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1. Introduction

The circular cone [1,2] is a pointed closed convex cone having hyperspherical sections orthogonal to its axis of revolution
about which the cone is invariant to rotation. Let its half-aperture angle be 6 with & € (0, Z). Then, the n-dimensional
circular cone denoted by £y can be expressed as

Ly = {x = (X1,X) €E R x R”’1| [|x]| cos O < xl}
= {x=(x1.%) e R xR | [x] cotd <x1}. (1)

See Fig. 1.
When 6 = 45°, the circular cone reduces to the well-known second-order cone (SOC, also called Lorentz cone) given by

K" = {x=(x1,%) € R X R" [ [[xa]| < x1}

{1.%) € R R"™'| %] cos45° < x,} .

* Correspondence to: Member of Mathematics Division, National Center for Theoretical Sciences, Taipei Office, Taiwan. Tel.: +886 2 29325417; fax: +886
229332342.
E-mail addresses: ylchang@math.ntnu.edu.tw (Y.-L. Chang), yangcy@math.ntnu.edu.tw (C.-Y. Yang), jschen@ntnu.edu.tw, jschen@math.ntnu.edu.tw
(J.-S. Chen).

0362-546X/$ - see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.na.2013.01.017


http://dx.doi.org/10.1016/j.na.2013.01.017
http://www.elsevier.com/locate/na
http://www.elsevier.com/locate/na
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.na.2013.01.017&domain=pdf
mailto:ylchang@math.ntnu.edu.tw
mailto:yangcy@math.ntnu.edu.tw
mailto:jschen@ntnu.edu.tw
mailto:jschen@math.ntnu.edu.tw
http://dx.doi.org/10.1016/j.na.2013.01.017

Y.-L. Chang et al. / Nonlinear Analysis 85 (2013) 160-173 161

I

o
()0 < 6 < 45°. (b) 6 = 45°. (c)45° < 6 < 90°.

Fig. 1. The graphs of circular cones.
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Fig. 2. The grasping force forms a circular cone where & = tan™! . < 45°.

With respect to SOC, for any x = (x1, x2) € R x R"~!, we can decompose x as

X = )\1(x)u,((” + kz(x)uf(z), (2)

where A1 (x), A»(x) and u,(cl), u,(f) are the spectral values and the associated spectral vectors of x with respect to X", given by

1) = x1 + (=1)'[|x2],

1 . X
S(1 'SR, it o,
W0 — 12 Iz
X

§<1’ (—l)iw), ifx, = 0,

fori = 1,2 with w being any vector in R"~! satisfying |w| = 1.Ifx, # 0, the decomposition (2) is unique. With this
spectral decomposition (2), for any function f : R — R, the following vector-valued function associated with X" (n > 1) is
considered (see [3,4]):

) = fFOu? +f)u® Vx = (x1,%) e R x R™ . (3)

If f is defined only on a subset of R, then f*°¢ is defined on the corresponding subset of R". The definition (3) is unambiguous
whether x, # 0 or x, = 0. The above definition (3) is analogous to the one associated with the semidefinite cone $"; see
[5,6]. It was shown [4] that the properties of continuity, strict continuity, Lipschitz continuity, directional differentiability,
differentiability, continuous differentiability, and semismoothness are each inherited by f*°° from f. These results are useful
in the design and analysis of smooth and nonsmooth methods for solving second-order cone programs (SOCP) and second-
order cone complementarity problem (SOCCP); see [3,4,7,8] and references therein.

Recently, there have been found circular cone constraints involved in real engineering problems. For example, in the
formulation of optimal grasping manipulation for multi-fingered robots, the grasping force of the i-th finger is subject to a
contact friction constraint expressed as

[(uin, u)| < pun (4)
where p is the friction coefficient; see Fig. 2.
Indeed, (4) is a circular cone constraint corresponding to u; = (uj;, Ui, Uiz) € Lo with & = tan~'u < 45°. Note

that the circular cone £y is a non-self-dual (or non-symmetric) cone and its related study is rather limited. Nonetheless,
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motivated by the real world application regarding circular cone, the structures and properties about £y are investigated
in [2]. In particular, the spectral factorization of z associated with the circular cone is characterized in [2, Theorem 3.1]. For

convenience, we restate it as follows.

Theorem 1.1 ([2, Theorem 3.1]). Forany z = (z1,z;) € R x R"~!, one has

z=M@) - u” +2(@2) -u? (5)
where
*1(2) =z — ||z2| cot O (6)
A2(z) = z1 + ||z2]| tan 6
and
U(U _ 1 1 0 1 _ Sil‘l2 0
Z T 14+cot20 |0 cotf||—w| " |—(sinfcoshw )
u(z) _ 1 1 0 1 _ C052 0
Z 7 14tan20 |0 tané ||w | | (sin® cosO)w
withw = H% if z, # 0, and any vector in R*~! satisfying ||w| = 1if z = 0.

Analogous to (3), with the spectral factorization (5), for any functionf : R — R, we consider the following vector-valued
function associated with £y (n > 1):

@ =fOu® + fr)uP Vz=(z1,2,) € R x R"". (8)

Can the properties of continuity, strict continuity, Lipschitz continuity, directional differentiability, differentiability,
continuous differentiability, and semismoothness be each inherited by f¢ from f? These are what we want to explore in
this paper.

At last, we say a few words about notations. In what follows, for any differentiable (in the Fréchet sense) mapping
F : R" — R™, we denote its Jacobian (not transposed) at x € R" by VF(x) € R™*", i.e., (F(x+u) —F(x) — VF(x)u)/|lul| — 0
asu — 0.“:=" means “define”. We write z = O(«) (respectively, z = o(«)), with @ € R and z € R", to mean |z||/|«/| is
uniformly bounded (respectively, tends to zero) as « — 0.

2. Preliminaries

In this section, we review some basic concepts regarding vector-valued functions. These contain continuity, (local)
Lipschitz continuity, directional differentiability, differentiability, continuous differentiability, as well as semismoothness.

Suppose F : R" — R™. Then, F is continuous at x € R" if F(y) — F(x) asy — x, and F is continuous if F is continuous
at every x € R". We say F is strictly continuous (also called “locally Lipschitz continuous”) at x € R" if there exist scalars
k > 0and § > 0 such that

IFy) —F@I <«ly—zl V¥y,zeR"with|ly —x[| <3, |z —x] <4;
and F is strictly continuous if F is strictly continuous at every x € R". We say F is directionally differentiable at x € R" if

F'(x;h) .= lim w

t—071

exists Yh € R";

and F is directionally differentiable if F is directionally differentiable at every x € R".F is differentiable (in the Fréchet sense)
at x € R" if there exists a linear mapping VF(x) : R" — R™ such that

F(x+h) — F(x) — VE@h = o([|h]).

If F is differentiable at every x € R" and VF is continuous, then F is continuously differentiable. We notice that, in the
above expression about strict continuity of F, if § can be taken to be oo, then F is called Lipschitz continuous with Lipschitz
constant .

It is well-known that if F is strictly continuous, then F is almost everywhere differentiable by Rademacher’s Theorem;
see [9] and [10, Section 9J]. In this case, the generalized Jacobian 0F (x) of F at x (in the Clarke sense) can be defined as the
convex hull of the generalized Jacobian dgF (x), where

9F (x) := {l_im VF(¥) | F is differentiable at ¥ € R”} .

X—x
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The notation 9 is adopted from [11]. In [10, Chapter 9], the case of m = 1 is considered and the notations “V” and “3” are
used instead of, respectively, “dz” and “9”. Assume F : R" — R™ is strictly continuous, then F is said to be semismooth at x
if F is directionally differentiable at x and, for any V € dF (x + h), we have

F(x + h) — F(x) — Vh = o(||h|]).
Moreover, F is called p-order semismooth at x (0 < p < 00)if F is semismooth at x and, for any V € dF (x + h), we have
F(x+h) — F(x) — Vh = O(||h|"**).

The following lemma, proven by Sun and Sun [5, Theorem 3.6] using the definition of generalized Jacobian, enables one to
study the semismooth property of f¢ by examining only those points x € R" where f€ is differentiable and thus work only
with the Jacobian of f¢, rather than the generalized Jacobian. It is a very useful working lemma for verifying semismoothness
property in Section 4.

Lemma 2.1. Suppose F : R" — R" is strictly continuous and directionally differentiable in a neighborhood of x € R". Then, for
any 0 < p < o9, the following two statements are equivalent.
(a) Forany v € 0F(x + h) and h — 0,
F(x+h) — F(x) — vh =o(||h]]) (respectively, O(||h||)'™").
(b) For any h — 0 such that F is differentiable at x + h,
F(x+h) — F(x) — VF(x + h)h = o(||h|]) (respectively, O(||h||)'**).

We say F is semismooth (respectively, p-order semismooth) if F is semismooth (respectively, p-order semismooth) at
every x € R". We say F is strongly semismooth if it is 1-order semismooth. Convex functions and piecewise continuously
differentiable functions are examples of semismooth functions. The composition of two (respectively, p-order) semismooth
functions is also a (respectively, p-order) semismooth function. The property of semismoothness, as introduced by Mifflin
[12] for functionals and scalar-valued functions and further extended by Qi and Sun [13] for vector-valued functions, is of
particular interest due to the key role it plays in the superlinear convergence analysis of certain generalized Newton methods
[11,13-16]. For extensive discussions of semismooth functions, see [12,13,17].

3. Properties of continuity and differentiability

In this section, we focus on the properties of continuity and differentiability between f and f¢. We need some technical
lemmas which come from the simple structure of the circular cone and basic definitions before starting the proofs.

Lemma 3.1. Let A; < X, be the spectral values of x € R" and m; < m, be the spectral values of y € R". Then, we have
|1 —my[?sin® 0 + |, — my|* cos® 0 = [x — y]|?, 9)
and hence, |A; — m;| < c||x —y||, Vi = 1, 2, where c = max{sec, cscO}.

Proof. The proof follows from a direct computation. O

Lemma 3.2. [et x = (X1, %) e Rx R landy = (y1,y2) e R x R" L.

(a) If x # 0, y, # 0, then we have

. 2sincos @
) < ——

”u(i) _
lIx2 ]

||X_)’||7 i:1525 (]0)

where u®, v are the unique spectral vectors of x and y, respectively.
(b) If either x, = 0 or y, = 0, then we can choose u®, v such that the left hand side of inequality (10) is zero.

Proof. (a) From the spectral factorization (5), we know that

X
u® = sin? 6 (1, (—1) cot92) . o™ = sin?g (1, (—1) cotey—2> :
llx2| Iyl
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where u”, v are unique. This gives u® — v = sin? 0 (0 (=1 cotél(Hx—ZH - W)> Then,
X2
lu® — vV = sin6 cos O ‘ ECEN H
20l Iyl
- —Ix
— <ind cosd ’ 2 — Y2 (lyall — IIx21Dy2
lIx2]] %21l - [ly2]l
. 1 1
< sin@cost | —lxa — y2ll + —— [lly2ll — %21l
lIx2]] lIx2 ]
. 1
< sinf cos 6 7||X2 — Y2l + — X2 — y2|
lIx21] lIx2 ]
2sin@ cos @
—lx =yl
lIx2]]

where the inequalities follow from the triangle inequality. Similar arguments apply for [u® — v®|.
(b) We can choose the same spectral vectors for x and y from the spectral factorization (5) since either x, = O ory, = 0.
Then, it is obvious. O

Lemma 3.3. Forany w # 0 € R", we have V,, (ku) =L (I — w—"ﬂ)

lwll lw|?
Proof. See [18, Lemma 3.3] or check it by direct computation. O

Now, we are ready to present our first main result about continuity between f and f°€.

Theorem 3.1. Forany f : R — R, f€ is continuous at x € R" with spectral values A1, A, if and only if f is continuous at Aq, A;.

Proof. “<" Suppose f is continuous at A1, A,. Forany fixedx = (x{, x,) € RxR""!'andy — x, let the spectral factorizations
ofx, ybe x = AuY + A,u® and y = myv™P + m,v@, respectively. Then, we discuss two cases.

Case (i). If x, # 0, then we have

FO) =@ =fm) [0 —uP] + [F ) — FODTu® + f(my) [vP — u®] + [f(my) — F(ra)u®. (11)

Since f is continuous at A1, A, and from Lemma 3.1, |m; — A;| < ¢ |ly — x||, we know that f (m;) — f(A;)) asy — x.In
addition, by Lemma 3.2, we have [[v® — u®|| — 0asy — x. Thus, Eq. (11) yields f*(y) —> f(x) asy — x because both
f(m;) and ||u®|| are bounded. Hence, f€ is continuous at x € R".

Case (ii). If x, = 0, no matter y, is zero or not, we can arrange that x, y have the same spectral vectors. Thus, f¢(y) — f<(x) =
[fmy) = FADTuUD + [f(my) — f(A2)]u®. Then, f€ is continuous at x € R" by similar arguments.
“=" The proof for this direction is straightforward or refer to similar arguments for [4, Prop.2]. O

Theorem 3.2. For any f : R — R, f€ is directionally differentiable at x € R" with spectral values A1, A, if and only if f is
directionally differentiable at A1, A.

Proof. “<" Suppose f is directionally differentiable at A1, A,. Fix any x = (xq, x,) € R x R""!, then we discuss two cases
as below.

Case (i). If x, # 0, we have fS(x) = fO)u® + fO)u® where ;; = x + (—1)i(tan®) D' |lx,]| and u® =
. T

(—1)'sinf cos ((tan gy, ”i H) foralli = 1, 2. From Lemma 3.3, we know that u®” is Fréchet-differentiable with respect

to x, with

@ _ (=1)'sinfcos6 00

V.u
* 1% 0

B Xox) Vi=1,2. (12)
lIx2112

Also by the expression of );, we know that A; is Fréchet-differentiable with respect to x, with

T
VoA = (1 (=1) tanV' 9” ”> Vi=1,2. (13)
X2

In general, we cannot apply the chain rule, when functions are only directionally differentiable. But, it works well for single-
variable functions, that is, when single-variable functions are composed of a differentiable function. From the hypothesis, f
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is directionally differentiable at A1, then it is easy to compute
o fOu+tx 1) —=f)
m

r1—1>o+ : =f(A1; D),
lim fOq—t ><t1) —f(A1) — (g —1),
t—0t

i fOa+o®)—f)

im =0.
t—0t t

Note that the spectral value function A1(x) = x; — cot0||x,|| is differentiable when x, # 0, which yields
A (x 4+ th) = A1(x) + tVerih 4+ o(t).
Lety .= VA th+ @ For the case of VyA1h < 0, we know y < 0 ast is small. Thus,

i fOux+th) —fOqx) . fOa®) +ty) — (k)
t_1>l?)1+ t o [l_l)r(lj‘1+ t
i Fax) = (=ty) = fF(M X)) o fOa®) = (=) = ()
= lim (—=y) = Ilim
t—0t —ty —ty—0t —ty
' Oa(®); =D)(=Vxrih) = f'(A1(0); Virih).

Here the positively homogeneous property of directionally differentiable functions is used in the last equation. Similarly,
for the other case of V,A1h > 0, we have
I fa(x =+ th)) — f(A(x))
im

t—0t t

lim (—
t—>0+( y)

= f' (M (x); VeAqh).

In summary, the composite function f o A;(-) is directionally differentiable at x. Now we can apply the chain rule and the
product rule on f¢(x) = f(A)u® + f(1,)u®. In other words,

Y by = fFD)VuPh + f' (s Viahu™ + FO2) Viau®h + f' (05 Vidah)u®
= (A]7A2) €R X Rn715
where
Xghz

Aq :f, ()\,], h] — cotf
llx2 |l

xTh
>sin20 +f <A2;h1 +tan9ﬁ> cos® 6 (14)
X2

and

x'h xTh X
Ay = [f/ <k2; h, +tan92—2> —f (M; h; —cot0|2—2>] sin 6 cos§ —2—

[l pell [l

_ T
+f()»2) F) (1 _ |X2X2 )hz,

(15)
Az — A X2 |2
with h = (hy, hy) € R x R"™ L,
Now, applying Egs. (12) and (13) and using the fact that A, — A1 = smuexzc!se in the A, term, we see that (f°)’(x; h) can be
rewritten in a more compact form as below:

Th Th
Y (x; h) = f' ()q; hy — cotexz—2> u® 4 f (Az; hy + tan@x—2> u® +

[l [

F) = F (A1) (,_ x2x§>
Ay — Aq

Case (ii). If x, = 0, we compute the directional derivative (f¢)’(x; h) at x for any direction h by definition. Let h = (hy, hy) €
R x R"'. We have two subcases. First, consider the subcase of h, # 0. From the spectral factorization, we can choose
uM = (sin2 0, — sin6 cos 9%) and u® = (cos2 0, sin 6 cos 9”;%) such that

fe@x+th) = fh+ 22)u™ + F( + Ar)u®
@ =fFu® + fou®

where A = x;and AA; =t (h1 + (=1) tan V' 9||h2||) foralli = 1, 2. Thus, we obtain

fox+th) — @) = [F(L+ Ary) — FOIuD +[F + Ady) — F(WD)]u®.
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Using the following facts
. fO+Ar) —f(R)
m =

iy SO+ thy — cotflihz[) —f(A)

| 1 = f'(A; hy — cot@|h
im ; i ; F O hy — cot8ha 1)
A+ Al) —f(A A+th tan@|h —f(x
i L0 232 =10 o JG by a0l S o
t—0t+ t t—0t t
yields

) M) FOAARM) — ) 4 OB —FO) o
lim ——————— = lim u'’ + lim u
t—0t t t—0* t t—0t t

= f'(A; hy — cot @[y [Hu” + f'(A; hy + tan @ ||y [ u® (17)

which says (f¢)’(x; h) exists.

Second, for the subcase of h, = 0, the same arguments apply except h, /||, || is replaced by any w € R"~! with ||w| = 1,
i.e., choosing u” = (sin® 6, — sin® cos Gw) and u® = (cos? 0, sin 6 cos Hw). Analogously, we obtain

[+ th) - fCX)

lim —M——~

t—0t t

= f' (0 h)u® 4 £/ (x; hy)u® (18)

which implies (f€)’(x; h) exists in the form of (18). From all the above, it shows that f€ is directionally differentiable at x
when x, = 0 and its directional derivative (f¢)’(x; h) is either in the form of (17) or (18).

“=" Suppose f€ is directionally differentiable at x € R" with spectral values Aq, A,, we will prove that f is directionally
differentiable at Aq, A,. For A; € R and any direction d; € R, let h := du¥ + 0u® where x = A;uV + A,u®. Then,
x+th= (A + td)u® + 2,u® and

[ th) =[G _ [ +td) —f0n) g
t t '
Since f€ is directionally differentiable at x, the above equation implies

A td;) — f(A
(s dy) = lim+f( 1+ ;) SO exists.
t—0

This means f is directionally differentiable at A4. Similarly, f is also directionally differentiable at A,. O

Theorem 3.3. Forany f : R — R, f€ is differentiable at x = (x1, x,) € R x R"! with spectral values A1, A, if and only if f is
differentiable at A1, A,. Moreover, for given h = (hq, hy) € R x R"~!, we have

cx?
b v

VF(x)h = %21l Wl henx, # 0
Xy - x5 || 2 ’
— al+((b—-a) >
lIx2]] lIx2 ]

where
0= f(h2) = f(A1)

3

Ay — M
b = f'(A1) sin® 6 + f'(A,) cos® 6,
b =f'(A1)cos® 6 + f'(r,) sin* A,
c=[f"(A2) —f'(A1)]sinO cosb.

When x, = 0, Vf¢(x) = f'(AM)I with A = x;.

Proof. “<=" The proof of this direction is identical to the proof shown as in Theorem 3.2, in which only “directionally
differentiable” needs to be replaced by “differentiable”. Since f is differentiable at A; and A, we have that f'(1q; ) and
f’(Ay; +) are linear, which means f'(A;; a + b) = f'(A;)a + f'(A;)b. This together with Eqs. (14) and (15) yield

/ X5hy\ / X5y 2
Ay = f"| A; hy — cot0—=—= | sin“ 6 + f' | Ap; hy + tanf —=— ) cos” O
lIx2]] lIx2 ]
2 xh ., 2 xhy
= f'(A1)h;sin* 0 —f/()q)cotem sin* @ + f'(Ay)h; cos* +f/(kz)tan9m cos* 6
2 X2
T
= [f'(A1) sin® 0 + f'(A2) cos® 0] hy + [f'(A2) — f'(21)] sin 6 cose)”ji—znh2
2
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and

Xh X3h a2) — fOn T
Ay = [f <Az,h1+tan9 2 2) —f <A1,h1—cot9 2 )}sinecose X2 +f( 2) —f(*1) <I— x2x22>h2
llx2 I llx2 I lIx2 I da— A 1%l

= [f’(kz)m —f'(ADh + (1) tan@— +f (A1)cot9 I ”] sin@ cos@—

Il ol
fh) —f(r1) szg )
I — h
T ek ( lz) ™

= [f'(k2) — f'(%1)] sin6 cos 6 —— 2 b+ [f'(x2) sin® 6 + f' (A1) cos 9]

|| Al Ix ||2 2
fG2) —f() XoX)
= hy. 19
LYY Ix2012) (19)
Thus, for x, # 0, we have
b cx)
< = [Ix2 ] hy
VFwn=| Tl [hz o0)
— al b—a >
[zl %2l
with
_ 1G9 ~10)
A —Arr
b = f'(A1)sin® 6 + f'(X) cos 6,
b = f'(A)cos® 6 +f'(r,) sin’ @, (21)

¢ =[f'(2) — f'(A1)] sin6 cosb.

From Eq. (16), Vf¢(x)h can also be recast in a more compact form:

_ T
Vf<(x)h = f(m(m — cot@ 2h2>u(1)+f()»2) (m + tan# 2hz)u<2>+f(“) J0) (1— x2x22>h2. (22)
lIx2|] lIx2 1| Az — A lIx2 |

For the case of x, = 0, with linearity of f"(A; -) and Egs. (17) and (18), we have

Vi@ =, (23)

where A = A1 = Ay = X1.

“=" Let f¢ be Fréchet-differentiable at x € R" with spectral eigenvalues 11, A, we will show that f is Fréchet-
differentiable at A, A,. Suppose not, then f is not Fréchet-differentiable at A; for some i € {1, 2}. Thus, either the
right- and left-directional derivatives of f at A; is unequal or one of them does not exist. In either case, this implies that
there exist two sequences of non-zero scalars t” and 7%, v = 1, 2, ..., converging to zero such that the limits

I FOi+t") —fw)  fa+ ) = fOw
jm -~ lim ———— =%

V=00 tv V=00 Vv

either are unequal or one of them does not exist. Now for any x = Au® + A,u@® leth :=1-u® +0-u® = u™. Then,
we know x + th = (A1 + t)u® + A,u® and fS(x + th) = f(rq + Hu® + f(A2)u®, which give

fex+t"h) — f(x) ~ lim FOa+t") —f(}»l)um

lim
V—00 tv V—>00 tv

. fx+Th) — f(x) . fOa+T) = fA)
lim = lim u.
V—>00 v V—00 v

It follows that these two limits either are unequal or one of them does not exist. This implies that ¢ is not Fréchet-
differentiable at x, which is a contradiction. O

Theorem 3.4. Forany f : R — R, f€is continuously differentiable (smooth) at x € R" with spectral values \1, A, if and only if
f is continuously differentiable (smooth) at 11, A».
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Proof. “<=" Suppose f is continuously differentiable at x € R". From Eq. (20), it can be seen that Vf€ is continuous at every
x with x, # 0. It remains to show that Vf¢ is continuous at every x with x, = 0. Fix any x = (x;, 0) € R", which says
A=Ay = x1. Lety” = (¥}, ) € Rx R"~" be any sequence converging to x. For those y5 = 0, applying Eq. (23) gives
V") = f'(A(y"))I. Suppose y; # 0, from Eq. (21), we have

fOR0") = FaG")

lim a= lim = f'(x1),
Yo ysA0  yoxys#0 A (YY) — A1 (YY)

lim b= 1imv#o[f/(,\1(yV))sin29 +f'(A2(y")) cos® 0] = f'(x1),
Y2

YW =X,y #0 Y=,
im 22 = lim sinfcosd [ f(a0") —f0n(") ] 2 =0,
yoxyy#0 Yyl yoxyb0 vl
_ vyvT A VY)Y — f (A v v T
lim (b—a222 = lim {[f/(}q(y”))c0529 + £/ () sin? 6] — [0 3) I 15}’ ) }y2f22 =
PR Y50 ly5l%  yw—xys0 A(y’) — 2 (y") ly 1l
v v, VT
Using the facts that both H;—%” and % are bounded by 1 and then taking the limit in (20) as y — x yield lim,_,, Vf°(y) =
2 2

f'(x)I = Vf<(x). This says Vf€ is continuous at every x € R".
“=" The proof for this direction is similar to the one for [4, Prop. 5], so we omitit. O

Next, we move to the property of (locally) Lipschitz continuity. To this end, we need the following result, which is from
[10, Theorem 9.67].
Lemma 3.4 ([10, Theorem 9.67]). Suppose f : R"™ — R is strictly continuous. Then, there exist continuously differentiable
functions f¥ : R" — R, v = 1, 2, ..., converging uniformly to f on any compact set C in R" and satisfying

IVF @I < SUICDLin(.V) VxeC, v=123,...
ye

W@l

where Lip f (x) == imsupy , .y ., = =7

Theorem 3.5. Forany f : R — R, the following results hold:

(a) f€is strictly continuous at x € R" with spectral values A+, A, if and only if f is strictly continuous at \q, A;.
(b) f€is Lipschitz continuous (with respect to || - ||) with constant « if and only if f is Lipschitz continuous with constant «.

Proof. (a) “<" Fix any x € R" with spectral values A and A, given by (6). Suppose f is strictly continuous at A; and A,.
Then, there exist x; > 0 and §; > 0 fori = 1, 2 such that

f() —f@| <«ilb—al, Va,belr—6& r+8li=1,2.
Let § := min{8;, 8>} and C := [A; — 81, A1 + 8] U [A2 — &, A, + 8]. Define a real-valued function f : R — R as

f(a) ifaeC,

(1—6)f(A1+8) ifr;+8 <X, —38and,forsomet € (0, 1),
f@ =+t =) a=(1-0)(t1+8) + (s —9),

f()q—é) ifa<A1—8,

fa+98) ifa > x, +36.

From the above, we know that f is Lipschitz continuous, which means there exists a scalar ¥ > 0 such that Lip f (a) < « for
all a € R. Since C is compact, by Lemma 3.4, there exist continuously differentiable functions f* : R — R,v = 1,2, ...,
converging uniformly to f and satisfying

|(F) (@] <k, YaecC, V.

On the other hand, from Lemma 3.1, there exists a § such that C contains all spectral values of w € B(x, §). Moreover, for
any w € B(x, §) with spectral factorization w = u1u® + u,u®, by direct computation, we have

ey = fE)||* = sin? 01" (1) — f(u2) > + cos? O (12) — f (u2) .

This together with f” converging uniformly to f on C implies that (f")¢ converges uniformly to f€ on B(x, §).

Next, we explain that ||V (f")“(w)|| is uniformly bounded. Indeed, for w, = 0, from Eq. (23) we have ||[V(f")“(w)| =
[(f”) (w1)| < k. For general w;, # 0, it is not hard to check || V(f")(w)|| < M for some uniform bound M > « on the set C
by using Eq. (22).
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Fix any y, z € B(x, §). Since (f")¢ converges uniformly to f€, for any € > 0 there exists an integer vy such that for all
v > vy we have

1) (w) = fCw)ll < €lly —zll Yw € B(x, 9).

Note that f" is continuously differentiable, Theorem 3.4 implies (f")¢ is also continuously differentiable. Then, by the fact
that | V(f")“(w)|| is uniform bounded by M and the Mean Value Theorem for continuously differentiable functions, we
obtain

IFs o) =@ = [Fo— o+ W — )@+ )@ - @
< IFFo) = Mo+ [ — @] + [ )@ - @
1
< 2ely -zl + H/ V(") +tly —2)(y — 2)dt
0
< M +20)|y -zl

This shows that f€ is strictly continuous at x.
“=” Suppose that f€ is strictly continuous at x with eigenvalues A, and X, and spectral vectors u” and u‘®. This means
there exist § and M such that for y, z € B(x, §), we have

Ifsor =@ < Mily —z|.

Foranyi € {1,2}and anya, b € [A; — 8, A; + 8], denote
y=x+ (a—ru?, z:=x+ (- ru?®.

Then, [ly — x|| = |a — ;| |u®|| < §and ||z — x|| = |b — A;|[[u®|| < 8. Thus,
Ifb) = f(@)| - [u®]| = |f®) — @] <Mlly—z|

which says that f is strictly continuous at A1 and A because [[u”|| = sin and ||u® | = cos 6.
(b) This is the immediate consequence of part (a). O

4. Semismoothness property

This section is devoted to presenting a semismooth property between f and €. As mentioned earlier, Lemma 2.1 will be
employed frequently in our analysis.

Theorem 4.1. Forany f : R — R, f€is semismooth at x € R" with spectral values Aq, A, if and only if f is semismooth
at Aq, Ay.

Proof. “=" Suppose f€ is semismooth, then f€ is strictly continuous and directionally differentiable. By Theorem 3.2 and
Theorem 3.5, f is strictly continuous and directionally differentiable. Now, for any ¢ € R and any n € R such that f
is differentiable at o + 5, Theorem 3.2 yields that f¢ is differentiable at x + h, where x := (@,0) € R x R"™ ! and
h := (n,0) € R x R""!. Hence, we can choose the same spectral vectors for x +h = (a + 1,0) and x = («, 0) such
that

fix+h) =fle+nu® +fla+nu®,
Fx) = fla@u® + fa)u®.

Since f€ is semismooth, by Lemma 2.1, we know
fe&x+h) — () — Vf (x+ hh = o(||h]). (24)

On the other hand, Eq. (23) yields Vf¢(x + h)h = f'(«¢ + n)lh = (f/(oc + n)n, 0) . Plugging this into Eq. (24) yields
fla+n) —f(a) —f' (¢ +n)n =o(|n]). Thus, by Lemma 2.1 again, it follows that f is semismooth at «. Since « is arbitrary,
f is semismooth.

“«<" Suppose f is semismooth, then f is strictly continuous and directionally differentiable. By Theorem 3.2 and
Theorem 3.5, f€ is strictly continuous and directionally differentiable. For any x = (x1,x;) € R x R"and h = (hq, hy) €
R x R" such that f€ is differentiable at x + h, we will verify that

[+ h) = fC0) = Vf(x+ hh = o(|[hl).

Case (i). If x, # 0, let A; be the spectral values of x and u® be the associated spectral vectors. We denote x + h by z for
convenience, i.e., z := x + h and let m; be the spectral values of z with the associated spectral vectors v'?. Hence, we have

{fC(X) =fOu? +fG)u?,
feeth) = Fmpv® + f(my)v®.
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Suppose now f€ is differentiable at z. From (20), we know

b cz)
c _ llz2 ]
Vi = | Jal gl
— a4+ (b-a) 5
[zl llz2 ]
where
0= f(my) — f(my)

m; —my
b = f'(m;) sin® 6 + f'(m;) cos? 6,
b = f'(m;) cos? 6 + f'(my) sin® 0,
¢ = [f'(my) — f'(my)] sin6 cos 6.
With this, we can write out f(x + h) — fS(x) — Vf<(x+ h)h := (&, 5,) where Z; € Rand 5, € R"!. Since the expansion

is very long, for simplicity, we denote Z'; to be the first component and =, to be the second component of the expansion.
We will show that Z; and =, are both o(||h||). First, we compute the first component Z:

= .2 / Z;hz 2 ¢ Zghz
&, = sin20 {f(my) — f(h) — f/(my) (hl - cot@m +cos” 0 1f(my) — f(hp) — f'(my) | by + tan9m>

sin® 0 {f(my) — f (k1) = f'(my) (hy — cot O (l|za ]| — Ix21D) + o(ll])}

+ cos? 0 {f (my) — f(A2) — f'(my) (hy + tan 6 (22l — lIx21) + o(l[hl})}
= 0 (hy = (llz2]l = Ix21D) + oCllhll) + 0 (hy + (llzz [l = lIx21D) + oCllAlD).

In the above expression of =, the third equality is obtained by the following:

z1hy _ 23 (2 — x2)

A
= =zl - =2
Izl ll 2
1221l = %]l (1+0(@) = 2]l = x| (14 OCIAI)
= llz2ll = %]l (1 +o(lIhI))

where « is the angle between x, and z, and note that z, — x, = h, gives O(«?) = O(||h||?). In addition, the last equality in
the expression of Z; holds because f is semismooth and

mi — i = hy + (=1)'(tan0) "V (|z2]| — 2 ]).
On the other hand, due to

h+ (=D (an ) " (2]l — 20D < [hil + Mlizz — x| < M(Ihy| + [Ih2])
where M = max{tan @, cot0} > 1, we observe that when ||h|| — O,

1| + (=D (tan )V (l|zz || — lIx2]1) — 0

1| + (=D tan )V (lzz]| — lIx21) = O(IA]).

Thus, we obtain o (h1 + (=1i(tan 0)(*1)i(||22 I — lIx2 ||)) = o(||h||), which implies that the first component = is o(||h||).
Now we consider the second component &5:

&3]
N
|

= —sinf cosd {f(ml)z—z —f(my) 22— fh) 2 +f(xz>x—2}
1221 122 Il Il

— sin6 cos 6 (f'(mz) — f'(my)) ah Mm

Izl my; —my
_ T
- {f’(mz)sinze — F/(my) cos?g — L) f(ml)} 227y o
my; — 2211

= —sinf coso {f(moZz O my 2
122 Il 122
fF(my)

" sinfcosé (my

f(my) ) 2222Th2 }

h '(m;) cot
—my) 2+<f( V + sin@ cosO(my —my) ) |22
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Zzh]
+ sin6 cos 6 [f(mz) — fO2) 2 — ' (my) 2L

Izl %] Izl

f(my) hy — (f/(mz) tané + — f(my) ) 222y hz }
ml) m])

~ sind cosO(my — sin cos 0 (m, — [FA K

— 2" 4 52
where ._42( ) denotes the first half part while :22( ) denotes the second half part. We will show that both & ’“(1) and & "(2) are

o(|lh||). For symmetry, it is enough to show that = "‘( ) is o(||h||). From the observations that (m, —m) sinf cos 9 = ||zz [| we
have the following:

2

g = smecose{ﬂmn —fOW S~ f ) 2

[zl lIx 2|| Izl
f(my) )
- h to
Sin6 cos6(my —mp) 2 T f'(my) cot6 +

f(my) ) 223 h, }

sinf cos@(my —my) ) ||z2?

T
—sinf cosf H:f(ml) —f() —f'(my) <h1 — cot922hz>i| 2

liz21l / 1 llz2

h2 2222Th2> ( V) X2 hz 22, h2>}
- + +fo) [ — - —— - —— + :
(f () = f ”) (||z2|| 12 ) TNl T el T Tl T el

Following the same arguments as for the first component Z', it can be seen that

zTh
Fmy) = F() = f/(my) (hl — cotd ”2 ﬁ) = o(||hll).

Since my; — Ay = hy — cot8(||zz|| — |Ix2]]) = O(]|hl|) and f is strictly continuous, it follows that f (m;) — f (A1) = O(J|h]|). In
addition, —hy /|22 || + 2223 ha/ |22 11> = O(||h]). Hence,

T
h2 2222 h2

Izl llz2|

(f(mq) = f(x1)) ( ) = O([IhlI*) = o(lIhID.

Therefore, it remains to prove that the last part of = ’“(1) iso(||h|). Indeed, with z, = x, + h;, we have

V) X2 h2 ZzZThz 1 1 ZTh
o B g (o ) O
Izl %l llzll - lz2l 2l lxll Nzl
Let 6(z;) :== —1/||z2||, then we compute VO(z;) = — |\,z;\]\2 H%H = “22“3 which implies
1 1 zTh,

Tl " Tl Tin = 0@ —8@) — VE@) e — 22) = O(IAIP).

where the last equality is from first Taylor approximation. Thus, we obtain
fGu) <Z—2 . B I ZzzzThj) = o(lIhl).
Il %0zl Nzl
From all the above, we therefore verified that (24) is satisfied, which says f€ is semismooth under case (i).
Case (ii). Ifx, = 0, we need to discuss two subcases. First subcase, consider h, # 0.Then,x = (x1, 0) andx+h = (x1+hy, hy).
We can choose u'? = (sm 6, —siné cos 6 ;2 “) and u® = (sm 6, sin6 cos 6 ;2 ”) such that x = Au® + Au® and

x4+ h=mu® + mu® with A = x; and m; = x; + hy + (=1){(tan®) ' |y, i = 1, 2. Hence,

{fc(x) = Feu 4+ fu®,
Fex+h) = fmpu® + f (my)u®.
Beside, from Eq. (22), we know
¢ ( h2h2> (1) ( h2h2> @
Vf¢(x +hh = f'(my) [ hy — cotd u'™ + f'(my) { hy +tan@ u
A2l llh2 1l
L) —fmy) (1 _ b )hz.

my; —my llhy |2
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hyhl
212

Note that hlhy = ||hy||?, hence (1 ) h, = 0. Therefore, we have

Vf(x+mh = f'(my)(hy — cot ]z )u + f'(m2) (hy + tan 6| |hz [ )u®.
Combining all of these, we obtain
P+ D) = f200) — V(e + hyh = {f(my) — f(x1) — f'(my) (hy — cot 6| hy|[)} u®
+ {f(m2) — f(x) — f'(mz) (hy + tan |z )} u®.
Since f is semismooth at x; and m; — x; = h; + (—=1)i(tan ) D' ||hy |, we have f(m;) — f(x1) — f'(m)(hy + (=1)
(tan8) D' |y 1) = o(||R]). With u® and u® being uniformly bounded, the above expression implies that (24) is satisfied.

Hence, f€ is semismooth under this subcase.
Second, for the subcase of h, = 0, we know x = (x;,0) and x + h = (x; + hy, 0). We can choose u® = (sin?6,

—sinf cos fw) and u® = (cos? 6, sin6 cos fw) with |w| = 1such thatx = Au® + Au® andx + h = mu® + mu®,
where A = x; and m = x; + hy. Hence,

fee0 = feu +fxu®

fex+h)y = foa+hu® +fex+hpu®.

In addition, (23) says Vf¢(x + h) = f’(x; + hy)I, and hence Vf¢(x + h)h = (f’(x; + h1)hy, 0). Combining all of these, we
obtain

FE@+m) =) — VU + hh = {f @ + h)u™ + f(x1 + hyu®}
— {fExDu® + Fx)u®} — (F/(x1 + h1)h1, 0)
= (fx1 + h1) — f(x1) — f'(x1 + hy)hy, 0) = (o(|h4]), 0)

where the third equality holds since f is semismooth and by Lemma 2.1. When h goes to zero, it implies h; goes to zero,
so the above expression implies that (24) is satisfied which says f€ is semismooth in this subcase. From all the above, we
proved that if f is semismooth then f€ is semismooth. O

5. Conclusion

In this paper, we have proved the following results of vector-valued functions associated with the circular cone, which
are useful for designing and analyzing smooth and nonsmooth methods for solving circular cone problems.

(a) f€is continuous at x € R" with spectral values A1, A, if and only if f is continuous at A1, A,.

(b) f€ is directionally differentiable at x € R" with spectral values A1, A, if and only if f is directionally differentiable at
A, A2

(c) f€is differentiable at x € R" with spectral values A1, A, if and only if f is differentiable at A1, A;.

(d) f€is continuously differentiable at x € R" with spectral values A1, A, if and only if f is continuously differentiable at A,
Ao

(e) f€is strictly continuous at x € R" with spectral values A1, A, if and only if f is strictly continuous at Aq, A;.

(f) f€is Lipschitz continuous (with respect to || - ||) with constant « if and only if f is Lipschitz continuous with constant .

(g) f€is semismooth at an x € R" with spectral values A1, A if and only if f is semismooth A1, A;.

Our proofs involve more algebraic computations in general. Nonetheless, our proofs come from the straightforward,
intuitive thinking and basic definitions as well as the simple structure of the circular cone. We believe that the intuitive way
we presented here would be helpful for analysis of other merit functions used for solving circular cone problems. That is
one of our future research interests.
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