
Research Article
The Vector-Valued Functions Associated with Circular Cones

Jinchuan Zhou1 and Jein-Shan Chen2,3

1 Department of Mathematics, School of Science, Shandong University of Technology, Zibo, Shandong 255049, China
2Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan
3Mathematics Division, National Center for Theoretical Sciences, Taipei, Taiwan

Correspondence should be addressed to Jein-Shan Chen; jschen@math.ntnu.edu.tw

Received 6 April 2014; Accepted 15 May 2014; Published 22 June 2014

Academic Editor: Jen-Chih Yao

Copyright © 2014 J. Zhou and J.-S. Chen. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The circular cone is a pointed closed convex cone having hyperspherical sections orthogonal to its axis of revolution about which
the cone is invariant to rotation, which includes second-order cone as a special case when the rotation angle is 45 degrees. LetL𝜃

denote the circular cone in R𝑛. For a function 𝑓 from R to R, one can define a corresponding vector-valued function 𝑓L𝜃 on R𝑛

by applying 𝑓 to the spectral values of the spectral decomposition of 𝑥 ∈ R𝑛 with respect toL𝜃. In this paper, we study properties
that this vector-valued function inherits from 𝑓, including Hölder continuity, 𝐵-subdifferentiability, 𝜌-order semismoothness, and
positive homogeneity. These results will play crucial role in designing solution methods for optimization problem involved in
circular cone constraints.

1. Introduction

The circular cone is a pointed closed convex cone having
hyperspherical sections orthogonal to its axis of revolution
about which the cone is invariant to rotation, which includes
second-order cone as a special case when the rotation angle is
45 degrees. LetL𝜃 denote the circular cone in R𝑛. Then, the
𝑛-dimensional circular coneL𝜃 is expressed as

L𝜃 := {𝑥 = (𝑥1, 𝑥2)
𝑇
∈ R ×R

𝑛−1 | cos 𝜃 ‖𝑥‖ ≤ 𝑥1} . (1)

The application of L𝜃 lies in engineering field, for example,
optimal grasping manipulation for multigingered robots;
see [1].

In our previous work [2], we have explored some impor-
tant features about circular cone, such as characterizing its
tangent cone, normal cone, and second-order regularity. In
particular, the spectral decomposition associated with L𝜃

was discovered; that is, for any 𝑧 = (𝑧1, 𝑧2) ∈ R × R𝑛−1, one
has

𝑧 = 𝜆1 (𝑧) 𝑢
1

𝑧
+ 𝜆2 (𝑧) 𝑢

2

𝑧
, (2)

where
𝜆1 (𝑧) = 𝑧1 −

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩 ctan 𝜃,

𝜆2 (𝑧) = 𝑧1 +
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩 tan 𝜃,

𝑢1
𝑧
=

1

1 + ctan2𝜃
[
1 0
0 ctan 𝜃 ⋅ 𝐼

] [
1

−𝑧2
] ,

𝑢2
𝑧
=

1

1 + tan2𝜃
[
1 0
0 tan 𝜃 ⋅ 𝐼

] [
1
𝑧2

] ,

(3)

with 𝑧2 := 𝑧2/‖𝑧2‖ if 𝑧2 ̸= 0, and 𝑧2 being any vector𝑤 ∈ R𝑛−1

satisfying ‖𝑤‖ = 1 if 𝑧2 = 0. With this spectral decomposition
(2), analogous to the so-called SOC-function 𝑓soc (see [3–
5]) and SDP-function 𝑓mat (see [6, 7]), we define a vector-
valued function associated with circular cone as below. More
specifically, for 𝑓 : R → R, we define 𝑓L𝜃 : R𝑛 → R𝑛 as

𝑓L𝜃 (𝑧) = 𝑓 (𝜆1 (𝑧)) 𝑢
1

𝑧
+ 𝑓 (𝜆2 (𝑧)) 𝑢

2

𝑧
. (4)

It is not hard to see that 𝑓L𝜃 is well-defined for all 𝑧. In
particular, if 𝑧2 = 0, then

𝑓L𝜃 (𝑧) = [
𝑓 (𝑧1)

0
] . (5)
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Note that when 𝜃 = 45∘,L𝜃 reduces to the second-order
cone (SOC) and the vector-valued function𝑓L𝜃 defined as in
(4) corresponds to the SOC-function 𝑓soc given by

𝑓soc
(𝑥) = 𝑓 (𝜆1 (𝑥)) 𝑢

(1)

𝑥
+ 𝑓 (𝜆2 (𝑥)) 𝑢

(2)

𝑥
,

∀𝑥 = (𝑥1, 𝑥2) ∈ R ×R
𝑛−1,

(6)

where 𝜆𝑖(𝑥) = 𝑥1 + (−1)𝑖‖𝑥2‖ and 𝑢(𝑖)
𝑥

= (1/2)(1, (−1)𝑖𝑥2)
𝑇.

It is well known that the vector-valued function𝑓soc asso-
ciated with second-order cone and matrix-valued function
𝑓mat associated with positive semidefinite cone play crucial
role in the theory and numerical algorithm for second-
order cone programming and semidefinite programming,
respectively. In particular, many properties of 𝑓soc and 𝑓mat

are inherited from 𝑓, such as continuity, strictly continuity,
directional differentiability, Fréchet differentiability, continu-
ous differentiability, and semismoothness. It should be men-
tioned that, compared with second-order cone and positive
semidefinite cone, L𝜃 is a nonsymmetric cone. Hence a
natural question arises whether these properties are still true
for 𝑓L𝜃 . In [1], the authors answer the questions from the
following aspects:

(a) 𝑓L𝜃 is continuous at 𝑧 ∈ R𝑛 if and only if 𝑓 is contin-
uous at 𝜆𝑖(𝑧) for 𝑖 = 1, 2;

(b) 𝑓L𝜃 is directionally differentiable at 𝑧 ∈ R𝑛 if and
only if 𝑓 is directionally differentiable at 𝜆𝑖(𝑧) for
𝑖 = 1, 2;

(c) 𝑓L𝜃 is (Fréchet) differentiable at 𝑧 ∈ R𝑛 if and only if
𝑓 is (Fréchet) differentiable at 𝜆𝑖(𝑧) for 𝑖 = 1, 2;

(d) 𝑓L𝜃 is continuously differentiable at 𝑧 ∈ R𝑛 if and
only if 𝑓 is continuously continuous at 𝜆𝑖(𝑧) for 𝑖 =
1, 2;

(e) 𝑓L𝜃 is strictly continuous at 𝑧 ∈ R𝑛 if and only if 𝑓 is
strictly continuous at 𝜆𝑖(𝑧) for 𝑖 = 1, 2;

(f) 𝑓L𝜃 is Lipschitz continuouswith constant 𝑘 > 0 if and
only if 𝑓 is Lipschitz continuous with constant 𝑘 > 0;

(g) 𝑓L𝜃 is semismooth at 𝑧 if and only if𝑓 is semismooth
at 𝜆𝑖(𝑧) for 𝑖 = 1, 2.

In this paper, we further study some other properties
associated with 𝑓L𝜃 , such as Hölder continuity, 𝜌-order
semismoothness, directionally differentiability in the Hada-
mard sense, the characterization of B-subdifferential, positive
homogeneity, and boundedness. Of course, one may wonder
whether 𝑓soc and 𝑓L𝜃 always share the same properties.
Indeed, they do not. There exists some property that holds
for 𝑓soc and 𝑓 but fails for 𝑓L𝜃 and 𝑓. A counterexample is
presented in the final section.

To end the third section, we briefly review our notations
and some basic concepts which will be needed for subsequent
analysis. First, we denote by R𝑛 the space of 𝑛-dimensional
real column vectors and let 𝑒 = (1, 0, . . . , 0) ∈ R𝑛. Given
𝑥, 𝑦 ∈ R𝑛, the Euclidean inner product and norm are ⟨𝑥, 𝑦⟩ =

𝑥𝑇𝑦 and ‖𝑥‖ = √𝑥𝑇𝑥. For a linear mapping 𝐻 : R𝑛 → R𝑚,

its operator norm is ‖𝐻‖ := max‖𝑥‖=1‖𝐻𝑥‖. For 𝛼 ∈ R and
𝑠 ∈ R𝑛, we write 𝑠 = 𝑂(𝛼) (resp., 𝑠 = 𝑜(𝛼)) to means
‖𝑠‖/|𝛼| is uniformly bounded (resp., tends to zero) as 𝛼 → 0.
In addition, given a function 𝐹 : R𝑛 → R𝑚, we say the
following:

(a) 𝐹 is Hölder continuous with exponent 𝛼 ∈ (0, 1], if

[𝐹]𝛼 := sup
𝑥 ̸= 𝑦

󵄩󵄩󵄩󵄩𝐹 (𝑥) − 𝐹 (𝑦)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩
𝛼 < +∞; (7)

(b) 𝐹 is directionally differentiable at 𝑥 ∈ R𝑛 in theHada-
mard sense, if the directional derivative𝐹󸀠(𝑥; 𝑑) exists
for all 𝑑 ∈ R𝑛 and

𝐹󸀠 (𝑥; 𝑑) = lim
𝑑
󸀠
→𝑑
𝑡↓0

𝐹 (𝑥 + 𝑡𝑑󸀠) − 𝐹 (𝑥)

𝑡
; (8)

(c) 𝐹 is 𝐵-differentiable (Bouligand-differentiable) at 𝑥,
if 𝐹 is Lipschitz continuous near 𝑥 and directionally
differentiable at 𝑥;

(d) if 𝐹 is strictly continuous (locally Lipschitz continu-
ous), the generalized Jacobian 𝜕𝐹(𝑥) is the convex hull
of the 𝜕𝐵𝐹(𝑥), where

𝜕𝐵𝐹 (𝑥) := { lim
𝑧→𝑥

∇𝐹 (𝑧) | 𝑧 ∈ 𝐷𝐹} , (9)

where𝐷𝐹 denotes the set of all differentiable points of
𝐹;

(e) 𝐹 is semismooth at 𝑥, if 𝐹 is strictly continuous near
𝑥, directionally differentiable at 𝑥, and for any 𝑉 ∈
𝜕𝐹(𝑥 + ℎ),

𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) − 𝑉ℎ = 𝑜 (‖ℎ‖) ; (10)

(f) 𝐹 is 𝜌-order semismooth at 𝑥 (𝜌 > 0) if 𝐹 is semi-
smooth at 𝑥 and for any 𝑉 ∈ 𝜕𝐹(𝑥 + ℎ),

𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) − 𝑉ℎ = 𝑂 (‖ℎ‖
1+𝜌) ; (11)

in particular, we say 𝐹 is strongly semismooth if it is
1-order semismooth;

(g) 𝐹 is positively homogeneous with exponent 𝛼 > 0, if

𝐹 (𝑘𝑥) = 𝑘𝛼𝐹 (𝑥) , ∀𝑥 ∈ R
𝑛, 𝑘 ≥ 0; (12)

(h) 𝐹 is bounded if there exists a positive scalar 𝑀 > 0
such that

‖𝐹 (𝑥)‖ ≤ 𝑀, ∀𝑥 ∈ R
𝑛. (13)
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2. Directional Differentiability,
Strict Continuity, Hölder Continuity,
and 𝐵-Differentiability

This section is devoted to study the properties of directional
differentiability, strict continuity, and Hölder continuity. The
relationship of directional differentiability between 𝑓L𝜃 and
𝑓 has been given in [1, Theorem 3.2] without giving the
exact formula of directional differentiability. Nonetheless,
such formulas can be easily obtained from its proof. Here we
just list them as follows.

Lemma 1. Let 𝑓 : R → R and 𝑓L𝜃 be defined as in (4).
Then, 𝑓L𝜃 is directionally differentiable at 𝑧 if and only if 𝑓 is
directionally differentiable at 𝜆𝑖(𝑧) for 𝑖 = 1, 2. Moreover, for
any ℎ = (ℎ1, ℎ2) ∈ R ×R𝑛−1, we have

(𝑓L𝜃)
󸀠

(𝑧; ℎ) = [
𝑓󸀠 (𝑧1; ℎ1)

0
] = 𝑓󸀠 (𝑧1; ℎ1) 𝑒, (14)

when 𝑧2 = 0 and ℎ2 = 0. Consider

(𝑓L𝜃)
󸀠

(𝑧; ℎ) =
1

1 + ctan2𝜃
𝑓󸀠 (𝑧1; ℎ1 −

󵄩󵄩󵄩󵄩ℎ2
󵄩󵄩󵄩󵄩 ctan 𝜃)

× [
1 0
0 ctan 𝜃 ⋅ 𝐼

]
[
[

[

1

−
ℎ2
󵄩󵄩󵄩󵄩ℎ2

󵄩󵄩󵄩󵄩

]
]

]

+
1

1 + tan2𝜃
𝑓󸀠 (𝑧1; ℎ1 +

󵄩󵄩󵄩󵄩ℎ2
󵄩󵄩󵄩󵄩 tan 𝜃)

× [
1 0
0 tan 𝜃 ⋅ 𝐼

]
[
[

[

1

ℎ2
󵄩󵄩󵄩󵄩ℎ2

󵄩󵄩󵄩󵄩

]
]

]

,

(15)

when 𝑧2 = 0 and ℎ2 ̸= 0; otherwise,

(𝑓L𝜃)
󸀠

(𝑧; ℎ) =
1

1 + ctan2𝜃
𝑓󸀠 (𝜆1 (𝑧) ; ℎ1 −

𝑧𝑇
2
ℎ2

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩
ctan 𝜃)

× [
1 0
0 ctan 𝜃 ⋅ 𝐼

][

[

1

−
𝑧2
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩

]

]

−
ctan 𝜃

1 + ctan2𝜃
𝑓 (𝜆1 (𝑧))

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩

𝑀𝑧2
ℎ

+
1

1 + tan2𝜃
𝑓󸀠 (𝜆2 (𝑧) ; ℎ1 +

𝑧𝑇
2
ℎ2

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩
tan 𝜃)

× [
1 0
0 tan 𝜃 ⋅ 𝐼

][

[

1
𝑧2
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩

]

]

+
tan 𝜃

1 + tan2𝜃
𝑓 (𝜆2 (𝑧))

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩

𝑀𝑧2
ℎ,

(16)

where

𝑀𝑧2
:=

[
[

[

0 0

0 𝐼 −
𝑧2𝑧

𝑇

2

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩
2

]
]

]

. (17)

Lemma2. Let𝑓 : R → R and𝑓L𝜃 be defined as in (4).Then,
the following hold.

(a) 𝑓L𝜃 is differentiable at 𝑧 if and only if𝑓 is differentiable
at 𝜆𝑖(𝑧) for 𝑖 = 1, 2. Moreover, if 𝑧2 = 0, then

∇𝑓L𝜃 (𝑧) = 𝑓󸀠 (𝑧1) 𝐼; (18)

otherwise,

∇𝑓L𝜃 (𝑧) =

[
[
[
[
[

[

𝜉
󰜚𝑧𝑇

2

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩

󰜚𝑧2
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩
𝑎𝐼 + (𝜂 − 𝑎)

𝑧2𝑧
𝑇

2

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩
2

]
]
]
]
]

]

, (19)

where

𝑎 =
tan 𝜃

1 + tan2𝜃
𝑓 (𝜆2 (𝑧))

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩

−
ctan 𝜃

1 + ctan2𝜃
𝑓 (𝜆1 (𝑧))

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩

=
𝑓 (𝜆2 (𝑧)) − 𝑓 (𝜆1 (𝑧))

𝜆2 (𝑧) − 𝜆1 (𝑧)
,

𝜉 =
𝑓󸀠 (𝜆1 (𝑧))

1 + ctan2𝜃
+

𝑓󸀠 (𝜆2 (𝑧))

1 + tan2𝜃
,

𝜂 = 𝜉 − 󰜚 ( ctan 𝜃 − tan 𝜃) ,

󰜚 = −
ctan 𝜃

1 + ctan2𝜃
𝑓󸀠 (𝜆1 (𝑧)) +

tan 𝜃

1 + tan2𝜃
𝑓󸀠 (𝜆2 (𝑧)) .

(20)

(b) 𝑓L𝜃 is continuously differentiable (smooth) at 𝑧 if and
only if𝑓 is continuously differentiable (smooth) at𝜆𝑖(𝑧)
for 𝑖 = 1, 2.

Note that the formula of gradient ∇𝑓L𝜃 given in [1,
Theorem 3.3] and Lemma 2 is the same by using the following
facts:

1

1 + ctan2𝜃
= sin2𝜃, 1

1 + tan2𝜃
= cos2𝜃,

ctan 𝜃

1 + ctan2𝜃
=

tan 𝜃

1 + tan2𝜃
= sin 𝜃 cos 𝜃.

(21)

The following result indicating that 𝜆𝑖 is Lipschitz contin-
uous on R𝑛 for 𝑖 = 1, 2 will be used in proving the Lipschitz
continuity between 𝑓L𝜃 and 𝑓.

Lemma 3. Let 𝑧, 𝑦 ∈ R𝑛 with spectral values 𝜆𝑖(𝑧), 𝜆𝑖(𝑦),
respectively. Then, we have

󵄨󵄨󵄨󵄨𝜆𝑖 (𝑧) − 𝜆𝑖 (𝑦)
󵄨󵄨󵄨󵄨 ≤ √2max {tan 𝜃, ctan 𝜃}

󵄩󵄩󵄩󵄩𝑧 − 𝑦
󵄩󵄩󵄩󵄩 ,

𝑓𝑜𝑟 𝑖 = 1, 2.
(22)
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Proof. First, we observe that

󵄨󵄨󵄨󵄨𝜆1 (𝑧) − 𝜆1 (𝑦)
󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨𝑧1 −

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩 ctan 𝜃 − 𝑦1 +

󵄩󵄩󵄩󵄩𝑦2
󵄩󵄩󵄩󵄩 ctan 𝜃

󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝑧1 − 𝑦2

󵄨󵄨󵄨󵄨 +
󵄩󵄩󵄩󵄩𝑧2 − 𝑦2

󵄩󵄩󵄩󵄩 ctan 𝜃

≤ max {1, ctan 𝜃} (
󵄨󵄨󵄨󵄨𝑧1 − 𝑦1

󵄨󵄨󵄨󵄨 +
󵄩󵄩󵄩󵄩𝑧2 − 𝑦2

󵄩󵄩󵄩󵄩)

≤ max {1, ctan 𝜃}√2√
󵄨󵄨󵄨󵄨𝑧1 − 𝑦1

󵄨󵄨󵄨󵄨
2
+
󵄩󵄩󵄩󵄩𝑧2 − 𝑦2

󵄩󵄩󵄩󵄩
2

= max {1, ctan 𝜃}√2
󵄩󵄩󵄩󵄩𝑧 − 𝑦

󵄩󵄩󵄩󵄩 .

(23)

Applying the similar argument to 𝜆2 yields

󵄨󵄨󵄨󵄨𝜆2 (𝑧) − 𝜆2 (𝑦)
󵄨󵄨󵄨󵄨 ≤ max {1, tan 𝜃}√2

󵄩󵄩󵄩󵄩𝑧 − 𝑦
󵄩󵄩󵄩󵄩 . (24)

Then, the desired result follows from the fact that max{1,
ctan 𝜃, tan 𝜃}max{ctan 𝜃, tan 𝜃}.

Theorem 4. Let 𝑓 : R → R and 𝑓L𝜃 be defined as in (4).
Then,𝑓L𝜃 is strictly continuous (local Lipschitz continuity) at 𝑧
if and only if𝑓 is strictly continuous (local Lipschitz continuity)
at 𝜆𝑖(𝑧) for 𝑖 = 1, 2.

Proof. “⇐” Suppose that 𝑓 is strictly continuous at 𝜆𝑖(𝑧), for
𝑖 = 1, 2; that is, there exist 𝑘𝑖 > 0 and 𝛿𝑖 > 0, for 𝑖 = 1, 2 such
that

󵄨󵄨󵄨󵄨𝑓 (𝜏) − 𝑓 (𝜁)
󵄨󵄨󵄨󵄨 ≤ 𝑘𝑖

󵄨󵄨󵄨󵄨𝜏 − 𝜁
󵄨󵄨󵄨󵄨 ,

∀𝜏, 𝜁 ∈ [𝜆𝑖 (𝑧) − 𝛿𝑖, 𝜆𝑖 (𝑧) + 𝛿𝑖] , 𝑖 = 1, 2.
(25)

Let 𝛿 := min{𝛿1, 𝛿2} and𝐶 := [𝜆1(𝑧)−𝛿, 𝜆1(𝑧)+𝛿]∪ [𝜆2(𝑧)−

𝛿, 𝜆2(𝑧) + 𝛿]. Define

𝑓 (𝜏)

:=

{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{
{

𝑓 (𝜏) if 𝜏 ∈ 𝐶,

(1 − 𝑡) 𝑓 (𝜆1 (𝑧) + 𝛿)

+ 𝑡𝑓 (𝜆2 (𝑧) − 𝛿) if 𝜆1 (𝑧) + 𝛿 < 𝜆2 (𝑧) − 𝛿,

𝜏 = (1 − 𝑡) (𝜆1 (𝑧) + 𝛿)

+ 𝑡 (𝜆2 (𝑧) − 𝛿)

with 𝑡 ∈ (0, 1)

𝑓 (𝜆1 (𝑧) − 𝛿) if 𝜏 < 𝜆1 (𝑧) − 𝛿

𝑓 (𝜆2 (𝑧) + 𝛿) if 𝜏 > 𝜆2 (𝑧) + 𝛿.

(26)

Clearly, 𝑓 is Lipschitz continuous on R; that is, there exists
𝑘 > 0 such that lip𝑓(𝜏) ≤ 𝑘, for all 𝜏 ∈ R. Since 𝐶 := conv(𝐶)
is compact, according to [6, Lemma 4.5] or [5, Lemma 3],
there exist continuously differentiable functions𝑓V : R → R

for V = 1, 2, . . . converging uniformly to 𝑓 on 𝐶 such that

󵄨󵄨󵄨󵄨󵄨(𝑓
V)
󸀠
(𝜏)

󵄨󵄨󵄨󵄨󵄨 ≤ 𝑘 ∀𝜏 ∈ 𝐶, ∀V. (27)

Now, let := 𝛿/(√2max{tan 𝜃, ctan 𝜃}). Then, from Lemma 3,
we know that 𝐶 contains all spectral values of 𝑦 ∈ B(𝑧, 𝛿).
Therefore, for any 𝑤 ∈ B(𝑧, 𝛿), we have 𝜆𝑖(𝑤) ∈ 𝐶 for 𝑖 = 1, 2
and

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑓V)

L𝜃(𝑤) − 𝑓L𝜃(𝑤)
󵄩󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩[𝑓

V (𝜆1 (𝑤)) − 𝑓 (𝜆1 (𝑤))] 𝑢
1

𝑤

+ [𝑓V(𝜆2(𝑤)) − 𝑓(𝜆2(𝑤))] 𝑢2
𝑤

󵄩󵄩󵄩󵄩󵄩
2

= [𝑓V (𝜆1 (𝑤)) − 𝑓 (𝜆1 (𝑤))]
2󵄩󵄩󵄩󵄩󵄩𝑢

1

𝑤

󵄩󵄩󵄩󵄩󵄩
2

+ [𝑓V (𝜆2 (𝑤)) − 𝑓 (𝜆2 (𝑤))]
2󵄩󵄩󵄩󵄩󵄩𝑢

2

𝑤

󵄩󵄩󵄩󵄩󵄩
2

=
1

1 + ctan2𝜃
󵄨󵄨󵄨󵄨𝑓

V (𝜆1 (𝑤)) − 𝑓 (𝜆1 (𝑤))
󵄨󵄨󵄨󵄨
2

+
1

1 + tan2𝜃
󵄨󵄨󵄨󵄨𝑓

V(𝜆2(𝑤)) − 𝑓(𝜆2(𝑤))
󵄨󵄨󵄨󵄨
2
,

(28)

where we have used the facts that ‖𝑢1
𝑤
‖ = 1/√1 + ctan2𝜃,

‖𝑢2
𝑤
‖ = 1/√1 + tan2𝜃, and ⟨𝑢1

𝑤
, 𝑢2

𝑤
⟩ = 0. Since {𝑓V}

∞

V=1 con-
verges uniformly to 𝑓 on 𝐶, the above equations show that
{(𝑓V)

L𝜃}
∞

V=1 converges uniformly to𝑓L𝜃 onB(𝑧, 𝛿). If𝑤2 = 0,
then it follows from Lemma 2 that ∇(𝑓V)

L𝜃(𝑤) = (𝑓V)
󸀠
(𝑤1)𝐼.

Hence it follows from (27) that
󵄩󵄩󵄩󵄩󵄩󵄩
∇(𝑓V)

L𝜃 (𝑤)
󵄩󵄩󵄩󵄩󵄩󵄩
=

󵄨󵄨󵄨󵄨󵄨(𝑓
V)
󸀠
(𝑤1)

󵄨󵄨󵄨󵄨󵄨 ≤ 𝑘, (29)

since in this case 𝜆𝑖(𝑤) = 𝑤1 ∈ 𝐶. If 𝑤2 ̸= 0, then

∇(𝑓V)
L𝜃 (𝑤)

=
[
[
[
[

[

𝜉
󰜚𝑤𝑇

2

󵄩󵄩󵄩󵄩𝑤2

󵄩󵄩󵄩󵄩
󰜚𝑤2

󵄩󵄩󵄩󵄩𝑤2

󵄩󵄩󵄩󵄩
𝑎𝐼 + (𝜉 − 󰜚 (ctan 𝜃 − tan 𝜃) − 𝑎)

𝑤2𝑤
𝑇

2

󵄩󵄩󵄩󵄩𝑤2

󵄩󵄩󵄩󵄩
2

]
]
]
]

]

=
[
[
[
[

[

𝜉
󰜚𝑤𝑇

2

󵄩󵄩󵄩󵄩𝑤2

󵄩󵄩󵄩󵄩
󰜚𝑤2

󵄩󵄩󵄩󵄩𝑤2

󵄩󵄩󵄩󵄩
𝑎𝐼 + (𝜉 − 𝑎)

𝑤2𝑤
𝑇

2

󵄩󵄩󵄩󵄩𝑤2

󵄩󵄩󵄩󵄩
2

]
]
]
]

]

+
[
[

[

0 0

0 [−󰜚 (ctan 𝜃 − tan 𝜃)]
𝑤2𝑤

𝑇

2

󵄩󵄩󵄩󵄩𝑤2

󵄩󵄩󵄩󵄩
2

]
]

]

=
[
[
[
[

[

𝜉
󰜚𝑤𝑇

2

󵄩󵄩󵄩󵄩𝑤2

󵄩󵄩󵄩󵄩
󰜚𝑤2

󵄩󵄩󵄩󵄩𝑤2

󵄩󵄩󵄩󵄩
𝜉𝐼

]
]
]
]

]

+ (𝑎 − 𝜉)
[
[

[

0 0

0 𝐼 −
𝑤2𝑤

𝑇

2

󵄩󵄩󵄩󵄩𝑤2

󵄩󵄩󵄩󵄩
2

]
]

]

− 󰜚 (ctan 𝜃 − tan 𝜃)
[
[

[

0 0

0
𝑤2𝑤

𝑇

2

󵄩󵄩󵄩󵄩𝑤2

󵄩󵄩󵄩󵄩
2

]
]

]

,

(30)
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where 𝑎, 𝜉, 󰜚 are given as in (20) with 𝜆𝑖(𝑧) replaced by 𝜆𝑖(𝑤)
for 𝑖 = 1, 2 and 𝑓 replaced by 𝑓V. For simplicity of notations,
let us denote

𝐴 :=
[
[
[

[

𝜉
󰜚𝑤𝑇

2

󵄩󵄩󵄩󵄩𝑤2

󵄩󵄩󵄩󵄩󰜚𝑤2

󵄩󵄩󵄩󵄩𝑤2

󵄩󵄩󵄩󵄩
𝜉𝐼

]
]
]

]

+ (𝑎 − 𝜉)
[
[

[

0 0

0 𝐼 −
𝑤2𝑤

𝑇

2

󵄩󵄩󵄩󵄩𝑤2

󵄩󵄩󵄩󵄩
2

]
]

]

,

𝐵 := −󰜚 (ctan 𝜃 − tan 𝜃)
[
[

[

0 0

0
𝑤2𝑤

𝑇

2

󵄩󵄩󵄩󵄩𝑤2

󵄩󵄩󵄩󵄩
2

]
]

]

.

(31)

Note that

|𝑎| =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓V (𝜆2 (𝑤)) − 𝑓V (𝜆1 (𝑤))

𝜆2 (𝑤) − 𝜆1 (𝑤)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑘, (32)

where the inequality comes from the fact that 𝑓V is continu-
ously differentiable on 𝐶 and (27). Besides, we also note that

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑓V)
󸀠
(𝜆1 (𝑤))

1 + ctan2𝜃
+

(𝑓V)
󸀠
(𝜆2 (𝑤))

1 + tan2𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

1 + ctan2𝜃
󵄨󵄨󵄨󵄨󵄨(𝑓

V)
󸀠
(𝜆1 (𝑤))

󵄨󵄨󵄨󵄨󵄨 +
1

1 + tan2𝜃
󵄨󵄨󵄨󵄨󵄨(𝑓

V)
󸀠
(𝜆2 (𝑤))

󵄨󵄨󵄨󵄨󵄨

≤ [
1

1 + ctan2𝜃
+

1

1 + tan2𝜃
] 𝑘 = 𝑘,

(33)

󵄨󵄨󵄨󵄨󰜚
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−

ctan 𝜃

1 + ctan2𝜃
(𝑓V)

󸀠
(𝜆1 (𝑤)) +

tan 𝜃

1 + tan2𝜃
(𝑓V)

󸀠
(𝜆2 (𝑤))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ [
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−

ctan 𝜃

1 + ctan2𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

tan 𝜃

1 + tan2𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
] 𝑘

= [
ctan 𝜃

1 + ctan2𝜃
+

tan 𝜃

1 + tan2𝜃
] 𝑘

=
2 tan 𝜃

1 + tan2𝜃
𝑘 ≤ 𝑘.

(34)

(i) For 󰜚 = 0, then∇(𝑓V)
L𝜃(𝑤) takes the form of 𝜉𝐼+(𝑎−

𝜉)𝑀𝑤2
whose eigenvalues are 𝜉 and 𝑎 by [5, Lemma 1].

In other words, in this case, we get from (32) and (33)
that

󵄩󵄩󵄩󵄩󵄩󵄩
∇(𝑓V)

L𝜃 (𝑤)
󵄩󵄩󵄩󵄩󵄩󵄩
= max {|𝑎| , 󵄨󵄨󵄨󵄨𝜉

󵄨󵄨󵄨󵄨} ≤ 𝑘. (35)

(ii) For 󰜚 ̸= 0, since 𝐵 = −󰜚(ctan 𝜃 − tan 𝜃)(0, 𝑤2/‖𝑤2‖)
𝑇

(0, 𝑤2/‖𝑤2‖), the eigenvalues of 𝐵 are −󰜚(ctan 𝜃 −
tan 𝜃) and 0 with multiplicity 𝑛 − 1. Note that

󵄨󵄨󵄨󵄨󰜚 (ctan 𝜃 − tan 𝜃)
󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − ctan2𝜃
1 + ctan2𝜃

(𝑓V)
󸀠
(𝜆1 (𝑤)) +

1 − tan2𝜃
1 + tan2𝜃

(𝑓V)
󸀠
(𝜆2 (𝑤))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ [
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − ctan2𝜃
1 + ctan2𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − tan2𝜃
1 + tan2𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
] 𝑘

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ctan2𝜃 − 1

1 + ctan2𝜃
+

1 − tan2𝜃
1 + tan2𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑘

= 2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − tan2𝜃
1 + tan2𝜃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑘 ≤ 2𝑘.

(36)

Note that

𝐴 =
󰜚

󵄩󵄩󵄩󵄩𝑤2

󵄩󵄩󵄩󵄩
𝐿𝑤 + (𝑎 − 𝜉)𝑀𝑤2

=
󰜚

󵄩󵄩󵄩󵄩𝑤2

󵄩󵄩󵄩󵄩
[𝐿𝑤 + (𝑎 − 𝜉)

󵄩󵄩󵄩󵄩𝑤2

󵄩󵄩󵄩󵄩
󰜚

𝑀𝑤2
] ,

(37)

where 𝑤 = (𝜉‖𝑤2‖/󰜚, 𝑤2) and

𝐿𝑤 := [
𝑤1 𝑤𝑇

2

𝑤2 𝑤1𝐼
] . (38)

In this case the matrix 𝐴 has eigenvalues of 𝜉 ± 󰜚 and 𝑎 with
multiplicity 𝑛 − 2. Hence,

󵄩󵄩󵄩󵄩󵄩󵄩
∇(𝑓V)

L𝜃 (𝑤)
󵄩󵄩󵄩󵄩󵄩󵄩

≤ max {󵄨󵄨󵄨󵄨𝜉 + 󰜚
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝜉 − 󰜚

󵄨󵄨󵄨󵄨 , |𝑎|} +
󵄨󵄨󵄨󵄨󰜚 (ctan 𝜃 − tan 𝜃)

󵄨󵄨󵄨󵄨

≤ max {󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󰜚
󵄨󵄨󵄨󵄨 , |𝑎|} +

󵄨󵄨󵄨󵄨󰜚 (ctan 𝜃 − tan 𝜃)
󵄨󵄨󵄨󵄨 ≤ 4𝑘,

(39)

where the last step is due to (32), (33), (34), and (36).
Putting (29), (35), and (39) together, we know that

󵄩󵄩󵄩󵄩󵄩󵄩
∇(𝑓V)

L𝜃 (𝑤)
󵄩󵄩󵄩󵄩󵄩󵄩
≤ 4𝑘 ∀𝑤 ∈ B (𝑧, 𝛿) , ∀V. (40)

Fix any 𝑥, 𝑦 ∈ B(𝑧, 𝛿)with 𝑥 ̸= 𝑦. Since {(𝑓V)
L𝜃}

∞

V=1 converges
uniformly to 𝑓L𝜃 on B(𝑧, 𝛿), then for any 𝜖 > 0 there exists
V0 such that

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑓V)

L𝜃 (𝑤) − 𝑓L𝜃 (𝑤)
󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝜖, ∀𝑤 ∈ B (𝑧, 𝛿) , ∀V ≥ V0.

(41)

Since𝑓V is continuously differentiable, (𝑓V)
L𝜃 is continuously

differentiable by Lemma 2. Thus,
󵄩󵄩󵄩󵄩󵄩𝑓

L𝜃 (𝑥) − 𝑓L𝜃 (𝑦)
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩󵄩
𝑓L𝜃 (𝑥) − (𝑓V)

L𝜃 (𝑥) + (𝑓V)
L𝜃 (𝑥) − (𝑓V)

L𝜃 (𝑦)

+ (𝑓V)
L𝜃 (𝑦) − 𝑓L𝜃 (𝑦)

󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩󵄩
𝑓L𝜃 (𝑥) − (𝑓V)

L𝜃 (𝑥)
󵄩󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩󵄩
(𝑓V)

L𝜃 (𝑥) − (𝑓V)
L𝜃 (𝑦)

󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩
(𝑓V)

L𝜃 (𝑦) − 𝑓L𝜃 (𝑦)
󵄩󵄩󵄩󵄩󵄩󵄩

≤ 2𝜖 +
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
1

0

∇(𝑓V)
L𝜃 (𝑦 + 𝑡 (𝑥 − 𝑦)) (𝑥 − 𝑦) 𝑑𝑡

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 2𝜖 + 4𝑘
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 .

(42)
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Because 𝜖 > 0 is arbitrary, this ensures that

󵄩󵄩󵄩󵄩󵄩𝑓
L𝜃 (𝑥) − 𝑓L𝜃 (𝑦)

󵄩󵄩󵄩󵄩󵄩 ≤ 4𝑘
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 ∀𝑥, 𝑦 ∈ B (𝑧, 𝛿) ,

(43)

which says 𝑓L𝜃 is strictly continuous at 𝑧.
“⇒” Suppose that 𝑓L𝜃 is strictly continuous at 𝑧, then

there exist 𝑘 > 0 and 𝛿 > 0 such that
󵄩󵄩󵄩󵄩󵄩𝑓

L𝜃 (𝑥) − 𝑓L𝜃 (𝑦)
󵄩󵄩󵄩󵄩󵄩 ≤ 𝑘

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 ∀𝑥, 𝑦 ∈ B (𝑧, 𝛿) .

(44)

Case 1. 𝑧2 ̸= 0. Take 𝜃, 𝜇 ∈ [𝜆1(𝑧) − 𝛿1, 𝜆1(𝑧) + 𝛿1] with 𝛿1 :=
min{𝛿, 𝜆2(𝑧) − 𝜆1(𝑧)}. Let

𝑥 := 𝜃𝑢1
𝑧
+ 𝜆2 (𝑧) 𝑢

2

𝑧
, 𝑦 := 𝜇𝑢1

𝑧
+ 𝜆2 (𝑧) 𝑢

2

𝑧
. (45)

Then, ‖𝑥 − 𝑧‖ ≤ 𝛿 and ‖𝑦 − 𝑧‖ ≤ 𝛿 and it follows from (44)
that

󵄨󵄨󵄨󵄨𝑓 (𝜃) − 𝑓 (𝜇)
󵄨󵄨󵄨󵄨 =

1
󵄩󵄩󵄩󵄩𝑢

1
𝑧

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩𝑓
L𝜃 (𝑥) − 𝑓L𝜃 (𝑦)

󵄩󵄩󵄩󵄩󵄩 ≤
𝑘

󵄩󵄩󵄩󵄩𝑢
1
𝑧

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

=
𝑘

󵄩󵄩󵄩󵄩𝑢
1
𝑧

󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝜃 − 𝜇
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩󵄩𝑢

1

𝑧

󵄩󵄩󵄩󵄩󵄩 = 𝑘
󵄨󵄨󵄨󵄨𝜃 − 𝜇

󵄨󵄨󵄨󵄨 ,

(46)

which says 𝑓 is strictly continuous at 𝜆1(𝑧). The similar
argument shows the strict continuity of 𝑓 at 𝜆2(𝑧).

Case 2. 𝑧2 = 0. For any 𝜃, 𝜇 ∈ [𝑧1−𝛿, 𝑧1+𝛿], we have ‖𝜃𝑒−𝑧‖ =
|𝜃 − 𝑧1| ≤ 𝛿 and ‖𝜇𝑒 − 𝑧‖ ≤ 𝛿 as well; that is, 𝜃𝑒, 𝜇𝑒 ∈ B(𝑧, 𝛿).
It then follows from (44) that

󵄨󵄨󵄨󵄨𝑓 (𝜃) − 𝑓 (𝜇)
󵄨󵄨󵄨󵄨 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(
𝑓 (𝜃) − 𝑓 (𝜇)

0
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
=

󵄩󵄩󵄩󵄩󵄩𝑓
L𝜃 (𝜃𝑒) − 𝑓L𝜃 (𝜇𝑒)

󵄩󵄩󵄩󵄩󵄩

≤ 𝑘
󵄩󵄩󵄩󵄩𝜃𝑒 − 𝜇𝑒

󵄩󵄩󵄩󵄩 = 𝑘
󵄨󵄨󵄨󵄨𝜃 − 𝜇

󵄨󵄨󵄨󵄨 .

(47)

This means 𝑓 is strictly continuous at 𝜆𝑖(𝑧) = 𝑧1 for 𝑖 = 1, 2.

Remark 5. As mentioned in Section 1, the strict continuity
between 𝑓L𝜃 and 𝑓 has been given in [1, Theorem 3.5]. Here
we provide an alternative proof, since our analysis technique
is different from that in [1, Theorem 3.5]. In particular, we
achieve an estimate regarding ‖∇(𝑓V)

L𝜃‖ via its eigenvalues,
which may have other applications.

According to Lemma 1 andTheorem 4, we obtain the fol-
lowing result immediately.

Theorem 6. Let 𝑓 : R → R and 𝑓L𝜃 be defined as in (4).
Then, 𝑓L𝜃 is 𝐵-differentiable at 𝑧 if and only if 𝑓 is 𝐵-differen-
tiable at 𝜆𝑖(𝑧), for 𝑖 = 1, 2.

Next, inspired by [8, 9], we further study the Hölder
continuity relation between 𝑓 and 𝑓L𝜃 .

Theorem 7. Let 𝑓 : R → R and 𝑓L𝜃 be defined as in (4).
Then, 𝑓L𝜃 is Hölder continuous with exponent 𝛼 ∈ (0, 1] if
and only if 𝑓 is Hölder continuous with exponent 𝛼 ∈ (0, 1].

Proof. “⇐” Suppose that 𝑓 is Hölder continuous with expo-
nent 𝛼 ∈ (0, 1]. To proceed the proof, we consider the follow-
ing two cases.

Case 1. 𝑧2 ̸= 0 and 𝑦2 ̸= 0.We assumewithout loss of generality
that ‖𝑧2‖ ≥ ‖𝑦2‖. Thus,

󵄩󵄩󵄩󵄩󵄩𝑓
L𝜃 (𝑧) − 𝑓L𝜃 (𝑦)

󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩𝑓 (𝜆1 (𝑧)) 𝑢

1

𝑧
+ 𝑓 (𝜆2 (𝑧)) 𝑢

2

𝑧
− 𝑓 (𝜆1 (𝑦)) 𝑢

1

𝑦

−𝑓 (𝜆2 (𝑦)) 𝑢
2

𝑦

󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩𝑓 (𝜆1 (𝑧)) [𝑢

1

𝑧
− 𝑢1

𝑦
] + 𝑓 (𝜆2 (𝑧)) [𝑢

2

𝑧
− 𝑢2

𝑦
]

+ [𝑓 (𝜆1 (𝑧)) − 𝑓 (𝜆1 (𝑦))] 𝑢
1

𝑦

+ [𝑓 (𝜆2 (𝑧)) − 𝑓 (𝜆2 (𝑦))] 𝑢
2

𝑦

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩𝑓 (𝜆1 (𝑧)) [𝑢

1

𝑧
− 𝑢1

𝑦
] + 𝑓 (𝜆2 (𝑧)) [𝑢

2

𝑧
− 𝑢2

𝑦
]
󵄩󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝑓 (𝜆1 (𝑧)) − 𝑓 (𝜆1 (𝑦))

󵄨󵄨󵄨󵄨 ⋅
󵄩󵄩󵄩󵄩󵄩𝑢

1

𝑦

󵄩󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝑓 (𝜆2 (𝑧)) − 𝑓 (𝜆2 (𝑦))

󵄨󵄨󵄨󵄨 ⋅
󵄩󵄩󵄩󵄩󵄩𝑢

2

𝑦

󵄩󵄩󵄩󵄩󵄩 .

(48)

Let us analyze each term in the above inequality. First, we look
into the first term:
󵄩󵄩󵄩󵄩󵄩𝑓 (𝜆1 (𝑧)) [𝑢

1

𝑧
− 𝑢1

𝑦
] + 𝑓 (𝜆2 (𝑧)) [𝑢

2

𝑧
− 𝑢2

𝑦
]
󵄩󵄩󵄩󵄩󵄩

=
tan 𝜃

1 + tan2𝜃
󵄨󵄨󵄨󵄨𝑓 (𝜆1 (𝑧)) − 𝑓 (𝜆2 (𝑧))

󵄨󵄨󵄨󵄨 ⋅
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑧2
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩
−

𝑦2
󵄩󵄩󵄩󵄩𝑦2

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
tan 𝜃

1 + tan2𝜃
[𝑓]

𝛼

󵄨󵄨󵄨󵄨𝜆1 (𝑧) − 𝜆2 (𝑧)
󵄨󵄨󵄨󵄨
𝛼

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑧2
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩
−

𝑦2
󵄩󵄩󵄩󵄩𝑦2

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=
tan 𝜃

1 + tan2𝜃
[𝑓]

𝛼
(tan 𝜃 + ctan 𝜃)

𝛼󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩
𝛼
⋅
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑧2
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩
−

𝑦2
󵄩󵄩󵄩󵄩𝑦2

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
tan 𝜃

1 + tan2𝜃
[𝑓]

𝛼
(tan 𝜃 + ctan 𝜃)

𝛼󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩
𝛼 2
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧2 − 𝑦2
󵄩󵄩󵄩󵄩

= 2
tan 𝜃

1 + tan2𝜃
[𝑓]

𝛼
(tan 𝜃 + ctan 𝜃)

𝛼

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑧2 − 𝑦2
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1−𝛼

󵄩󵄩󵄩󵄩𝑧2 − 𝑦2
󵄩󵄩󵄩󵄩
𝛼

≤
tan 𝜃

1 + tan2𝜃
[𝑓]

𝛼
(tan 𝜃 + ctan 𝜃)

𝛼22−𝛼
󵄩󵄩󵄩󵄩𝑧2 − 𝑦2

󵄩󵄩󵄩󵄩
𝛼

≤
tan 𝜃

1 + tan2𝜃
[𝑓]

𝛼
(tan 𝜃 + ctan 𝜃)

𝛼22−𝛼
󵄩󵄩󵄩󵄩𝑧 − 𝑦

󵄩󵄩󵄩󵄩
𝛼
,

(49)

where the first inequality is due to the Hölder continu-
ity of 𝑓, the second inequality comes from the fact that
‖(𝑧2/‖𝑧2‖) − (𝑦2/‖𝑦2‖)‖ ≤ (2/‖𝑧2‖)‖𝑧2 − 𝑦2‖ (cf. [8, Lemma
2.2]), and the third inequality follows from the fact that
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‖𝑧2 − 𝑦2‖ ≤ ‖𝑧2‖ + ‖𝑦2‖ ≤ 2‖𝑧2‖ (since ‖𝑦2‖ ≤ ‖𝑧2‖). Next, we
look into the second term:

󵄨󵄨󵄨󵄨𝑓 (𝜆1 (𝑧)) − 𝑓 (𝜆1 (𝑦))
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩󵄩𝑢

1

𝑦

󵄩󵄩󵄩󵄩󵄩

≤ [𝑓]
𝛼

󵄨󵄨󵄨󵄨𝜆1 (𝑧) − 𝜆1 (𝑦)
󵄨󵄨󵄨󵄨
𝛼 1

√1 + ctan2𝜃

≤ [𝑓]
𝛼
(√2max {tan 𝜃, ctan 𝜃})

𝛼󵄩󵄩󵄩󵄩𝑧 − 𝑦
󵄩󵄩󵄩󵄩
𝛼
.

(50)

Similarly, the third term also satisfies

󵄨󵄨󵄨󵄨𝑓 (𝜆2 (𝑧)) − 𝑓 (𝜆2 (𝑦))
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩󵄩𝑢

2

𝑦

󵄩󵄩󵄩󵄩󵄩

≤ [𝑓]
𝛼

󵄨󵄨󵄨󵄨𝜆2 (𝑧) − 𝜆2 (𝑦)
󵄨󵄨󵄨󵄨
𝛼 1

√1 + tan2𝜃

≤ [𝑓]
𝛼
(√2max {tan 𝜃, ctan 𝜃})

𝛼󵄩󵄩󵄩󵄩𝑧 − 𝑦
󵄩󵄩󵄩󵄩
𝛼
.

(51)

Combining (49)–(51) proves that 𝑓L𝜃 is Hölder continuous
with exponent 𝛼 ∈ (0, 1].

Case 2. Either 𝑧2 = 0 or 𝑦2 = 0. In this case, we take 𝑢𝑖
𝑧
= 𝑢𝑖

𝑦
,

for 𝑖 = 1, 2 according to the spectral decomposition. There-
fore, we obtain

󵄩󵄩󵄩󵄩󵄩𝑓
L𝜃 (𝑧) − 𝑓L𝜃 (𝑦)

󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩𝑓 (𝜆1 (𝑧)) 𝑢

1

𝑧
+ 𝑓 (𝜆2 (𝑧)) 𝑢

2

𝑧
− 𝑓 (𝜆1 (𝑦)) 𝑢

1

𝑦

−𝑓 (𝜆2 (𝑦)) 𝑢
2

𝑦

󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩[𝑓 (𝜆1 (𝑧)) − 𝑓 (𝜆1 (𝑦))] 𝑢

1

𝑧

+ [𝑓 (𝜆2 (𝑧)) − 𝑓 (𝜆2 (𝑦))] 𝑢
2

𝑧

󵄩󵄩󵄩󵄩󵄩

≤
󵄨󵄨󵄨󵄨𝑓 (𝜆1 (𝑧)) − 𝑓 (𝜆1 (𝑦))

󵄨󵄨󵄨󵄨 ⋅
󵄩󵄩󵄩󵄩󵄩𝑢

1

𝑧

󵄩󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝑓 (𝜆2 (𝑧)) − 𝑓 (𝜆2 (𝑦))

󵄨󵄨󵄨󵄨 ⋅
󵄩󵄩󵄩󵄩󵄩𝑢

2

𝑧

󵄩󵄩󵄩󵄩󵄩

≤ [𝑓]
𝛼

󵄨󵄨󵄨󵄨𝜆1 (𝑧) − 𝜆1 (𝑦)
󵄨󵄨󵄨󵄨
𝛼 1

√1 + ctan2𝜃

+ [𝑓]
𝛼

󵄨󵄨󵄨󵄨𝜆2 (𝑦) − 𝜆2 (𝑧)
󵄨󵄨󵄨󵄨
𝛼 1

√1 + tan2𝜃

≤ 2[𝑓]
𝛼
(√2max {tan 𝜃, ctan 𝜃})

𝛼󵄩󵄩󵄩󵄩𝑧 − 𝑦
󵄩󵄩󵄩󵄩
𝛼
,

(52)

which says 𝑓L𝜃 is Hölder continuous.
“⇒” Recall that 𝑓L𝜃(𝜏𝑒) = (𝑓(𝜏), 0)𝑇. Hence, for any

𝜏, 𝜁 ∈ R,

󵄨󵄨󵄨󵄨𝑓 (𝜏) − 𝑓 (𝜁)
󵄨󵄨󵄨󵄨 =

󵄩󵄩󵄩󵄩󵄩𝑓
L𝜃 (𝜏𝑒) − 𝑓L𝜃 (𝜁𝑒)

󵄩󵄩󵄩󵄩󵄩

≤ [𝑓L𝜃]
𝛼
⋅
󵄩󵄩󵄩󵄩𝜏𝑒 − 𝜁𝑒

󵄩󵄩󵄩󵄩
𝛼
= [𝑓L𝜃]

𝛼
⋅
󵄨󵄨󵄨󵄨𝜏 − 𝜁

󵄨󵄨󵄨󵄨
𝛼
,

(53)

which says 𝑓 is Hölder continuous.

3. 𝜌-Order Semismoothness
and 𝐵-Subdifferential Formula

The property of semismoothness plays an important role in
nonsmooth Newton methods [10, 11]. For more information
on semismooth functions, see [12–15]. The relationship of
semismooth between 𝑓L𝜃 and 𝑓 has been given in [1,
Theorem 4.1]. But the exact formula of the 𝐵-subdifferential
𝜕𝐵(𝑓

L𝜃) is not presented. Hence the main aim of this
section is twofold: one is establishing the exact formula of 𝐵-
subdifferential; another is studing the 𝜌-order semismooth-
ness for 𝜌 > 0.

Lemma 8. Define 𝜓(𝑧) = ‖𝑧‖ and Φ(𝑧) = 𝑧/‖𝑧‖ for 𝑧 ̸= 0.
Then, 𝜓 and Φ are strongly semismooth at 𝑧 ̸= 0.

Proof. Since 𝑧 ̸= 0, it is clear that 𝜓 and Φ are twice continu-
ously differentiable and hence the gradient is Lipschitz con-
tinuous near 𝑧. Therefore, 𝜓 and Φ are strongly semismooth
at 𝑧, see [16, Proposition 7.4.5].

The relationship of 𝜌-order semismoothness between
𝑓L𝜃 and𝑓 is given below. Recall from [7] that in the definition
of 𝜌-order semismooth, we can restrict 𝑥+ℎ in (11) belonging
to differentiable points.

Theorem 9. Let 𝑓 : R → R and 𝑓L𝜃 be defined as in (4).
Given 𝜌 > 0, then the following statements hold.

(a) If 𝑓 is 𝜌-order semismooth at 𝜆𝑖(𝑧) for 𝑖 = 1, 2, then
𝑓L𝜃 ismin{1, 𝜌}-order semismooth at 𝑧.

(b) If 𝑓L𝜃 is 𝜌-order semismooth at 𝑧, then 𝑓 is 𝜌-semi-
smooth at 𝜆𝑖(𝑧) for 𝑖 = 1, 2.

(c) For 𝑧2 = 0, 𝑓L𝜃 is 𝜌-semismooth at 𝑧 if and only if 𝑓 is
𝜌-order semismooth at 𝜆𝑖(𝑧) = 𝑧1 for 𝑖 = 1, 2.

Proof. (a) Take ℎ ∈ R𝑛 satisfying 𝑧 + ℎ ∈ 𝐷
𝑓
L𝜃 . We consider

the following two cases to complete the proof.

Case 1. For 𝑧2 ̸= 0, 𝑧2 + ℎ2 ̸= 0 as ℎ is sufficiently close to 0.
Since 𝑧+ℎ ∈ 𝐷

𝑓
L𝜃 , we know that 𝜆𝑖(𝑧+ℎ) ∈ 𝐷𝑓 for 𝑖 = 1, 2 by

Lemma 2. Then, according to Lemma 1, the first component
of

𝑓L𝜃 (𝑧 + ℎ) − 𝑓L𝜃 (𝑧) − (𝑓L𝜃)
󸀠

(𝑧 + ℎ; ℎ) (54)

is expressed as

𝑓 (𝜆1 (𝑧 + ℎ))

1 + ctan2𝜃
−

𝑓 (𝜆1 (𝑧))

1 + ctan2𝜃
−

1

1 + ctan2𝜃

× 𝑓󸀠 (𝜆1 (𝑧 + ℎ) ; ℎ1 −
(𝑧2 + ℎ2)

𝑇
ℎ2

󵄩󵄩󵄩󵄩𝑧2 + ℎ2
󵄩󵄩󵄩󵄩

ctan 𝜃)

+
𝑓 (𝜆2 (𝑧 + ℎ))

1 + tan2𝜃
−

𝑓 (𝜆2 (𝑧))

1 + tan2𝜃
−

1

1 + tan2𝜃

× 𝑓󸀠 (𝜆2 (𝑧 + ℎ) ; ℎ1 +
(𝑧2 + ℎ2)

𝑇
ℎ2

󵄩󵄩󵄩󵄩𝑧2 + ℎ2
󵄩󵄩󵄩󵄩

tan 𝜃) .

(55)
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Because ‖ ⋅ ‖ is continuously differentiable over 𝑧2 ̸= 0, it is
strongly semismooth at 𝑧2 by Lemma 8. Therefore,

󵄩󵄩󵄩󵄩𝑧2 + ℎ2
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩 +

(𝑧2 + ℎ2)
𝑇
ℎ2

󵄩󵄩󵄩󵄩𝑧2 + ℎ2
󵄩󵄩󵄩󵄩

+ 𝑂 (
󵄩󵄩󵄩󵄩ℎ2

󵄩󵄩󵄩󵄩
2
)

=
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩 +
(𝑧2 + ℎ2)

𝑇
ℎ2

󵄩󵄩󵄩󵄩𝑧2 + ℎ2
󵄩󵄩󵄩󵄩

+ 𝑂 (‖ℎ‖
2) .

(56)

Combining this and the 𝜌-semismoothness of 𝑓 at 𝜆1(𝑧), we
have
𝑓 (𝜆1 (𝑧 + ℎ))

= 𝑓 (𝜆1 (𝑧)) + 𝑓󸀠 (𝜆1 (𝑧 + ℎ)) (𝜆1 (𝑧 + ℎ) − 𝜆1 (𝑧))

+ 𝑂 (
󵄨󵄨󵄨󵄨𝜆1 (𝑧 + ℎ) − 𝜆1 (𝑧)

󵄨󵄨󵄨󵄨
1+𝜌

)

= 𝑓 (𝜆1 (𝑧)) + 𝑓󸀠 (𝜆1 (𝑧 + ℎ)) (𝜆1 (𝑧 + ℎ) − 𝜆1 (𝑧))

+ 𝑂 (‖ℎ‖
1+𝜌)

= 𝑓 (𝜆1 (𝑧)) + 𝑓󸀠 (𝜆1 (𝑧 + ℎ))

× (ℎ1 − (
󵄩󵄩󵄩󵄩𝑧2 + ℎ2

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩) ctan 𝜃) + 𝑂 (‖ℎ‖
1+𝜌)

= 𝑓 (𝜆1 (𝑧)) + 𝑓󸀠 (𝜆1 (𝑧 + ℎ))(ℎ1 −
(𝑧2 + ℎ2)

𝑇
ℎ2

󵄩󵄩󵄩󵄩𝑧2 + ℎ2
󵄩󵄩󵄩󵄩

ctan 𝜃)

+ 𝑂 (‖ℎ‖
2) + 𝑂 (‖ℎ‖

1+𝜌)

= 𝑓 (𝜆1 (𝑧)) + 𝑓󸀠 (𝜆1 (𝑧 + ℎ))(ℎ1 −
(𝑧2 + ℎ2)

𝑇
ℎ2

󵄩󵄩󵄩󵄩𝑧2 + ℎ2
󵄩󵄩󵄩󵄩

ctan 𝜃)

+ 𝑂 (‖ℎ‖
1+min{1,𝜌}) ,

(57)

where the second equation is due to Lemma 3 and the last
equality comes from the boundedness of𝑓󸀠, since𝑓 is strictly
continuous at 𝜆1(𝑧). Similar argument holds for𝑓(𝜆2(𝑧+ℎ)).
Hence the first component of (54) is 𝑂(‖ℎ‖1+min{1,𝜌}).

Next, let us look into the second component of (54),
which involved 𝜆1(𝑧). By Lemma 1 again, it can be expressed
as

−
ctan 𝜃

1 + ctan2𝜃
𝑓 (𝜆1 (𝑧 + ℎ))

𝑧2 + ℎ2
󵄩󵄩󵄩󵄩𝑧2 + ℎ2

󵄩󵄩󵄩󵄩

+
ctan 𝜃

1 + ctan2𝜃
𝑓󸀠 (𝜆1 (𝑧 + ℎ) ; ℎ1 −

(𝑧2 + ℎ2)
𝑇
ℎ2

󵄩󵄩󵄩󵄩𝑧2 + ℎ2
󵄩󵄩󵄩󵄩

ctan 𝜃)

×
𝑧2 + ℎ2
󵄩󵄩󵄩󵄩𝑧2 + ℎ2

󵄩󵄩󵄩󵄩

+
ctan 𝜃

1 + ctan2𝜃
𝑓 (𝜆1 (𝑧))

𝑧2
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩

+
ctan 𝜃

1 + ctan2𝜃
𝑓 (𝜆1 (𝑧 + ℎ))

󵄩󵄩󵄩󵄩𝑧2 + ℎ2
󵄩󵄩󵄩󵄩

𝑀(𝑧2+ℎ2)
ℎ.

(58)

Note that Φ is continuous differentiable (and hence is semi-
smooth) with ∇Φ(𝑧2) = (1/‖𝑧2‖)(𝐼 − (𝑧2𝑧

𝑇

2
/‖𝑧2‖

2)) and
𝑀(𝑧2+ℎ2)

ℎ = ‖𝑧2 + ℎ2‖∇Φ(𝑧2 + ℎ2)ℎ2. Thus, expression (58)
can be rewritten as

−
ctan 𝜃

1 + ctan2𝜃
𝑓 (𝜆1 (𝑧 + ℎ))Φ (𝑧2 + ℎ2)

+
ctan 𝜃

1 + ctan2𝜃
𝑓󸀠 (𝜆1 (𝑧 + ℎ) ; ℎ1 −

(𝑧2 + ℎ2)
𝑇
ℎ2

󵄩󵄩󵄩󵄩𝑧2 + ℎ2
󵄩󵄩󵄩󵄩

ctan 𝜃)

× Φ (𝑧2 + ℎ2)

+
ctan 𝜃

1 + ctan2𝜃
𝑓 (𝜆1 (𝑧))Φ (𝑧2)

+
ctan 𝜃

1 + ctan2𝜃
𝑓 (𝜆1 (𝑧 + ℎ)) ∇Φ (𝑧2 + ℎ2) ℎ2

=
ctan 𝜃

1 + ctan2𝜃

× [ − 𝑓 (𝜆1 (𝑧 + ℎ)) + 𝑓 (𝜆1 (𝑧))

+𝑓󸀠 (𝜆1 (𝑧 + ℎ) ; ℎ1 −
(𝑧2 + ℎ2)

𝑇
ℎ2

󵄩󵄩󵄩󵄩𝑧2 + ℎ2
󵄩󵄩󵄩󵄩

ctan 𝜃)]

× Φ (𝑧2 + ℎ2)

+
𝑓 (𝜆1 (𝑧)) ctan 𝜃

1 + ctan2𝜃

× [−Φ (𝑧2 + ℎ2) + Φ (𝑧2) + ∇Φ (𝑧2 + ℎ2) ℎ2]

+
ctan 𝜃

1 + ctan2𝜃
∇Φ (𝑧2 + ℎ2) ℎ2

× [𝑓 (𝜆1 (𝑧 + ℎ)) − 𝑓 (𝜆1 (𝑧))]

= 𝑂 (‖ℎ‖
1+min{1,𝜌}) + 𝑂 (‖ℎ‖

2) + 𝑂 (‖ℎ‖
2)

= 𝑂 (‖ℎ‖
1+min{1,𝜌}) .

(59)

The second equation comes from (57), strongly semismooth-
ness of Φ at 𝑧2, and
󵄩󵄩󵄩󵄩∇Φ (𝑧2 + ℎ2) ℎ2 [𝑓 (𝜆1 (𝑧 + ℎ)) − 𝑓 (𝜆1 (𝑧))]

󵄩󵄩󵄩󵄩 = 𝑂 (‖ℎ‖
2) ,

(60)

since 𝑓 is Lipschitz at 𝜆1(𝑧) (which is ensured by the 𝜌-order
semismoothness of 𝑓). Analogous arguments apply for the
second component of (54) involving 𝜆2(𝑧). From all the
above, we may conclude that

𝑓L𝜃 (𝑧 + ℎ) − 𝑓L𝜃 (𝑧) − (𝑓L𝜃)
󸀠

(𝑧 + ℎ; ℎ)

= 𝑂 (‖ℎ‖
1+min{1,𝜌}) ,

(61)

which says𝑓L𝜃 ismin{1, 𝜌}-order semismooth at 𝑧under this
case.
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Case 2. For 𝑧2 = 0, if ℎ2 = 0, then the proof is trivial. If ℎ2 ̸= 0,
then the first component of (54) satisfies

1

1 + ctan2𝜃

× [𝑓 (𝜆1 (𝑧 + ℎ)) − 𝑓 (𝑧1) ,

− 𝑓󸀠 (𝜆1 (𝑧 + ℎ) ; ℎ1 −
󵄩󵄩󵄩󵄩ℎ2

󵄩󵄩󵄩󵄩 ctan 𝜃)]

+
1

1 + tan2𝜃

× [𝑓 (𝜆2 (𝑧 + ℎ)) − 𝑓 (𝑧1)

−𝑓󸀠 (𝜆2 (𝑧 + ℎ) ; ℎ1 +
󵄩󵄩󵄩󵄩ℎ2

󵄩󵄩󵄩󵄩 tan 𝜃)]

= 𝑂 (
󵄨󵄨󵄨󵄨ℎ1 −

󵄩󵄩󵄩󵄩ℎ2
󵄩󵄩󵄩󵄩 ctan 𝜃

󵄨󵄨󵄨󵄨
1+𝜌

) + 𝑂 (
󵄨󵄨󵄨󵄨ℎ1 +

󵄩󵄩󵄩󵄩ℎ2
󵄩󵄩󵄩󵄩 tan 𝜃

󵄨󵄨󵄨󵄨
1+𝜌

)

= 𝑂 (‖ℎ‖
1+𝜌) ,

(62)

because 𝑓 is 𝜌-order semismooth at 𝑧1. The second compo-
nent of (54), by letting 𝑧2 = ℎ2 and𝑀ℎ2

ℎ = 0, takes the form

−
ctan 𝜃

1 + ctan2𝜃
𝑓 (𝜆1 (𝑧 + ℎ)) ℎ2

+
ctan 𝜃

1 + ctan2𝜃
𝑓󸀠 (𝜆1 (𝑧 + ℎ) ; ℎ1 −

󵄩󵄩󵄩󵄩ℎ2
󵄩󵄩󵄩󵄩 ctan 𝜃) ℎ2

+
tan 𝜃

1 + tan2𝜃
𝑓 (𝜆2 (𝑧 + ℎ)) ℎ2

−
tan 𝜃

1 + tan2𝜃
𝑓󸀠 (𝜆2 (𝑧 + ℎ) ; ℎ1 +

󵄩󵄩󵄩󵄩ℎ2
󵄩󵄩󵄩󵄩 tan 𝜃) ℎ2

= −
1

tan 𝜃 + ctan 𝜃
[𝑓 (𝜆1 (𝑧 + ℎ)) − 𝑓 (𝑧1)

−𝑓󸀠 (𝜆1 (𝑧 + ℎ) ; ℎ1 −
󵄩󵄩󵄩󵄩ℎ2

󵄩󵄩󵄩󵄩 ctan 𝜃)] ℎ2

+
1

tan 𝜃 + ctan 𝜃
[𝑓 (𝜆2 (𝑧 + ℎ)) − 𝑓 (𝑧1)

−𝑓󸀠 (𝜆2 (𝑧 + ℎ) ; ℎ1 +
󵄩󵄩󵄩󵄩ℎ2

󵄩󵄩󵄩󵄩 tan 𝜃)] ℎ2

= 𝑂 (‖ℎ‖
1+𝜌) ,

(63)

where the last step is due to the 𝜌-order semismoothness of
𝑓.

(b) Suppose that 𝑓L𝜃 is 𝜌-order semismooth at 𝑧. Let 𝑡 ∈
R such that 𝑓 is differentiable at 𝜆1(𝑧) + 𝑡. We discuss the
following two cases.

Case 1. For 𝑧2 ̸= 0, from 𝑓 being Lipschitz at 𝜆2(𝑧) (and hence
the differentiable points are dense near 𝜆2(𝑧)), there exists
𝛽(𝑡) ∈ R such that 𝛽(𝑡) = 𝑂(|𝑡|1+𝜌) and 𝑓 is differentiable at
𝜆2(𝑧)+𝛽(𝑡) and𝜆2(𝑧)+𝛽(𝑡) > 𝜆1(𝑧)+𝑡 as 𝑡 is sufficiently small
(since 𝜆2(𝑧) > 𝜆1(𝑧) by 𝑧2 ̸= 0). Denote ℎ := 𝑡𝑢1

𝑧
+ 𝛽(𝑡)𝑢2

𝑧
.

Then, 𝑧 + ℎ = [𝜆1(𝑧) + 𝑡]𝑢1
𝑧
+ [𝜆2(𝑧) + 𝛽(𝑡)]𝑢2

𝑧
which implies

𝜆1(𝑧 + ℎ) = 𝜆1(𝑧) + 𝑡 and 𝜆2(𝑧 + ℎ) = 𝜆2(𝑧) + 𝛽(𝑡). Since
𝑓 is differentiable at 𝜆1(𝑧) + 𝑡 and 𝜆2(𝑧) + 𝛽(𝑡), 𝑓L𝜃 is also
differentiable at 𝑧 + ℎ by Lemma 2. Notice that

ℎ = [
ℎ1
ℎ2

]

=
[
[
[

[

1

1 + ctan2𝜃
𝑡 +

1

1 + tan2𝜃
𝛽 (𝑡)

(−
ctan 𝜃

1 + ctan2𝜃
𝑡 +

tan 𝜃

1 + tan2𝜃
𝛽 (𝑡))

𝑧2
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩

]
]
]

]

,

(64)

𝑧2 + ℎ2 = (
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩 −
ctan 𝜃

1 + ctan2𝜃
𝑡 +

tan 𝜃

1 + tan2𝜃
𝛽 (𝑡))

𝑧2
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩
.

(65)

Hence,

(𝑧2 + ℎ2)
𝑇
ℎ2

󵄩󵄩󵄩󵄩𝑧2 + ℎ2
󵄩󵄩󵄩󵄩

= −
ctan 𝜃

1 + ctan2𝜃
𝑡 +

tan 𝜃

1 + tan2𝜃
𝛽 (𝑡) , (66)

which follows from the fact that ‖𝑧2‖ ̸= 0 and 𝑡 can be arbi-
trarily small (hence ‖𝑧2‖− (ctan 𝜃/(1+ ctan2𝜃))𝑡 + (tan 𝜃/(1+

tan2𝜃))𝛽(𝑡) > 0). Thus, it is clear that

ℎ1 −
(𝑧2 + ℎ2)

𝑇
ℎ2

󵄩󵄩󵄩󵄩𝑧2 + ℎ2
󵄩󵄩󵄩󵄩

ctan 𝜃

= (
1

1 + ctan2𝜃
𝑡 +

1

1 + tan2𝜃
𝛽 (𝑡))

− (−
ctan 𝜃

1 + ctan2𝜃
𝑡 +

tan 𝜃

1 + tan2𝜃
𝛽 (𝑡)) ctan 𝜃 = 𝑡,

ℎ1 +
(𝑧2 + ℎ2)

𝑇
ℎ2

󵄩󵄩󵄩󵄩𝑧2 + ℎ2
󵄩󵄩󵄩󵄩

tan 𝜃

= (
1

1 + ctan2𝜃
𝑡 +

1

1 + tan2𝜃
𝛽 (𝑡))

+ (−
ctan 𝜃

1 + ctan2𝜃
𝑡 +

tan 𝜃

1 + tan2𝜃
𝛽 (𝑡)) tan 𝜃 = 𝛽 (𝑡) .

(67)

In addition, it can be verified that

󵄨󵄨󵄨󵄨ℎ1
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

1 + ctan2𝜃
𝑡 +

1

1 + tan2𝜃
𝛽 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

1 + ctan2𝜃
|𝑡| +

1

1 + tan2𝜃
|𝑡| = |𝑡| ,

(68)

since 𝛽(𝑡) = 𝑂(|𝑡|1+𝜌) ≤ |𝑡| as 𝑡 is sufficiently small. Similarly,

󵄩󵄩󵄩󵄩ℎ2
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
[−

ctan 𝜃

1 + ctan2𝜃
𝑡 +

tan 𝜃

1 + tan2𝜃
𝛽 (𝑡)]

𝑧2
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−

ctan 𝜃

1 + ctan2𝜃
𝑡 +

tan 𝜃

1 + tan2𝜃
𝛽 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
ctan 𝜃

1 + ctan2𝜃
|𝑡| +

tan 𝜃

1 + tan2𝜃
|𝑡| ≤ |𝑡| .

(69)
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Therefore, we obtain ‖ℎ‖ = 𝑂(𝑡) which further implies
𝑂(‖ℎ‖1+𝜌) = 𝑂(|𝑡|1+𝜌). Then, by the hypothesis 𝑓L𝜃 being 𝜌-
order semismooth at 𝑧, that is,

𝑓L𝜃 (𝑧 + ℎ) − 𝑓L𝜃 (𝑧) − (𝑓L𝜃)
󸀠

(𝑧 + ℎ; ℎ) = 𝑂 (‖ℎ‖
1+𝜌) ,

(70)

we have

⟨𝑓L𝜃 (𝑧 + ℎ) − 𝑓L𝜃 (𝑧) − (𝑓L𝜃)
󸀠

(𝑧 + ℎ; ℎ) , 𝑒⟩

= 𝑂 (‖ℎ‖
1+𝜌) = 𝑂 (|𝑡|

1+𝜌) .

(71)

In fact, the left-hand side of (71) takes the form of

𝑓 (𝜆1 (𝑧 + ℎ))

1 + ctan2𝜃
+

𝑓 (𝜆2 (𝑧 + ℎ))

1 + tan2𝜃
−

𝑓 (𝜆1 (𝑧))

1 + ctan2𝜃
−

𝑓 (𝜆2 (𝑧))

1 + tan2𝜃

−
𝑓󸀠 (𝜆1 (𝑧 + ℎ))

1 + ctan2𝜃
(ℎ1 −

(𝑧2 + ℎ2)
𝑇
ℎ2

󵄩󵄩󵄩󵄩𝑧2 + ℎ2
󵄩󵄩󵄩󵄩

ctan 𝜃)

−
𝑓󸀠 (𝜆2 (𝑧 + ℎ))

1 + tan2𝜃
(ℎ1 +

(𝑧2 + ℎ2)
𝑇
ℎ2

󵄩󵄩󵄩󵄩𝑧2 + ℎ2
󵄩󵄩󵄩󵄩

tan 𝜃)

=
𝑓 (𝜆1 (𝑧) + 𝑡)

1 + ctan2𝜃
+

𝑓 (𝜆2 (𝑧) + 𝛽 (𝑡))

1 + tan2𝜃

−
𝑓 (𝜆1 (𝑧))

1 + ctan2𝜃
−

𝑓 (𝜆2 (𝑧))

1 + tan2𝜃

−
𝑓󸀠 (𝜆1 (𝑧) + 𝑡)

1 + ctan2𝜃
𝑡 −

𝑓󸀠 (𝜆2 (𝑧) + 𝛽 (𝑡))

1 + tan2𝜃
𝛽 (𝑡)

=
1

1 + ctan2𝜃

× [𝑓 (𝜆1 (𝑧) + 𝑡) − 𝑓 (𝜆1 (𝑧)) − 𝑓󸀠 (𝜆1 (𝑧) + 𝑡) 𝑡]

+
1

1 + tan2𝜃
[𝑓 (𝜆2 (𝑧) + 𝛽 (𝑡)) − 𝑓 (𝜆2 (𝑧))

−𝑓󸀠 (𝜆2 (𝑧) + 𝛽 (𝑡)) 𝛽 (𝑡)]

=
1

1 + ctan2𝜃

× [𝑓 (𝜆1 (𝑧) + 𝑡) − 𝑓 (𝜆1 (𝑧)) − 𝑓󸀠 (𝜆1 (𝑧) + 𝑡) 𝑡]

+ 𝑂 (|𝑡|
1+𝜌) ,

(72)

where the last step is due to the fact that 𝑓󸀠 is bounded and

𝑓 (𝜆2 (𝑧) + 𝛽 (𝑡)) − 𝑓 (𝜆2 (𝑧)) = 𝑂 (|𝑡|
1+𝜌) , (73)

since 𝑓 is Lipschitz at 𝜆2(𝑧). Hence (71) means

𝑓 (𝜆1 (𝑧) + 𝑡) − 𝑓 (𝜆1 (𝑧)) − 𝑓󸀠 (𝜆1 (𝑧) + 𝑡) 𝑡 = 𝑂 (|𝑡|
1+𝜌) ,

(74)

which says 𝑓 is 𝜌-order semismooth at 𝜆1(𝑧). Applying sim-
ilar arguments show that 𝑓 is 𝜌-order semismooth at 𝜆2(𝑧).

Case 2. For 𝑧2 = 0, letting ℎ = 𝑡𝑒. Since 𝑓 is differentiable at
𝜆1(𝑧) + 𝑡 = 𝑧1 + 𝑡 and 𝜆𝑖(𝑧 + ℎ) = 𝑧1 + 𝑡, for 𝑖 = 1, 2, 𝑓L𝜃 is
differentiable at 𝑧 + ℎ by Lemma 2; that is, 𝑧 + ℎ ∈ 𝐷

𝑓
L𝜃 .

Because 𝑓L𝜃 is 𝜌-order semismooth at 𝑧, we have

𝑓L𝜃 (𝑧 + ℎ) − 𝑓L𝜃 (𝑧) − (𝑓L𝜃)
󸀠

(𝑧 + ℎ; ℎ) = 𝑂 (‖ℎ‖
1+𝜌) ,

(75)

which, together with the fact ‖ℎ‖ = |𝑡|, is equivalent to

𝑓 (𝑧1 + 𝑡) − 𝑓 (𝑧1) − 𝑓󸀠 (𝑧1 + 𝑡) 𝑡 = 𝑂 (|𝑡|
1+𝜌) . (76)

This clearly proves that 𝑓 is 𝜌-order semismooth at 𝜆𝑖(𝑧) =
𝑧1, for 𝑖 = 1, 2.

(c)The necessity comes from part (b), and the sufficiency
follows from (62) and (63).

Corollary 10. Let 𝑓 : R → R and 𝑓L𝜃 be defined as in (4).
For 𝜌 ∈ (0, 1], 𝑓L𝜃 is 𝜌-order semismooth at 𝑧 if and only if 𝑓
is 𝜌-order semismooth at 𝜆𝑖(𝑧), for 𝑖 = 1, 2.

Remark 11. In the framework of second-order cone and posi-
tive semidefinite cone, the corresponding result to part (a) has
been established; see [5, Proposition 7] and [6, Proposition
4.10]. In [17], the author study the 𝜌-order semismoothness of
the spectral operator for 𝜌 ∈ (0, 1]. Here we further show that
if𝑓L𝜃 is 𝜌-semismooth, then𝑓 is 𝜌-semismooth for all 𝜌 > 0.
In addition, if 𝑧2 = 0, then the 𝜌-order semismoothness of
𝑓L𝜃 and 𝑓 coincide with each other for all 𝜌 > 0.

Inspired by [5, Lemma 4], we also obtain the following
result.

Theorem 12. Let 𝑓 : R → R be strictly continuous. Then, for
any 𝑧 ∈ R𝑛, the 𝐵-differential 𝜕𝐵(𝑓L𝜃)(𝑧) is well defined and
nonempty. Moreover,

(i) if 𝑧2 ̸= 0, then

𝜕𝐵 (𝑓L𝜃) (𝑧) =

{{{{{
{{{{{
{

[
[
[
[
[

[

𝜉
󰜚𝑧𝑇

2

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩

󰜚𝑧2
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩
𝑎𝐼 +

(𝜂 − 𝑎) 𝑧2𝑧
𝑇

2

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩
2

]
]
]
]
]

]

|

𝑎 =
𝑓 (𝜆2 (𝑧)) − 𝑓 (𝜆1 (𝑧))

𝜆2 (𝑧) − 𝜆1 (𝑧)
,

𝜉 − 󰜚 ctan 𝜃 ∈ 𝜕𝐵𝑓 (𝜆1 (𝑧)) ,

𝜉 + 󰜚 tan 𝜃 ∈ 𝜕𝐵𝑓 (𝜆2 (𝑧)) ,

𝜂 = 𝜉 − 󰜚 (ctan 𝜃 − tan 𝜃)

}}}}
}}}}
}

;

(77)
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(ii) if 𝑧2 = 0, then

𝜕𝐵 (𝑓L𝜃) (𝑧) ⊂ {[
𝜉 󰜚𝑤𝑇

󰜚𝑤 𝑎𝐼 + (𝜂 − 𝑎)𝑤𝑤𝑇] |

𝑎 ∈ 𝜕𝑓 (𝜆1 (𝑧)) , ‖𝑤‖ = 1,

𝜉 − 󰜚 ctan 𝜃 ∈ 𝜕𝐵𝑓 (𝜆1 (𝑧)) ,

𝜉 + 󰜚 tan 𝜃 ∈ 𝜕𝐵𝑓 (𝜆1 (𝑧)) ,

𝜂 = 𝜉 − 󰜚 (ctan 𝜃 − tan 𝜃) } .

(78)

Proof. Denote by Ω the set in the right side of (77).

Case 1. 𝑧2 ̸= 0. For any sequence {𝑧𝑘}
∞

𝑘=1
→ 𝑧 with 𝑧𝑘 ∈𝐷

(𝑓
L𝜃 )

.
Then, we compute

∇𝑓L𝜃 (𝑧𝑘)

=

{{{{{{
{{{{{{
{

[
[
[
[
[
[

[

𝜉 (𝑧𝑘) 󰜚 (𝑧𝑘)(
𝑧𝑘
2

󵄩󵄩󵄩󵄩𝑧
𝑘

2

󵄩󵄩󵄩󵄩
)

𝑇

󰜚 (𝑧𝑘) 𝑧𝑘
2

󵄩󵄩󵄩󵄩𝑧
𝑘

2

󵄩󵄩󵄩󵄩
𝑎 (𝑧𝑘) 𝐼 + (𝜂 (𝑧𝑘) − 𝑎 (𝑧𝑘))

𝑧𝑘
2
(𝑧𝑘)

𝑇

2

󵄩󵄩󵄩󵄩𝑧
𝑘

2

󵄩󵄩󵄩󵄩
2

]
]
]
]
]
]

]

|

𝜂 (𝑧𝑘) = 𝜉 (𝑧𝑘) − 󰜚 (𝑧𝑘) (ctan 𝜃 − tan 𝜃)

}}}}}}
}}}}}}
}

.

(79)

Since 𝑓 is strictly continuous, we know that 𝜉(𝑧𝑘) and 󰜚(𝑧𝑘)
are bounded and hence have cluster points. We assume,
without loss of generality, that 𝜉(𝑧𝑘) → 𝜉 and 󰜚(𝑧𝑘) → 󰜚.
Note that 𝑓 is differentiable at 𝜆𝑖(𝑧

𝑘) for 𝑖 = 1, 2 by Lemma 2.
Besides, from

𝜉 (𝑧𝑘) − 󰜚 (𝑧𝑘) ctan 𝜃 = 𝑓󸀠 (𝜆1 (𝑧
𝑘)) ,

𝜉 (𝑧𝑘) + 󰜚 (𝑧𝑘) tan 𝜃 = 𝑓󸀠 (𝜆2 (𝑧
𝑘)) ,

(80)

and the fact that any cluster point of {𝑓󸀠(𝜆𝑖(𝑧
𝑘))}

∞

𝑘=1
is in

𝜕𝐵𝑓(𝜆𝑖(𝑧)) by definition, we have

𝜉 − 󰜚 ctan 𝜃 ∈ 𝜕𝐵𝑓 (𝜆1 (𝑧)) , 𝜉 + 󰜚 tan 𝜃 ∈ 𝜕𝐵𝑓 (𝜆2 (𝑧)) .

(81)

This means that any cluster points of {∇(𝑓L𝜃)(𝑧𝑘)}
∞

𝑘=1
are

element ofΩ; that is, 𝜕𝐵(𝑓
L𝜃)(𝑧) ⊂ Ω.

Conversely, for any 𝜉 and 󰜚 satisfying 𝜉 − 󰜚 ctan 𝜃 ∈

𝜕𝐵𝑓(𝜆1(𝑧)) and 𝜉+󰜚 tan 𝜃 ∈ 𝜕𝐵𝑓(𝜆2(𝑧)), there exist {𝜆
𝑘

1
}
∞

𝑘=1
→

𝜆1(𝑧) and {𝜆𝑘
2
}
∞

𝑘=1
→ 𝜆2(𝑧) with 𝑓 being differentiable at 𝜆𝑘

1

and𝜆𝑘
2
and {𝑓󸀠(𝜆𝑘

1
)}
∞

𝑘=1
→ 𝜉−󰜚 ctan 𝜃 and {𝑓󸀠(𝜆𝑘

2
)}
∞

𝑘=1
→ 𝜉+

󰜚 tan 𝜃. Since 𝜆2(𝑧) = 𝑧1 + ‖𝑧2‖ tan 𝜃 > 𝑧1 > 𝑧1 − ‖𝑧2‖ctan 𝜃 =

𝜆1(𝑧), it implies that 𝜆𝑘
2
> 𝜆𝑘

1
is 𝑘 large enough. Now, let

𝑧𝑘 := [
𝑧𝑘
1

𝑧𝑘
2

] =
[
[
[
[

[

tan2𝜃
1 + tan2𝜃

𝜆𝑘
1
+

ctan2𝜃
1 + ctan2𝜃

𝜆𝑘
2

(
tan 𝜃

1 + tan2𝜃
𝜆𝑘
2
−

ctan 𝜃

1 + ctan2𝜃
𝜆𝑘
1
)

𝑧2
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩

]
]
]
]

]

.

(82)

For points 𝑧𝑘, it is easy to see that 𝜆𝑖(𝑧
𝑘) = 𝜆𝑘

𝑖
for all 𝑘 by

using the following facts:
tan 𝜃

1 + tan2𝜃
𝜆𝑘
2
=

1

ctan 𝜃 + tan 𝜃
𝜆𝑘
2
>

1

ctan 𝜃 + tan 𝜃
𝜆𝑘
1

=
ctan 𝜃

1 + ctan2𝜃
𝜆𝑘
1
.

(83)

Hence, 𝑧𝑘 → 𝑧 and 𝑓L𝜃 are differentiable at 𝑧𝑘 by Lemma 2
(since 𝑓 is differentiable at 𝜆𝑖(𝑧

𝑘) = 𝜆𝑘
𝑖
for 𝑖 = 1, 2). Then, we

compute

∇𝑓L𝜃 (𝑧𝑘)

=

{{{{{{
{{{{{{
{

[
[
[
[
[
[

[

𝜉 (𝑧𝑘) 󰜚 (𝑧𝑘)(
𝑧2
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩
)

𝑇

󰜚 (𝑧𝑘) 𝑧2
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩
𝑎 (𝑧𝑘) 𝐼 + (𝜂 (𝑧𝑘) − 𝑎 (𝑧𝑘))

𝑧2𝑧
𝑇

2

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩
2

]
]
]
]
]
]

]

|

𝜂 (𝑧𝑘) = 𝜉 (𝑧𝑘) − 󰜚 (𝑧𝑘) (ctan 𝜃 − tan 𝜃)

}}}}}
}}}}}
}

,

(84)

where

𝑎 (𝑧𝑘) =
𝑓 (𝜆2 (𝑧

𝑘)) − 𝑓 (𝜆1 (𝑧
𝑘))

𝜆2 (𝑧
𝑘) − 𝜆1 (𝑧

𝑘)

󳨀→
𝑓 (𝜆2 (𝑧)) − 𝑓 (𝜆1 (𝑧))

𝜆2 (𝑧) − 𝜆1 (𝑧)
= 𝑎,

𝜉 (𝑧𝑘) =
𝑓󸀠 (𝜆𝑘

1
)

1 + ctan2𝜃
+

𝑓󸀠 (𝜆𝑘
2
)

1 + tan2𝜃

󳨀→
𝜉 − 󰜚 ctan 𝜃

1 + ctan2𝜃
+

𝜉 + 󰜚 tan 𝜃

1 + tan2𝜃
= 𝜉,

󰜚 (𝑧𝑘) = −
ctan 𝜃

1 + ctan2𝜃
𝑓󸀠 (𝜆𝑘

1
) +

tan 𝜃

1 + tan2𝜃
𝑓󸀠 (𝜆𝑘

2
)

󳨀→ −
ctan 𝜃

1 + ctan2𝜃
(𝜉 − 󰜚 ctan 𝜃)

+
tan 𝜃

1 + tan2𝜃
(𝜉 + 󰜚 tan 𝜃) = 󰜚.

(85)

Since the limit of {∇𝑓L𝜃(𝑧𝑘)}
∞

𝑘=1
is an element of 𝜕𝐵𝑓

L𝜃(𝑧), we
obtainΩ ⊂ 𝜕𝐵𝑓

L𝜃(𝑧).
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Case 2. 𝑧2 = 0. Consider any sequence {𝑧𝑘}
∞

𝑘=1
=

{(𝑧𝑘
1
, 𝑧𝑘

2
)}
∞

𝑘=1
→ 𝑧 with 𝑓L𝜃 being differentiable at 𝑧𝑘 for all 𝑘.

By passing to a subsequence, we can assume that either 𝑧𝑘
2
=

0 for all 𝑘 or 𝑧𝑘
2

̸= 0 for all 𝑘. If 𝑧𝑘
2

= 0, then by Lemma 2
we know that 𝑓 is differentiable at 𝜆𝑖(𝑧

𝑘) = 𝑧𝑘
1
for 𝑖 =

1, 2 and ∇𝑓L𝜃(𝑧𝑘) = 𝑓󸀠(𝑧𝑘
1
)𝐼. Hence, the cluster point of

{∇𝑓L𝜃(𝑧𝑘)}
∞

𝑘=1
is an element of (78) with 󰜚 = 0 and 𝜉 = 𝑎 ∈

𝜕𝐵𝑓(𝑧1) ⊂ 𝜕𝑓(𝑧1). If 𝑧
𝑘

2
̸= 0, by passing to a subsequence we

can assume without loss of generality that {𝑧𝑘
2
/‖𝑧𝑘

2
‖} → 𝑤

for some 𝑤 with ‖𝑤‖ = 1. Note that

∇𝑓L𝜃 (𝑧𝑘)

=

{{{{{{
{{{{{{
{

[
[
[
[
[
[

[

𝜉 (𝑧𝑘) 󰜚 (𝑧𝑘)(
𝑧𝑘
2

󵄩󵄩󵄩󵄩𝑧
𝑘

2

󵄩󵄩󵄩󵄩
)

𝑇

󰜚 (𝑧𝑘) 𝑧𝑘
2

󵄩󵄩󵄩󵄩𝑧
𝑘

2

󵄩󵄩󵄩󵄩
𝑎 (𝑧𝑘) 𝐼 + (𝜂 (𝑧𝑘) − 𝑎 (𝑧𝑘))

𝑧2𝑧
𝑇

2

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩
2

]
]
]
]
]
]

]

|

𝜂 (𝑧𝑘) = 𝜉 (𝑧𝑘) − (𝑧𝑘) (ctan 𝜃 − tan 𝜃)

}}}}}
}}}}}
}

.

(86)

Moreover, from 𝜉(𝑧𝑘) and 󰜚(𝑧𝑘) being bounded (due to the
strictly continuous of 𝑓), we can assume that 𝜉(𝑧𝑘) →

𝜉 and 󰜚(𝑧𝑘) → 󰜚. Using (80) and any cluster point of
{𝑓󸀠(𝜆𝑖(𝑧

𝑘))}
∞

𝑘=1
in 𝜕𝐵𝑓(𝜆𝑖(𝑧)), we have

𝜉 − 󰜚 ctan 𝜃 ∈ 𝜕𝐵𝑓 (𝜆1 (𝑧)) , 𝜉 + 󰜚 tan 𝜃 ∈ 𝜕𝐵𝑓 (𝜆2 (𝑧)) .

(87)
In addition,

𝑎 (𝑧𝑘) =
𝑓 (𝜆2 (𝑧

𝑘)) − 𝑓 (𝜆1 (𝑧
𝑘))

𝜆2 (𝑧
𝑘) − 𝜆1 (𝑧

𝑘)
∈ 𝜕𝑓 (𝜆̂𝑘) , (88)

where 𝜆̂𝑘 ∈ [𝜆1(𝑧
𝑘), 𝜆2(𝑧

𝑘)] and hence converges to 𝜆1(𝑧),
since 𝜆𝑖(𝑧

𝑘) → 𝜆1(𝑧) for 𝑖 = 1, 2, due to 𝑧2 = 0.
Using the outer semicontinuity of 𝜕𝑓 we get that the cluster
point of {𝑎(𝑧𝑘)} belongs to 𝜕𝑓(𝜆1(𝑧)). Hence any cluster of
{∇𝑓L𝜃(𝑧𝑘)}

∞

𝑘=1
belongs to an element of the set of the right

side in (78).

We point out one thing for Theorem 12(ii). In the set of
the right side in (78), 𝑎 ∈ 𝜕𝑓(𝜆1(𝑧)) cannot be replaced by 𝑎 ∈
𝜕𝐵𝑓(𝜆1(𝑧)) because 𝜕𝐵𝑓(𝜆1(𝑧)) is usually a smaller subset of
𝜕𝑓(𝜆1(𝑧)). For example, letting 𝑓(𝑡) = |𝑡| and 𝛼 = 2, 𝛽 = −1,
we have

𝑓 (𝛼) − 𝑓 (𝛽)

𝛼 − 𝛽
=

1

3
∉ 𝜕𝐵𝑓 (𝑡) ∀𝑡 ∈ R, (89)

while
𝑓 (𝛼) − 𝑓 (𝛽)

𝛼 − 𝛽
=

1

3
∈ 𝜕𝑓 (0) = [−1, 1] , (90)

which is the main reason causing what we just pointed out.

At present, we roughly describe 𝜕𝐵(𝑓
L𝜃) for 𝑧2 = 0.

In other words, how to get the exact formula on 𝜕𝐵(𝑓
L𝜃).

Toward this end, we need to introduce the following defini-
tion. Given 𝑧 ∈ R𝑛, define

Γ (𝑧)

:= lim sup
𝑡𝑘→𝜆1(𝑧),𝑡

󸀠

𝑘
→𝜆2(𝑧)

𝑡𝑘 ,𝑡
󸀠

𝑘
∈𝐷𝑓, 𝑡𝑘<𝑡

󸀠

𝑘

(𝑓󸀠 (𝑡𝑘) , 𝑓
󸀠 (𝑡󸀠

𝑘
) ,

𝑓 (𝑡󸀠
𝑘
) − 𝑓 (𝑡𝑘)

𝑡󸀠
𝑘
− 𝑡𝑘

) ,

(91)

where “lim sup” is the outer limits in the sense of set-valued
mapping; see [18, 19] for more details.

First, for 𝑧2 ̸= 0, according to Lemma 2 let us write the
gradient of ∇𝑓L𝜃 as

∇𝑓L𝜃 (𝑧)

=
1

tan 𝜃 + ctan 𝜃

×

[
[
[
[
[

[

tan 𝜃 −(
𝑧2
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩
)

−𝑧2
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩
ctan 𝜃

𝑧2(𝑧2)
𝑇

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩
2

]
]
]
]
]

]

𝑓󸀠 (𝜆1 (𝑧))

+
1

tan 𝜃 + ctan 𝜃

[
[
[
[
[
[

[

ctan 𝜃 (
𝑧2
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩
)

𝑇

𝑧2
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩
tan 𝜃

𝑧2(𝑧2)
𝑇

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩
2

]
]
]
]
]
]

]

𝑓󸀠 (𝜆2 (𝑧))

+
𝑓 (𝜆2 (𝑧)) − 𝑓 (𝜆1 (𝑧))

𝜆2 (𝑧) − 𝜆1 (𝑧)

[
[
[

[

0 0

0 𝐼 −
𝑧2(𝑧2)

𝑇

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩
2

]
]
]

]

.

(92)

The exact formula of 𝐵-subdifferential 𝜕𝐵(𝑓
L𝜃) is given

below.

Theorem 13. Given 𝑧 ∈ R𝑛, the following statements hold.

(a) If 𝑧2 ̸= 0, then

𝜕𝐵 (𝑓L𝜃) (𝑧)

= {
1

tan 𝜃 + ctan 𝜃
[
tan 𝜃 −𝑧2

−𝑧2 ctan 𝜃 𝑧2𝑧
𝑇

2

]𝛽

+
1

tan 𝜃 + ctan 𝜃
[
ctan 𝜃 𝑧𝑇

2

𝑧2 tan 𝜃 𝑧2𝑧
𝑇

2

] 𝛾

+[
0 0

0 𝐼 − 𝑧2𝑧
𝑇

2

] 𝜍 | (𝛽, 𝛾, 𝜍) ∈ Γ (𝑧)} .

(93)
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(b) If 𝑧2 = 0, then

𝜕𝐵 (𝑓L𝜃) (𝑧)

= {
1

tan 𝜃 + ctan 𝜃
[
tan 𝜃 −𝑤𝑇

−𝑤 ctan 𝜃 𝑤𝑤𝑇
]𝛽

+
1

tan 𝜃 + ctan 𝜃
[
ctan 𝜃 𝑤𝑇

𝑤 tan 𝜃 𝑤𝑤𝑇
] 𝛾

+ [
0 0

0 𝐼 − 𝑤𝑤𝑇
] 𝜍 |

(𝛽, 𝛾, 𝜍) ∈ Γ (𝑧)
‖𝑤‖ = 1

}

∪ {𝜏𝐼 | 𝜏 ∈ 𝜕𝐵𝑓 (𝑧1)} .

(94)

Proof. (a) Denote by Ξ the set in the right side of (93).
Take 𝑉 ∈ 𝜕𝐵(𝑓

L𝜃)(𝑧). By definition, there exists a sequence
{𝑧𝑘}

∞

𝑘=1
→ 𝑧 with 𝑧𝑘 ∈ 𝐷

(𝑓
L𝜃 )

satisfying ∇𝑓L𝜃(𝑧𝑘) → 𝑉.
Since 𝑧2 ̸= 0, then 𝑧𝑘

2
̸= 0 for 𝑘 sufficiently large. Note that

𝜆𝑖(𝑧
𝑘) ∈ 𝐷𝑓 for 𝑖 = 1, 2 by Lemma 2 and from (92)

∇𝑓L𝜃 (𝑧𝑘) =
1

tan 𝜃 + ctan 𝜃

×

[
[
[
[
[
[

[

tan 𝜃 −(
𝑧𝑘
2

󵄩󵄩󵄩󵄩𝑧
𝑘

2

󵄩󵄩󵄩󵄩
)

−𝑧𝑘
2

󵄩󵄩󵄩󵄩𝑧
𝑘

2

󵄩󵄩󵄩󵄩
ctan 𝜃

𝑧𝑘
2
(𝑧𝑘

2
)
𝑇

󵄩󵄩󵄩󵄩𝑧
𝑘

2

󵄩󵄩󵄩󵄩
2

]
]
]
]
]
]

]

𝑓󸀠 (𝜆1 (𝑧
𝑘))

+
1

tan 𝜃 + ctan 𝜃

×

[
[
[
[
[
[

[

ctan 𝜃 (
𝑧𝑘
2

󵄩󵄩󵄩󵄩𝑧
𝑘

2

󵄩󵄩󵄩󵄩
)

𝑇

𝑧𝑘
2

󵄩󵄩󵄩󵄩𝑧
𝑘

2

󵄩󵄩󵄩󵄩
tan 𝜃

𝑧𝑘
2
(𝑧𝑘

2
)
𝑇

󵄩󵄩󵄩󵄩𝑧
𝑘

2

󵄩󵄩󵄩󵄩
2

]
]
]
]
]
]

]

𝑓󸀠 (𝜆2 (𝑧
𝑘))

+
𝑓 (𝜆2 (𝑧

𝑘)) − 𝑓 (𝜆1 (𝑧
𝑘))

𝜆2 (𝑧
𝑘) − 𝜆1 (𝑧

𝑘)

×
[
[
[

[

0 0

0 𝐼 −
𝑧𝑘
2
(𝑧𝑘

2
)
𝑇

󵄩󵄩󵄩󵄩𝑧
𝑘

2

󵄩󵄩󵄩󵄩
2

]
]
]

]

.

(95)

Note also that 𝑧𝑘
2
/‖𝑧𝑘

2
‖ → 𝑧2/‖𝑧2‖ = 𝑧2, 𝜆𝑖(𝑧

𝑘) → 𝜆𝑖(𝑧), for
𝑖 = 1, 2, and

(𝑓󸀠 (𝜆1 (𝑧
𝑘)) , 𝑓󸀠 (𝜆2 (𝑧

𝑘)) ,
𝑓 (𝜆2 (𝑧

𝑘)) − 𝑓 (𝜆1 (𝑧
𝑘))

𝜆2 (𝑧
𝑘) − 𝜆1 (𝑧

𝑘)
)

󳨀→ Γ (𝑧) .

(96)

Hence 𝑉= lim𝑘→∞∇𝑓
L𝜃(𝑧𝑘)∈ Ξ. This establishes 𝜕𝐵(𝑓

L𝜃)(𝑧) ⊂
Ξ.

Conversely, take𝑉 ∈ Ξ; that is, there exists (𝛽, 𝛾, 𝜍) ∈ Γ(𝑧)
such that

𝑉 =
1

tan 𝜃 + ctan 𝜃
[
tan 𝜃 −𝑧2

−𝑧2 ctan 𝜃 𝑧2𝑧
𝑇

2

]𝛽

+
1

tan 𝜃 + ctan 𝜃
[
ctan 𝜃 𝑧𝑇

2

𝑧2 tan 𝜃 𝑧2𝑧
𝑇

2

] 𝛾

+ [
0 0

0 𝐼 − 𝑧2𝑧
𝑇

2

] 𝜍.

(97)

By definition of Γ(𝑧), there exists 𝑡𝑘, 𝑡
󸀠

𝑘
∈ 𝐷𝑓 such that 𝑡𝑘 →

𝜆1(𝑧), 𝑡
󸀠

𝑘
→ 𝜆2(𝑧), 𝑡

󸀠

𝑘
> 𝑡𝑘, and

(𝑓󸀠 (𝑡𝑘) , 𝑓
󸀠 (𝑡󸀠

𝑘
) ,

𝑓 (𝑡󸀠
𝑘
) − 𝑓 (𝑡𝑘)

𝑡󸀠
𝑘
− 𝑡𝑘

) 󳨀→ (𝛽, 𝛾, 𝜍) . (98)

Let

𝑧𝑘 := [

[

𝑧𝑘
1

𝑧𝑘
2

]

]

=
[
[
[
[

[

tan2𝜃
1 + tan2𝜃

𝑡𝑘 +
ctan2𝜃

1 + ctan2𝜃
𝑡󸀠
𝑘

(
tan 𝜃

1 + tan2𝜃
𝑡󸀠
𝑘
−

ctan 𝜃

1 + ctan2𝜃
𝑡𝑘)

𝑧2
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩

]
]
]
]

]

.

(99)

Note that 𝑡󸀠
𝑘
> 𝑡𝑘, it is easy to see the 𝜆1(𝑧

𝑘) = 𝑡𝑘, 𝜆2(𝑧𝑘) =

𝑡󸀠
𝑘
and 𝑢𝑖

𝑧𝑘
= 𝑢𝑖

𝑧
for 𝑖 = 1, 2. Hence, 𝑧𝑘 → 𝑧 and 𝑓L𝜃

are differentiable at 𝑧𝑘 by Lemma 2 (since 𝑓 is differentiable
at 𝜆𝑖(𝑧

𝑘) for 𝑖 = 1, 2). Hence according to the formula of
gradients∇𝑓L𝜃(𝑧𝑘), (95), (97), and (98), togetherwith the fact
𝑧𝑘
2
/‖𝑧𝑘

2
‖ = 𝑧2/‖𝑧2‖, we have 𝑉 = lim𝑘→∞∇𝑓L𝜃(𝑧𝑘), which in

turn implies 𝑉 ∈ 𝜕𝐵(𝑓
L𝜃)(𝑧).

(b) Take 𝑉 ∈ 𝜕𝐵(𝑓
L𝜃)(𝑧); then by definition there exists

𝑧𝑘 → 𝑧 with 𝑧𝑘 ∈ 𝐷
𝑓
L𝜃 such that ∇𝑓L𝜃(𝑧𝑘) → 𝑉. By

passing to a subsequence, we can assume that either 𝑧𝑘
2

= 0

for all 𝑘 or 𝑧𝑘
2

̸= 0 for all 𝑘. If 𝑧𝑘
2

= 0, then by Lemma 2
∇𝑓L𝜃(𝑧𝑘) = 𝑓󸀠(𝑧𝑘

1
)𝐼. Hence the cluster point of {𝑓󸀠(𝑧𝑘

1
)𝐼} is

an element of {𝜏𝐼 | 𝜏 ∈ 𝜕𝐵𝑓(𝑧1)}. If 𝑧
𝑘

2
̸= 0, by passing to a

subsequence we can assume that {𝑧𝑘
2
/‖𝑧𝑘

2
‖} → 𝑤 for some 𝑤

with ‖𝑤‖ = 1. Note that 𝜆𝑖(𝑧
𝑘) ∈ 𝐷𝑓 (since 𝑧𝑘 ∈ 𝐷

𝑓
L𝜃 by

Lemma 2), 𝜆𝑖(𝑧
𝑘) → 𝜆𝑖(𝑧), for 𝑖 = 1, 2, and 𝜆1(𝑧

𝑘) < 𝜆2(𝑧
𝑘);

it follows from (95) that𝑉 belongs to an element of (94) with

(𝛽, 𝛾, 𝜍)

∈ lim sup
𝑘→∞

(𝑓󸀠 (𝜆1 (𝑧
𝑘)) , 𝑓󸀠 (𝜆2 (𝑧

𝑘)) ,

𝑓 (𝜆2 (𝑧
𝑘)) − 𝑓 (𝜆1 (𝑧

𝑘))

𝜆2 (𝑧
𝑘) − 𝜆1 (𝑧

𝑘)
) .

(100)
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Conversely, take 𝑉 belonging to the left side of (94); that is,
there exists 𝜏 ∈ 𝜕𝐵𝑓(𝑧1) such that 𝑉 = 𝜏𝐼 or exist (𝛽, 𝛾, 𝜍) ∈

Γ(𝑧) and 𝑤 ∈ R𝑛−1 with ‖𝑤‖ = 1 such that

𝑉 =
1

tan 𝜃 + ctan 𝜃
[
tan 𝜃 −𝑤𝑇

−𝑤 ctan 𝜃𝑤𝑤𝑇] 𝛽

+
1

tan 𝜃 + ctan 𝜃
[
ctan 𝜃 𝑤𝑇

𝑤 tan 𝜃𝑤𝑤𝑇] 𝛾

+ [
0 0

0 𝐼 − 𝑤𝑤𝑇] 𝜍.

(101)

If𝑉 = 𝜏𝐼 for some 𝜏 ∈ 𝜕𝐵𝑓(𝑧1), then there exists 𝑡
𝑘 → 𝑧1 with

𝑡𝑘 ∈ 𝐷𝑓 such that 𝑓󸀠(𝑡𝑘) → 𝜏. Let 𝑧𝑘 = 𝑡𝑘𝑒, then 𝜆𝑖(𝑧
𝑘) =

𝑡𝑘, for 𝑖 = 1, 2, 𝑧𝑘 → 𝑧, and 𝑧𝑘 ∈ 𝐷
𝑓
L𝜃 by Lemma 2.

Thus, ∇𝑓(𝑧𝑘) = 𝑓󸀠(𝑡𝑘)𝐼, which further implies 𝑉 = 𝜏𝐼 =

lim𝑘→∞𝑓󸀠(𝑡𝑘)𝐼 = lim𝑘→∞∇𝑓L𝜃(𝑧𝑘); that is,𝑉 ∈ 𝜕𝐵(𝑓
L𝜃)(𝑧).

The remaining case can be proved by using the same
argument following (97) by replacing 𝑧2 by 𝑤. The proof is
complete.

Due to the important role played by Γ(𝑧), we present the
estimate of Γ as below.

Lemma 14. Given 𝑧 ∈ R𝑛, the following statements hold.

(a) If 𝑧2 ̸= 0, then

Γ (𝑧)

= (𝜕𝐵𝑓 (𝜆1 (𝑧)) , 𝜕𝐵𝑓 (𝜆2 (𝑧)) ,
𝑓 (𝜆2 (𝑧)) − 𝑓 (𝜆1 (𝑧))

𝜆2 (𝑧) − 𝜆1 (𝑧)
) .

(102)

(b) If 𝑧2 = 0, then

Γ (𝑧) ⊂ (𝜕𝐵𝑓 (𝑧1) , 𝜕𝐵𝑓 (𝑧1) , 𝜕𝑓 (𝑧1)) . (103)

Proof. The case of 𝑧2 ̸= 0 is clear, while the case of 𝑧2 = 0 can
be proved by using the similar argument following (88).

The exact estimate of Γ(𝑧) at 𝑧2 = 0 can be obtained
provided that additional assumption is imposed on 𝑓.

Lemma 15. Suppose that 𝑓 : R → R is strictly continuous
and directionally differentiable function satisfying

lim
𝑡,V→𝜏

𝜎

𝑡 ̸= V

𝑓 (𝑡) − 𝑓 (V)
𝑡 − V

= lim
𝑡→𝜏
𝜎

𝑡∈𝐷𝑓

𝑓󸀠
(𝑡) = 𝑓󸀠

𝜎
(𝜏) ,

∀𝜏 ∈ R, 𝜎 ∈ {−, +} .

(104)

Then, for 𝑧 = (𝑧1, 0) ∈ R𝑛, we have

Γ (𝑧) = {(𝜏, 𝜏, 𝜏) | 𝜏 ∈ 𝜕𝐵𝑓 (𝑧1)}

∪ {(𝑓󸀠

−
(𝑧1) , 𝑓

󸀠

+
(𝑧1) , 𝜕𝑓 (𝑧1))} .

(105)

Proof. It follows from the definition of Γ(𝑧) via (91) that

Γ (𝑧) = lim sup
𝑡𝑘,𝑡
󸀠

𝑘
→𝑧1

𝑡𝑘𝑡
󸀠

𝑘
∈𝐷𝑓, 𝑡𝑘<𝑡

󸀠

𝑘

(𝑓󸀠 (𝑡𝑘) , 𝑓
󸀠 (𝑡󸀠

𝑘
) ,

𝑓 (𝑡󸀠
𝑘
) − 𝑓 (𝑡𝑘)

𝑡󸀠
𝑘
− 𝑡𝑘

)

= lim sup
𝑡𝑘 ,𝑡
󸀠

𝑘
→𝑧1

𝑡𝑘 ,𝑡
󸀠

𝑘
∈𝐷𝑓, 𝑡𝑘<𝑡

󸀠

𝑘
≤𝑧1

(𝑓󸀠 (𝑡𝑘) , 𝑓
󸀠 (𝑡󸀠

𝑘
) ,

𝑓 (𝑡󸀠
𝑘
) − 𝑓 (𝑡𝑘)

𝑡󸀠
𝑘
− 𝑡𝑘

)

+ lim sup
𝑡𝑘 ,𝑡
󸀠

𝑘
→𝑧1

𝑡𝑘𝑡
󸀠

𝑘
∈𝐷𝑓, 𝑧1≤𝑡𝑘<𝑡

󸀠

𝑘

(𝑓󸀠 (𝑡𝑘) , 𝑓
󸀠 (𝑡󸀠

𝑘
) ,

𝑓 (𝑡󸀠
𝑘
) − 𝑓 (𝑡𝑘)

𝑡󸀠
𝑘
− 𝑡𝑘

)

+ lim sup
𝑡𝑘 ,𝑡
󸀠

𝑘
→𝑧1

𝑡𝑘,𝑡
󸀠

𝑘
∈𝐷𝑓 , 𝑡𝑘<𝑧1<𝑡

󸀠

𝑘

(𝑓󸀠 (𝑡𝑘) , 𝑓
󸀠 (𝑡󸀠

𝑘
) ,

𝑓 (𝑡󸀠
𝑘
) − 𝑓 (𝑡𝑘)

𝑡󸀠
𝑘
− 𝑡𝑘

) .

(106)

According to (104), it is easy to see that

𝜕𝐵𝑓 (𝑧1) = {𝑓󸀠

−
(𝑧1) , 𝑓

󸀠

+
(𝑧1)} ,

𝜕𝑓 (𝑧1) = [𝑓󸀠

−
(𝑧1) , 𝑓

󸀠

+
(𝑧1)] ,

lim sup
𝑡𝑘 ,𝑡
󸀠

𝑘
→𝑧1

𝑡𝑘,𝑡
󸀠

𝑘
∈𝐷𝑓 , 𝑡𝑘<𝑡

󸀠

𝑘
≤𝑧1

(𝑓󸀠 (𝑡𝑘) , 𝑓
󸀠 (𝑡󸀠

𝑘
) ,

𝑓 (𝑡󸀠
𝑘
) − 𝑓 (𝑡𝑘)

𝑡󸀠
𝑘
− 𝑡𝑘

)

= (𝑓󸀠

−
(𝑧1) , 𝑓

󸀠

−
(𝑧1) , 𝑓

󸀠

−
(𝑧1)) ,

lim sup
𝑡𝑘 ,𝑡
󸀠

𝑘
→𝑧1

𝑡𝑘,𝑡
󸀠

𝑘
∈𝐷𝑓 , 𝑧1≤𝑡𝑘<𝑡

󸀠

𝑘

(𝑓󸀠 (𝑡𝑘) , 𝑓
󸀠 (𝑡󸀠

𝑘
) ,

𝑓 (𝑡󸀠
𝑘
) − 𝑓 (𝑡𝑘)

𝑡󸀠
𝑘
− 𝑡𝑘

)

= (𝑓󸀠

+
(𝑧1) , 𝑓

󸀠

+
(𝑧1) , 𝑓

󸀠

+
(𝑧1)) .

(107)

These are the elements of (𝜏, 𝜏, 𝜏) with 𝜏 ∈ 𝜕𝐵𝑓(𝑧1), since
𝜕𝐵𝑓(𝑧1) = {𝑓󸀠

−
(𝑧1), 𝑓

󸀠

+
(𝑧1)}. Now we claim that

lim sup
𝑡𝑘,𝑡
󸀠

𝑘
→𝑧1

𝑡𝑘 ,𝑡
󸀠

𝑘
∈𝐷𝑓, 𝑡𝑘<𝑧1<𝑡

󸀠

𝑘

(𝑓󸀠 (𝑡𝑘) , 𝑓
󸀠 (𝑡󸀠

𝑘
) ,

𝑓 (𝑡󸀠
𝑘
) − 𝑓 (𝑡𝑘)

𝑡󸀠
𝑘
− 𝑡𝑘

)

= (𝑓󸀠

−
(𝑧1) , 𝑓

󸀠

+
(𝑧1) , 𝜕𝑓 (𝑧1)) .

(108)

It only needs to show

lim sup
𝑡𝑘,𝑡
󸀠

𝑘
→𝑧1

𝑡𝑘,𝑡
󸀠

𝑘
∈𝐷𝑓, 𝑡𝑘<𝑧1<𝑡

󸀠

𝑘

𝑓 (𝑡󸀠
𝑘
) − 𝑓 (𝑡𝑘)

𝑡󸀠
𝑘
− 𝑡𝑘

= 𝜕𝑓 (𝑧1) . (109)
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First, we observe that

𝑓 (𝑡󸀠
𝑘
) − 𝑓 (𝑡𝑘)

𝑡󸀠
𝑘
− 𝑡𝑘

=
𝑡󸀠
𝑘
− 𝑧1

𝑡󸀠
𝑘
− 𝑡𝑘

𝑓 (𝑡󸀠
𝑘
) − 𝑓 (𝑧1)

𝑡󸀠
𝑘
− 𝑧1

+
𝑧1 − 𝑡𝑘
𝑡󸀠
𝑘
− 𝑡𝑘

𝑓 (𝑧1) − 𝑓 (𝑡𝑘)

𝑧1 − 𝑡𝑘

󳨀→ (1 − 𝑟) 𝑓
󸀠

+
(𝑧1) + 𝑟𝑓󸀠

−
(𝑧1) ∈ 𝜕𝑓 (𝑧1) ,

(110)

for some 𝑟 ∈ [0, 1]. Conversely, taking 𝜏 ∈ 𝜕𝑓(𝑧1) and using
𝜕𝑓(𝑧1) = [𝑓󸀠

−
(𝑧1), 𝑓

󸀠

+
(𝑧1)] yield 𝜏 = (1 − 𝑟)𝑓󸀠

+
(𝑧1) + 𝑟𝑓󸀠

−
(𝑧1) for

some 𝑟 ∈ [0, 1]. Due to 𝐷𝑓 being dense in R, for any 𝑘 ≥ 1,
we define

𝑇1 := 𝐷𝑓 ∩ [𝑧1 − 𝑟
1

𝑘
−

1

𝑘2
, 𝑧1 − 𝑟

1

𝑘
] ̸= 0

𝑇2 := 𝐷𝑓 ∩ [𝑧1 + (1 − 𝑟)
1

𝑘
, 𝑧1 + (1 − 𝑟)

1

𝑘
+

1

𝑘2
] ̸= 0.

(111)

Take 𝑡𝑘 ∈ 𝑇1 and 𝑡󸀠
𝑘
∈ 𝑇2; then for 𝑡󸀠

𝑘
> 𝑧1 > 𝑡𝑘, we have

(1 − 𝑟)
1

𝑘
≤ 𝑡󸀠

𝑘
− 𝑧1 ≤ (1 − 𝑟)

1

𝑘
+

1

𝑘2
,

1

𝑘
≤ 𝑡󸀠

𝑘
− 𝑡𝑘 ≤

1

𝑘
+

2

𝑘2
,

(112)

which imply

(1 − 𝑟) (1/𝑘)

(1/𝑘) + (2/𝑘2)
≤

𝑡󸀠
𝑘
− 𝑧1

𝑡󸀠
𝑘
− 𝑡𝑘

≤
(1 − 𝑟) (1/𝑘) + (1/𝑘2)

1/𝑘
.

(113)

Thus,

𝑡󸀠
𝑘
− 𝑧1

𝑡󸀠
𝑘
− 𝑡𝑘

󳨀→ 1 − 𝑟. (114)

Similarly, we have

𝑧1 − 𝑡𝑘
𝑡󸀠
𝑘
− 𝑡𝑘

󳨀→ 𝑟. (115)

In summary,

𝜏 = (1 − 𝑟) 𝑓󸀠

+
(𝑧1) + 𝑟𝑓󸀠

−
(𝑧1)

= lim
𝑘→∞

𝑡󸀠
𝑘
− 𝑧1

𝑡󸀠
𝑘
− 𝑡𝑘

𝑓 (𝑡󸀠
𝑘
) − 𝑓 (𝑧1)

𝑡󸀠
𝑘
− 𝑧1

+
𝑧1 − 𝑡𝑘
𝑡󸀠
𝑘
− 𝑡𝑘

𝑓 (𝑧1) − 𝑓 (𝑡𝑘)

𝑧1 − 𝑡𝑘

= lim
𝑘→∞

𝑓 (𝑡󸀠
𝑘
) − 𝑓 (𝑡𝑘)

𝑡󸀠
𝑘
− 𝑡𝑘

.

(116)

This completes the proof.

Corollary 16. Suppose 𝑓 : R → R is strictly continuous and
directionally differentiable function satisfying

lim
𝑡,V→𝜏

𝜎

𝑡 ̸= V

𝑓 (𝑡) − 𝑓 (V)
𝑡 − V

= lim
𝑡→𝜏
𝜎

𝑡∈𝐷𝑓

𝑓󸀠
(𝑡) = 𝑓󸀠

𝜎
(𝜏) ,

∀𝜏 ∈ R, 𝜎 ∈ {−, +} .

(117)

Then, for any 𝑧 = (𝑧1, 0) ∈ R𝑛,

𝜕𝐵 (𝑓L𝜃) (𝑧) = {[
𝜉 󰜚𝑤𝑇

󰜚𝑤 𝑎𝐼 + (𝜂 − 𝑎)𝑤𝑤𝑇] |

either 𝑎 = 𝜉 ∈ 𝜕𝐵𝑓 (𝑧1) , 󰜚 = 0,

or 𝑎 ∈ 𝜕𝑓 (𝑧1) ,

𝜉 − 󰜚 ctan 𝜃 = 𝑓󸀠

−
(𝑧1) ,

𝜉 + 󰜚 tan 𝜃 = 𝑓󸀠

+
(𝑧1) ,

𝜂 = 𝜉 − 󰜚 (ctan 𝜃 − tan 𝜃) ,

‖𝑤‖ = 1} .

(118)

Proof. This result follows by combining Theorem 13 and
Lemma 15.

We point out that if 𝜃 = 45∘, then Corollary 16 reduces to
[5, Lemma 5].

4. Directional Differentiability in
Hadamard Sense, Positive Homogeneity,
and Boundedness

In this section, we study some other important properties
between𝑓L𝜃 and𝑓, such as directional differentiability in the
Hadamard sense, positive homogeneity, and boundedness.
These are new discoveries and are not studied in [1, 5, 6] or
other settings. First, we note that if a function is directionally
differentiable in the Hadamard senses, then it must be direc-
tionally differentiable. The converse statement holds true if
this function is from R to R, since in this case the direction
just has ±1. More precisely, for a real-valued function 𝑔 :
R → R, 𝑔 is directionally differentiable if and only if 𝑔 is
directionally differentiable in the Hadamard sense. Indeed,
in the proof of [5, Proposition 3], the authors already employ
the property of directionally differentiable in the Hadamard
sense and even the assumption is directionally differentiable.
However, for general mappings 𝑔 : R𝑛 toR or 𝑔 : R𝑛 → R𝑚,
these two concepts are not equivalent. In other words, if 𝑔
is directionally differentiable in the Hadamard sense, then 𝑔
is directionally differentiable. But, the converse is invalid in
general, unless some additional assumption is imposed; for
example, local Lipschitz continuity [20]. Nonetheless, we will
show for the special function 𝑓L𝜃 : R𝑛 → R𝑛, these two
concepts are still equivalent.
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Theorem 17. Let 𝑓 : R → R and 𝑓L𝜃 be defined as in (4).
Then, 𝑓L𝜃 is directionally differentiable at 𝑧 if and only if 𝑓L𝜃

is directionally differentiable at 𝑧 in the Hadamard sense.

Proof. “⇐” This direction is clear.
“⇒” Suppose that 𝑓L𝜃 is directionally differentiable at

𝑧. Then, from Lemma 1, 𝑓 is directionally differentiable, and

hence𝑓 is directionally differentiable in theHadamard sense,
since 𝑓 is a function from R to R. To proceed the proof, we
consider the following three cases.

Case 1. 𝑧2 = 0 and ℎ2 = 0. Let ℎ󸀠 = (ℎ󸀠
1
, ℎ󸀠

2
) → ℎ = (ℎ1, ℎ2). If

ℎ󸀠
2
= 0, then the proof is trivial. If ℎ󸀠

2
̸= 0, then

𝑓L𝜃 (𝑧 + 𝑡ℎ󸀠) − 𝑓L𝜃 (𝑧)

=

[
[
[
[
[
[
[

[

𝑓 (𝑧1 + 𝑡ℎ󸀠
1
− 𝑡

󵄩󵄩󵄩󵄩󵄩ℎ
󸀠

2

󵄩󵄩󵄩󵄩󵄩 ctan 𝜃)

1 + ctan2𝜃
+

𝑓 (𝑧1 + 𝑡ℎ󸀠
1
+ 𝑡

󵄩󵄩󵄩󵄩󵄩ℎ
󸀠

2

󵄩󵄩󵄩󵄩󵄩 tan 𝜃)

1 + tan2𝜃

(−
𝑓 (𝑧1 + 𝑡ℎ󸀠

1
− 𝑡

󵄩󵄩󵄩󵄩󵄩ℎ
󸀠

2

󵄩󵄩󵄩󵄩󵄩 ctan 𝜃) ctan 𝜃

1 + ctan2𝜃
+

𝑓 (𝑧1 + 𝑡ℎ󸀠
1
+ 𝑡

󵄩󵄩󵄩󵄩󵄩ℎ
󸀠

2

󵄩󵄩󵄩󵄩󵄩 tan 𝜃) tan 𝜃

1 + tan2𝜃
)

ℎ󸀠
2

󵄩󵄩󵄩󵄩ℎ
󸀠

2

󵄩󵄩󵄩󵄩

]
]
]
]
]
]
]

]

−

[
[
[
[
[
[

[

𝑓 (𝑧1)

1 + ctan2𝜃
+

𝑓 (𝑧1)

1 + tan2𝜃

(−
𝑓 (𝑧1) ctan 𝜃

1 + ctan2𝜃
+

𝑓 (𝑧1) tan 𝜃

1 + tan2𝜃
)𝑤

]
]
]
]
]
]

]

,

(119)

where 𝑤 is taken to be ℎ󸀠
2
/‖ℎ󸀠

2
‖. Since 𝑓 is directionally

differentiable in the Hadamard sense, then

lim
ℎ
󸀠
→ℎ
𝑡↓0

𝑓 (𝑧1 + 𝑡ℎ󸀠
1
− 𝑡

󵄩󵄩󵄩󵄩󵄩ℎ
󸀠

2

󵄩󵄩󵄩󵄩󵄩 ctan 𝜃) − 𝑓 (𝑧1)

𝑡
= 𝑓󸀠 (𝑧1; ℎ1) ,

lim
ℎ
󸀠
→ℎ
𝑡↓0

𝑓 (𝑧1 + 𝑡ℎ󸀠
1
− 𝑡

󵄩󵄩󵄩󵄩󵄩ℎ
󸀠

2

󵄩󵄩󵄩󵄩󵄩 tan 𝜃) − 𝑓 (𝑧1)

𝑡
= 𝑓󸀠 (𝑧1; ℎ1) .

(120)

Therefore,

1

𝑡
[
𝑓 (𝑧1 + 𝑡ℎ󸀠

1
− 𝑡

󵄩󵄩󵄩󵄩󵄩ℎ
󸀠

2

󵄩󵄩󵄩󵄩󵄩 ctan 𝜃)

1 + ctan2𝜃
+

𝑓 (𝑧1 + 𝑡ℎ󸀠
1
+ 𝑡

󵄩󵄩󵄩󵄩󵄩ℎ
󸀠

2

󵄩󵄩󵄩󵄩󵄩 tan 𝜃)

1 + tan2𝜃

−
𝑓 (𝑧1)

1 + ctan2𝜃
−

𝑓 (𝑧1)

1 + tan2𝜃
]

󳨀→
𝑓󸀠 (𝑧1; ℎ1)

1 + ctan2𝜃
+

𝑓󸀠 (𝑧1; ℎ1)

1 + tan2𝜃
= 𝑓󸀠 (𝑧1; ℎ1) ,

1

𝑡
{ [−

𝑓 (𝑧1 + 𝑡ℎ󸀠
1
− 𝑡

󵄩󵄩󵄩󵄩󵄩ℎ
󸀠

2

󵄩󵄩󵄩󵄩󵄩 ctan 𝜃) ctan 𝜃

1 + ctan2𝜃

+
𝑓 (𝑧1 + 𝑡ℎ󸀠

1
+ 𝑡

󵄩󵄩󵄩󵄩󵄩ℎ
󸀠

2

󵄩󵄩󵄩󵄩󵄩 tan 𝜃) tan 𝜃

1 + tan2𝜃
]

− [−
𝑓 (𝑧1) ctan 𝜃

1 + ctan2𝜃
+

𝑓 (𝑧1) tan 𝜃

1 + tan2𝜃
]}

ℎ󸀠
2

󵄩󵄩󵄩󵄩ℎ
󸀠

2

󵄩󵄩󵄩󵄩
󳨀→ 0

(121)

because the term in big brace approaches to zero and ℎ󸀠
2
/‖ℎ󸀠

2
‖

is bounded. These two limits imply

lim
ℎ
󸀠
→ℎ
𝑡↓0

𝑓L𝜃 (𝑧 + 𝑡ℎ󸀠) − 𝑓L𝜃 (𝑧)

𝑡
= [

𝑓󸀠 (𝑧1; ℎ1)
0

] = 𝑓󸀠 (𝑧1; ℎ1) 𝑒

= (𝑓L𝜃)
󸀠

(𝑧; ℎ) ,

(122)

which says 𝑓L𝜃 is directionally differentiable at 𝑧 in the
Hadamard sense.
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Case 2. 𝑧2 = 0 and ℎ2 ̸= 0. Note that

𝑓L𝜃 (𝑧 + 𝑡ℎ󸀠) − 𝑓L𝜃 (𝑧)

=

[
[
[
[
[
[
[

[

𝑓 (𝑧1 + 𝑡ℎ󸀠
1
− 𝑡

󵄩󵄩󵄩󵄩󵄩ℎ
󸀠

2

󵄩󵄩󵄩󵄩󵄩 ctan 𝜃)

1 + ctan2𝜃
+

𝑓 (𝑧1 + 𝑡ℎ󸀠
1
+ 𝑡

󵄩󵄩󵄩󵄩󵄩ℎ
󸀠

2

󵄩󵄩󵄩󵄩󵄩 tan 𝜃)

1 + tan2𝜃

(−
𝑓 (𝑧1 + 𝑡ℎ󸀠

1
− 𝑡

󵄩󵄩󵄩󵄩󵄩ℎ
󸀠

2

󵄩󵄩󵄩󵄩󵄩 ctan 𝜃) ctan 𝜃

1 + ctan2𝜃
+

𝑓 (𝑧1 + 𝑡ℎ󸀠
1
+ 𝑡

󵄩󵄩󵄩󵄩󵄩ℎ
󸀠

2

󵄩󵄩󵄩󵄩󵄩 tan 𝜃) tan 𝜃

1 + tan2𝜃
)

ℎ󸀠
2

󵄩󵄩󵄩󵄩ℎ
󸀠

2

󵄩󵄩󵄩󵄩

]
]
]
]
]
]
]

]

− [
𝑓 (𝑧1)

0
]

=

[
[
[
[
[
[
[

[

𝑓 (𝑧1 + 𝑡ℎ󸀠
1
− 𝑡

󵄩󵄩󵄩󵄩󵄩ℎ
󸀠

2

󵄩󵄩󵄩󵄩󵄩 ctan 𝜃)

1 + ctan2𝜃
+

𝑓 (𝑧1 + 𝑡ℎ󸀠
1
+ 𝑡

󵄩󵄩󵄩󵄩󵄩ℎ
󸀠

2

󵄩󵄩󵄩󵄩󵄩 tan 𝜃)

1 + tan2𝜃
− 𝑓 (𝑧1)

(−
𝑓 (𝑧1 + 𝑡ℎ󸀠

1
− 𝑡

󵄩󵄩󵄩󵄩󵄩ℎ
󸀠

2

󵄩󵄩󵄩󵄩󵄩 ctan 𝜃) ctan 𝜃

1 + ctan2𝜃
+

𝑓 (𝑧1 + 𝑡ℎ󸀠
1
+ 𝑡

󵄩󵄩󵄩󵄩󵄩ℎ
󸀠

2

󵄩󵄩󵄩󵄩󵄩 tan 𝜃) tan 𝜃

1 + tan2𝜃
)

ℎ󸀠
2

󵄩󵄩󵄩󵄩ℎ
󸀠

2

󵄩󵄩󵄩󵄩

]
]
]
]
]
]
]

]

.

(123)

For the first component, we compute that

1

𝑡
[
𝑓 (𝑧1 + 𝑡ℎ󸀠

1
− 𝑡

󵄩󵄩󵄩󵄩󵄩ℎ
󸀠

2

󵄩󵄩󵄩󵄩󵄩 ctan 𝜃)

1 + ctan2𝜃
+

𝑓 (𝑧1 + 𝑡ℎ󸀠
1
+ 𝑡

󵄩󵄩󵄩󵄩󵄩ℎ
󸀠

2

󵄩󵄩󵄩󵄩󵄩 tan 𝜃)

1 + tan2𝜃

−𝑓 (𝑧1) ]

=
1

𝑡
[
𝑓 (𝑧1 + 𝑡 (ℎ󸀠

1
−
󵄩󵄩󵄩󵄩󵄩ℎ

󸀠

2

󵄩󵄩󵄩󵄩󵄩 ctan 𝜃)) − 𝑓 (𝑧1)

1 + ctan2𝜃

+
𝑓 (𝑧1 + 𝑡 (ℎ󸀠

1
+
󵄩󵄩󵄩󵄩󵄩ℎ

󸀠

2

󵄩󵄩󵄩󵄩󵄩 tan 𝜃)) − 𝑓 (𝑧1)

1 + tan2𝜃
]

󳨀→
𝑓󸀠 (𝑧1; ℎ1 −

󵄩󵄩󵄩󵄩ℎ2
󵄩󵄩󵄩󵄩 ctan 𝜃)

1 + ctan2𝜃
+

𝑓󸀠 (𝑧1; ℎ1 +
󵄩󵄩󵄩󵄩ℎ2

󵄩󵄩󵄩󵄩 tan 𝜃)

1 + tan2𝜃

as 𝑡 ↓ 0, ℎ󸀠 → ℎ,

(124)

where the last step is due to the fact that 𝑓 is directionally
differentiable in the Hadamard sense.

For the second component, we have

1

𝑡
[−

𝑓 (𝑧1 + 𝑡ℎ󸀠
1
− 𝑡

󵄩󵄩󵄩󵄩󵄩ℎ
󸀠

2

󵄩󵄩󵄩󵄩󵄩 ctan 𝜃) ctan 𝜃

1 + ctan2𝜃

+
𝑓 (𝑧1 + 𝑡ℎ󸀠

1
+ 𝑡

󵄩󵄩󵄩󵄩󵄩ℎ
󸀠

2

󵄩󵄩󵄩󵄩󵄩 tan 𝜃) tan 𝜃

1 + tan2𝜃
]

ℎ󸀠
2

󵄩󵄩󵄩󵄩ℎ
󸀠

2

󵄩󵄩󵄩󵄩

󳨀→ [−
ctan 𝜃

1 + ctan2𝜃
𝑓󸀠 (𝑧1; ℎ1 −

󵄩󵄩󵄩󵄩ℎ2
󵄩󵄩󵄩󵄩 ctan 𝜃)

+
tan 𝜃

1 + tan2𝜃
𝑓󸀠 (𝑧1; ℎ1 +

󵄩󵄩󵄩󵄩ℎ2
󵄩󵄩󵄩󵄩 tan 𝜃)]

ℎ2
󵄩󵄩󵄩󵄩ℎ2

󵄩󵄩󵄩󵄩
.

(125)

The above two limits show that

lim
ℎ
󸀠
→ℎ
𝑡↓0

𝑓L𝜃 (𝑧 + 𝑡ℎ󸀠) − 𝑓L𝜃 (𝑧)

𝑡
=

1

1 + ctan2𝜃

× 𝑓󸀠 (𝑧1; ℎ1 −
󵄩󵄩󵄩󵄩ℎ2

󵄩󵄩󵄩󵄩 ctan 𝜃) [
1 0

0 ctan 𝜃 ⋅ 𝐼
]
[
[

[

1

−
ℎ2
󵄩󵄩󵄩󵄩ℎ2

󵄩󵄩󵄩󵄩

]
]

]

+
1

1 + tan2𝜃
𝑓󸀠 (𝑧1; ℎ1 +

󵄩󵄩󵄩󵄩ℎ2
󵄩󵄩󵄩󵄩 tan 𝜃) [

1 0

0 tan 𝜃 ⋅ 𝐼
]
[
[

[

1

ℎ2
󵄩󵄩󵄩󵄩ℎ2

󵄩󵄩󵄩󵄩

]
]

]

= (𝑓L𝜃)
󸀠

(𝑧; ℎ) .

(126)
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Case 3. 𝑧2 ̸= 0. Then

𝑓L𝜃 (𝑧 + 𝑡ℎ󸀠) − 𝑓L𝜃 (𝑧)

=

[
[
[
[
[
[
[
[

[

𝑓 (𝑧1 + 𝑡ℎ󸀠
1
−
󵄩󵄩󵄩󵄩󵄩𝑧2 + 𝑡ℎ󸀠

2

󵄩󵄩󵄩󵄩󵄩 ctan 𝜃)

1 + ctan2𝜃
+

𝑓 (𝑧1 + 𝑡ℎ󸀠
1
+
󵄩󵄩󵄩󵄩󵄩𝑧2 + 𝑡ℎ󸀠

2

󵄩󵄩󵄩󵄩󵄩 tan 𝜃)

1 + tan2𝜃

(−
𝑓 (𝑧1 + 𝑡ℎ󸀠

1
−
󵄩󵄩󵄩󵄩󵄩𝑧2 + 𝑡ℎ󸀠

2

󵄩󵄩󵄩󵄩󵄩 ctan 𝜃) ctan 𝜃

1 + ctan2𝜃
+

𝑓 (𝑧1 + 𝑡ℎ󸀠
1
+
󵄩󵄩󵄩󵄩󵄩𝑧2 + 𝑡ℎ󸀠

2

󵄩󵄩󵄩󵄩󵄩 tan 𝜃) tan 𝜃

1 + tan2𝜃
)

𝑧2 + 𝑡ℎ󸀠
2

󵄩󵄩󵄩󵄩𝑧2 + 𝑡ℎ󸀠
2

󵄩󵄩󵄩󵄩

]
]
]
]
]
]
]
]

]

−

[
[
[
[
[

[

𝑓 (𝑧1 −
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩 ctan 𝜃)

1 + ctan2𝜃
+

𝑓 (𝑧1 +
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩 tan 𝜃)

1 + tan2𝜃

(−
𝑓 (𝑧1 −

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩 ctan 𝜃) ctan 𝜃

1 + ctan2𝜃
+

𝑓 (𝑧1 +
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩 tan 𝜃) tan 𝜃

1 + tan2𝜃
)

𝑧2
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩

]
]
]
]
]

]

.

(127)

Then, the first component of (𝑓L𝜃(𝑧+𝑡ℎ󸀠)−𝑓L𝜃(𝑧))/𝑡 behaves
as follows (when 𝑡 ↓ 0 and ℎ󸀠 → ℎ):

1

𝑡
[
𝑓 (𝑧1 + 𝑡ℎ󸀠

1
−
󵄩󵄩󵄩󵄩󵄩𝑧2 + 𝑡ℎ󸀠

2

󵄩󵄩󵄩󵄩󵄩 ctan 𝜃)

1 + ctan2𝜃

+
𝑓 (𝑧1 + 𝑡ℎ󸀠

1
+
󵄩󵄩󵄩󵄩󵄩𝑧2 + 𝑡ℎ󸀠

2

󵄩󵄩󵄩󵄩󵄩 tan 𝜃)

1 + tan2𝜃

−
𝑓 (𝑧1 −

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩 ctan 𝜃)

1 + ctan2𝜃
−

𝑓 (𝑧1 +
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩 tan 𝜃)

1 + tan2𝜃
]

=
1

𝑡
[
𝑓 (𝑧1 + 𝑡ℎ󸀠

1
−
󵄩󵄩󵄩󵄩󵄩𝑧2 + 𝑡ℎ󸀠

2

󵄩󵄩󵄩󵄩󵄩 ctan 𝜃) − 𝑓 (𝑧1 −
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩 ctan 𝜃)

1 + ctan2𝜃

+
𝑓 (𝑧1 + 𝑡ℎ󸀠

1
+
󵄩󵄩󵄩󵄩󵄩𝑧2 + 𝑡ℎ󸀠

2

󵄩󵄩󵄩󵄩󵄩 tan 𝜃) − 𝑓 (𝑧1 +
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩 tan 𝜃)

1 + tan2𝜃
]

=
1

𝑡
[(𝑓(𝑧1 + 𝑡ℎ󸀠

1
−
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩 ctan 𝜃 − 𝑡
𝑧𝑇
2
ℎ󸀠
2

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩
ctan 𝜃 + 𝑜 (𝑡))

−𝑓 (𝑧1 −
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩 ctan 𝜃))

× (1 + ctan2𝜃)
−1

+ (𝑓(𝑧1 + 𝑡ℎ󸀠
1
+
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩 tan 𝜃 + 𝑡
𝑧𝑇
2
ℎ󸀠
2

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩
tan 𝜃 + 𝑜 (𝑡))

−𝑓 (𝑧1 +
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩 tan 𝜃))

× (1 + tan2𝜃)
−1

]

󳨀→
𝑓󸀠 (𝑧1 −

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩 ctan 𝜃; ℎ1 − (𝑧𝑇

2
ℎ2/

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩) ctan 𝜃)

1 + ctan2𝜃

+
𝑓󸀠 (𝑧1 +

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩 tan 𝜃; ℎ1 + (𝑧𝑇

2
ℎ2/

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩) tan 𝜃)

1 + tan2𝜃
,

(128)

where in the last step we have used the fact that 𝑓 is
directionally differentiable in theHadamard sense. Recall that
Φ(𝑧2) = 𝑧2/‖𝑧2‖ is continuously differentiable at 𝑧2 ̸= 0.Then,
the second component of (𝑓L𝜃(𝑧 + 𝑡ℎ󸀠) − 𝑓L𝜃(𝑧))/𝑡 behaves
as follows (when 𝑡 ↓ 0 and ℎ󸀠 → ℎ):

1

𝑡
{[−

𝑓 (𝑧1 + 𝑡ℎ󸀠
1
−
󵄩󵄩󵄩󵄩󵄩𝑧2 + 𝑡ℎ󸀠

2

󵄩󵄩󵄩󵄩󵄩 ctan 𝜃) ctan 𝜃

1 + ctan2𝜃

+
𝑓 (𝑧1 + 𝑡ℎ󸀠

1
+
󵄩󵄩󵄩󵄩󵄩𝑧2 + 𝑡ℎ󸀠

2

󵄩󵄩󵄩󵄩󵄩 tan 𝜃) tan 𝜃

1 + tan2𝜃
]

𝑧2 + 𝑡ℎ󸀠
2

󵄩󵄩󵄩󵄩𝑧2 + 𝑡ℎ󸀠
2

󵄩󵄩󵄩󵄩

− [−
𝑓 (𝑧1 −

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩 ctan 𝜃) ctan 𝜃

1 + ctan2𝜃

+
𝑓 (𝑧1 +

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩 tan 𝜃) tan 𝜃

1 + tan2𝜃
]

𝑧2
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩
}

󳨀→ [−
ctan 𝜃

1 + ctan2𝜃
𝑓󸀠 (𝑧1 −

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩 ctan 𝜃; ℎ1 −

𝑧𝑇
2
ℎ2

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩
ctan 𝜃)

+
tan 𝜃

1 + tan2𝜃
𝑓󸀠 (𝑧1 +

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩 tan 𝜃; ℎ1 +

𝑧𝑇
2
ℎ2

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩
tan 𝜃)]
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×
𝑧2
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩
+ [−

𝑓 (𝑧1 −
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩 ctan 𝜃) ctan 𝜃

1 + ctan2𝜃

+
𝑓 (𝑧1 +

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩 tan 𝜃) tan 𝜃

1 + tan2𝜃
]

× [
1

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩
(𝐼 −

𝑧2𝑧
𝑇

2

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩
2
)]ℎ2.

(129)

The above two limits show that

lim
ℎ
󸀠
→ℎ
𝑡↓0

𝑓L𝜃 (𝑧 + 𝑡ℎ󸀠) − 𝑓 (𝑧)

𝑡

=
1

1 + ctan2𝜃
𝑓󸀠 (𝜆1 (𝑧) ; ℎ1 −

𝑧𝑇
2
ℎ2

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩
ctan 𝜃)

× [
1 0
0 ctan 𝜃 ⋅ 𝐼

][

[

1

−
𝑧2
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩

]

]

−
ctan 𝜃

1 + ctan2𝜃
𝑓 (𝜆1 (𝑧))

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩

𝑀𝑧2
ℎ

+
1

1 + tan2𝜃
𝑓󸀠 (𝜆2 (𝑧) ; ℎ1 +

𝑧𝑇
2
ℎ2

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩
tan 𝜃)

× [
1 0
0 tan 𝜃 ⋅ 𝐼

][

[

1
𝑧2
󵄩󵄩󵄩󵄩𝑧2

󵄩󵄩󵄩󵄩

]

]

+
tan 𝜃

1 + tan2𝜃
𝑓 (𝜆2 (𝑧))

󵄩󵄩󵄩󵄩𝑧2
󵄩󵄩󵄩󵄩

𝑀𝑧2
ℎ = (𝑓L𝜃)

󸀠

(𝑧; ℎ) .

(130)

The proof is complete.

Theorem 18. Let 𝑓 : R → R and 𝑓L𝜃 be defined as in (4).
Then, the following statements are equivalent.

(a) 𝑓L𝜃 is directionally differentiable at 𝑧;
(b) 𝑓L𝜃 is directionally differentiable at 𝑧 in theHadamard

sense;
(c) 𝑓 is directionally differentiable at 𝜆𝑖(𝑧), for 𝑖 = 1, 2;
(d) 𝑓 is directionally differentiable at 𝜆𝑖(𝑧), for 𝑖 = 1, 2 in

the Hadamard sense.

Proof. The equivalence (𝑎) ⇔ (𝑏) comes from Theorem 17;
(𝑐) ⇔ (𝑑) is due to the fact that 𝑓 : R → R; (𝑎) ⇔ (𝑐)
follows from Lemma 1.

Below we study the relationship of positive homogeneity
and boundedness between 𝑓L𝜃 and 𝑓.

Theorem 19. Let 𝑓 : R → R and 𝑓L𝜃 be defined as in (4).
Then, 𝑓L𝜃 is positively homogeneous at 𝑧 with exponent 𝛼 > 0
if and only if 𝑓 is positively homogeneous at 𝜆𝑖(𝑧) for 𝑖 = 1, 2
with exponent 𝛼 > 0.

Proof. “⇐” Suppose that𝑓 is positively homogeneous at𝜆𝑖(𝑧)
for 𝑖 = 1, 2 with exponent 𝛼 > 0. For any 𝑧 = (𝑧1, 𝑧2) ∈

R×R𝑛−1 with 𝑧 = 𝜆1(𝑧)𝑢
1

𝑧
+𝜆2(𝑧)𝑢

2

𝑧
, we observe that𝑢𝑖

𝑘𝑧
= 𝑢𝑖

𝑧
,

𝑖 = 1, 2 for 𝑘 ≥ 0, whenever 𝑧2 ̸= 0 and 𝜆𝑖(𝑘𝑧) = 𝑘𝜆𝑖(𝑧), for
𝑖 = 1, 2. Hence, when 𝑧2 ̸= 0, we have

𝑓L𝜃 (𝑘𝑧) = 𝑓 (𝜆1 (𝑘𝑧)) 𝑢
1

𝑘𝑧
+ 𝑓 (𝜆2 (𝑘𝑧)) 𝑢

2

𝑘𝑧

= 𝑓 (𝑘𝜆1 (𝑧)) 𝑢
1

𝑧
+ 𝑓 (𝑘𝜆2 (𝑧)) 𝑢

2

𝑧

= 𝑘𝛼 [𝑓 (𝜆1 (𝑧)) 𝑢
1

𝑧
+ 𝑓 (𝜆2 (𝑧)) 𝑢

2

𝑧
]

= 𝑘𝛼𝑓 (𝑧) .

(131)

When 𝑧2 = 0, we know that 𝜆𝑖(𝑧) = 𝑧1 for 𝑖 = 1, 2. Thus,

𝑓L𝜃 (𝑘𝑧) = [
𝑓 (𝑘𝑧1)

0
] = [

𝑘𝛼𝑓 (𝑧1)
0

] = 𝑘𝛼𝑓L𝜃 (𝑧) . (132)

All the above shows that 𝑓L𝜃 is positively homogeneous at 𝑧
with exponent 𝛼 > 0.

“⇒” Suppose that 𝑓L𝜃 is positively homogeneous at 𝑧

with exponent 𝛼 > 0; that is, 𝑓L𝜃(𝑘𝑧) = 𝑘𝛼𝑓L𝜃(𝑧). Then,
we have

𝑓 (𝑘𝜆𝑖 (𝑧))
󵄩󵄩󵄩󵄩󵄩𝑢

𝑖

𝑧

󵄩󵄩󵄩󵄩󵄩
2

= ⟨𝑓L𝜃 (𝑘𝑧) , 𝑢
𝑖

𝑧
⟩ = 𝑘𝛼 ⟨𝑓L𝜃 (𝑧) , 𝑢

𝑖

𝑧
⟩

= 𝑘𝛼𝑓 (𝜆𝑖 (𝑧))
󵄩󵄩󵄩󵄩󵄩𝑢

𝑖

𝑧

󵄩󵄩󵄩󵄩󵄩
2

,

(133)

which in turn implies 𝑓(𝑘𝜆𝑖(𝑧)) = 𝑘𝛼𝑓(𝜆𝑖(𝑧)), since ‖𝑢
𝑖

𝑧
‖ ̸= 0.

Hence, 𝑓 is positively homogenous at 𝜆𝑖(𝑧) for 𝑖 = 1, 2 with
exponent 𝛼 > 0.

Theorem 20. Let 𝑓 : R → R and 𝑓L𝜃 be defined as in (4).
Then, 𝑓L𝜃 is bounded if and only if 𝑓 is bounded.

Proof. “⇐” Suppose that 𝑓 is bounded by 𝑀. The proof for
this direction follows from the following inequality:

󵄩󵄩󵄩󵄩󵄩𝑓
L𝜃 (𝑧)

󵄩󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩󵄩𝑓 (𝜆1 (𝑧)) 𝑢

1

𝑧
+ 𝑓 (𝜆2 (𝑧)) 𝑢

2

𝑧

󵄩󵄩󵄩󵄩󵄩

≤
󵄨󵄨󵄨󵄨𝑓 (𝜆1 (𝑧))

󵄨󵄨󵄨󵄨 ⋅
󵄩󵄩󵄩󵄩󵄩𝑢

1

𝑧

󵄩󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝑓 (𝜆2 (𝑧))

󵄨󵄨󵄨󵄨 ⋅
󵄩󵄩󵄩󵄩󵄩𝑢

2

𝑧

󵄩󵄩󵄩󵄩󵄩

≤ (
1

√1 + ctan2𝜃
+

1

√1 + tan2𝜃
)𝑀.

(134)

“⇒” Suppose that 𝑓L𝜃 is bounded by 𝑀. This direction is
trivial because for any 𝜏 ∈ R, one has 𝑓L𝜃(𝜏𝑒) = (𝑓(𝜏), 0)𝑇,
and hence

󵄨󵄨󵄨󵄨𝑓 (𝜏)
󵄨󵄨󵄨󵄨 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(
𝑓 (𝜏)
0

)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
=

󵄩󵄩󵄩󵄩󵄩𝑓
L𝜃 (𝜏𝑒)

󵄩󵄩󵄩󵄩󵄩 ≤ 𝑀. (135)

5. Final Remarks

So far, we have shown that many properties holding for 𝑓soc

can be extended to the setting for 𝑓L𝜃 . One may wonder
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whether 𝑓soc and 𝑓L𝜃 always share the same properties. The
answer is no!Here, we present a simple property that holds for
𝑓soc but fails for𝑓L𝜃 . Somemore different properties between
𝑓L𝜃 and 𝑓soc are discovered in [21].

To see the counterexample, we recall that a function 𝐹 :
R𝑛 → R𝑛 is said to be an odd (even, resp.) function if
𝐹(−𝑥) = −𝐹(𝑥) (𝐹(−𝑥) = 𝐹(𝑥), resp.) for all 𝑥 ∈ R𝑛.

Proposition 21. Let 𝑓 : R → R and 𝑓𝑠𝑜𝑐 be given as in (6).
Then 𝑓𝑠𝑜𝑐 is an odd (even, resp.) function on R𝑛 if and only if
𝑓 is an odd (even, resp.) function on R.

Proof. “⇐” In the setting of second-order cone, we observe
that

𝑢1
−𝑧

= 𝑢2
𝑧
, 𝑢2

−𝑧
= 𝑢1

𝑧
,

𝜆1 (−𝑧) = −𝜆2 (𝑧) , 𝜆2 (−𝑧) = −𝜆1 (𝑧) ,
(136)

which implies
𝑓soc

(−𝑧)

= 𝑓 (𝜆1 (−𝑧)) 𝑢
1

−𝑧
+ 𝑓 (𝜆2 (−𝑧)) 𝑢

2

−𝑧

= 𝑓 (−𝜆2 (𝑧)) 𝑢
2

𝑧
+ 𝑓 (−𝜆1 (𝑧)) 𝑢

1

𝑧

=
{
{
{

−𝑓 (𝜆2 (𝑧)) 𝑢
2

𝑧
− 𝑓 (𝜆1 (𝑧)) 𝑢

1

𝑧
if 𝑓 is odd,

𝑓 (𝜆2 (𝑧)) 𝑢
2

𝑧
+ 𝑓 (𝜆1 (𝑧)) 𝑢

1

𝑧
if 𝑓 is even,

=
{
{
{

−𝑓soc (𝑧) if 𝑓 is odd,

𝑓soc (𝑧) if 𝑓 is even.

(137)

“⇒” For 𝜏 ∈ R, we have
𝑓 (−𝜏) = ⟨𝑓L𝜃 (−𝜏𝑒) , 𝑒⟩

=
{
{
{

⟨−𝑓L𝜃 (𝜏𝑒) , 𝑒⟩ = −𝑓 (𝜏) if 𝑓L𝜃 is odd,

⟨𝑓L𝜃 (𝜏𝑒) , 𝑒⟩ = 𝑓 (𝜏) if 𝑓L𝜃 is even.
(138)

The below example illustrates that the above relationship
fails to hold for 𝑓L𝜃 and 𝑓.

Example 22. Let 𝑓L𝜃 be given as in (4) with tan 𝜃 = 2 (𝜃 =

tan−12). Then,
(a) 𝑓(𝑡) = 𝑡3 is an odd function, but 𝑓L𝜃 is not an odd

function at 𝑧 = (1, 1);
(b) 𝑓(𝑡) = 𝑡2 is an even function, but 𝑓L𝜃 is not an even

function at 𝑧 = (1, 1).

For 𝑓(𝑡) = 𝑡3, it is clear that 𝑓(𝑡) = 𝑡3 is an odd function.
Nonetheless, we verify that

𝑓L𝜃 (𝑧) =
1

20
(110, 215) , 𝑓L𝜃 (−𝑧) =

1

20
(−50, −35) ,

(139)

which says −𝑓L𝜃(𝑧) ̸= 𝑓L𝜃(−𝑧). Thus, 𝑓L𝜃 is not an odd
function at 𝑧 = (1, 1).

Similarly, for 𝑓(𝑡) = 𝑡2 which is an even function, we
compute

𝑓L𝜃 (𝑧) =
1

10
(20, 35) , 𝑓L𝜃 (−𝑧) =

1

10
(20, 5) . (140)

Hence, 𝑓L𝜃(−𝑧) ̸= 𝑓L𝜃(𝑧) which says 𝑓L𝜃 is not an even
function at 𝑧 = (1, 1).

Finally, let us discuss the relationship between circular
cone and the (nonsymmetric) matrix cone introduced in
[17, 22], where the authors study the epigraph of six different
matrix norms, such as the Frobenius norm, the 𝑙∞ norm, 𝑙1
norm, the spectral or the operator norm, the nuclear norm,
and the Ky Fan 𝑘-norm. If we regard a matrix as a high-
dimensional vector, then the circular cone is equivalent to the
matrix cone with Frobenius norm. More precisely, denote

𝐾𝜖

𝑚,𝑛
:= {(𝑡, 𝑋) ∈ R ×R

𝑚×𝑛 | 𝜖−1𝑡 ≥ ‖𝑋‖𝐹} , (141)

where ‖𝑋‖𝐹 denotes the Frobenius normof𝑋; that is, ‖𝑋‖𝐹 :=

(∑
𝑚

𝑖=1
∑
𝑛

𝑗=1
|𝑋𝑖𝑗|

2)
1/2. Notice that the circular coneL𝜃 can be

equivalently written as

L𝜃 = {(𝑥1, 𝑥2) ∈ R ×R
𝑛−1 | 𝑥1 tan 𝜃 ≥

󵄩󵄩󵄩󵄩𝑥2
󵄩󵄩󵄩󵄩} . (142)

Let 𝑡 = 𝑥1, 𝜖 = ctan 𝜃 and 𝑋 = diag(𝑥2) where diag denotes
the diagonal matrix; then 𝐾ctan 𝜃

𝑛−1,1
reduces to L𝜃. Conversely,

the matrix cone 𝐾𝜖

𝑚,𝑛
can be also regarded as a circular cone

with

tan 𝜃 = 𝜖−1, 𝑥1 = 𝑡,

𝑥2 = (𝑋11, 𝑋12, . . . , 𝑋1𝑛, . . . , 𝑋𝑖1, . . . , 𝑋𝑖𝑛, . . . , 𝑋𝑚1,

. . . , 𝑋𝑚𝑛)
𝑇
∈ R

𝑚𝑛.

(143)

Therefore, 𝐾𝜖

𝑚,𝑛
is a (𝑚𝑛 + 1)-dimensional circular cone.

In addition, we know for a vector 𝑦 ∈ R𝑛 (regarding as a
matrix in R𝑛×1) the singular value decomposition is

𝑦 = 𝑈Σ𝑉𝑇, (144)

where 𝑉 = 1 ∈ R, Σ = (‖𝑦‖, 0, . . . , 0)𝑇 ∈ R𝑛×1, and
𝑈 = [𝑈1, . . . , 𝑈𝑛] ∈ R𝑛×𝑛 with 𝑈1 = 𝑦/‖𝑦‖ and 𝑈2, . . . , 𝑈𝑛 are
arbitrary orthonormal vectors orthogonal to 𝑦. It indicates
that the singular value of 𝑦 is ‖𝑦‖ and 0 with multiplicity
𝑛 − 1. Hence the spectral/operator norm (largest singular
value), the Ky Fan 𝑘-norm (the sum of 𝑘-largest singular
value), or the nuclear norm (the sum of the singular values)
are all ‖𝑦‖. This means that L𝜃 is a special case of the
matrix cone studied in [17, 22], where the properties of
spectral operator are studied, such as well-definiteness, the
directional differentiability, the Fréchet differentiability, the
locally Lipschitz continuity, the 𝜌-order 𝐵-differentiability
(0 < 𝜌 ≤ 1), the 𝜌-order 𝐺-semismooth (0 < 𝜌 ≤ 1),
and the characterization of Clarke’s generalized Jacobian. In
this paper, by using the special structure of circular cone,
we mainly establish the 𝐵-subdifferential (the approach we
considered here is more directly and depended on the special
structure of circular cone), the directional differentiability in
the Hadamard sense, and the 𝜌-order semismooth for 𝜌 > 1.
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[9] T. P. Wihler, “On the Hölder continuity of matrix functions for
normal matrices,” JIPAM. Journal of Inequalities in Pure and
Applied Mathematics, vol. 10, no. 4, pp. 1–5, 2009.

[10] L. Q. Qi, “Convergence analysis of some algorithms for solving
nonsmooth equations,” Mathematics of Operations Research,
vol. 18, no. 1, pp. 227–244, 1993.

[11] H.-D. Qi, “A semismooth Newton method for the nearest
Euclidean distance matrix problem,” SIAM Journal on Matrix
Analysis and Applications, vol. 34, no. 1, pp. 67–93, 2013.

[12] L. Q. Qi and J. Sun, “A nonsmooth version of Newton’s method,”
Mathematical Programming A, vol. 58, no. 3, pp. 353–367, 1993.

[13] D. F. Sun and J. Sun, “Strong semismoothness of eigenvalues
of symmetric matrices and its application to inverse eigenvalue
problems,” SIAM Journal on Numerical Analysis, vol. 40, no. 6,
pp. 2352–2367, 2002.

[14] D. F. Sun and J. Sun, “Strong semismoothness of the Fischer-
Burmeister SDC and SOC complementarity functions,” Math-
ematical Programming. A Publication of the Mathematical Pro-
gramming Society A, vol. 103, no. 3, pp. 575–581, 2005.

[15] Y. N. Wang and N. H. Xiu, “Strong semismoothness of projec-
tion onto slices of second-order cone,” Journal of Optimization
Theory and Applications, vol. 150, no. 3, pp. 599–614, 2011.

[16] F. Facchinei and J.-S. Pang, Finite Dimensional Variational
Inequalities and Complementarity Problems, Springer, New
York, NY, USA, 2003.

[17] C. Ding, An introduction to a class of matrix optimization prob-
lems [Ph.D. thesis], National University of Singapore, Singapore,
2012.

[18] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Springer,
New York, NY, USA, 2009.

[19] R. T. Rockafellar and R. J. Wets, Variational Analysis, Springer,
New York, NY, USA, 1998.

[20] A. Shapiro, “On concepts of directional differentiability,” Journal
of OptimizationTheory and Applications, vol. 66, no. 3, pp. 477–
487, 1990.

[21] J.-C. Zhou, J.-S. Chen, andH.-F.Hung, “Circular cone convexity
and some inequalities associated with circular cones,” Journal of
Inequalities and Applications, vol. 2013, p. 571, 2013.

[22] C. Ding, D. F. Sun, and K.-C. Toh, “An introduction to a class
of matrix cone programming,” Mathematical Programming. A
Publication of the Mathematical Programming Society A, vol.
144, no. 1-2, pp. 141–179, 2014.


