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a b s t r a c t

Let Lθ be the circular cone in Rn which includes a second-order cone as a special case. For
any function f from R to R, one can define a corresponding vector-valued function f c(x)
on Rn by applying f to the spectral values of the spectral decomposition of x ∈ Rn with
respect to Lθ . We show that this vector-valued function inherits from f the properties
of continuity, Lipschitz continuity, directional differentiability, Fréchet differentiability,
continuous differentiability, as well as semismoothness. These results will play a crucial
role in designing solution methods for optimization problem associated with the circular
cone.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The circular cone [1,2] is a pointed closed convex cone having hyperspherical sections orthogonal to its axis of revolution
about which the cone is invariant to rotation. Let its half-aperture angle be θ with θ ∈ (0, π

2 ). Then, the n-dimensional
circular cone denoted by Lθ can be expressed as

Lθ :=

x = (x1, x2) ∈ R × Rn−1

| ∥x∥ cos θ ≤ x1


:=

x = (x1, x2) ∈ R × Rn−1

| ∥x2∥ cot θ ≤ x1

. (1)

See Fig. 1.
When θ = 45°, the circular cone reduces to the well-known second-order cone (SOC, also called Lorentz cone) given by

Kn
:=


x = (x1, x2) ∈ R × Rn−1

| ∥x2∥ ≤ x1


:=

(x1, x2) ∈ R × Rn−1

| ∥x∥ cos 45° ≤ x1

.
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(a) 0 < θ < 45°. (b) θ = 45°. (c) 45° < θ < 90°.

Fig. 1. The graphs of circular cones.

Fig. 2. The grasping force forms a circular cone where α = tan−1 µ < 45°.

With respect to SOC, for any x = (x1, x2) ∈ R × Rn−1, we can decompose x as

x = λ1(x)u(1)
x + λ2(x)u(2)

x , (2)

where λ1(x), λ2(x) and u(1)
x , u(2)

x are the spectral values and the associated spectral vectors of xwith respect to Kn, given by

λi(x) = x1 + (−1)i∥x2∥,

u(i)
x =


1
2


1, (−1)i

x2
∥x2∥


, if x2 ≠ 0,

1
2


1, (−1)iw


, if x2 = 0,

for i = 1, 2 with w being any vector in Rn−1 satisfying ∥w∥ = 1. If x2 ≠ 0, the decomposition (2) is unique. With this
spectral decomposition (2), for any function f : R → R, the following vector-valued function associated with Kn (n ≥ 1) is
considered (see [3,4]):

f soc(x) = f (λ1)u(1)
+ f (λ2)u(2)

∀x = (x1, x2) ∈ R × Rn−1. (3)

If f is defined only on a subset of R, then f soc is defined on the corresponding subset of Rn. The definition (3) is unambiguous
whether x2 ≠ 0 or x2 = 0. The above definition (3) is analogous to the one associated with the semidefinite cone Sn; see
[5,6]. It was shown [4] that the properties of continuity, strict continuity, Lipschitz continuity, directional differentiability,
differentiability, continuous differentiability, and semismoothness are each inherited by f soc from f . These results are useful
in the design and analysis of smooth and nonsmooth methods for solving second-order cone programs (SOCP) and second-
order cone complementarity problem (SOCCP); see [3,4,7,8] and references therein.

Recently, there have been found circular cone constraints involved in real engineering problems. For example, in the
formulation of optimal grasping manipulation for multi-fingered robots, the grasping force of the i-th finger is subject to a
contact friction constraint expressed as

|(ui1, ui3)| ≤ µui1 (4)

where µ is the friction coefficient; see Fig. 2.
Indeed, (4) is a circular cone constraint corresponding to ui = (ui1, ui2, ui3) ∈ Lθ with θ = tan−1 µ < 45°. Note

that the circular cone Lθ is a non-self-dual (or non-symmetric) cone and its related study is rather limited. Nonetheless,
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motivated by the real world application regarding circular cone, the structures and properties about Lθ are investigated
in [2]. In particular, the spectral factorization of z associated with the circular cone is characterized in [2, Theorem 3.1]. For
convenience, we restate it as follows.

Theorem 1.1 ([2, Theorem 3.1]). For any z = (z1, z2) ∈ R × Rn−1, one has

z = λ1(z) · u(1)
z + λ2(z) · u(2)

z (5)

where 
λ1(z) = z1 − ∥z2∥ cot θ
λ2(z) = z1 + ∥z2∥ tan θ

(6)

and 
u(1)
z =

1
1 + cot2 θ


1 0
0 cot θ

 
1

−w


=


sin2 θ

−(sin θ cos θ)w


u(2)
z =

1
1 + tan2 θ


1 0
0 tan θ

 
1
w


=


cos2 θ

(sin θ cos θ)w

 (7)

with w =
z2

∥z2∥
if z2 ≠ 0, and any vector in Rn−1 satisfying ∥w∥ = 1 if z2 = 0.

Analogous to (3), with the spectral factorization (5), for any function f : R → R, we consider the following vector-valued
function associated with Lθ (n ≥ 1):

f c(z) = f (λ1)u(1)
z + f (λ2)u(2)

z ∀z = (z1, z2) ∈ R × Rn−1. (8)

Can the properties of continuity, strict continuity, Lipschitz continuity, directional differentiability, differentiability,
continuous differentiability, and semismoothness be each inherited by f c from f ? These are what we want to explore in
this paper.

At last, we say a few words about notations. In what follows, for any differentiable (in the Fréchet sense) mapping
F : Rn

→ Rm, we denote its Jacobian (not transposed) at x ∈ Rn by∇F(x) ∈ Rm×n, i.e., (F(x+u)−F(x)−∇F(x)u)/∥u∥ → 0
as u → 0. ‘‘:=’’ means ‘‘define’’. We write z = O(α) (respectively, z = o(α)), with α ∈ R and z ∈ Rn, to mean ∥z∥/|α| is
uniformly bounded (respectively, tends to zero) as α → 0.

2. Preliminaries

In this section, we review some basic concepts regarding vector-valued functions. These contain continuity, (local)
Lipschitz continuity, directional differentiability, differentiability, continuous differentiability, as well as semismoothness.

Suppose F : Rn
→ Rm. Then, F is continuous at x ∈ Rn if F(y) → F(x) as y → x, and F is continuous if F is continuous

at every x ∈ Rn. We say F is strictly continuous (also called ‘‘locally Lipschitz continuous’’) at x ∈ Rn if there exist scalars
κ > 0 and δ > 0 such that

∥F(y) − F(z)∥ ≤ κ∥y − z∥ ∀y, z ∈ Rn with ∥y − x∥ ≤ δ, ∥z − x∥ ≤ δ;

and F is strictly continuous if F is strictly continuous at every x ∈ Rn. We say F is directionally differentiable at x ∈ Rn if

F ′(x; h) := lim
t→0+

F(x + th) − F(x)
t

exists ∀h ∈ Rn
;

and F is directionally differentiable if F is directionally differentiable at every x ∈ Rn. F is differentiable (in the Fréchet sense)
at x ∈ Rn if there exists a linear mapping ∇F(x) : Rn

→ Rm such that

F(x + h) − F(x) − ∇F(x)h = o(∥h∥).

If F is differentiable at every x ∈ Rn and ∇F is continuous, then F is continuously differentiable. We notice that, in the
above expression about strict continuity of F , if δ can be taken to be ∞, then F is called Lipschitz continuous with Lipschitz
constant κ .

It is well-known that if F is strictly continuous, then F is almost everywhere differentiable by Rademacher’s Theorem;
see [9] and [10, Section 9J]. In this case, the generalized Jacobian ∂F(x) of F at x (in the Clarke sense) can be defined as the
convex hull of the generalized Jacobian ∂BF(x), where

∂BF(x) :=


lim
xj→x

∇F(xj) | F is differentiable at xj ∈ Rn


.
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The notation ∂B is adopted from [11]. In [10, Chapter 9], the case of m = 1 is considered and the notations ‘‘∇̄ ’’ and ‘‘∂̄ ’’ are
used instead of, respectively, ‘‘∂B’’ and ‘‘∂ ’’. Assume F : Rn

→ Rm is strictly continuous, then F is said to be semismooth at x
if F is directionally differentiable at x and, for any V ∈ ∂F(x + h), we have

F(x + h) − F(x) − Vh = o(∥h∥).

Moreover, F is called ρ-order semismooth at x (0 < ρ < ∞) if F is semismooth at x and, for any V ∈ ∂F(x + h), we have

F(x + h) − F(x) − Vh = O(∥h∥1+ρ).

The following lemma, proven by Sun and Sun [5, Theorem 3.6] using the definition of generalized Jacobian, enables one to
study the semismooth property of f c by examining only those points x ∈ Rn where f c is differentiable and thus work only
with the Jacobian of f c, rather than the generalized Jacobian. It is a very useful working lemma for verifying semismoothness
property in Section 4.

Lemma 2.1. Suppose F : Rn
→ Rn is strictly continuous and directionally differentiable in a neighborhood of x ∈ Rn. Then, for

any 0 < ρ < ∞, the following two statements are equivalent.

(a) For any v ∈ ∂F(x + h) and h → 0,

F(x + h) − F(x) − vh = o(∥h∥) (respectively, O(∥h∥)1+ρ).

(b) For any h → 0 such that F is differentiable at x + h,

F(x + h) − F(x) − ∇F(x + h)h = o(∥h∥) (respectively,O(∥h∥)1+ρ).

We say F is semismooth (respectively, ρ-order semismooth) if F is semismooth (respectively, ρ-order semismooth) at
every x ∈ Rn. We say F is strongly semismooth if it is 1-order semismooth. Convex functions and piecewise continuously
differentiable functions are examples of semismooth functions. The composition of two (respectively, ρ-order) semismooth
functions is also a (respectively, ρ-order) semismooth function. The property of semismoothness, as introduced by Mifflin
[12] for functionals and scalar-valued functions and further extended by Qi and Sun [13] for vector-valued functions, is of
particular interest due to the key role it plays in the superlinear convergence analysis of certain generalizedNewtonmethods
[11,13–16]. For extensive discussions of semismooth functions, see [12,13,17].

3. Properties of continuity and differentiability

In this section, we focus on the properties of continuity and differentiability between f and f c. We need some technical
lemmas which come from the simple structure of the circular cone and basic definitions before starting the proofs.

Lemma 3.1. Let λ1 ≤ λ2 be the spectral values of x ∈ Rn and m1 ≤ m2 be the spectral values of y ∈ Rn. Then, we have

|λ1 − m1|
2 sin2 θ + |λ2 − m2|

2 cos2 θ = ∥x − y∥2, (9)

and hence, |λi − mi| ≤ c∥x − y∥, ∀i = 1, 2, where c = max{sec θ, csc θ}.

Proof. The proof follows from a direct computation. �

Lemma 3.2. Let x = (x1, x2) ∈ R × Rn−1 and y = (y1, y2) ∈ R × Rn−1.

(a) If x2 ≠ 0, y2 ≠ 0, then we have

∥u(i)
− v(i)

∥ ≤
2 sin cos θ

∥x2∥
∥x − y∥, i = 1, 2, (10)

where u(i), v(i) are the unique spectral vectors of x and y, respectively.
(b) If either x2 = 0 or y2 = 0, then we can choose u(i), v(i) such that the left hand side of inequality (10) is zero.

Proof. (a) From the spectral factorization (5), we know that

u(1)
= sin2 θ


1, (−1) cot θ

x2
∥x2∥


, v(1)

= sin2 θ


1, (−1) cot θ

y2
∥y2∥


,
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where u(1), v(1) are unique. This gives u(1)
− v(1)

= sin2 θ

0, (−1) cot θ(

x2
∥x2∥

−
y2

∥y2∥
)

. Then,

∥u(1)
− v(1)

∥ = sin θ cos θ

 x2
∥x2∥

−
y2

∥y2∥


= sin θ cos θ

x2 − y2
∥x2∥

+
(∥y2∥ − ∥x2∥)y2

∥x2∥ · ∥y2∥


≤ sin θ cos θ


1

∥x2∥
∥x2 − y2∥ +

1
∥x2∥

|∥y2∥ − ∥x2∥|


≤ sin θ cos θ


1

∥x2∥
∥x2 − y2∥ +

1
∥x2∥

∥x2 − y2∥


≤
2 sin θ cos θ

∥x2∥
∥x − y∥,

where the inequalities follow from the triangle inequality. Similar arguments apply for ∥u(2)
− v(2)

∥.
(b) We can choose the same spectral vectors for x and y from the spectral factorization (5) since either x2 = 0 or y2 = 0.

Then, it is obvious. �

Lemma 3.3. For any w ≠ 0 ∈ Rn, we have ∇w


w

∥w∥


=

1
∥w∥


I −

wwT

∥w∥2


.

Proof. See [18, Lemma 3.3] or check it by direct computation. �

Now, we are ready to present our first main result about continuity between f and f c.

Theorem 3.1. For any f : R → R, f c is continuous at x ∈ Rn with spectral values λ1, λ2 if and only if f is continuous at λ1, λ2.

Proof. ‘‘⇐’’ Suppose f is continuous atλ1, λ2. For any fixed x = (x1, x2) ∈ R×Rn−1 and y → x, let the spectral factorizations
of x, y be x = λ1u(1)

+ λ2u(2) and y = m1v
(1)

+ m2v
(2), respectively. Then, we discuss two cases.

Case (i). If x2 ≠ 0, then we have

f c(y) − f c(x) = f (m1)

v(1)

− u(1)
+ [f (m1) − f (λ1)] u(1)

+ f (m2)

v(2)

− u(2)
+ [f (m2) − f (λ2)] u(2). (11)

Since f is continuous at λ1, λ2, and from Lemma 3.1, |mi − λi| ≤ c ∥y − x∥, we know that f (mi) −→ f (λi) as y → x. In
addition, by Lemma 3.2, we have ∥v(i)

− u(i)
∥ −→ 0 as y → x. Thus, Eq. (11) yields f c(y) −→ f c(x) as y → x because both

f (mi) and ∥u(i)
∥ are bounded. Hence, f c is continuous at x ∈ Rn.

Case (ii). If x2 = 0, no matter y2 is zero or not, we can arrange that x, y have the same spectral vectors. Thus, f c(y) − f c(x) =

[f (m1) − f (λ1)] u(1)
+ [f (m2) − f (λ2)] u(2). Then, f c is continuous at x ∈ Rn by similar arguments.

‘‘⇒’’ The proof for this direction is straightforward or refer to similar arguments for [4, Prop. 2]. �

Theorem 3.2. For any f : R → R, f c is directionally differentiable at x ∈ Rn with spectral values λ1, λ2 if and only if f is
directionally differentiable at λ1, λ2.

Proof. ‘‘⇐’’ Suppose f is directionally differentiable at λ1, λ2. Fix any x = (x1, x2) ∈ R × Rn−1, then we discuss two cases
as below.

Case (i). If x2 ≠ 0, we have f c(x) = f (λ1)u(1)
+ f (λ2)u(2) where λi = x1 + (−1)i(tan θ)(−1)i

∥x2∥ and u(i)
=

(−1)i sin θ cos θ

(tan θ)(−1)i ,

xT2
∥x2∥


for all i = 1, 2. From Lemma3.3,we know that u(i) is Fréchet-differentiablewith respect

to x, with

∇xu(i)
=

(−1)i sin θ cos θ

∥x2∥

0 0

0 I −
x2xT2
∥x2∥2

 ∀i = 1, 2. (12)

Also by the expression of λi, we know that λi is Fréchet-differentiable with respect to x, with

∇xλi =


1, (−1)i tan(−1)i θ

xT2
∥x2∥


∀i = 1, 2. (13)

In general, we cannot apply the chain rule, when functions are only directionally differentiable. But, it works well for single-
variable functions, that is, when single-variable functions are composed of a differentiable function. From the hypothesis, f
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is directionally differentiable at λ1, then it is easy to compute

lim
t→0+

f (λ1 + t × 1) − f (λ1)

t
= f ′(λ1; 1),

lim
t→0+

f (λ1 − t × 1) − f (λ1)

t
= f ′(λ1; −1),

lim
t→0+

f (λ1 + o(t)) − f (λ1)

t
= 0.

Note that the spectral value function λ1(x) = x1 − cot θ∥x2∥ is differentiable when x2 ≠ 0, which yields

λ1(x + th) = λ1(x) + t∇xλ1h + o(t).

Let y := ∇xλ1h +
o(t)
t . For the case of ∇xλ1h < 0, we know y < 0 as t is small. Thus,

lim
t→0+

f (λ1(x + th)) − f (λ1(x))
t

= lim
t→0+

f (λ1(x) + ty) − f (λ1(x))
t

= lim
t→0+

f (λ1(x) − (−ty)) − f (λ1(x))
−ty

(−y) = lim
−ty→0+

f (λ1(x) − (−ty)) − f (λ1(x))
−ty

lim
t→0+

(−y)

= f ′(λ1(x); −1)(−∇xλ1h) = f ′(λ1(x); ∇xλ1h).

Here the positively homogeneous property of directionally differentiable functions is used in the last equation. Similarly,
for the other case of ∇xλ1h ≥ 0, we have

lim
t→0+

f (λ1(x + th)) − f (λ1(x))
t

= f ′(λ1(x); ∇xλ1h).

In summary, the composite function f ◦ λ1(·) is directionally differentiable at x. Now we can apply the chain rule and the
product rule on f c(x) = f (λ1)u(1)

+ f (λ2)u(2). In other words,

(f c)′(x; h) = f (λ1)∇xu(1)h + f ′(λ1; ∇xλ1h)u(1)
+ f (λ2)∇xu(2)h + f ′(λ2; ∇xλ2h)u(2)

= (A1, A2) ∈ R × Rn−1,

where

A1 = f ′


λ1; h1 − cot θ

xT2h2

∥x2∥


sin2 θ + f ′


λ2; h1 + tan θ

xT2h2

∥x2∥


cos2 θ (14)

and

A2 =


f ′


λ2; h1 + tan θ

xT2h2

∥x2∥


− f ′


λ1; h1 − cot θ

xT2h2

∥x2∥


sin θ cos θ

x2
∥x2∥

+
f (λ2) − f (λ1)

λ2 − λ1


I −

x2xT2
∥x2∥2


h2, (15)

with h = (h1, h2) ∈ R × Rn−1.
Now, applying Eqs. (12) and (13) and using the fact that λ2 − λ1 =

∥x2∥
sin θ cos θ

in the A2 term, we see that (f c)′(x; h) can be
rewritten in a more compact form as below:

(f c)′(x; h) = f ′


λ1; h1 − cot θ

xT2h2

∥x2∥


u(1)

+ f ′


λ2; h1 + tan θ

xT2h2

∥x2∥


u(2)

+
f (λ2) − f (λ1)

λ2 − λ1


I −

x2xT2
∥x2∥2


h2. (16)

Case (ii). If x2 = 0, we compute the directional derivative (f c)′(x; h) at x for any direction h by definition. Let h = (h1, h2) ∈

R × Rn−1. We have two subcases. First, consider the subcase of h2 ≠ 0. From the spectral factorization, we can choose
u(1)

=


sin2 θ, − sin θ cos θ

h2
∥h2∥


and u(2)

=


cos2 θ, sin θ cos θ

h2
∥h2∥


such that

f c(x + th) = f (λ + △λ1)u(1)
+ f (λ + △λ2)u(2)

f c(x) = f (λ)u(1)
+ f (λ)u(2)

where λ = x1 and △λi = t

h1 + (−1)i tan(−1)i θ∥h2∥


for all i = 1, 2. Thus, we obtain

f c(x + th) − f c(x) = [f (λ + △λ1) − f (λ)] u(1)
+ [f (λ + △λ2) − f (λ)] u(2).
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Using the following facts

lim
t→0+

f (λ + △λ1) − f (λ)

t
= lim

t→0+

f (λ + t(h1 − cot θ∥h2∥)) − f (λ)

t
= f ′(λ; h1 − cot θ∥h2∥)

lim
t→0+

f (λ + △λ2) − f (λ)

t
= lim

t→0+

f (λ + t(h1 + tan θ∥h2∥)) − f (λ)

t
= f ′(λ; h1 + tan θ∥h2∥)

yields

lim
t→0+

f c(x + th) − f c(x)
t

= lim
t→0+

f (λ + △λ1) − f (λ)

t
u(1)

+ lim
t→0+

f (λ + △λ2) − f (λ)

t
u(2)

= f ′(λ; h1 − cot θ∥h2∥)u(1)
+ f ′(λ; h1 + tan θ∥h2∥)u(2) (17)

which says (f c)′(x; h) exists.
Second, for the subcase of h2 = 0, the same arguments apply except h2/∥h2∥ is replaced by anyw ∈ Rn−1 with ∥w∥ = 1,

i.e., choosing u(1)
=


sin2 θ, − sin θ cos θw


and u(2)

=

cos2 θ, sin θ cos θw


. Analogously, we obtain

lim
t→0+

f c(x + th) − f c(x)
t

= f ′(λ; h1)u(1)
+ f ′(λ; h1)u(2) (18)

which implies (f c)′(x; h) exists in the form of (18). From all the above, it shows that f c is directionally differentiable at x
when x2 = 0 and its directional derivative (f c)′(x; h) is either in the form of (17) or (18).

‘‘⇒’’ Suppose f c is directionally differentiable at x ∈ Rn with spectral values λ1, λ2, we will prove that f is directionally
differentiable at λ1, λ2. For λ1 ∈ R and any direction d1 ∈ R, let h := d1u(1)

+ 0u(2) where x = λ1u(1)
+ λ2u(2). Then,

x + th = (λ1 + td1)u(1)
+ λ2u(2) and

f c(x + th) − f c(x)
t

=
f (λ1 + td1) − f (λ1)

t
u(1).

Since f c is directionally differentiable at x, the above equation implies

f ′(λ1; d1) = lim
t→0+

f (λ1 + td1) − f (λ1)

t
exists.

This means f is directionally differentiable at λ1. Similarly, f is also directionally differentiable at λ2. �

Theorem 3.3. For any f : R → R, f c is differentiable at x = (x1, x2) ∈ R × Rn−1 with spectral values λ1, λ2 if and only if f is
differentiable at λ1, λ2. Moreover, for given h = (h1, h2) ∈ R × Rn−1, we have

∇f c(x)h =

 b
cxT2
∥x2∥

cx2
∥x2∥

aI + (b̄ − a)
x2xT2
∥x2∥2

 
h1
h2


, when x2 ≠ 0,

where

a =
f (λ2) − f (λ1)

λ2 − λ1
,

b = f ′(λ1) sin2 θ + f ′(λ2) cos2 θ,

b̄ = f ′(λ1) cos2 θ + f ′(λ2) sin2 θ,

c = [f ′(λ2) − f ′(λ1)] sin θ cos θ.

When x2 = 0, ∇f c(x) = f ′(λ)I with λ = x1.

Proof. ‘‘⇐’’ The proof of this direction is identical to the proof shown as in Theorem 3.2, in which only ‘‘directionally
differentiable’’ needs to be replaced by ‘‘differentiable’’. Since f is differentiable at λ1 and λ2, we have that f ′(λ1; ·) and
f ′(λ2; ·) are linear, which means f ′(λi; a + b) = f ′(λi)a + f ′(λi)b. This together with Eqs. (14) and (15) yield

A1 = f ′


λ1; h1 − cot θ

xT2h2

∥x2∥


sin2 θ + f ′


λ2; h1 + tan θ

xT2h2

∥x2∥


cos2 θ

= f ′(λ1)h1 sin2 θ − f ′(λ1) cot θ
xT2h2

∥x2∥
sin2 θ + f ′(λ2)h1 cos2 θ + f ′(λ2) tan θ

xT2h2

∥x2∥
cos2 θ

=

f ′(λ1) sin2 θ + f ′(λ2) cos2 θ


h1 +


f ′(λ2) − f ′(λ1)


sin θ cos θ

xT2
∥x2∥

h2
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and

A2 =


f ′


λ2; h1 + tan θ

xT2h2

∥x2∥


− f ′


λ1; h1 − cot θ

xT2h2

∥x2∥


sin θ cos θ

x2
∥x2∥

+
f (λ2) − f (λ1)

λ2 − λ1


I −

x2xT2
∥x2∥2


h2

=


f ′(λ2)h1 − f ′(λ1)h1 + f ′(λ2) tan θ

xT2h2

∥x2∥
+ f ′(λ1) cot θ

xT2h2

∥x2∥


sin θ cos θ

x2
∥x2∥

+
f (λ2) − f (λ1)

λ2 − λ1


I −

x2xT2
∥x2∥2


h2

=

f ′(λ2) − f ′(λ1)


sin θ cos θ

x2
∥x2∥

h1 +

f ′(λ2) sin2 θ + f ′(λ1) cos2 θ

 x2xT2
∥x2∥2

h2

+
f (λ2) − f (λ1)

λ2 − λ1


I −

x2xT2
∥x2∥2


h2. (19)

Thus, for x2 ≠ 0, we have

∇f c(x)h =

 b
cxT2
∥x2∥

cx2
∥x2∥

aI + (b̄ − a)
x2xT2
∥x2∥2

 
h1
h2


(20)

with

a =
f (λ2) − f (λ1)

λ2 − λ1
,

b = f ′(λ1) sin2 θ + f ′(λ2) cos2 θ,

b̄ = f ′(λ1) cos2 θ + f ′(λ2) sin2 θ, (21)
c =


f ′(λ2) − f ′(λ1)


sin θ cos θ.

From Eq. (16), ∇f c(x)h can also be recast in a more compact form:

∇f c(x)h = f ′(λ1)


h1 − cot θ

xT2h2

∥x2∥


u(1)

+ f ′(λ2)


h1 + tan θ

xT2h2

∥x2∥


u(2)

+
f (λ2) − f (λ1)

λ2 − λ1


I −

x2xT2
∥x2∥2


h2. (22)

For the case of x2 = 0, with linearity of f ′(λ; ·) and Eqs. (17) and (18), we have

∇f c(x) = f ′(λ)I, (23)

where λ = λ1 = λ2 = x1.
‘‘⇒’’ Let f c be Fréchet-differentiable at x ∈ Rn with spectral eigenvalues λ1, λ2, we will show that f is Fréchet-

differentiable at λ1, λ2. Suppose not, then f is not Fréchet-differentiable at λi for some i ∈ {1, 2}. Thus, either the
right- and left-directional derivatives of f at λi is unequal or one of them does not exist. In either case, this implies that
there exist two sequences of non-zero scalars tν and τ ν , ν = 1, 2, . . . , converging to zero such that the limits

lim
ν→∞

f (λi + tν) − f (λi)

tν
, lim

ν→∞

f (λi + τ ν) − f (λi)

τ ν

either are unequal or one of them does not exist. Now for any x = λ1u(1)
+ λ2u(2), let h := 1 · u(1)

+ 0 · u(2)
= u(1). Then,

we know x + th = (λ1 + t)u(1)
+ λ2u(2) and f c(x + th) = f (λ1 + t)u(1)

+ f (λ2)u(2), which give

lim
ν→∞

f c(x + tνh) − f c(x)
tν

= lim
ν→∞

f (λ1 + tν) − f (λ1)

tν
u(1)

lim
ν→∞

f c(x + τ νh) − f c(x)
τ ν

= lim
ν→∞

f (λ1 + τ ν) − f (λ1)

τ ν
u(1).

It follows that these two limits either are unequal or one of them does not exist. This implies that f c is not Fréchet-
differentiable at x, which is a contradiction. �

Theorem 3.4. For any f : R → R, f c is continuously differentiable (smooth) at x ∈ Rn with spectral values λ1, λ2 if and only if
f is continuously differentiable (smooth) at λ1, λ2.
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Proof. ‘‘⇐’’ Suppose f is continuously differentiable at x ∈ Rn. From Eq. (20), it can be seen that ∇f c is continuous at every
x with x2 ≠ 0. It remains to show that ∇f c is continuous at every x with x2 = 0. Fix any x = (x1, 0) ∈ Rn, which says
λ1 = λ2 = x1. Let yν

= (yν
1, y

ν
2) ∈ R × Rn−1 be any sequence converging to x. For those yν

2 = 0, applying Eq. (23) gives
∇f c(yν) = f ′(λ(yν))I . Suppose yν

2 ≠ 0, from Eq. (21), we have

lim
yν→x,yν2≠0

a = lim
yν→x,yν2≠0

f (λ2(yν)) − f (λ1(yν))

λ2(yν) − λ1(yν)
= f ′(x1),

lim
yν→x,yν2≠0

b = lim
yν→x,yν2≠0


f ′(λ1(yν)) sin2 θ + f ′(λ2(yν)) cos2 θ


= f ′(x1),

lim
yν→x,yν2≠0

c
yν
2

∥yν
2∥

= lim
yν→x,yν2≠0

sin θ cos θ

f ′(λ2(yν)) − f ′(λ1(yν))

 yν
2

∥yν
2∥

= 0,

lim
yν→x,yν2≠0

(b̄ − a)
yν
2y

νT
2

∥yν
2∥

2
= lim

yν→x,yν2≠0


f ′(λ1(yν)) cos2 θ + f ′(λ2(yν)) sin2 θ


−

f (λ2(yν)) − f (λ1(yν))

λ2(yν) − λ1(yν)


yν
2y

νT
2

∥yν
2∥

2
= 0.

Using the facts that both yν2
∥yν2∥

and yν2y
νT
2

∥yν2∥2
are bounded by 1 and then taking the limit in (20) as y → x yield limy→x ∇f c(y) =

f ′(x1)I = ∇f c(x). This says ∇f c is continuous at every x ∈ Rn.
‘‘⇒’’ The proof for this direction is similar to the one for [4, Prop. 5], so we omit it. �

Next, we move to the property of (locally) Lipschitz continuity. To this end, we need the following result, which is from
[10, Theorem 9.67].

Lemma 3.4 ([10, Theorem 9.67]). Suppose f : Rn
→ R is strictly continuous. Then, there exist continuously differentiable

functions f ν
: Rn

→ R, ν = 1, 2, . . . , converging uniformly to f on any compact set C in Rn and satisfying

∥∇f ν(x)∥ ≤ sup
y∈C

Lip f (y) ∀x ∈ C, ν = 1, 2, 3, . . .

where Lip f (x) := lim supy,z→x,y≠z
∥f (y)−f (z)∥

∥y−z∥ .

Theorem 3.5. For any f : R → R, the following results hold:

(a) f c is strictly continuous at x ∈ Rn with spectral values λ1, λ2 if and only if f is strictly continuous at λ1, λ2.
(b) f c is Lipschitz continuous (with respect to ∥ · ∥) with constant κ if and only if f is Lipschitz continuous with constant κ .

Proof. (a) ‘‘⇐’’ Fix any x ∈ Rn with spectral values λ1 and λ2 given by (6). Suppose f is strictly continuous at λ1 and λ2.
Then, there exist κi > 0 and δi > 0 for i = 1, 2 such that

|f (b) − f (a)| ≤ κi|b − a|, ∀a, b ∈ [λi − δi, λi + δi] i = 1, 2.

Let δ̄ := min{δ1, δ2} and C := [λ1 − δ̄1, λ1 + δ̄] ∪ [λ2 − δ̄, λ2 + δ̄]. Define a real-valued function f̄ : R → R as

f̄ (a) =


f (a) if a ∈ C,

(1 − t)f (λ1 + δ̄) if λ1 + δ̄ < λ2 − δ̄ and, for some t ∈ (0, 1),
+tf (λ2 − δ̄) a = (1 − t)(λ1 + δ̄) + t(λ2 − δ̄),

f (λ1 − δ̄) if a < λ1 − δ̄,

f (λ2 + δ̄) if a > λ2 + δ̄.

From the above, we know that f̄ is Lipschitz continuous, which means there exists a scalar κ > 0 such that Lip f̄ (a) ≤ κ for
all a ∈ R. Since C is compact, by Lemma 3.4, there exist continuously differentiable functions f ν

: R → R, ν = 1, 2, . . . ,
converging uniformly to f̄ and satisfying(f ν)′(a)

 ≤ κ, ∀a ∈ C, ∀ν.

On the other hand, from Lemma 3.1, there exists a δ such that C contains all spectral values of w ∈ B(x, δ). Moreover, for
any w ∈ B(x, δ) with spectral factorization w = µ1u(1)

+ µ2u(2), by direct computation, we have(f ν)c(w) − f c(w)
2

= sin2 θ |f ν(µ1) − f (µ2)|
2
+ cos2 θ |f ν(µ2) − f (µ2)|

2.

This together with f ν converging uniformly to f on C implies that (f ν)c converges uniformly to f c on B(x, δ).
Next, we explain that ∥∇(f ν)c(w)∥ is uniformly bounded. Indeed, for w2 = 0, from Eq. (23) we have ∥∇(f ν)c(w)∥ =

|(f ν)′(w1)| ≤ κ . For general w2 ≠ 0, it is not hard to check ∥∇(f ν)c(w)∥ ≤ M for some uniform bound M ≥ κ on the set C
by using Eq. (22).
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Fix any y, z ∈ B(x, δ). Since (f ν)c converges uniformly to f c, for any ϵ > 0 there exists an integer ν0 such that for all
ν ≥ ν0 we have

∥(f ν)c(w) − f c(w)∥ ≤ ϵ∥y − z∥ ∀w ∈ B(x, δ).

Note that f ν is continuously differentiable, Theorem 3.4 implies (f ν)c is also continuously differentiable. Then, by the fact
that ∥∇(f ν)c(w)∥ is uniform bounded by M and the Mean Value Theorem for continuously differentiable functions, we
obtainf c(y) − f c(z)

 =
f c(y) − (f ν)c(y) + (f ν)c(y) − (f ν)c(z) + (f ν)c(z) − f c(z)


≤

f c(y) − (f ν)c(y)
 +

(f ν)c(y) − (f ν)c(z)
 +

(f ν)c(z) − f c(z)


≤ 2ϵ∥y − z∥ +

 1

0
∇(f ν)c(z + t(y − z))(y − z)dt


≤ (M + 2ϵ)∥y − z∥.

This shows that f c is strictly continuous at x.
‘‘⇒’’ Suppose that f c is strictly continuous at xwith eigenvalues λ1 and λ2 and spectral vectors u(1) and u(2). This means

there exist δ and M such that for y, z ∈ B(x, δ), we havef c(y) − f c(z)
 ≤ M∥y − z∥.

For any i ∈ {1, 2} and any a, b ∈ [λi − δ, λi + δ], denote

y := x + (a − λi)u(i), z := x + (b − λi)u(i).

Then, ∥y − x∥ = |a − λi|∥u(i)
∥ ≤ δ and ∥z − x∥ = |b − λi|∥u(i)

∥ ≤ δ. Thus,

|f (b) − f (a)| ·
u(i)

 =
f c(y) − f c(z)

 ≤ M∥y − z∥

which says that f is strictly continuous at λ1 and λ2 because ∥u(1)
∥ = sin θ and

u(2)
 = cos θ .

(b) This is the immediate consequence of part (a). �

4. Semismoothness property

This section is devoted to presenting a semismooth property between f and f c. As mentioned earlier, Lemma 2.1 will be
employed frequently in our analysis.

Theorem 4.1. For any f : R → R, f c is semismooth at x ∈ Rn with spectral values λ1, λ2 if and only if f is semismooth
at λ1, λ2.

Proof. ‘‘⇒’’ Suppose f c is semismooth, then f c is strictly continuous and directionally differentiable. By Theorem 3.2 and
Theorem 3.5, f is strictly continuous and directionally differentiable. Now, for any α ∈ R and any η ∈ R such that f
is differentiable at α + η, Theorem 3.2 yields that f c is differentiable at x + h, where x := (α, 0) ∈ R × Rn−1 and
h := (η, 0) ∈ R × Rn−1. Hence, we can choose the same spectral vectors for x + h = (α + η, 0) and x = (α, 0) such
that 

f c(x + h) = f (α + η)u(1)
+ f (α + η)u(2),

f c(x) = f (α)u(1)
+ f (α)u(2).

Since f c is semismooth, by Lemma 2.1, we know

f c(x + h) − f c(x) − ∇f c(x + h)h = o(∥h∥). (24)

On the other hand, Eq. (23) yields ∇f c(x + h)h = f ′(α + η)Ih =

f ′(α + η)η, 0


. Plugging this into Eq. (24) yields

f (α + η) − f (α) − f ′(α + η)η = o(|η|). Thus, by Lemma 2.1 again, it follows that f is semismooth at α. Since α is arbitrary,
f is semismooth.

‘‘⇐’’ Suppose f is semismooth, then f is strictly continuous and directionally differentiable. By Theorem 3.2 and
Theorem 3.5, f c is strictly continuous and directionally differentiable. For any x = (x1, x2) ∈ R × Rn and h = (h1, h2) ∈

R × Rn such that f c is differentiable at x + h, we will verify that

f c(x + h) − f c(x) − ∇f c(x + h)h = o(∥h∥).

Case (i). If x2 ≠ 0, let λi be the spectral values of x and u(i) be the associated spectral vectors. We denote x + h by z for
convenience, i.e., z := x + h and letmi be the spectral values of z with the associated spectral vectors v(i). Hence, we have

f c(x) = f (λ1)u(1)
+ f (λ2)u(2),

f c(x + h) = f (m1)v
(1)

+ f (m2)v
(2).



170 Y.-L. Chang et al. / Nonlinear Analysis 85 (2013) 160–173

Suppose now f c is differentiable at z. From (20), we know

∇f c(x + h) =

 b
czT2
∥z2∥

cz2
∥z2∥

aI + (b̄ − a)
z2zT2
∥z2∥2

 ,

where

a =
f (m2) − f (m1)

m2 − m1
,

b = f ′(m1) sin2 θ + f ′(m2) cos2 θ,

b̄ = f ′(m1) cos2 θ + f ′(m2) sin2 θ,

c =

f ′(m2) − f ′(m1)


sin θ cos θ.

With this, we can write out f c(x+ h)− f c(x)−∇f c(x+ h)h := (Ξ1, Ξ2) where Ξ1 ∈ R and Ξ2 ∈ Rn−1. Since the expansion
is very long, for simplicity, we denote Ξ1 to be the first component and Ξ2 to be the second component of the expansion.
We will show that Ξ1 and Ξ2 are both o(∥h∥). First, we compute the first component Ξ1:

Ξ1 = sin2 θ


f (m1) − f (λ1) − f ′(m1)


h1 − cot θ

zT2 h2

∥z2∥


+ cos2 θ


f (m2) − f (λ2) − f ′(m2)


h1 + tan θ

zT2 h2

∥z2∥


= sin2 θ


f (m1) − f (λ1) − f ′(m1) (h1 − cot θ(∥z2∥ − ∥x2∥)) + o(∥h∥)


+ cos2 θ


f (m2) − f (λ2) − f ′(m2) (h1 + tan θ(∥z2∥ − ∥x2∥)) + o(∥h∥)


= o (h1 − (∥z2∥ − ∥x2∥)) + o(∥h∥) + o (h1 + (∥z2∥ − ∥x2∥)) + o(∥h∥).

In the above expression of Ξ1, the third equality is obtained by the following:

zT2 h2

∥z2∥
=

zT2 (z2 − x2)
∥z2∥

= ∥z2∥ −
∥z2∥∥x2∥

∥z2∥
cosα

= ∥z2∥ − ∥x2∥

1 + O(α2)


= ∥z2∥ − ∥x2∥


1 + O(∥h∥2)


= ∥z2∥ − ∥x2∥ (1 + o(∥h∥))

where α is the angle between x2 and z2 and note that z2 − x2 = h2 gives O(α2) = O(∥h∥2). In addition, the last equality in
the expression of Ξ1 holds because f is semismooth and

mi − λi = h1 + (−1)i(tan θ)(−1)i(∥z2∥ − ∥x2∥).

On the other hand, due toh1 + (−1)i(tan θ)(−1)i(∥z2∥ − ∥x2∥)
 ≤ |h1| + M∥z2 − x2∥ ≤ M(|h1| + ∥h2∥)

where M = max{tan θ, cot θ} ≥ 1, we observe that when ∥h∥ → 0,

|h1| + (−1)i(tan θ)(−1)i(∥z2∥ − ∥x2∥) → 0

|h1| + (−1)i(tan θ)(−1)i(∥z2∥ − ∥x2∥) = O(∥h∥).

Thus, we obtain o

h1 + (−1)i(tan θ)(−1)i(∥z2∥ − ∥x2∥)


= o(∥h∥), which implies that the first component Ξ1 is o(∥h∥).

Now we consider the second component Ξ2:

Ξ2 = − sin θ cos θ


f (m1)

z2
∥z2∥

− f (m2)
z2

∥z2∥
− f (λ1)

x2
∥x2∥

+ f (λ2)
x2

∥x2∥


− sin θ cos θ


f ′(m2) − f ′(m1)

 z2h1

∥z2∥
−

f (m2) − f (m1)

m2 − m1
h2

−


f ′(m2) sin2 θ − f ′(m1) cos2 θ −

f (m2) − f (m1)

m2 − m1


z2zT2 h2

∥z2∥2

= − sin θ cos θ


f (m1)

z2
∥z2∥

− f (λ1)
x2

∥x2∥
− f ′(m1)

z2h1

∥z2∥

−
f (m1)

sin θ cos θ(m2 − m1)
h2 +


f ′(m1) cot θ +

f (m1)

sin θ cos θ(m2 − m1)


z2zT2 h2

∥z2∥2


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+ sin θ cos θ


f (m2)

z2
∥z2∥

− f (λ2)
x2

∥x2∥
− f ′(m2)

z2h1

∥z2∥

−
f (m2)

sin θ cos θ(m2 − m1)
h2 −


f ′(m2) tan θ +

f (m2)

sin θ cos θ(m2 − m1)


z2zT2 h2

∥z2∥2


:= Ξ

(1)
2 + Ξ

(2)
2

where Ξ
(1)
2 denotes the first half part while Ξ

(2)
2 denotes the second half part. We will show that both Ξ

(1)
2 and Ξ

(2)
2 are

o(∥h∥). For symmetry, it is enough to show that Ξ
(1)
2 is o(∥h∥). From the observations that (m2 −m1) sin θ cos θ = ∥z2∥ we

have the following:

Ξ
(1)
2 = − sin θ cos θ


f (m1)

z2
∥z2∥

− f (λ1)
x2

∥x2∥
− f ′(m1)

z2h1

∥z2∥

−
f (m1)

sin θ cos θ(m2 − m1)
h2 +


f ′(m1) cot θ +

f (m1)

sin θ cos θ(m2 − m1)


z2zT2 h2

∥z2∥2


= − sin θ cos θ


f (m1) − f (λ1) − f ′(m1)


h1 − cot θ

zT2 h2

∥z2∥


z2

∥z2∥

+


f (m1) − f (λ1)

 
−h2

∥z2∥
+

z2zT2 h2

∥z2∥3


+ f (λ1)


z2

∥z2∥
−

x2
∥x2∥

−
h2

∥z2∥
+

z2zT2 h2

∥z2∥3


.

Following the same arguments as for the first component Ξ1, it can be seen that

f (m1) − f (λ1) − f ′(m1)


h1 − cot θ

zT2 h2

∥z2∥


= o(∥h∥).

Sincem1 − λ1 = h1 − cot θ(∥z2∥ − ∥x2∥) = O(∥h∥) and f is strictly continuous, it follows that f (m1) − f (λ1) = O(∥h∥). In
addition, −h2/∥z2∥ + z2zT2 h2/∥z2∥3

= O(∥h∥). Hence,

(f (m1) − f (λ1))


−h2

∥z2∥
+

z2zT2 h2

∥z2∥3


= O(∥h∥2) = o(∥h∥).

Therefore, it remains to prove that the last part of Ξ (1)
2 is o(∥h∥). Indeed, with z2 = x2 + h2, we have

z2
∥z2∥

−
x2

∥x2∥
−

h2

∥z2∥
+

z2zT2 h2

∥z2∥3
= x2


1

∥z2∥
−

1
∥x2∥

+
zT2 h2

∥z2∥3


+ O(∥h∥2).

Let θ(z2) := −1/∥z2∥, then we compute ∇θ(z2) = −
−1

∥z2∥2
z2

∥z2∥
=

z2
∥z2∥3

which implies

1
∥z2∥

−
1

∥x2∥
+

zT2 h2

∥z2∥3
= θ(x2) − θ(z2) − ∇θ(z2)(x2 − z2) = O(∥h∥2),

where the last equality is from first Taylor approximation. Thus, we obtain

f (λ1)


z2

∥z2∥
−

x2
∥x2∥

−
h2

∥z2∥
+

z2zT2 h2

∥z2∥3


= o(∥h∥).

From all the above, we therefore verified that (24) is satisfied, which says f c is semismooth under case (i).
Case (ii). If x2 = 0,we need to discuss two subcases. First subcase, consider h2 ≠ 0. Then, x = (x1, 0) and x+h = (x1+h1, h2).
We can choose u(1)

=


sin2 θ, − sin θ cos θ

h2
∥h2∥


and u(2)

=


sin2 θ, sin θ cos θ

h2
∥h2∥


such that x = λu(1)

+ λu(2) and

x + h = m1u(1)
+ m2u(2) with λ = x1 andmi = x1 + h1 + (−1)i(tan θ)(−1)i

∥h2∥, i = 1, 2. Hence,
f c(x) = f (x1)u(1)

+ f (x1)u(2),

f c(x + h) = f (m1)u(1)
+ f (m2)u(2).

Beside, from Eq. (22), we know

∇f c(x + h)h = f ′(m1)


h1 − cot θ

hT
2h2

∥h2∥


u(1)

+ f ′(m2)


h1 + tan θ

hT
2h2

∥h2∥


u(2)

+
f (m2) − f (m1)

m2 − m1


I −

h2hT
2

∥h2∥
2


h2.
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Note that hT
2h2 = ∥h2∥

2, hence

I −

h2hT2
∥h2∥2


h2 = 0. Therefore, we have

∇f c(x + h)h = f ′(m1)(h1 − cot θ∥h2∥)u(1)
+ f ′(m2)(h1 + tan θ∥h2∥)u(2).

Combining all of these, we obtain

f soc(x + h) − f soc(x) − ∇f soc(x + h)h =

f (m1) − f (x1) − f ′(m1)(h1 − cot θ∥h2∥)


u(1)

+

f (m2) − f (x1) − f ′(m2)(h1 + tan θ∥h2∥)


u(2).

Since f is semismooth at x1 and mi − x1 = h1 + (−1)i(tan θ)(−1)i
∥h2∥, we have f (mi) − f (x1) − f ′(mi)(h1 + (−1)i

(tan θ)(−1)i
∥h2∥) = o(∥h∥). With u(1) and u(2) being uniformly bounded, the above expression implies that (24) is satisfied.

Hence, f c is semismooth under this subcase.
Second, for the subcase of h2 = 0, we know x = (x1, 0) and x + h = (x1 + h1, 0). We can choose u(1)

= (sin2 θ,
− sin θ cos θw) and u(2)

=

cos2 θ, sin θ cos θw


with ∥w∥ = 1 such that x = λu(1)

+ λu(2) and x + h = mu(1)
+ mu(2),

where λ = x1 andm = x1 + h1. Hence,
f c(x) = f (x1)u(1)

+ f (x1)u(2)

f c(x + h) = f (x1 + h1)u(1)
+ f (x1 + h1)u(2).

In addition, (23) says ∇f c(x + h) = f ′(x1 + h1)I , and hence ∇f c(x + h)h = (f ′(x1 + h1)h1, 0). Combining all of these, we
obtain

f c(x + h) − f c(x) − ∇f soc(x + h)h =

f (x1 + h1)u(1)

+ f (x1 + h1)u(2)
−


f (x1)u(1)

+ f (x1)u(2)
−


f ′(x1 + h1)h1, 0


=


f (x1 + h1) − f (x1) − f ′(x1 + h1)h1, 0


= (o(|h1|), 0)

where the third equality holds since f is semismooth and by Lemma 2.1. When h goes to zero, it implies h1 goes to zero,
so the above expression implies that (24) is satisfied which says f c is semismooth in this subcase. From all the above, we
proved that if f is semismooth then f c is semismooth. �

5. Conclusion

In this paper, we have proved the following results of vector-valued functions associated with the circular cone, which
are useful for designing and analyzing smooth and nonsmooth methods for solving circular cone problems.

(a) f c is continuous at x ∈ Rn with spectral values λ1, λ2 if and only if f is continuous at λ1, λ2.
(b) f c is directionally differentiable at x ∈ Rn with spectral values λ1, λ2 if and only if f is directionally differentiable at

λ1, λ2.
(c) f c is differentiable at x ∈ Rn with spectral values λ1, λ2 if and only if f is differentiable at λ1, λ2.
(d) f c is continuously differentiable at x ∈ Rn with spectral values λ1, λ2 if and only if f is continuously differentiable at λ1,

λ2.
(e) f c is strictly continuous at x ∈ Rn with spectral values λ1, λ2 if and only if f is strictly continuous at λ1, λ2.
(f) f c is Lipschitz continuous (with respect to ∥ · ∥) with constant κ if and only if f is Lipschitz continuous with constant κ .
(g) f c is semismooth at an x ∈ Rn with spectral values λ1, λ2 if and only if f is semismooth λ1, λ2.

Our proofs involve more algebraic computations in general. Nonetheless, our proofs come from the straightforward,
intuitive thinking and basic definitions as well as the simple structure of the circular cone. We believe that the intuitive way
we presented here would be helpful for analysis of other merit functions used for solving circular cone problems. That is
one of our future research interests.
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