
Applied Mathematics and Computation 189 (2007) 1368–1383

www.elsevier.com/locate/amc
Two unconstrained optimization approaches for the
Euclidean j-centrum location problem

Shaohua Pan a,*, Jein-Shan Chen b

a School of Mathematical Sciences, South China University of Technology, Guang zhou, 510640, China
b Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan
Abstract

Consider the single-facility Euclidean j-centrum location problem in Rn. This problem is a generalization of the clas-
sical Euclidean 1-median problem and 1-center problem. In this paper, we develop two efficient algorithms that are par-
ticularly suitable for problems where n is large by using unconstrained optimization techniques. The first algorithm is based
on the neural networks smooth approximation for the plus function and reduces the problem to an unconstrained smooth
convex minimization problem. The second algorithm is based on the Fischer–Burmeister merit function for the second-
order cone complementarity problem and transforms the KKT system of the second-order cone programming reformula-
tion for the problem into an unconstrained smooth minimization problem. Our computational experiments indicate that
both methods are extremely efficient for large problems and the first algorithm is able to solve problems of dimension n up
to 10,000 efficiently.
� 2007 Published by Elsevier Inc.

Keywords: The Euclidean j-centrum problem; Smoothing function; Merit function; Second-order cone programming
1. Introduction

Given a positive integer number j in the interval ½1;m�, the single-facility Euclidean j-centrum problem in
Rn concerns locating a new facility so as to minimize the sum of the j largest weighted Euclidean distances to
the existing m facilities. Let ai 2 Rn represent the position of the ith existing facility and x 2 Rn denote the
unknown position of the new facility. Let
0096-3

doi:10

* Co
E-m
fiðxÞ ¼ xi

ffi
ðx1 � ai1Þ2 þ ðx2 � ai2Þ2 þ � � � þ ðxn � ainÞ2

q
; i ¼ 1; 2; . . . ;m
003/$ - see front matter � 2007 Published by Elsevier Inc.

.1016/j.amc.2006.12.014

rresponding author.
ail addresses: shhpan@scut.edu.cn (S. Pan), jschen@math.ntnu.edu.tw (J.-S. Chen).

mailto:shhpan@scut.edu.cn
mailto:jschen@math.ntnu.edu.tw

S. Pan, J.-S. Chen / Applied Mathematics and Computation 189 (2007) 1368–1383 1369
be the weighted Euclidean distance between the new facility and the ith existing facility, where xi > 0 is the
associated weight. Then the problem can be formulated as the following minimization problem:
min
x2Rn

UjðxÞ :¼
Xj

l¼1

f½l�ðxÞ; ð1Þ
where f½1�ðxÞ; f½2�ðxÞ; . . . ; f½m�ðxÞ are the functions obtained by sorting f1ðxÞ; f2ðxÞ; . . . ; fmðxÞ in nonincreasing or-
der, namely for any x 2 Rn,
f½1�ðxÞP f½2�ðxÞP � � �P f½j�ðxÞP � � �P f½m�ðxÞ:
There are many different kinds of facility location problems and for which there have been proposed var-
ious methods; see [9,10,14] and the related literature in the web-site maintained by EWGLA (Euro Working
Group on Locational Analysis). The single-facility Euclidean j-centrum problem studied here is to generalize
the classical Euclidean 1-median problem (corresponding to the case j = m) and 1-center problem (corre-
sponding to the case j = 1) from a view of solution concept. To our knowledge, the j-centrum concept
was first defined by Slater [25] and Andreatta and Mason [3,4] for the discrete single-facility location problem,
and later in [23] was extended to general location problems covering discrete and continuous decisions. In
addition, Tamir et al. [22,28] recently did some excellent works related to the j-centrum location problem,
especially the rectilinear j-centrum problem.

The current research for Euclidean facility location problems mainly focuses on the 1-median problem, for
which many practical and efficient algorithms have been designed since Weiszfeld presented a simple iterative
algorithm in 1937. These include the hyperboloid approximation procedure [11], the interior point algorithms
[1,29,30], the smoothing Newton methods [19,20] and the merit function approach [7]. However, the solution
methods for the j-centrum location problem are rarely seen in the literature except [2,21], where the problem
of minimizing the j largest Euclidean norms is only mentioned as a special example of a second-order cone
programming and consequently can be solved by an interior point method. The main purpose of this paper
is to develop two efficient algorithms for the single-facility Euclidean j-centrum problem in Rn, which can
be used to handle the cases where n is large (say, in the order of thousands).

Note that problem (1) is a nonsmooth convex optimization problem. Due to the nondifferentiability of the
objective function, the gradient-based algorithms can not be used to solve the problem directly. To overcome
this difficulty, we reduce (1) as a nonsmooth problem only involving the plus function maxf0; tg, and then uti-
lize the neural network smoothing function [6] to give a convex approximation. Based on the approximation
problem, we propose a globally convergent quasi-Newton algorithm. In addition, we reformulate (1) as a stan-
dard primal second-order cone programming (SOCP) problem to circumvent its nondifferentiability. This
SOCP reformulation is completely different from the ones in [2,21], and particularly we here use a merit func-
tion approach rather than an interior point method to solve it. More specifically, we convert its Karush–
Kuhn–Tucker (KKT) system into an equivalent unconstrained smooth minimization problem by the
Fischer–Burmeister merit function [8] for second-order cone complementarity problems (SOCCPs), and then
solve this smooth optimization problem with a limited-memory BFGS method. In contrast to interior point
methods, our unconstrained optimization methods do not require an interior point starting, and moreover
have the advantages of requiring less work per iteration, thereby rendering themselves to large problems.

The rest of this paper proceeds as follows. In Section 2, we derive a smooth approximation to (1). Based on
the smooth approximation, we design a globally convergent quasi-Newton algorithm in Section 3. In Section
4, we present the detailed process of reformulating (1) as a standard primal SOCP problem. Based on its KKT
system and the Fischer–Burmeister merit function for SOCCPs, we develop another quasi-Newton algorithm
in Section 5. In Section 6, we report our preliminary computational results and compare our algorithms with
the SeDuMi 1.05 (a primal-dual interior point algorithm for the SOCP and the semidefinite programming).
The results show that our first algorithm is the most effective by CPU time and able to solve problems of
dimension n up to 10,000, whereas our second algorithm is comparable with even superior to the SeDuMi
for the moderate problems (say, in the order of hundreds). Finally, we conclude this paper in Section 7.

In this paper, unless otherwise stated, all vectors are column vectors. We use Id to denote the d � d identity
matrix and 0d to denote a zero vector in Rd . To represent a large matrix with several small matrices, we use

1370 S. Pan, J.-S. Chen / Applied Mathematics and Computation 189 (2007) 1368–1383
semicolons ‘‘;’’ for column concatenation and commas ‘‘,’’ for row concatenation. This notation also applies
to vectors. For a convex function f : Rn ! R, we let of(x) denote the subdifferential of f at x. Note that f is
minimized at x over Rn if and only if 0 2 of ðxÞ. For the calculus rules on subdifferentials of convex functions,
please refer to [16] or [24].

2. Smooth approximation

In this section, we reduce problem (1) to a nonsmooth optimization problem only involving the plus func-
tion maxf0; tg, and then give a smooth approximation via the neural networks smoothing function proposed
by [6]. We also demonstrate that the smooth approximation can be generated by regularizing problem (1) with
a binary entropy function.

First, it is not hard to verify that the function UjðxÞ in (1) can be expressed by
UjðxÞ ¼ max
Xm

i¼1

kifiðxÞ :
Xm

i¼1

ki ¼ j; 0 6 ki 6 1; i ¼ 1; 2; . . . ;m

()
; ð2Þ
since, on the one hand, for any feasible point k = (k1, . . . ,km)T of the maximization problem in (2), there always
holds
Xm

i¼1

kifiðxÞ ¼ ki1 f½1�ðxÞ þ ki2 f½2�ðxÞ þ � � � þ kim f½m�ðxÞ

6 ki1 f½1�ðxÞ þ � � � þ kik f½k�ðxÞ þ kikþ1
f½k�ðxÞ þ � � � þ kim f½k�ðxÞ

6 ki1 f½1�ðxÞ þ � � � þ kik f½k�ðxÞ þ ðj� ki1 � � � � � kik Þf½k�ðxÞ
6 UjðxÞ � �T � �T
on the other hand, there exists an feasible point ~k ¼ ~k1; . . . ; ~km such that ~k ¼ ~k1; . . . ; ~km , where ~ki ¼ 1 if
fi(x) belongs to the j largest function in the collection ffiðxÞgm

i¼1, and otherwise ~ki ¼ 0. We note that the linear
programming problem in (2) has the following dual problem:
min
w;g

jwþ
Xm

i¼1

gi

s:t: gi P fiðxÞ � w; i ¼ 1; 2; . . . ;m;

gi P 0; i ¼ 1; 2; . . . ;m;

ð3Þ
and moreover, they both have nonempty feasible sets for any x 2 Rn where g ¼ ðg1; � � � ; gmÞ
T and w and gi are

the Lagrange multipliers associated with the constraints
Pm

i¼1ki ¼ j and ki 6 1, respectively. From the duality
theory of linear programming, UjðxÞ can then be represented by the dual problem (3). However, we observe
that each pair of constraints gi P fiðxÞ � w and gi P 0 in (3) can be replaced with one constraint
gi P maxffiðxÞ � w; 0g, whereas the objective function of (3) is increasing componentwise in g. Therefore,
UjðxÞ ¼ min
w2R

jwþ
Xm

i¼1

maxf0; fiðxÞ � wg
()

; ð4Þ
Thus, problem (1) reduces to a nonsmooth problem only involving the plus function:
min
w2R;x2Rn

jwþ
Xm

i¼1

maxf0; fiðxÞ � wg
()

: ð5Þ
To the best of our knowledge, the equivalent formulation (5) has not been found in the literature though the
derivation procedure above is very simple.

In [6], Chen and Mangasarian presented a class of smooth approximations to the plus function maxf0; tg.
Among these smooth approximations, the neural networks smooth function and the Chen–Harker–Kanzow–
Smale smooth function are most commonly used. In this paper we will use the neural networks smoothing
function defined by
uðt; eÞ ¼ e ln½1þ expðt=eÞ� ðe > 0Þ: ð6Þ

S. Pan, J.-S. Chen / Applied Mathematics and Computation 189 (2007) 1368–1383 1371
By uðt; eÞ, we define the function
Uðw; x; eÞ :¼ jwþ
Xm

i¼1

uðfiðx; eÞ � w; eÞ; ð7Þ
where
fiðx; eÞ ¼ xi

ffi
kx� aik2 þ e2

q
; i ¼ 1; 2; . . . ;m:
Then, by Lemma 1 below, we can reformulate problem (1) as an unconstrained smooth convex minimization
problem
min
w2R;x2Rn

Uðw; x; eÞ: ð8Þ
Lemma 1. The function Uðw; x; eÞ defined as in (7) has the following properties:

(i) For any w 2 R; x 2 Rn, and e1; e2 satisfying 0 < e1 < e2, we have
Uðw; x; e1Þ < Uðw; x; e2Þ; ð9Þ

(ii) For any x 2 Rn and e > 0,
UjðxÞ 6 min
w2R

Uðw; x; eÞ 6 UjðxÞ þ mðln 2þ 1Þe; ð10Þ
(iii) For any e > 0, Uðw; x; eÞ is continuously differentiable and strictly convex.
Proof

(i) For any t 2 R, by a simple computation, we have
ouðt; eÞ
oe

¼ ln½1þ expðt=eÞ� � expðt=eÞ
1þ expðt=eÞ �

t
e
> 0

and

ouðt; eÞ
ot

¼ expðt=eÞ
1þ expðt=eÞ > 0:

The two inequalities imply that for any w 2 R; x 2 Rn, and e1; e2 satisfying 0 < e1 < e2,

Uðw; x; e1Þ < jwþ
Xm

i¼1

uðfiðx; e2Þ � w; e1Þ < jwþ
Xm

i¼1

uðfiðx; e2Þ � w; e2Þ ¼ Uðw; x; e2Þ:
(ii) For any t 2 R and e > 0, it is easy to verify that
maxf0; tg 6 uðt; eÞ 6 maxf0; tg þ e ln 2:

This implies that for any w 2 R; x 2 Rn and e > 0,

maxf0; fiðx; eÞ � wg 6 uðfiðx; eÞ � w; eÞ 6 maxf0; fiðx; eÞ � wg þ e ln 2; i ¼ 1; . . . ;m;

whereas

maxffiðxÞ � w; 0g 6 maxffiðx; eÞ � w; 0g 6 maxffiðxÞ � w; 0g þ e; i ¼ 1; 2; . . . ;m:

The two sides imply that

jwþ
Xm

i¼1

maxf0; fiðxÞ � wg 6 Uðw; x; eÞ 6 jwþ
Xm

i¼1

maxf0; fiðxÞ � wg þ mðln 2þ 1Þe:

From the inequality and (4), the conclusion immediately follows.

1372 S. Pan, J.-S. Chen / Applied Mathematics and Computation 189 (2007) 1368–1383
(iii) For any e > 0, clearly, Uðw; x; eÞ is continuously differentiable. Now we prove that it is strictly convex.
From (7),
rUðw; x; eÞ ¼
j�

Pm
i¼1

kiðw; x; eÞ

Pm
i¼1

kiðw;x;eÞxiðx�aiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kx�aik2þe2
p

0
BB@

1
CCA; ð11Þ

where

kiðw; x; eÞ ¼
exp½ðfiðx; eÞ � wÞ=e�

1þ exp½ðfiðx; eÞ � wÞ=e� ; i ¼ 1; 2; . . . ;m: ð12Þ

Let

k̂iðw; x; eÞ ¼ kiðw; x; eÞ � k2
i ðw; x; eÞ; i ¼ 1; 2; . . . ;m;

and

Q ¼
Xm

i¼1

kiðw; x; eÞxiffi
kx� aik2 þ e2

q In �
ðx� aiÞðx� aiÞT

kx� aik2 þ e2

 !
þ k̂iðw; x; eÞx2

i

eðkx� aik2 þ e2Þ
ðx� aiÞðx� aiÞT

2
64

3
75:

Then, it follows from (11) that

r2Uðw; x; eÞ ¼

Pm
i¼1

k̂iðw;x;eÞ
e �

Pm
i¼1

k̂iðw;x;eÞxiðx�aiÞT

e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kx�aik2þe2
p

�
Pm
i¼1

k̂iðw;x;eÞxiðx�aiÞT

e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kx�aik2þe2
p Q

0
BB@

1
CCA:

For any e > 0 and z ¼ ðz0; zÞ 2 Rnþ1 with z 6¼ 0, we have

zTr2Uðw; x; eÞz ¼ e�1z2
0

Xm

i¼1

k̂iðw; x; eÞ � 2e�1z0

Xm

i¼1

k̂iðw; x; eÞffi
kx� aik2 þ e2

q xiðx� aiÞTzþ zTQz

¼ e�1
Xm

i¼1

k̂iðw; x; eÞ z2
0 � 2z0

xiðx� aiÞTzffi
kx� aik2 þ e2

q þ xiðx� aiÞTzffi
kx� aik2 þ e2

q
0
B@

1
CA

22
64

3
75

þ
Xm

i¼1

kiðw; x; eÞxiffi
kx� aik2 þ e2

q kzk2 � ðx� aiÞTzffi
kx� aik2 þ e2

q
0
B@

1
CA

20
B@

1
CA

P
Xm

i¼1

kiðw; x; eÞxiffi
kx� aik2 þ e2

q kzk2 � ðx� aiÞTzffi
kx� aik2 þ e2

q
0
B@

1
CA

22
64

3
75

P
Xm

i¼1

kiðw; x; eÞxiffi
kx� aik2 þ e2

q kzk2 � kzk2 � x� aiffi
kx� aik2 þ e2

q
�������

�������
20

B@
1
CA > 0

and moreover zTr2Uðw; x; eÞz ¼ 0 if and only if z = 0. The first inequality is due to the nonnegativity of
k̂iðw; x; eÞ, the second follows from the Cauchy–Schwartz inequality and the nonnegativity of kiðw; x; eÞ,
and the last is obvious. Here, the proof of lemma is completed. h

S. Pan, J.-S. Chen / Applied Mathematics and Computation 189 (2007) 1368–1383 1373
To close this section, we give a different view into the smooth approximation (8). Let hðtÞ ¼ t ln tþ
ð1� tÞ lnð1� tÞ. Introduce the binary entropy function

Pm
i¼1hðkiÞ as a regularizing term to the objective of lin-

ear programming problem in (2) and construct the regularization problem
max
Xm

i¼1

kifiðx; eÞ � e
Xm

i¼1

hðkiÞ :
Xm

i¼1

ki ¼ j; 0 6 ki 6 1; i ¼ 1; 2; . . . ;m

()
: ð13Þ
Clearly, (13) is a strictly convex programming problem and satisfies the Slater constraint qualification. Hence,
from the duality theory of convex program, the optimal value of (13) is equivalent to that of its dual problem.
By a simple computation, (13) has the following dual problem
min
w2R

Uðw; x; eÞ:
Compared with the previous Eq. (8), this means that the smooth approximation in (8) is actually equivalent to
the following binary entropy regularization problem
min
x2Rn

max
Xm

i¼1

kifiðx; eÞ � e
Xm

i¼1

hðkiÞ :
Xm

i¼1

ki ¼ j; 0 6 ki 6 1; i ¼ 1; 2; . . . ;m

()
:

We note that Shi [26] constructed a similar regularization problem to derive a smoothing function for the sum
of the j largest components, but he did not provide an explicit expression for his smoothing function so that
the function value must be determined by numerical computations.

3. Algorithm based on the neural networks smoothing function

In what follows, we present an algorithm for solving problem (1) based on the smooth approximation (8),
followed by a global convergence result.

Algorithm 1. Let r 2 ð0; 1Þ, ðŵ0; x̂0Þ 2 Rnþ1 and e0 > 0 be given. Set k := 0.

For k ¼ 0; 1; 2; . . . ; do
1. Use an unconstrained optimization method with ŵk; x̂kð Þ as the starting point to solve
min
w2R;x2Rn

Uðw; x; ekÞ; ð14Þ

and write its minimizer as ðwk; xkÞ.
2. Set ekþ1 ¼ rek; ŵk; x̂kð Þ ¼ wkþ1; xkþ1ð Þ, and then go back to Step 1.

End
Lemma 2. Let x be any point in Rn and define the index set
IðxÞ :¼ fi 2 f1; 2; . . . ;mgjfiðxÞP f½j�ðxÞg: ð15Þ
Then
oUjðxÞ ¼
X
i2IðxÞ

qiofiðxÞ :
X
i2IðxÞ

qi ¼ j; 0 6 qi 6 1 for i 2 IðxÞ; qi ¼ 0 for i 62 IðxÞ
()

: ð16Þ
Proof. Let #jðyÞ ¼
Pj

l¼1y½l�, where y ½1�; . . . ; y½m� are the numbers y1; . . . ; ym sorted in nonincreasing order. Then,
it follows from (2) that
#jðyÞ ¼ max
Xm

i¼1

kiyi :
Xm

i¼1

ki ¼ j; 0 6 ki 6 1; i ¼ 1; 2; . . . ;m

()
¼ d�ðyjCÞ;

1374 S. Pan, J.-S. Chen / Applied Mathematics and Computation 189 (2007) 1368–1383
where d�ð�kCÞ denotes the support function of the set C and
C ¼ k 2 Rm
Xm

i¼1

ki ¼ j; 0 6 ki 6 1; i ¼ 1; 2; . . . ;m

�����
()

:

Therefore, by [24, Corollary 23.5.3],
o#jðyÞ ¼ argmax
Xm

i¼1

kiyi :
Xm

i¼1

ki ¼ j; 0 6 ki 6 1; i ¼ 1; 2; . . . ;m

()
:

It is easily shown that the set on the right side of the last equality is exactly
X
j2JðyÞ

qjej :
X

j2JðyÞ
qj ¼ j; 0 6 qj 6 1 for j 2 JðyÞ; qj ¼ 0 for j 62 JðyÞ

()
;

where fe1; e2; . . . ; emg denote the canonical basis of Rm and
JðyÞ ¼ fj 2 f1; 2; . . . ;mgjyj P y½j�g:
Thus, from [16, Theorem 4.3.1], we immediately obtain (16). h

Lemma 3. Let fðwk; xkÞg be the sequence generated by Algorithm 1. Then, any limit points of fxkg are optimal

solutions to problem (1).

Proof. Let ðw�; x�Þ be a limit point of the sequence fðwk; xkÞg. Without loss of generality, we assume that
fðwk; xkÞg ! ðw�; x�Þ when k tends to +1. We now prove that x* is an optimal solution to problem (1). First,
from (10) and the fact that ðwk; xkÞ is a solution of (14), it follows that
UjðxkÞ 6 Uðwk; xk; ekÞ 6 UjðxkÞ þ mðln 2þ 1Þek: ð17Þ

By the continuity of fiðxÞ, we thus have
Ujðx�Þ ¼ lim
k!þ1

Uðwk; xk; ekÞ ¼ jw� þ
Xm

i¼1

maxf0; fiðx�Þ � w�g;
which can be rewritten as
Ujðx�Þ ¼ jw� þ
X

i2Iðx�Þ
maxf0; fiðx�Þ � w�g þ

X
i62Iðx�Þ

maxf0; fiðx�Þ � w�g:
Here, I(x*) is defined by (15). The last equation implies that
fiðx�Þ � w� 6 0 for all i 62 Iðx�Þ: ð18Þ

In addition, from the fact that ðwk; xkÞ is a solution of (14), we have
rUðwk; xk; ekÞ ¼
j�

Pm
i¼1

kk
i

Pm
i¼1

kk
i xiðxk�aiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kx�aik2þe2
p

0
BB@

1
CCA ¼ 0; ð19Þ
where kk
i ¼ kiðwk; xk; ekÞ for i ¼ 1; 2; . . . ;m. Combining with the definition of kiðwk; xk; ekÞ in (12), it is clear thatPm

i¼1k
k
i ¼ j and 0 < kk

i < 1 for i ¼ 1; 2; . . . ;m. This means that the sequence fkk
i g for every i ¼ 1; 2; . . . ;m has a

convergent subsequence. Without loss of generality, we suppose that
lim
k!þ1

kk
i ¼ k�i ; i ¼ 1; 2; . . . ;m:

S. Pan, J.-S. Chen / Applied Mathematics and Computation 189 (2007) 1368–1383 1375
Then,
Xm

i¼1

k�i ¼ j; 0 6 k�i 6 1 for i ¼ 1; 2; . . . ;m: ð20Þ
Next we prove k�i ¼ 0 for i 62 Iðx�Þ. By (18), we consider the following two cases to prove it.
Case 1: there exits an index i0 62 Iðx�Þ such that fi0ðx�Þ � w� ¼ 0. In this case, there must hold
f½1�ðx�Þ � w� > 0; f½2�ðx�Þ � w� > 0; . . . ; f½j�ðx�Þ � w� > 0:
By the continuity of fiðxÞ, we have for all sufficiently large k
f½1�ðxk; ekÞ � wk > 0; f½2�ðxk; ekÞ � wk > 0; . . . ; f½j�ðxk; ekÞ � wk > 0:
This implies that
lim
k!þ1

exp½ðf½l�ðxk; ekÞ � wkÞ=ek�
1þ exp½ðf½l�ðxk; ekÞ � wkÞ=ek�

¼ 1; l ¼ 1; 2; . . . ; j:
Thus, from (17) and the definition of kk
i , we have
X
i62Iðx�Þ

k�i ¼ j� lim
k!þ1

X
i2Iðx�Þ

exp½ðfiðxk; ekÞ � wkÞ=ek�
1þ exp½ðfiðxk; ekÞ � wkÞ=ek�

¼ 0:
Consequently, k�i ¼ 0 for i 62 Iðx�Þ.
Case 2: fiðx�Þ � w� < 0 for all i 62 Iðx�Þ. Now, when k is sufficiently large,
fiðxk; ekÞ � wk < 0 for all i 62 Iðx�Þ

due to the continuity of fi(x). Thus, from the definition of kk

i , we readily have k�i ¼ 0 for i 62 Iðx�Þ.
Thus, combining with the Eq. (20), we have
X

i2Iðx�Þ
k�i ¼ j; 0 6 k�i 6 1 for i 2 Iðx�Þ; and k�i ¼ 0 for i 62 Iðx�Þ: ð21Þ
Note that for i 2 Iðx�Þ,
m�i ¼ lim
k!þ1

xiðxk � aiÞffi
kxk � aik2 þ e2

k

q 2 ofiðx�Þ:
Therefore, it follows from the Eqs. (19) and (21) that
X
i2Iðx�Þ

k�i m
�
i ¼ lim

k!þ1

Xm

i¼1

kk
i xiðxk � aiÞffi
kx� aik2 þ e2

q ¼ 0:
Compared with (16), this indicates that 0 2 oUjðx�Þ, and accordingly x* is an optimal solution to problem (1).
Here, we complete the proof of lemma. h

Theorem 1. Let {xk} be the sequence generated by Algorithm 1. If x* is the unique optimal solution of problem

(1), then we have limk!þ1xk ¼ x�.

Proof. For any k P 1, by Lemma 1,
Uðw1; x1; e1Þ > Uðw1; x1; ekÞP Uðwk; xk; ekÞP UjðxkÞ: ð22Þ
Consider that UjðxÞ is coercive, and so the level set L ¼ fx 2 RnjUjðxÞ 6 Uðw1; x1; e1Þg is bounded. However,
from (22), we have fxkg � L. This shows that the sequence {xk} is bounded. Since x* is the unique solution of
problem (1), we have from Lemma 2 that limk!þ1xk ¼ x�. h

1376 S. Pan, J.-S. Chen / Applied Mathematics and Computation 189 (2007) 1368–1383
In practice, we would stop Algorithm 1 once some stopping criteria are satisfied. Moreover, we will use a
first-order, or gradient-based, unconstrained minimization algorithm to solve the problem (14) in Step 1. In
what follows, we describe a more practical version of Algorithm 1 by choosing a limited-memory BFGS algo-
rithm to solve the problem (14) in Step 1 because this algorithm can solve very large unconstrained optimiza-
tion problem efficiently.

Algorithm 2. Let r 2 ð0; 1Þ, s1; s2 > 0, ðŵ0; x̂0Þ 2 Rnþ1 and e0 > 0 be given. Set k := 0.

For k ¼ 0; 1; 2; . . . ; until ek 6 s1, do
1. Use a version of the limited-memory BFGS algorithm with ðwk; xkÞ as the starting point to solve (14)

approximately, and obtain an ðwk; xkÞ such that krUðwk; xk; ekÞk 6 s2.
2. Set ekþ1 ¼ rek; ŵk; x̂kð Þ ¼ wkþ1; xkþ1ð Þ, and then go back to Step 1.

End
4. Second-order cone program reformulation

In this section, we will reformulate the single-facility j-centrum problem (1) as a standard primal second-
order cone program. First, from the discussions in the second paragraph of Section 2, we know that problem
(1) is equivalent to the optimization problem
min
w;m;g

jwþ
Xm

i¼1

gi

s:t: kxiðm� aiÞk 6 gi þ w; i ¼ 1; 2; . . . ;m;

gi P 0

ð23Þ
where m ¼ ðm1; . . . ; mnÞT 2 Rn. This problem can be rewritten as
min ðj� mÞwþ
Xm

i¼1

xiti

s:t:

ffi
ðm1 � a11Þ2 þ ðm2 � a12Þ2 þ � � � þ ðmn � a1nÞ2

q
6 t1;ffi

ðm1 � a21Þ2 þ ðm2 � a22Þ2 þ � � � þ ðmn � a2nÞ2
q

6 t2;

ffi
ðm1 � am1Þ2 þ ðm2 � am2Þ2 þ � � � þ ðmn � amnÞ2

q
6 tm;

xiti � w P 0; i ¼ 1; 2; . . . ;m:

ð24Þ
Let
xiti � w ¼ ti; i ¼ 1; 2; . . . ;m;

mj � aij ¼ uij; i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; n:
ð25Þ
Then the constraints of problem (24) become
x1t1 � t1 ¼ x2t2 � t2 ¼ � � � ¼ xmtm � tm ¼ w;

ti P 0; i ¼ 1; 2; . . . ;m;

�
u2

11 þ u2
12 þ � � � þ u2

1n 6 t2
1; t1 P 0;

u2
21 þ u2

22 þ � � � þ u2
2n 6 t2

2; t2 P 0;

..

. ..
. ..

.

u2
m1 þ u2

m2 þ � � � þ u2
mn 6 t2

m; tm P 0;

8>>>><
>>>>:

S. Pan, J.-S. Chen / Applied Mathematics and Computation 189 (2007) 1368–1383 1377
and
u11 þ a11 ¼ u21 þ a21 ¼ � � � ¼ um1 þ am1;

u12 þ a12 ¼ u22 þ a22 ¼ � � � ¼ um2 þ am2;

..

. ..
. ..

. ..
.

u1n þ a1n ¼ u2n þ a2n ¼ � � � ¼ umn þ amn:

8>>>><
>>>>:
Let
zi ¼ ðti; ui1; ui2; . . . ; uinÞ 2 Rnþ1; ci ¼
j
m

xi; 0n; 1� j
m

� �
2 Rnþ2; i ¼ 1; 2; . . . ;m ð26Þ
and define the second-order cone
Knþ1 ¼ ðn1; n2Þjn1 2 Rþ; n2 2 Rn; and kn2k 6 n1f g:

Then,
xi :¼ ðzi; tiÞ 2Knþ1 � Rþ; i ¼ 1; 2; . . . ;m;
and furthermore, it follows from (25) that
cT
1 x1 þ cT

2 x2 þ � � � þ cT
mxm ¼ ðk � mÞwþ

Xm

i¼1

xiti:
Therefore, the problem in (24) turns into the form of
min
Xm

i¼1

cT
i xi

s:t:

ðx1t1 � x2t2Þ � ðt1 � t2Þ ¼ 0;

ðx1t1 � x3t3Þ � ðt1 � t3Þ ¼ 0;

..

.

ðx1t1 � xmtmÞ � ðt1 � tmÞ ¼ 0;

u11 � u21 ¼ a21 � a11;

u11 � u31 ¼ a31 � a11;

..

.

u11 � um1 ¼ am1 � a11;

u12 � u22 ¼ a22 � a12;

u12 � u32 ¼ a32 � a12;

..

.

u12 � um2 ¼ am2 � a12;

..

.

u1n � u2n ¼ a2n � a1n;

u1n � u3n ¼ a3n � a1n;

..

.

u1n � umn ¼ amn � a1n;

ðx1; x2; . . . ; xmÞ 2 ðKnþ1 � RþÞ � � � � � ðKnþ1 � RþÞ:

8>><
>>:

ð27Þ

1378 S. Pan, J.-S. Chen / Applied Mathematics and Computation 189 (2007) 1368–1383
Let
N ¼ mðnþ 2Þ; N 1 ¼ ðm� 1Þðnþ 1Þ; K ¼ ðKnþ1 � RþÞ � � � � � ðKnþ1 � RþÞ;
x ¼ ðx1; . . . ; xmÞ 2 RN ; c ¼ ðc1; . . . ; cmÞ 2 RN ; b ¼ ð0m�1; b1; . . . ; bnÞ 2 RN1 ;

ð28Þ
where
bj ¼ ða2j � a1j; a3j � a1j; . . . ; amj � a1jÞT 2 Rm�1; for j ¼ 1; 2; . . . ; n:
Then problem (27) can be recast into a standard primal SOCP:
min cTx

s:t: Ax ¼ b; x 2K;
ð29Þ
where
ð30Þ
in which the element Bkl is a row vector in Rnþ2 defined by
Bkl ¼
ðx1; 0; . . . ; 0;�1Þ; if l ¼ 1;

ð�xl; 0; . . . ; 0; 1Þ; if l ¼ k þ 1;

0nþ2; otherwise;

8><
>:
and the element Akl is a row vector in Rnþ2 with the ðdk=me þ 2Þth element being 1 and the others 0 if l = 1,
otherwise if l ¼ k þ 1 the ðdk=me þ 2Þth element being -1 and the others 0, and otherwise it is a zero vector in
Rnþ2. Here, dk=me is the largest positive integer not over than k/m.

It is not difficult to verify that A defined in (30) has a full row rank N1. We here want to point out that the
similar reformulation techniques developed as above were also used by [7,17] for facility location problems in
R2, where the resulting SOCP problems are solved by a merit function approach and an interior point method,
respectively. In the next section, we will develop an algorithm for problem (1) by following the same line as [7].

5. Algorithm based on the SOCP reformulation

In this section, we use the Fischer–Burmeister merit function developed by [8] for SOCCPs to transform the
KKT system of the SOCP (29) into an equivalent unconstrained smooth minimization problem, and then
based on this minimization problem, present an algorithm for solving problem (1).

S. Pan, J.-S. Chen / Applied Mathematics and Computation 189 (2007) 1368–1383 1379
The KKT optimality conditions of (29), which are sufficient but not necessary for optimality, are
hx; yi ¼ 0; x 2K; y 2K;

Ax ¼ b; y ¼ c� ATfd forsome fd 2 RN1 ;
ð31Þ
where y ¼ ðy1; . . . ; ymÞ and yi ¼ ðsi; wiÞ with si 2 Rnþ1 and wi 2 Rþ for i ¼ 1; 2; . . . ;m. Choose any d 2 RN sat-
isfying Ad = b. (If no such d exists, then (29) has no feasible solution). Let AN 2 RN�ðN�N1Þ be any matrix
whose columns span the null space of A. Then x satisfies Ax = b if and only if x ¼ d þ ANfp for some
fp 2 RN�N1 . Thus, the KKT optimality conditions in (31) can be rewritten as the following SOCCP:
hx; yi ¼ 0; x 2K; y 2K;

x ¼ F ðfÞ; y ¼ GðfÞ;
ð32Þ
where
f ¼ ðfp; fdÞ; F ðfÞ :¼ d þ ANfp; GðfÞ :¼ c� ATfd : ð33Þ
Alternatively, consider that any f 2 RN can be decomposed into the sum of its orthogonal projection on the
column space of AT and the null space of A, so the following form can be used in place of (33)
F ðfÞ :¼ d þ ðI � ATðAATÞ�1AÞf; GðfÞ :¼ c� ATðAATÞ�1Af: ð34Þ
In the sequel, unless otherwise stated, F ðfÞ and GðfÞ are both defined by (34).
In [8], Chen extended the merit function, the squared norm of the Fischer–Burmeister function for the non-

linear complementarity problems, to SOCCPs, and then developed a unconstrained optimization technique
for SOCCPs by use of the merit function. For any u ¼ ðu1; u2Þ; v ¼ ðv1; v2Þ 2 R� Rn, define their Jordan prod-

uct associated with Knþ1 by
u � v :¼ ðhu; vi; v1u2 þ u1v2Þ:

The identity element under this product is ð1; 0; . . . ; 0Þ 2 Rnþ1. Write u2 to mean u � u and u + v to mean the
usual componentwise addition of vectors. It is well known that u2 2Knþ1 for all u 2 Rnþ1. Moreover, if
u 2Knþ1, there is a unique vector in Knþ1, denoted by u1/2, such that ðu1=2Þ2 ¼ u1=2 � u1=2. Then,
/ðu; vÞ :¼ ðu2 þ v2Þ1=2 � u� v ð35Þ
is well-defined for all ðu; vÞ 2 Rnþ1 � Rnþ1 and maps Rnþ1 � Rnþ1 to Rnþ1. It was shown in [15] that
/ðu; vÞ ¼ 0() hu; vi ¼ 0; u 2Knþ1; v 2Knþ1:
Note that K1 coincides with the set of nonnegative reals Rþ, and in that case /ðu; vÞ in (35) reduces to the
Fischer–Burmeister NCP-function [12,13]. Thus,
wðx; yÞ :¼ 1

2

Xm

i¼1

k/ðzi; siÞk2 þ /2ðti;wiÞ
� �

ð36Þ
is a merit function for the SOCCP (32), where zi; si 2 Rnþ1 and ti;wi 2 Rþ. Consequently, (32) can rewritten as
an equivalent global minimization problem as below:
min
f2RN

WðfÞ ¼ wðF ðfÞ;GðfÞÞ: ð37Þ
Moreover, we know from [8] that w is smooth and every stationary point of (32) solves the SOCP (29).
Now we establish an algorithm for the problem (1) by solving the unconstrained smooth minimization

problem (32) with a limited-memory BFGS method.

Algorithm 3. Let s1; s2; s3 > 0 and f0 2 RN be given. Generate a steepest descent direction D0 ¼ �rWðf0Þ and
seek a suitable stepsize a0. Let
f1 :¼ f0 þ a0D
0; x1 :¼ F ðf1Þ; y1 :¼ Gðf1Þ:

1380 S. Pan, J.-S. Chen / Applied Mathematics and Computation 189 (2007) 1368–1383
For k ¼ 1; 2; . . . ; until WðfkÞ 6 s1 and jðxkÞTykj 6 s2, do

If ðrWðfkÞ � rWðfk�1ÞÞTðfk � fk�1Þ 6 s3kfk � fk�1k � krWðfkÞ � rWðfk�1Þk, then

Dk ¼ �rWðfkÞ;
else

Dk is generated by the limited-memory BFGS method.
End

Set fk :¼ fk þ akD
k; xk :¼ F ðfkÞ; yk :¼ GðfkÞ, where ak is a stepsize. Let k :¼ k þ 1.

End

Remark 1. Suppose that f* is the final iteration generated by Algorithm 3 and x� ¼ F ðf�Þ. Then,
x�ð2 : nþ 1Þ þ a1 is the optimal solution of problem (1) and the optimal value is cTx�.
6. Numerical experiments

We implemented Algorithm 2 in Section 3 and Algorithm 3 in Section 5 with our codes and compared
them with SeDuMi 1.05 [27] (A high quality software packages with Matlab interface for solving SOCP
and semidefinite programming problems). Our computer codes are all written in Matlab, including the eval-
uation of wðx; yÞ and rwðx; yÞ in Algorithm 3. All the numerical experiments were done at a PC with CPU of
2.8 GHz and RAM of 512 MB. To solve the unconstrained minimization problem (14) in Algorithm 2 and
generate the direction Dk and the suitable stepsize in Algorithm 3, we choose a limited-memory BFGS algo-
rithm with Armijo line-search and 5 limited-memory vector-updates [5], where for the scaling matrix
H 0 ¼ cIN we use the recommended choice of c ¼ pTq=qTq [18, P. 226], where p :¼ f� fold and q :¼
rWðfÞ � rWðfoldÞ. This choice is found to work better than the choice used by [8] for our problems. To
evaluate F and G in Algorithm 3, we use LU factorization of AAT. In particular, given such a factorization
LU ¼ AAT, we can compute x ¼ F ðfÞ and s ¼ GðfÞ for each f via two matrix-vector multiplications and two
forward/backward solves:
Lu ¼ Af; Uv ¼ n; w ¼ ATv; x ¼ d þ f� w; s ¼ c� w: ð38Þ

For the vector d satisfying Ad ¼ b, we compute it as a solution of mindkAd � bk using Matlab’s linear least
square solver ‘‘lsqlin’’.

Throughout the computational experiments, we use the following parameters in Algorithm 2:
e0 ¼ 1; r ¼ 0:1; s1 ¼ 1:0e� 6; s2 ¼ 1:0e� 3:
For Algorithm 3, we use the following parameters:
s1 ¼ 1:0e� 8; s2 ¼ 1:0e� 5; s3 ¼ 1:0e� 4:
For SeDuMi, we use all the default values except that the parameter eps is set to be 1.0e–6. The starting points
for Algorithms 2 and 3 are chosen to be x̂0 ¼ 0n; ŵ0 ¼ 0 and f0 ¼ 0N , respectively.

The test problems are generated randomly by the following pseudo-random sequence:
w0 ¼7; wiþ1 ¼ ð445wi þ 1Þ mod 4096; i ¼ 1; 2; . . . ;

�wi ¼wi=40:96; i ¼ 1; 2; . . . ;
The elements of ai for i ¼ 1; 2; . . . ;m are successively set to �w1; �w2; . . . ; in the order:
a1ð1Þ; a1ð2Þ; . . . ; a1ðnÞ; a2ð1Þ; a2ð2Þ; . . . ; a2ðnÞ; . . . ; amð1Þ; amð2Þ; . . . ; amðnÞ;
and the weight xi is set to be aið1Þ=10 if modði; 10Þ ¼ 0, and otherwise xi is set to be 1.
The numerical results are summarized in Tables 1–3. In these tables, n and m specify the problem dimen-

sions, Obj. denotes the objective value of (1) at the final iteration, Iter indicates the iteration number and Time

represents the CPU time in seconds for solving each problem, and for Algorithm 3, it also includes the time to
make the LU decomposition of AAT and find the feasible point d.

Table 1
Numerical results for the problems with different j ðm ¼ 50; n ¼ 1000)

j Algorithm 2 Algorithm 3 SeDuMi

Obj. Iter Time Obj. Iter Time Obj. Iter Time

1 5.941976e+3 195 2.65 5.941976e+3 2118 1434 5.941978e+4 12 48.3
5 2.509660e+4 24 0.28 2.509660e+4 344 229.5 2.509660e+4 10 50.1

10 3.021423e+4 258 3.39 3.021423e+4 667 445.7 3.021423e+4 13 51.6
15 3.516542e+4 364 4.40 3.516542e+4 570 396.5 3.516542e+4 13 50.7
25 4.480229e+4 392 4.79 4.480228e+4 458 317.1 4.480229e+4 13 54.3
35 5.418417e+4 425 4.90 5.418417e+4 361 253.8 5.418417e+4 13 50.6
40 5.880483e+4 414 4.90 5.880483e+4 381 270.0 5.880484e+4 13 51.5
45 6.338237e+4 240 3.46 6.338237e+4 438 326.1 6.338238e+4 13 51.4
50 6.790952e+4 31 0.33 6.790952e+4 354 274.2 6.790952e+4 7 27.7

Table 2
Performance comparison of Algorithms 2, 3 and SeDuMi

Problem Algorithm 2 Algorithm 3 SeDuMi

m n j Obj. Iter Time Obj. Iter Time Obj. Iter Time

100 100 10 1.441721e+4 109 1.15 1.441720e+4 993 235.3 1.441721e+4 15 55.7
100 200 10 1.732435e+4 92 1.14 1.732435e+4 1089 453.1 1.732435e+4 16 208.9
100 300 10 2.156258e+4 58 0.81 2.156258e+4 2216 1454 2.156258e+4 14 662.3
100 400 10 1.841160e+4 177 2.51 1.841159e+4 1851 1618 1.841160e+4 14 2555
100 500 10 3.492155e+4 40 0.67 3.492156e+4 704 710.5 * * *
100 600 10 3.358388e+4 154 3.51 3.358388e+4 1930 2370 * * *
100 700 10 3.435271e+4 45 0.78 3.435271e+4 2135 3064 * * *
100 800 10 3.512760e+4 57 1.20 3.512760e+4 2710 4404 * * *
100 900 10 3.958261e+4 26 0.53 3.958261e+4 2152 4056 * * *
100 1000 10 5.960709e+4 27 0.59 5.960709e+4 258 570.9 * * *

Table 3
Performance of Algorithm 2 on very large problems

m n j Obj. iter CPU m n j Obj. iter CPU

1000 1000 10 83.2309391e+4 493 173.8 1000 2000 10 1.17181049e+5 568 515.1
1000 4000 10 1.59968897e+5 424 1126 1000 6000 10 2.02300923e+5 512 2158
1000 8000 10 2.17901326e+5 295 1498 1000 10000 10 2.61377885e+5 518 3206
2000 1000 20 1.71789468e+5 368 286.2 2000 2000 20 2.36133844e+5 319 633.2
2000 3000 20 2.94584768e+5 356 1327 2000 4000 20 3.20657339e+5 515 3430
2000 5000 20 3.77768347e+5 479 3508 2000 6000 20 4.08304039e+5 664 5058
3000 1000 30 2.56936690e+5 384 486.7 3000 2000 30 3.55199292e+5 630 2020
3000 3000 30 4.41767230e+5 462 2422 3000 4000 30 4.80986010e+5 404 4214
4000 1000 40 3.42205909e+5 617 1039 4000 3000 40 5.90447512e+5 405 3957

S. Pan, J.-S. Chen / Applied Mathematics and Computation 189 (2007) 1368–1383 1381
The results in Table 1 show how the iteration number of Algorithms 2 and 3 and SeDuMi varies with j for
the problems of the same dimension (m ¼ 50 and n ¼ 1000). We can see from this table that the value of j has
a remarkable influence on their iteration number, and when j closes to m, they will decrease, but when j closes
to 1, they will increase, and especially that of Algorithms 2 increase greatly.

The results listed in Tables 1 and 2 show that the algorithms presented in this paper perform very well and
they are able to obtain good accuracy for all test problems. Particularly, Algorithm 2 consistently uses less
CPU time than Algorithm 3 and SeDuMi. For the moderate problems where n and m are in the order of hun-
dreds, Algorithm 3 is comparable with SeDuMi, and moreover, we can see from Table 2 that the CPU time of
Algorithm 3 increases slower than that of SeDuMi with the dimension of problem increasing. In addition, we

1382 S. Pan, J.-S. Chen / Applied Mathematics and Computation 189 (2007) 1368–1383
should point out that the evaluations of wðx; yÞ andrwðx; yÞ coded in Matlab increased the CPU time of Algo-
rithm 3 greatly since it is a main part of the algorithm.

The results in Table 3 show that Algorithm 2 can solve very large problems in a reasonable amount of CPU
time. However, Algorithm 3 and SeDuMi failed for these problems due to excessive CPU time or memory
requirement.

We conclude that Algorithm 2 is better than Algorithm 3 and SeDuMi for very large problems since it con-
sumes less memory. For moderate problems, Algorithm 3 and SeDuMi are comparable.

7. Conclusions

In this paper, we have presented two kinds of unconstrained optimization techniques for the single-facility
Euclidean j-centrum location problem based on a simplified unconstrained formulation and a SOCP reformu-
lation, respectively. The first method is actually a primal one whereas the second is a primal-dual one. Preli-
minary numerical experiments show that the two methods can obtain desirable accuracy for all test problems
and the first method is extremely efficient for those problems where n is large and m is moderate. Though the
two methods are developed for the single-facility location problem, they can be extended to the multi-facilities
Euclidean j-centrum location problem.

Acknowledgement

The author’s work is partially supported by the Doctoral Starting-up Foundation (B13B6050640)
of GuangDong Province. The author’s work is partially supported by National Science Council of Taiwan.

References

[1] K.D. Andersen, E. Christiansen, A.R. Conn, M.L. Overton, An efficient primal-dual interior-point method for minimizing a sum of
Eucidean norms, SIAM Journal on Optimization 1 (2000) 243–262.

[2] F. Alizadeh, D. Goldfarb, Second-order cone programming, Mathematical Programming, Series B 95 (2003) 3–51.
[3] G. Andreatta, F.M. Mason, j-Eccentricity and absolute j-centrum of tree, European Journal of Operational Research 19 (1985) 114–

117.
[4] G. Andreatta, F.M. Mason, Properties of j-centrum in a network, Networks 15 (1985) 21–25.
[5] R.H. Byrd, P. Lu, J. Nocedal, C. Zhu, A limited memory algorithm for bound constrained optimization, SIAM Journal of Scientific

Computing 16 (1995) 1190–1208.
[6] C.H. Chen, O.L. Mangasarian, A class of smoothing functions for nonlinear and mixed complementarity problems, Computational

Optimization and Applications 5 (1996) 97–138.
[7] J.-S. Chen, A merit function approach for a facility location problem, 2005.
[8] J.-S. Chen, P. Tseng, An unconstrained smooth minimization reformulation of the second-order cone complementarity problem,

Mathematical Programming, Series B 95 (2005) 3–51.
[9] Z. Drezner, Facility Location. A Survey of Applications and Methods, Springer-Verlag, Berlin, 1995.

[10] Z. Drezner, H. Hamacher, Facility Location: Applications and Theory, Springer-Verlag, Berlin, 2002.
[11] J.W. Eyster, J.A. White, W.W. Wierwille, On solving multifacility location problems using a hyperboloid approximation procedure,

AIIE Transaction 5 (1973) 1–6.
[12] A. Fischer, A special Newton-type optimization methods, Optimization 24 (1992) 269–284.
[13] A. Fischer, Solution of the monotone complementarity problem with locally Lipschitzian functions, Mathematical Programming 76

(1997) 513–532.
[14] R.L. Francis, L.F. McGinnis Jr., J.A. White, Facility Layout and Location: An Analytic Approach, Prentice-Hall, Englewood Cliffs,

NJ, 1991.
[15] M. Fukushima, Z.Q. Luo, P. Tseng, Smoothing functions for second-order cone complementarity problems, SIAM Journal on

Optimization 12 (2002) 436–460.
[16] J.B. Hiriart-Urruty, C. Lemarèchal, Convex Analysis and Minimization Algorithm, Springer-Verlag, Berlin Heidelberg, 1993.
[17] Y.-J. Kuo, H.D. Mittelmann, Interior point methods for second-order cone programming and OR applications, Computational

Optimization and Applications 28 (2004) 255–285.
[18] J. Nocedal, S.J. Wright, Numerical Optimization, Springer-Verlag, New York, 1999.
[19] L.Q. Qi, G.L. Zhou, A smoothing Newton method for minimizing a sum of Euclidean norms, SIAM Journal on Optimization 11

(2000) 389–410.
[20] L.Q. Qi, D.F. Sun, G.L. Zhou, A primal-dual algorithm for minimizing a sum of Euclidean norms, Journal of Computational and

Applied Mathematics 138 (2002) 34–63.

S. Pan, J.-S. Chen / Applied Mathematics and Computation 189 (2007) 1368–1383 1383
[21] M.S. Lobo, L. Vandenberghe, S. Boyd, H. Lebret, Applications of second-order cone programming, Linear Algebra and its
Applications 284 (1998) 193–228.

[22] W. Ogryczak, A. Tamir, Minimizing the sum of the k largest functions in linear time, Information Processing Letters 85 (2003) 117–
122.

[23] W. Ogryczak, M. Zawadzki, Conditional median: a parametric solution concept for location problems, Annals of Operations
Research 110 (2002) 167–181.

[24] R.T. Rockafella, Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970.
[25] P.J. Slater, Centers to centroids in a graph, Journal of Graph Theory 2 (1978) 209–222.
[26] S.Y. Shi, Smooth convex approximations and its applications. Master thesis, Department of Mathematics, National University of

Singapore, 2004.
[27] J.F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optimization methods & software 11

(12) (1999) 625–653.
[28] A. Tamir, The k-centrum multi-facility location problem, Discrete Applied Mathematics 109 (2001) 293–307.
[29] G.L. Xue, J.B. Rosen, P.M. Pardalos, An polynomial time dual algorithm for the Euclidean multifacility location problem,

Operations Research Letters 18 (1996) 201–204.
[30] G.L. Xue, Y. Ye, An efficient algorithm for minimizing a sum of Euclidean norms with applications, SIAM Journal on Optimization 7

(1997) 1017–1036.

	Two unconstrained optimization approaches for the Euclidean kappa -centrum location problem
	Introduction
	Smooth approximation
	Algorithm based on the neural networks smoothing function
	Second-order cone program reformulation
	Algorithm based on the SOCP reformulation
	Numerical experiments
	Conclusions
	Acknowledgement
	References

