convex cone. �

To calculate next the coderivative (2.6) of the projection operator �Lθ , for any x, y∗ ∈
R

n we define

A(x, y∗) := {x∗ ∈ R
n
∣∣ y∗ − x∗ ∈ IR+u1

x , 〈x∗, u1
x 〉 ≥ 0

}
, (3.19)

B(x, y∗) := {x∗ ∈ R
n
∣∣ x∗ ∈ IR+u2

x , 〈y∗ − x∗, u2
x 〉 ≥ 0

}
. (3.20)

Theorem 3.6 (calculating the coderivative of the projection operator) For any x ∈ R
n

with decomposition (3.1) and any y∗ ∈ R
n, the coderivative (2.8) of the projection operator

�Lθ (x) onto the circular cone (1.1) is calculated as follows:

(a) If λ1(x)λ2(x) �= 0, then D∗�Lθ (x)(y∗) = {∇�Lθ (x)y∗}.
(b) If λ1(x) = 0 and λ2(x) > 0, then

D∗�Lθ
(x)(y∗) =

[
∂B(�Lθ

)(x)y∗]⋃{
x∗ ∈ R

n
∣∣∣ y∗ − x∗ ∈ IR+u1

x , 〈x∗, u1
x 〉 ≥ 0

}
.

(c) If λ1(x) < 0 and λ2(x) = 0, then

D∗�Lθ
(x)(y∗) =

[
∂B(�Lθ

)(x)y∗]⋃{
x∗ ∈ R

n
∣∣∣ x∗ ∈ IR+u2

x , 〈y∗ − x∗, u2
x 〉 ≥ 0

}
.

(d) If λ1(x) = λ2(x) = 0, then

D∗�Lθ (x)(y∗) =
[
∂B(�Lθ )(x)y∗]
⋃⎡⎢⎣ ⋃

ξ∈bd(L π
2 −θ )/{0}

{
x∗ ∈ IRn

∣∣∣ y∗ − x∗ ∈ IR+ξ, 〈x∗, ξ 〉 ≥ 0
}⎤⎥⎦

⋃⎡⎣ ⋃
η∈bd(Lθ )/{0}

{
x∗
∣∣∣ x∗ ∈ IR+η, 〈y∗ − x∗, η〉 ≥ 0

}⎤⎦
⋃[{

x∗
∣∣∣ x∗ ∈ Lθ , y∗ − x∗ ∈ L π

2 −θ

}]
,

where the B-subdifferential of �Lθ at x is calculated in Lemma 3.1.
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Proof Using the well-known representation of the coderivative (2.6) via the outer limit
(1.7) of the regular one (see [29,30]) as well as the continuity of �Lθ , we get

D∗�Lθ (x)(y∗) = Lim sup
v→x

v∗→y∗
D̂∗�Lθ (v)(v∗). (3.21)

This allows us to calculate D∗�Lθ by passing to the limit in the relationships of
Theorem 3.5.

In case (a) we easily get from (3.21) and Theorem 3.5(a) that

D∗�Lθ (x)(y∗) = Lim sup
v→x

v∗→y∗
D̂∗�Lθ (v)(v∗)

= Lim sup
v→x

v∗→y∗

[∇�Lθ (v)v∗] = {∇�Lθ (x)y∗}. (3.22)

In case (b) we employ Theorem 3.5(b) along with (3.21), the construction of A(x, y∗)
in (3.19), definition (2.11), and representations (3.22) at the points of differentiability to get
the relationships

D∗�Lθ (x)(y∗) = Lim sup
v→x,v∗→y∗

λ1(v)�=0

D̂∗�Lθ (v)(v∗)
⋃

Lim sup
v→x,v∗→y∗

λ1(v)=0

D̂∗�Lθ (v)(v∗)

= Lim sup
v→x,v∗→y∗
v∈D�Lθ

[∇�Lθ (v)v∗]⋃ Lim sup
v→x,v∗→y∗

λ1(v)=0

{
x∗ ∈ R

n
∣∣ v∗ − x∗ ∈ IR+u1

v, 〈x∗, u1
v〉 ≥ 0

}
= Lim sup

v→x,v∗→y∗
v∈D�Lθ

[∇�Lθ (v)v∗]⋃ Lim sup
v→x,v∗→y∗

λ1(v)=0

A(v, v∗) = [∂B(�Lθ )(x)y∗]⋃ A(x, y∗),

where the set D�Lθ
unifies the points of differentiability of �Lθ , and where the last step is

due to the outer semicontinuity of A(v, v∗) at (x, y∗) meaning that

Lim sup
v→x,v∗→y∗

λ1(v)=0

A(v, v∗) = A(x, y∗). (3.23)

To verify (3.23), pick any sequences of xk → x , v∗
k → y∗, and x∗

k ∈ A(xk, v
∗
k ) with

x∗
k → x∗ as k → ∞ and then find by (3.19) such αk ∈ IR+ that

v∗
k − x∗

k = αku1
xk

and 〈x∗
k , u1

xk
〉 ≥ 0, k ∈ IN . (3.24)

This implies by (3.3) that αk = (1 + ctan2θ)〈v∗
k − x∗

k , u1
xk

〉 for all k ∈ IN . Since u1
xk

→
u1

x by x2 �= 0, v∗
k → y∗, and x∗

k → x∗, the sequence {αk} also converges to some
nonnegative number. Thus passing to the limit in (3.24) as k → ∞ gives us y∗−x∗ ∈ IR+u1

x
and 〈x∗, u1

x 〉 ≥ 0. This means that x∗ ∈ A(x, y∗) by (3.19) and so verifies the outer
semicontinuity of A in (3.23).
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To proceed in case (c), we employ Theorem 3.5(c) and get similarly to the above that

D∗�Lθ (x)(y∗) = Lim sup
v→x,v∗→y∗

λ2(v)�=0

D̂∗�Lθ (v)(v∗)
⋃

Lim sup
v→x,v∗→y∗

λ2(v)=0

D̂∗�Lθ (v)(v∗)

= Lim sup
v→x,v∗→y∗
v∈D�Lθ

[∇�Lθ (v)v∗]⋃ Lim sup
v→x,v∗→y∗

λ2(v)=0

{
x∗ ∈ R

n
∣∣∣ x∗ ∈ IR+u2

v, 〈v∗ − x∗, u2
v〉 ≥ 0

}
= Lim sup

v→x,v∗→y∗
v∈D�Lθ

[∇�Lθ (v)v∗]⋃ Lim sup
v→x,v∗→y∗

λ2(v)=0

B(v, v∗) = [∂B(�Lθ )(x)y∗]⋃ B(x, y∗),

where the mapping B(·, ·) is defined in (3.20), and where the last step comes from the outer
semicontinuity of this mapping at (x, y∗), which can proved similarly to (3.23).

It remains to consider case (d) with x = 0. In this case we have by (3.21) and Theorem 3.5
that

D∗�Lθ (0)(y∗) = Lim sup
v→0,v∗→y∗
λ1(v)λ2(v)�=0

D̂∗�Lθ (v)(v∗)
⋃

Lim sup
v→0,v∗→y∗

λ1(v)=0,λ2(v)>0

D̂∗�Lθ (v)(v∗)

⋃
Lim sup
v→0,v∗→y∗

λ1(v)<0,λ2(v)=0

D̂∗�Lθ (v)(v∗)
⋃

Lim sup
v∗→y∗

D̂∗�Lθ (0)(v∗)

= Lim sup
v→0,v∗→y∗
v∈D�Lθ

[∇�Lθ (v)v∗]⋃ Lim sup
v→0,v∗→y∗

λ1(v)=0,λ2(v)>0

A(v, v∗)

⋃
Lim sup
v→0,v∗→y∗

λ1(v)<0,λ2(v)=0

B(v, v∗)
⋃

Lim sup
v∗→y∗

C(v∗),

where the set-valued mapping C : R
n →→ R

n defined by

C(v∗) := {x∗ ∈ R
n
∣∣ x∗ ∈ Lθ , v∗ − x∗ ∈ L π

2 −θ

}
is clearly outer semicontinuous at the reference point. To proceed further, we now claim
that

Lim sup
v→0,v∗→y∗

λ1(v)=0,λ2(v)>0

A(v, v∗) =
⋃

ξ∈�1

{
x∗ ∈ IRn

∣∣∣ y∗ − x∗ ∈ IR+ξ, 〈x∗, ξ 〉 ≥ 0
}

(3.25)

with the union in (3.25) taken over the set

�1 :=
{

1

1 + ctan2θ

[
1 0
0 ctanθ

](
1
w

) ∣∣∣∣ w ∈ IRn−1, ‖w‖ = 1

}
.

The inclusion ‘⊂’ in (3.25) easily follows from u1
v ∈ �1 and the closedness of �1. To

derive the converse inclusion ‘⊃’, pick any x∗ from the right-hand side of (3.25) and find
α ≥ 0 and w ∈ IRn−1 with ‖w‖ = 1 satisfying the relationships

y∗ − x∗ = αξ and 〈x∗, ξ 〉 ≥ 0, where ξ = 1

1 + ctan2θ

[
1 0
0 ctanθ

](
1
w

)
. (3.26)

Letting v(t) := t (ctanθ,−w)T with t > 0, we get from (3.2) that λ1(v(t)) = 0,
λ2(v(t)) > 0, and u1

v(t) = ξ . Hence (3.26) means that x∗ ∈ A(v(t), y∗) for all t > 0,
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which ensures that x∗ belongs to the right-hand side of (3.25). Similarly we arrive at the
representation

Lim sup
v→0,v∗→y∗

λ1(v)<0,λ2(v)=0

B(v, v∗) =
⋃

η∈�2

{
x∗ ∈ R

n
∣∣ x∗ ∈ IR+η, 〈y∗ − x∗, η〉 ≥ 0

}
,

where the union is taken over the set

�2 :=
{

1

1 + tan2 θ

[
1 0
0 tan θ

](
1
w

) ∣∣∣∣ w ∈ IRn−1, ‖w‖ = 1

}
.

This follows from the proof of (3.25) with replacing v(t) therein by v(t) := t (− tan θ,w)T

as t > 0.
To complete the proof of the theorem in case (d), let us finally verify that

bd(L π
2 −θ ) = IR+�1 and bd(Lθ ) = IR+�2. (3.27)

The inclusion bd(L π
2 −θ ) ⊃ IR+�1 is trivial. Conversely, take x = (x1, x2) ∈ bd(L π

2 −θ ),
which means that ctanθx1 = ‖x2‖. If x1 = 0, then x = 0 and therefore x ∈ IR+�1. If
x1 �= 0, then x1 > 0 and(

x1
x2

)
= x1

(
1
x2

tan θ‖x2‖

)
= x1

(
1 + ctan2θ

) 1

1 + ctan2θ

[
1 0
0 ctanθ

](
1
x̄2

)
∈ IR+�1,

which justifies the first equality in (3.27). The second equality therein can be verified
similarly. �

It is worth mentioning that the sets �1 and �2, which play an important role in the
proof of Theorem 3.6, agree in the symmetric case θ = 45◦ of the second-order cone, while
�1 �= �2 in the general case θ �= 45◦ of the circular cone under consideration.

The last result of this section provides precise formulas for calculating the regular
derivative (2.7) of the projection operator �Lθ onto the circular cone.

Theorem 3.7 (calculating the regular derivative of the projection operator) For any
x ∈ R

n with decomposition (3.1) and any w ∈ R
n, the regular derivative (2.7) of the

projection operator (3.5) onto the circular cone is calculated as follows:

(a) If λ1(x)λ2(x) �= 0, then D̂�Lθ (x)(w) = {∇�Lθ (x)w
}
.

(b) If λ1(x) = 0 and λ2(x) > 0, then

D̂�Lθ (x)(w) =
{ {w} if w ∈ (u1

x )
⊥,

∅ otherwise.

(c) If λ1(x) < 0 and λ2(x) = 0, then

D̂�Lθ (x)(w) =
{ {0} if w ∈ (u2

x )
⊥,

∅ otherwise.

(d) If λ1(x) = λ2(x) = 0, then

D̂�Lθ (0)(w) =
{ {0} if w = 0,

∅ otherwise.
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Proof It follows from duality/polarity correspondences in variational analysis that

v ∈ D̂�Lθ (x)(w) ⇐⇒ 〈x∗, w〉 ≤ 〈y∗, v〉 when x∗ ∈ D∗�Lθ (x)(y∗); (3.28)

see, e.g. [30, Proposition 8.37]. This allows us to proceed with calculating the regular
derivative of �Lθ by using the corresponding coderivative and B-subdifferential formulas
obtained above.

Consider first case (a) of the theorem and pick any v ∈ D̂�Lθ (x)(w). Then it follows
from (3.28) and Theorem 3.6(a) that〈

y∗,∇�Lθ (x)w
〉 = 〈∇�Lθ (x)y∗, w

〉 = 〈x∗, w〉 ≤ 〈y∗, v〉 for any y∗ ∈ IRn .

This readily implies that v = ∇�Lθ (x)w, i.e. D̂�Lθ (x)(w) = {∇�Lθ (x)w}.
In case (b) we take any pair (w, v) ∈ gph(D̂�Lθ (x)) and get from Theorem 3.6(b) the

inclusion ∂B(�Lθ )(x)y∗ ⊂ D∗�Lθ (x)(y∗), which readily ensures by Lemma 3.1(b) that
y∗ ∈ D∗�Lθ (x)(y∗) and also that [I − (1 + ctan2θ)u1

x (u
1
x )

T ]y∗ ∈ D∗�Lθ (x)(y∗). Thus
it yields by (3.28) the

〈y∗, w〉 ≤ 〈y∗, v〉 and
〈
y∗ − (1 + ctan2θ)u1

x (u
1
x )

T y∗, w
〉
≤ 〈y∗, v〉 for all y∗ ∈ R

n .

(3.29)
The first inequality in (3.29) tells us that v = w, while substituting it into the second one
gives us 〈u1

x , w〉 = 0. Picking now x∗ ∈ A(x, y∗), we get by (3.19) that y∗ − x∗ = αu1
x

for some α ≥ 0. Hence

〈x∗, w〉 = 〈y∗ − αu1
x , w〉 = 〈y∗, w〉 − α〈u1

x , w〉 = 〈y∗, v〉,
where the last step is due to v = w and 〈u1

x , w〉 = 0 as shown above. Thus, we arrive at the
representation of the regular derivative D̂�Lθ (x)(w) claimed in (b).

To proceed case (c) of the theorem, pick (w, v) ∈ gph D̂�Lθ (x)) and deduce from
Theorem 3.6(c) and Lemma 3.1(c) that 0 ∈ D∗�Lθ (x)(y∗) and (1 + tan2 θ)(u2

x )
T y∗u2

x ∈
D∗�Lθ (x)(y∗). Hence we get from (3.28) that 〈0, w〉 ≤ 〈y∗, v〉 and 〈(1 + tan2 θ)(u2

x )
T

y∗u2
x , w〉 ≤ 〈y∗, v〉 whenever y∗ ∈ IRn ; therefore v = 0 and 〈u2

x , w〉 = 0. Taking x∗ ∈
B(x, y∗) gives us by (3.20) that x∗ = βu2

x for some β ≥ 0. Then 〈x∗, w〉 = 〈βu2
x , w〉 =

0 = 〈y∗, v〉, where the last step is due to v = 0 and 〈u2
x , w〉 = 0. This justifies the regular

derivative formula in case (c).
Our final case is (d), where x = 0. Picking any (w, v) ∈ gph (D̂�Lθ (0)), we get

from Theorem 3.6(d) and Lemma 3.1(d) in this case that y∗ ∈ D∗�Lθ (x)(y∗) and 0 ∈
D∗�Lθ (x)(y∗) for all y∗ ∈ R

n . Plugging these into (3.28) yields 〈y∗, w〉 ≤ 〈y∗, v〉 and
〈0, w〉 ≤ 〈y∗, v〉. Hence v = w and v = 0, which gives us the formula claimed in (d) and
thus completes the proof of the theorem. �

4. Generalized derivatives of the circular cone projection operator via orthogonal
projections of spectral vectors

This section establishes useful relationships between the generalized derivatives of the
projection operator onto the circular cone and the projection operator itself onto the orthog-
onal spaces to the spectral vectors (3.3) associated with Lθ ; we call them for brevity the
orthogonal projections. Besides being of their own ‘qualitative’ interest, they essentially
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simplify the numerical procedure for calculating the generalized derivatives while providing
much shorter formulas that do not explicitly depend on the angle θ .

First we calculate orthogonal projections over a hyperplane based on convex optimiza-
tion. The general result on the projection over {x ∈ R

n|Mx = b} with M ∈ R
m×n being

row-full rank and b ∈ R
m can be found in [36, Exercise 2D.10]. Here we provide the proof

for completeness.

Lemma 4.1 (orthogonal projections) Given a nonzero vector ξ ∈ IRn, we have

�ξ⊥(y) =
[

I − 1

‖ξ‖2
ξξ T

]
y for any y ∈ IRn .

Proof Note that the projection of y onto ξ⊥ solves the following convex quadratic
optimization problem:{

min 1
2‖y − x‖2

s.t. x ∈ {ξ⊥} ⇐⇒
{

min 1
2‖y − x‖2

s.t. 〈ξ, x〉 = 0.
(4.1)

Denote x̄ := �ξ⊥(y) and apply to it the classical necessary and sufficient condition for
optimality of x̄ in (4.1), which characterizes x̄ as follows: there is a multiplier λ ∈ R such
that

x̄ − y + λξ = 0 and 〈ξ, x̄〉 = 0,

This can be equivalently rewritten as

0 = 〈y − λξ, ξ 〉 = 〈y, ξ 〉 − λ‖ξ‖2, i.e. λ = 1

‖ξ‖2
〈y, ξ 〉.

It allows us to express the projection �ξ⊥(y) in the form of

�ξ⊥(y) = x̄ = y − λξ = y − 1

‖ξ‖2
〈y, ξ 〉ξ = y − 1

‖ξ‖2
ξξ T y =

[
I − 1

‖ξ‖2
ξξ T

]
y

and therefore completes the proof of the lemma. �

Having this in hand, we derive now alternative versions of the main results of Section 3
establishing relationships between the major generalized derivatives of �Lθ and orthogonal
projections associated with the spectral vectors u1

x , u2
x of the circular cone. We start with

the B-subdifferential (2.11) of �Lθ .

Proposition 4.2 (B-subdifferential via orthogonal projections) Let λi (x) and ui
x , i =

1, 2, be the spectral values (3.2) and spectral vectors (3.3), respectively, associated with the
vector x ∈ R

n in the spectral decomposition (3.1). Then we have the following relationships
between the B-subdifferential of the projection operator�Lθ and the orthogonal projections
generated by ui

x :

(a) If λ1(x)λ2(x) �= 0, then

∂B(�Lθ )(x)

=

⎧⎪⎨⎪⎩
I if λ1(x) > 0 and λ2(x) > 0,
0 if λ1(x) < 0 and λ2(x) < 0,

λ2(x)
λ2(x)−λ1(x)

�(u1
x )⊥ +

(
1 − λ2(x)

λ2(x)−λ1(x)

) [
I − �(u2

x )⊥
]

if λ1(x) < 0 and λ2(x) > 0.
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(b) If λ1(x) = 0 and λ2(x) > 0, then ∂B(�Lθ )(x) = {I,�(u1
x )⊥
}
.

(c) If λ1(x) < 0 and λ2(x) = 0, then ∂B(�Lθ )(x) = {0, I − �(u2
x )⊥
}
.

(d) If λ1(x) = λ2(x) = 0, then

∂B(�Lθ )(x) = {0, I
}⋃

co
{
�(u1

z )
⊥ , I − �(u2

z )
⊥
∣∣ ‖z2‖ = 1

}
.

Proof Applying Lemma 4.1 to ξ = u1
x , u2

x and using formulas (3.3) for the spectral
vectors give us

�(u1
x )⊥ = I + 1

1 + ctan2θ

[ −1 ctanθ x̄2

ctanθ x̄2 −ctan2θ x̄2 x̄ T
2

]
, (4.2)

�(u2
x )⊥ = I − 1

1 + tan2 θ

[
1 tan θ x̄2

tan θ x̄2 tan2 θ x̄2 x̄ T
2

]
. (4.3)

Then the result follows by comparison (4.2) and (4.3) with the corresponding calculations
of Lemma 3.1 and taking into account the gradient expression (3.6) for �Lθ at x in case
(a). �

Next we establish relationships between the directional derivative of �Lθ and the
orthogonal projections generated by the spectral vectors.

Proposition 4.3 (directional derivative via orthogonal projections) In the setting of
Proposition 4.2 we have the following expressions for the directional derivative of �Lθ :

(a) If λ1(x)λ2(x) �= 0, then

�′
Lθ

(x; h)

=

⎧⎪⎨⎪⎩
h if λ1(x) > 0 and λ2(x) > 0,

0 if λ1(x) < 0 and λ2(x) < 0,
λ2(x)

λ2(x)−λ1(x)
�

(u1
x )⊥ (h) +

(
1 − λ2(x)

λ2(x)−λ1(x)

) [
h − �

(u2
x )⊥ (h)

]
if λ1(x) < 0 and λ2(x) > 0.

(b) If λ1(x) = 0 and λ2(x) > 0, then

�′
Lθ

(x; h) =
{

h if 〈u1
x , h〉 ≥ 0,

�(u1
x )⊥(h) otherwise,

(c) If λ1(x) < 0 and λ2(x) = 0, then

�′
Lθ

(x; h) =
{

0 if 〈u2
x , h〉 ≤ 0,

h − �(u2
x )⊥(h) otherwise.

Proof Similar to Proposition 4.2 with applying Lemma 3.2 instead of Lemma 3.1. �

Due to Proposition 3.4, the expression of graphical derivative D�Lθ (x) via orthogonal
projections can be obtain as well. To proceed now with coderivatives, we first consider the
case of the regular coderivative (2.8).

Proposition 4.4 (regular coderivative via orthogonal projections) In the setting of
Proposition 4.2 we have the following expressions for the regular coderivative of �Lθ at x
for any y∗ ∈ R

n:
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(a) If λ1(x)λ2(x) �= 0, then

D̂∗�Lθ (x)(y∗)

=

⎧⎪⎨⎪⎩
y∗ if λ1(x) > 0 and λ2(x) > 0,

0 if λ1(x) < 0 and λ2(x) < 0,
λ2(x)

λ2(x)−λ1(x)
�(u1

x )⊥ (y∗) +
(

1 − λ2(x)
λ2(x)−λ1(x)

) [
y∗ − �(u2

x )⊥ (y∗)
]

if λ1(x) < 0 and λ2(x) > 0.

(b) If λ1(x) = 0 and λ2(x) > 0, then

D̂∗�Lθ (x)(y∗) =
{

co
{

y∗,�(u1
x )⊥(y∗)

}
if 〈y∗, u1

x 〉 ≥ 0,

∅ otherwise.

(c) If λ1(x) < 0 and λ2(x) = 0, then

D̂∗�Lθ (x)(y∗) =
{

co
{
0, y∗ − �(u2

x )⊥(y∗)
}

if 〈y∗, u2
x 〉 ≥ 0,

∅ otherwise.

(d) Ifλ1(x) = λ2(x) = 0 and thus x = 0, then D̂∗�Lθ (x)(y∗) = Lθ

⋂{
y∗ − L π

2 −θ

}
.

Proof We need to justify the following representation of the mapping A from (3.19):

A(x, y∗) =
{

co
{

y∗,�(u1
x )⊥(y∗)

}
if 〈y∗, u1

x 〉 ≥ 0,

∅ otherwise.
(4.4)

To proceed, take x∗ ∈ A(x, y∗) and get by (3.19) that x∗ = y∗ − αu1
x with α ≥ 0 and

〈x∗, u1
x 〉 ≥ 0. Thus

0 ≤ 〈x∗, u1
x 〉 = 〈y∗, u1

x 〉 − α‖u1
x‖2 = 〈y∗, u1

x 〉 − 1

1 + ctan2θ
α,

which yields α ≤ (1 + ctan2θ)〈y∗, u1
x 〉. If 〈y∗, u1

x 〉 < 0, we have A(x, y∗) = ∅ while
〈y∗, u1

x 〉 ≥ 0 gives us 0 ≤ α ≤ (1 + ctan2θ)〈y∗, u1
x 〉. The case of α = 0 corresponds to

y∗ = x∗ ∈ A(x, y∗)

while the other one α = (1 + ctan2θ)〈y∗, u1
x 〉 corresponds to

x∗ = y∗ − (1 + ctan2θ)〈y∗, u1
x 〉u1

x = y∗ − (1 + ctan2θ)u1
x (u

1
x )

T y∗ = �(u1
x )⊥(y∗).

In this way we arrive at the inclusion

A(x, y∗) ⊂ co
{

y∗,�(u1
x )⊥(y∗)

}
as 〈y∗, u1

x 〉 ≥ 0.

To verify the converse inclusion in (4.4), it suffices to show, by the convexity of A(x, y∗),
that y∗ and �(u1

x )⊥(y∗) are both in A(x, y∗). Since 〈y∗, u1
x 〉 ≥ 0, we clearly have y∗ ∈

A(x, y∗). Observe further that

y∗ = �(u1
x )⊥(y∗) + �span{u1

x }(y∗),

and so y∗ − �(u1
x )⊥(y∗) = βu1

x for some β ∈ IR. Thus

β‖u1
x‖2 = 〈y∗ − �(u1

x )⊥(y∗), u1
x 〉 = 〈y∗, u1

x 〉 ≥ 0,
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i.e. β ≥ 0. This ensures together with 〈�(u1
x )⊥(y∗), u1

x 〉 = 0 that �(u1
x )⊥(y∗) ∈ A(x, y∗),

which therefore verifies representation (4.4). The following representation

B(x, y∗) =
{

co
{
0, y∗ − �(u2

x )⊥(y∗)
}

if 〈y∗, u2
x 〉 ≥ 0,

∅ otherwise
(4.5)

can be derived similarly. We complete the proof by putting Theorem 3.5, (4.4), and (4.5)
together. �

We present the main result of this section establishing expressions of the coderivative
(2.6) of the projection operator �Lθ via the orthogonal projections generated by the spectral
vectors (3.3).

Theorem 4.5 (coderivative via orthogonal projections) In the setting of Proposition 4.2
we have the following expressions for the coderivative of �Lθ at x for any y∗ ∈ R

n:

(a) If λ1(x)λ2(x) �= 0, then

D∗�Lθ (x)(y∗)

=

⎧⎪⎨⎪⎩
y∗ if λ1(x) > 0 and λ2(x) > 0,

0 if λ1(x) < 0 and λ2(x) < 0,
λ2(x)

λ2(x)−λ1(x)
�(u1

x )⊥ (y∗) +
(

1 − λ2(x)
λ2(x)−λ1(x)

) [
y∗ − �(u2

x )⊥ (y∗)
]

if λ1(x) < 0 and λ2(x) > 0.

(b) If λ1(x) = 0 and λ2(x) > 0, then

D∗�Lθ (x)(y∗) =
{

co
{

y∗,�(u1
x )⊥(y∗)

}
if 〈y∗, u1

x 〉 ≥ 0,{
y∗,�(u1

x )⊥(y∗)
}

otherwise.

(c) If λ1(x) < 0 and λ2(x) = 0, then

D∗�Lθ (x)(y∗) =
{

co
{
0, y∗ − �(u2

x )⊥(y∗)
}

if 〈y∗, u2
x 〉 ≥ 0,{

0, y∗ − �(u2
x )⊥(y∗)

}
otherwise.

(d) If λ1(x) = λ2(x) = 0 and thus x = 0, then

D∗�Lθ (0)(y∗)

= {0, y∗}⋃⎡⎣ ⋃
‖z2‖=1

co
{
�(u1

z )
⊥(y∗), y∗ − �(u2

z )
⊥(y∗)

}⎤⎦
⋃
⎡⎢⎢⎢⎣ ⋃

ξ∈bd(L π
2 −θ

)/{0}
〈y∗,ξ 〉≥0

co
{

y∗,�ξ⊥(y∗)
}⎤⎥⎥⎥⎦

⋃⎡⎢⎢⎣ ⋃
η∈bd(Lθ )/{0}

〈η,y∗〉≥0

co
{

0, y∗ − �η⊥(y∗)
}⎤⎥⎥⎦⋃[(

Lθ

⋂{
y∗ − L π

2 −θ

})]
.



136 J. Zhou et al.

Proof Follows the proof of Proposition 4.4 with employing Theorem 3.6 and
Proposition 4.2. �

Proceeding similarly with the usage of Theorem 3.7, we arrive at the following result.

Theorem 4.6 (regular derivative via orthogonal projections) In the setting of Proposi-
tion 4.2 we have the following expressions for the regular derivative of �Lθ at x for any
w ∈ R

n:

(a) If λ1(x)λ2(x) �= 0, then D̂�Lθ (x)(w) = {∇�Lθ (x)w
}
.

(b) If λ1(x) = 0 and λ2(x) > 0, then

D̂�Lθ (x)(w) =
{ {�(u1

x )⊥(w)} if w ∈ (u1
x )

⊥,

∅ otherwise.

(c) If λ1(x) < 0 and λ2(x) = 0, then

D̂�Lθ (x)(w) =
{ {[

I − �(u2
x )⊥
]
(w)
}

if w ∈ (u2
x )

⊥,

∅ otherwise.

(d) If λ1(x) = λ2(x) = 0, then

D̂�Lθ (0)(w) =
{

{�(u1
x )⊥(0)} or

{[
I − �(u2

x )⊥
]
(0)
}

if w = 0,

∅ otherwise.

We conclude this section with two remarks clarifying our approach and possible
applications.

Remark 4.7 (on reduction to the second-order cone) Recalling relationships (1.6)
between the circular and second-order cones, a natural question arises about the possibility
to calculate generalized derivatives of the circular cone Lθ by reducing it to the second-
order cone Kn . In particular, would it be possible to derive the results on calculating the
coderivatives of �Lθ in Theorems 3.5 and 3.6 from the known results of [35] for �Kn ?
Our discussions below show that such an approach meets principal difficulties and does
not seem to be implemented. That is why we give the detailed proof and arguments on
some main results given above, although some analysis techniques are inspired by [35].
Indeed, for any closed and convex set E , the projection and normal cone have the following
well-known formulas

�E = (I + NE )−1 and NE = �−1
E − I. (4.6)

Applying to (1.6) the calculus rules from [29, Corollary 1.15] and [30, Exercise 6.7] gives
us

NLθ (x) = ANKn (Ax) and TLθ (x) = A−1TKn (Ax). (4.7)

Unifying (4.6) and (4.7) yields the projection representation for Lθ via the inverse projection
for Kn by

�Lθ = (I + ANKn ◦ A)−1 =
(

I + A(�−1
Kn − I ) ◦ A

)−1
. (4.8)
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The presence of the inverse operator in (4.8) does not make it possible to represent the
regular and limiting coderivatives of �Lθ via the corresponding constructions for �Kn by
employing the known calculus rules. Let us demonstrate it for the case of the coderivative
D∗ having in mind that the same arguments work for the case of D̂∗. To proceed, we get
from (4.8) the equivalences

(x, y) ∈ gph �Lθ ⇐⇒ x − y ∈ ANKn (Ay) ⇐⇒ A−1x − A−1 y ∈ NKn (Ay)

⇐⇒ Ay = �Kn (A−1x − A−1 y + Ay)

⇐⇒ (A−1x − A−1 y + Ay, Ay) ∈ gph �Kn

⇐⇒
[

A−1 A − A−1

0 A

](
x
y

)
∈ gph �Kn . (4.9)

Consider further the extended matrix

� :=
[

A−1 A − A−1

0 A

]
with �−1 =

[
A −A + A−1

0 A−1

]
and observe from (4.9) that gph �Lθ = �−1(gph �Kn ). This gives us the representation

Ngph�Lθ

(
x,�Lθ (x)

)
= �Ngph�Kn

(
�T
(

x
�Lθ (x)

))
.

Using this and the coderivative definition (2.6), we have the following transformations:

y∗ ∈ D∗�Lθ (x)(x∗) ⇐⇒ (y∗,−x∗) ∈ Ngph�Lθ

(
x,�Lθ (x)

)
= �Ngph�Kn

(
�

(
x

�Lθ (x)

))
⇐⇒ �−1(y∗,−x∗) ∈ Ngph�Kn

(
�

(
x

�Lθ (x)

))
⇐⇒ (Ay∗ + Ax∗ − A−1x∗,−A−1x∗) ∈ Ngph�Kn

×(A−1x + A�Lθ (x) − A−1�Lθ (x), A�Lθ (x)
)

⇐⇒ (A−1x∗, Ay∗ + Ax∗ − A−1x∗) ∈ gph D∗�Kn

×(A�Lθ (x) + A−1�(Lθ )◦(x), A�Lθ (x)
)

⇐⇒ [
A − A−1 A

] ( x∗
y∗
)

∈ D∗�Kn
(

A�Lθ (x) + A−1�(Lθ )◦(x)
)
(A−1x∗).

(4.10)

Since the operator
[

A − A−1 A
]

in (4.10) is not invertible, the obtained relationship does
not allow us to easily find (x∗, y∗) and so to reduce calculating the coderivative of �Lθ to
that of �Kn .

Remark 4.8 (applications of generalized derivatives) It has been well recognized in
variational analysis and optimization that the generalized derivatives considered in this
paper are very instrumental for characterizing fundamental properties of solutions maps
to constraint and variational systems related to Lipschitzian stability, metric regularity,
openness, calmness, etc., as well as for a variety of applications to optimization, equilibrium,
and control problems. Among numerous publications on these topics, we refer the reader
to the books [29,30] and to the recent paper [8] devoted to general problems of conic
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programming; see also the bibliographies therein. It is crucial to emphasize that the results
established in these directions are the most effective when the aforementioned generalized
derivative can be calculated entirely in terms of the initial problem data. This is done in
this paper for the projection operator onto the circular cone. Detailed applications of the
obtained results to particular issues of variational analysis and optimization will be done in
our future research; see also the next section.

5. Full and tilt stability in circular cone programming

The final section of the paper provides applications of the generalized derivatives to complete
characterizations of the fundamental notions of tilt and full stability of locally optimal
solutions for the case of mathematical programs with circular cone constrains, or problems
of circular come programming. It has been known from the general optimization theory
that the most effective characterizations of these notions are given via the second-order
subdifferential of the indicator functions to the corresponding constraint mapping, which
in our case is the circular cone Lθ . Since the second-order subdifferential (2.10) is the
coderivative of the first-order subdifferential mapping for the indicator function δLθ of
Lθ , the calculation of this construction plays a crucial role in the desired stability charac-
terizations. The coderivative calculation results for the projection operator �Lθ obtained
in Sections 3 and 4 could be very instrumental to proceed in this direction due to the
relationships in (4.6) between the normal cone to a convex set and the projection onto it.
Implementing it in detail requires careful and lengthy considerations, similarly to what has
done in the recent paper [8] in the case of the second-order cone.

In what follows we are able to significantly simplify this work in the case of the circular
cone by taking into account its relationship (1.6) with the second-order cone and applying
the results of [8] together with calculus rules of generalized differentiation. First we present
three technical lemmas of their own interest, which are needed for our subsequent analysis.

Lemma 5.1 (interior and boundary relationships) The following relationships hold
between the interiors and boundaries of the circular and second-order cones:

(a) int Lθ = A−1int Kn and bd Lθ = A−1bd Kn;
(b) int Kn = A int Lθ and bd Kn = A bd Lθ .

Proof Note that A is nonsingular. It is easy to verify that

int Lθ = {x ∈ IRn
∣∣ x1 tan θ > ‖x2‖

}
, int Kn = {x ∈ IRn

∣∣ x1 > ‖x2‖
}
,

bd Lθ = {x ∈ IRn
∣∣ x1 tan θ = ‖x2‖

}
, bdKn = {x ∈ IRn

∣∣ x1 = ‖x2‖
}
.

which directly leads us to the claimed relationships. �

Lemma 5.2 (normal and tangent cones to the circular cone) For x ∈ Lθ we have the
following formulas for the normal and tangent cones to Lθ :

(a) NLθ (x) =
⎧⎨⎩

−L π
2 −θ if x = 0,

{0} if x ∈ intLθ ,

IR+(−x1 tan2 θ, x2) if x ∈ bd Lθ /{0}.
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(b) TLθ (x) =
⎧⎨⎩

Lθ if x = 0,

IRn if x ∈ int Lθ ,{
(d1, d2) ∈ IRn

∣∣ dT
2 x2 − tan2 θx1d1 ≤ 0

}
if x ∈ bd Lθ /{0}.

(c) span
{

NLθ (x)
} =

⎧⎨⎩
IRn if x = 0,

{0} if x ∈ int Lθ ,

IR(−x1 tan2 θ, x2) if x ∈ bd Lθ /{0}.
Proof We combine (4.7) with calculations of NKn and its span obtained in [6, Lemma 25]
and [25, Lemma 3.5 and (3.16)], respectively, to get the expressions

span {NLθ (x} = A span
{

NKn (Ax)
}

= A

⎧⎨⎩
IRn if Ax = 0,

{0} if Ax ∈ int Kn,

IR(−x1 tan θ, x2) if Ax ∈ bd Kn/{0}

=
⎧⎨⎩

IRn if x = 0,

{0} if x ∈ int Lθ ,

IR(−x1 tan2 θ, x2) if x ∈ bd Lθ /{0},
which thus complete the proof of the lemma. �

Lemma 5.3 (relationships between the first-order and second-order subdifferentials of δLθ

and δKn ) For any x ∈ Lθ the following relationships hold:

(a) ∂δLθ (x) = A∂δKn (Ax);
(b) ∂2δLθ (x, w)(u) = A∂2δKn (Ax, A−1w)(Au) whenever w ∈ ∂δLθ (x) and u ∈

IRn .

Proof To verify (a), observe from (1.6) that δLθ (x) = δKn (Ax), which yields ∂δLθ (x) =
A∂δKn (Ax). This implies therefore the graph relationship

gph
(
∂δLθ

) =
[

A−1 0
0 A

]
gph
(
∂δKn

)
.

To prove (b), we take the latter into account, pick (x, w) ∈ gph(∂δLθ ), and apply the
calculus rule from [29, Theorem 1.17] to obtain the equality

Ngph(∂δLθ
)(x, w) =

[
A 0
0 A−1

]
Ngph(∂δKn )(Ax, A−1w).

This gives us by definition (2.6) that

(u, v) ∈ gph(D∗∂δLθ )(x, w) ⇐⇒ (v,−u) ∈ Ngph(∂δLθ
)(x, w)

⇐⇒ (A−1v,−Au) ∈ Ngph(∂δKn )(Ax, A−1w)

⇐⇒ (Au, A−1v) ∈ gph(D∗δKn )(Ax, A−1w),

which readily ensures the equivalences

v ∈ (D∗∂δLθ )(x, w)(u) ⇐⇒ A−1v ∈ (D∗δKn )(Ax, A−1w)(Au)

⇐⇒ v ∈ A(D∗δKn )(Ax, A−1w)(Au).
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By construction (2.10) we have therefore

∂2δLθ (x, w)(u) = D∗(∂δLθ )(x, w)(u) = A(D∗δKn )(Ax, A−1w)(Au)

= A∂2δKn (Ax, A−1w)(Au), (5.1)

which justifies the second-order relationship claimed in (b). �

Now we are ready to obtain major calculations for the second-order subdifferential of
δLθ that are crucial for deriving the main results of this section.

Theorem 5.4 (major characteristics of ∂2δLθ ) For any x ∈ Lθ and w ∈ NLθ (x) we have
the following calculation formulas for the domain

dom ∂2δLθ (x, w)

=
⎧⎨⎩u ∈ IRn

∣∣∣∣∣∣
u = 0 if − w ∈ int L π

2 −θ ,

u ∈ IR(−w1ctan2θ,w2) if − w ∈ bd L π
2 −θ /{0}, x = 0,

〈u, w〉 = 0 if − w ∈ bd L π
2 −θ /{0}, x ∈ bd Lθ /{0}

⎫⎬⎭
(5.2)

and the value of the second-order subdifferential of δLθ (x, w) at zero given by

∂2δLθ (x, w)(0) =
⎧⎨⎩

IRn if x = 0,

{0} if x ∈ int Lθ ,

IR(−x1 tan2 θ, x2) if x ∈ bd Lθ /{0}.
(5.3)

Proof Employing Lemmas 5.1–5.3 as well as [25, Theorem 3.6 and Lemma 4.6] yields

dom ∂2δLθ
(x, w) = A−1dom ∂2δKn (Ax, A−1w)

= A−1

⎧⎨⎩u ∈ IRn

∣∣∣∣∣∣
u = 0 if − A−1w ∈ int Kn,

IR(−w1ctanθ, w2) if − A−1w ∈ bd Kn/{0}, Ax = 0,

〈u, A−1w〉 = 0 if Ax, −A−1w ∈ bd Kn/{0},

⎫⎬⎭
= A−1

⎧⎨⎩u ∈ IRn

∣∣∣∣∣∣
u = 0 if − A−2w ∈ int Lθ ,

IR(−w1ctanθ, w2) if − A−2w ∈ bd Lθ /{0}, x = 0,

〈u, A−1w〉 = 0 if x, −A−2w ∈ bd Lθ /{0},

⎫⎬⎭
=
⎧⎨⎩u ∈ IRn

∣∣∣∣∣∣
u = 0 if − A−2w ∈ int Lθ ,

IR(−w1ctan2θ, w2) if − A−2w ∈ bd Lθ /{0}, x = 0,

〈u, w〉 = 0 if x,−A−2w ∈ bd Lθ /{0}

⎫⎬⎭
=

⎧⎪⎨⎪⎩u ∈ IRn

∣∣∣∣∣∣∣
u = 0 if − w ∈ int L π

2 −θ ,

IR(−w1ctan2θ, w2) if − w ∈ bd L π
2 −θ /{0}, x = 0,

〈u, w〉 = 0 if − w ∈ bd L π
2 −θ /{0}, x ∈ bd Lθ /{0}

⎫⎪⎬⎪⎭ ,

where we use the fact from [2] ensuring that A2Lθ = L π
2 −θ . This justifies (5.2).

To verify (5.3), observe from (4.7) and (5.1) that

∂2δLθ (x, w)(0) = AD∗δKn (Ax, A−1w)(0) = A span
{

NKn (Ax)
}

= span
{

ANKn (Ax)
} = span

{
NLθ (x)

}
, (5.4)

where the second equality comes from [25, Theorem 3.6]. Then (5.3) follows from
Lemma 5.2(c), which therefore completes the proof of the theorem. �



Optimization 141

After all these preparations from generalized differentiation, now we are able to proceed
with the main topic of this section concerning second-order characterizations of the fun-
damental notions of till and full stability in problems of circular programming formulated
as follows:

minimize f (x) subject to g(x) ∈ Lθ , (5.5)

where f : IRn → IR and g : IRn → IRm are assumed to be twice continuously differentiable
at the reference points. Note that we consider the case of only one circular cone constraint
in (5.5) just for simplicity. It is possible to carry out the case of products of circular cones
without any difficulties.

Along with (5.5), consider its perturbed two-parametric version P(w, v) given by

minimize ϕ(x, w) − 〈v, x〉 over x ∈ IRn with ϕ(x, w) := f (x, w) + δLθ

(
g(x, w)

)
,

(5.6)
where the vector w ∈ IRd signifies basic perturbations with f (x, 0) = f (x) and g(x, 0) =
g(x), while the vector v ∈ IRn stands for tilt perturbations. For a locally optimal solution x̄
to (5.5), fix a positive number γ and consider the (local) optimal value function

mγ (w, v) := inf
{
ϕ(x, w) − 〈v, x〉∣∣ ‖x − x̄‖ ≤ γ

}
, (w, v) ∈ IRd × IRn,

and the corresponding optimal solution map

Mγ (w, v) := argmin
{
ϕ(x, w) − 〈v, x〉∣∣ ‖x − x̄‖ ≤ γ

}
, (w, v) ∈ IRd × IRn .

Following the scheme of [15] for general optimization problems, we define the notion
of full stability of locally optimal solutions to (5.6) and its tilt stability predecessor.[16]

Definition 5.5 (full and tilt stability) A point x̄ is a fully stable locally optimal
solution to P(w̄, v̄) if there exist a number γ > 0, the neighbourhoods W of w̄ and V of v̄

such that the mapping (w, v) �→ Mγ (w, v) is single-valued and Lipschitz continuous with
Mγ (w̄, v̄) = x̄ and furthermore the function (w, v) �→ mγ (w, v) is Lipschitz continuous
on W ×V . If ϕ in (5.6) does not depend on w, then x̄ is called tilt- stabile local minimizer
to P(v̄).

It is easy to see that in the case of tilt stability the value function mγ (v) is automatically
Lipschitz continuous around v̄. Although the notions of tilt and full stability have drawn
much attention in the literature for various classes of optimization problems (see the
references and discussions in Section 1), we are not familiar with any work in this direction
for problems of circular cone programming.

In what follows we derive complete characterizations of these stability notions in the
perturbed setting of P(w, v) from (5.6). Observe to this end that we can confine ourselves
to characterizing full stability, which readily imply the corresponding results for tilt stability
when the parameter w is absent in (5.6).

Considering further this perturbed setting of circular cone programming, recall that the
partial Robinson constraint qualification (RCQ) holds at (x̄, w̄) if

0 ∈ int
{

g(x̄, w̄) + ∇x g(x̄, w̄)IRn − Lθ

}
. (5.7)
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Our first characterization of full stability is obtained under RCQ via the so-called partial
strong metric regularity (PSMR) of the subgradient mapping ∂xϕ : IRn × IRd ⇒ IRn from
(5.6) at (x̄, w̄, v̄) meaning that the partially inverse mapping

Sϕ(w, v) := {x ∈ IRn
∣∣ v ∈ ∂xϕ(x, w)

}
admits a Lipschitzian single-valued localization around this point.

Theorem 5.6 (full stability via PSMR) Let x̄ be a local minimizer of (5.6) under the
validity of RCQ (5.7). Then x̄ is fully stable in problem P(w̄, v̄) with v̄ ∈ ∂xϕ(x̄, w̄) if and
only if the partial subgradient mapping ∂xϕ is PSMR at (x̄, w̄, v̄).

Proof Employing relationship (1.6) between the circular and second-order cones, rewrite
(5.5) as

minimize f (x) subject to Ag(x) ∈ Kn (5.8)

and do the same with the perturbed version (5.6), where the corresponding function ϕ is
represented by

ϕ(x, w) = f (x, w) + δKn
(

Ag(x, w)
)
, (x, w) ∈ R

n × R
d . (5.9)

It is easy to observe the relationships

0 ∈ int
{
g(x̄, w̄) + ∇x g(x̄, w̄)IRn − Lθ

}⇐⇒ 0 ∈ int
{

Ag(x̄, w̄) + A∇x g(x̄, w̄)IRn − ALθ

}
⇐⇒ 0 ∈ int

{
Ag(x̄, w̄) + A∇x g(x̄, w̄)IRn − Kn

}
,

(5.10)

which show that RCQ (5.7) for the circular cone program under consideration is equivalent
to the corresponding version of RCQ for the perturbed version of the second-order cone
program (5.8). Furthermore, we have for ϕ in (5.6) under RCQ (5.7) that

∂xϕ(x, w) = ∇x f (x, w) + ∇x g(x, w)∗NLθ

(
g(x, w)

)
= ∇x f (x, w) + ∇x g(x, w)∗ ANKn

(
Ag(x, w)

)
= ∇x f (x, w) + (A∇x g(x, w)

)∗
NKn

(
Ag(x, w)

)
,

which is the partial subdifferential of ϕ in (5.9) under (5.10). This deduces that the PSMR
property of the subgradient mapping ∂xϕ in the perturbed version of the circular cone
program (5.5) agrees with the one for its second-order cone counterpart (5.8). Applying
now the result of [25, Theorem 4.2] on characterizing full stability via PSMR in second-
order cone programming justifies the equivalence claimed in this theorem. �

To derive further characterizations of full stability expressed entirely via the circular
cone program data, we need more qualification conditions formulated in the following
definition.

Definition 5.7 (partial second-order qualification and nondegeneracy) Let (x̄, w̄) ∈
R

n × R
d be such that g(x̄, w̄) ∈ Lθ in the framework of (5.6). We say that:



Optimization 143

(a) The partial second- order constraint qualification (SOCQ) holds at (x̄, w̄)

if

∂2δLθ

(
g(x̄, w̄), ȳ

)
(0) ∩ ker ∇x g(x̄, w̄)∗ = {0} for any ȳ ∈ NLθ

(
g(x̄, w̄)

)
.

(b) The pair (x̄, w̄) is nondegenerate for (5.6) if

∇x g(x̄, w̄)IRn + lin
{
TLθ

(
g(x̄, w̄)

)} = IRn, (5.11)

where lin{TLθ (g(x̄, w̄))} is the largest linear subspace contained in TLθ (g(x̄, w̄)).

The first condition in Definition 5.7 is a specification for (5.6) the qualification condition
employed in [26] for developing chain rules of second-order generalized differentiation,
while the nondegeneracy condition (5.11) is taken from [7], where it was considered for
general problems of conic programming. Note they both conditions in Definition 5.7 imply
the partial RCQ (5.7). It occurs that they are equivalent in the general framework of circular
cone programming.

Proposition 5.8 (equivalent descriptions) The partial second-order qualification and
nondegeneracy conditions from Definition 5.7 are equivalent at any point (x̄, w̄) feasible
to (5.6).

Proof It is easy to deduce from the normal-tangent duality for convex sets that the
nondegeneracy condition (5.11) can be rewritten in the form

span
{

NLθ

(
g(x̄, w̄)

)} ∩ ker ∇x g(x̄, w̄)∗ = {0}.
Then the claimed equivalence follows from the span expression (5.4) in the proof of Theorem
5.4. Observe furthermore that Theorem 5.4 allows us to represent the equivalent qualification
conditions of Definition 5.7 explicitly in terms of the initial data of the circular cone Lθ . �

Next we formulate two second-order conditions, each of which completely characterizes
full stability of local minimizers for circular cone programs under the validity of the
equivalent nondegeneracy and SOCQ properties of Definition 5.7. Given (x̄, w̄) ∈ R

n ×R
d

and v̄ ∈ ∂xϕ(x̄, w̄), consider the Lagrange function for P(w̄, v̄) defined by

LLθ (x, w, λ) := f (x, w) − 〈λ, g(x, w)〉 (5.12)

and form the corresponding Karush–Kuhn–Tucker (KKT) system

0 ∈ ∇x LLθ (x̄, w̄, λ̄) − v̄, −λ̄ ∈ NLθ

(
g(x̄, w̄)

)
, (5.13)

which admits the unique Lagrange multiplier λ̄ ∈ R
m under the validity of the nonde-

generacy/SOCQ property at (x̄, w̄). Define also the associated critical cone at (x̄, w̄) by

CLθ (x̄, w̄) := {u ∈ IRn
∣∣ ∇x f (x̄, w̄)u ≤ 0, ∇x g

(
x̄, w̄

) ∈ TLθ

(
g(x̄, w̄)

)}
. (5.14)

Definition 5.9 (second-order growth and strong sufficient optimality condition) Let
(x̄, w̄) ∈ R

n × R
d be such that g(x̄, w̄) ∈ Lθ , and let v̄ ∈ ∂xϕ(x̄, w̄) in the framework of

(5.6). We say that:
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(a) The uniform second- order growth condition (USOGC) holds at (x̄, w̄, v̄)

if there exist η > 0 and neighbourhoods U of x̄ , W of w̄, and V of v̄ such that for
any (w, v) ∈ W × V and any xwv ∈ U satisfying v ∈ ∂xϕ(xwv,w) in (5.6) we have

f (x, w) ≥ f (xwv,w) + 〈v, x − xwv〉
+ η‖x − xwv‖2 whenever x ∈ U with g(x, w) ∈ Lθ . (5.15)

(b) The strong second- order sufficient optimality condition (SSOSC)

holds at (x̄, w̄) if〈
u,∇2

xx LLθ (x̄, w̄, λ̄)u
〉+ 〈HLθ (x̄, w̄, λ̄)u, u

〉
> 0 for all u ∈ span

{CLθ (x̄, w̄)
}
/{0},

where λ̄ ∈ R
m is a unique solution of the KKT system (5.13), and where

HLθ (x̄, w̄, λ̄)

:=
⎧⎨⎩ − (λ̄)1(

g(x̄, w̄)
)
1
∇x g(x̄, w̄)∗

[
1 0T

0 −ctan2θ I

]
∇x g(x̄, w̄) if g(x̄, w̄) ∈ bd Lθ /{0}

0 otherwise.

Now we are ready to establish the main result of this section providing complete second-
order characterizations of full stability of locally optimal solutions to circular cone programs
that are expressed entirely in terms of their initial data.

Theorem 5.10 (second-order characterizations of full stability of locally optimal solutions
to circular cone programs) Let x̄ be a feasible solution to the parameterized problem
P(w̄, v̄) from (5.6) with some basic parameter w̄ ∈ IRd and tilt parameter v̄ satisfying

v̄ ∈ ∇x f (x̄, w̄) + ∇x g(x̄, w̄)∗NLθ

(
g(x̄, w̄)

)
. (5.16)

Suppose that the equivalent partial SOCQ and nondegeneracy properties from Definition
5.7 hold at (x̄, w̄). Then each of the uniform second-order growth condition at (x̄, w̄, v̄) and
the strong second-order sufficient optimality condition at (x̄, w̄) formulated in Definition
5.9 is necessary and sufficient for full stability of x̄ in the perturbed problem P(w̄, v̄).

Proof Note first that condition (5.16) is equivalent to the aforementioned stationary
condition v̄ ∈ ∂xϕ(x̄, w̄) due to the elementary subdifferential sum and chain rules for
the function ϕ from (5.6); see [29,30]. Rewriting the circular cone program (5.5) in the
equivalent second-order cone programming form (5.8), we may proceed similarly to the
proof of Theorem 5.6. The SOC counterparts of the second-order characterizations of full
stability claimed in the theorem are obtained in [25, Theorem 4.4 and Theorem 4.8]. We need
now to verify that the assumptions made and the second-order characterizations formulated
in this theorem reduce to those given in the corresponding results of [25].

Let us start with the SOCQ from Definition 5.7(a). We have the equivalences

∂2δLθ

(
g(x̄, w̄), ȳ

)
(0) ∩ ker ∇x g(x̄, w̄)∗ = {0} with ȳ ∈ NLθ

(
g(x̄, w̄)

)
⇐⇒ A∂2δKn

(
Ag(x̄, w̄), A−1 ȳ

)
(0) ∩ ker ∇x g(x̄, w̄)∗ = {0} with A−1 ȳ ∈ NKn

(
A−1g(x̄, w̄)

)
⇐⇒ ∂2δKn

(
Ag(x̄, w̄), A−1 ȳ

)
(0) ∩ A−1ker∇x g(x̄, w̄)∗ = {0} with A−1 ȳ ∈ NKn

(
A−1g(x̄, w̄)

)
⇐⇒ ∂2δKn

(
Ag(x̄, w̄), A−1 ȳ

)
(0) ∩ ker

(
A∇x g(x̄, w̄)

)∗ = {0} with A−1 ȳ ∈ NKn
(

A−1g(x̄, w̄)
)
,

which show that the assumed SOCQ for the circular cone program is equivalent to the one
in [25, Theorem 4.4 and Theorem 4.8] regarding the perturbed second-order cone program
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(5.8). Since it is obviously to observe that USOGC (5.15) for the circular cone program
agrees with that in [25, Theorem 4.4] for the second-order cone program (5.8), it remains to
verify such a correspondence for the SSOSC in Definition 5.9(b) and that in [25, Theorem
4.8].

To proceed, observe that the Lagrange function (5.12) is represented as and

LLθ (x, w, λ)= f (x, w) − 〈λ, g(x, w)〉= f (x, w) − 〈A−1λ, Ag(x, w)
〉=LKn (

x, w, A−1λ
)

while the KKT system (5.13) can be written as

0 ∈ ∇x LKn (
x̄, w̄, A−1λ̄

)− v̄ and − A−1λ̄ ∈ NKn
(

Ag(x̄, w̄)
)
.

This means that A−1λ̄ is the Lagrange multiplier for the perturbed second-order cone
program associated with (5.8). Furthermore, for the critical cone (5.14) we have

CLθ (x̄, w̄) = {u ∈ IRn
∣∣ ∇x f (x̄, w̄)u ≤ 0, A∇x g(x̄, w̄) ∈ TKn

(
Ag(x̄, w̄)

)} = CKn
(x̄, w̄),

which ensures in turn the following representation of the function HLθ in Definition 5.9:

HLθ (x̄, w̄, λ̄)

=
⎧⎨⎩ − (A−1λ̄)1(

Ag(x̄, w̄)
)

1

∇x g(x̄, w̄)∗ A

[
1 0T

0 −I

]
A∇x g(x̄, w̄) if Ag(x̄, w̄) ∈ bd Kn/{0},

0 otherwise

= HKn (
x̄, w̄, A−1λ̄

)
.

It gives us the corresponding SSOSC for the second-order cone program (5.8) used in
[25, Theorem 4.8] and thus completes the proof of this theorem. �
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