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Abstract Recently Tseng (Math Program 83:159–185, 1998) extended a class
of merit functions, proposed by Luo and Tseng (A new class of merit functions
for the nonlinear complementarity problem, in Complementarity and Variational
Problems: State of the Art, pp. 204–225, 1997), for the nonlinear complementarity
problem (NCP) to the semidefinite complementarity problem (SDCP) and showed
several related properties. In this paper, we extend this class of merit functions to
the second-order cone complementarity problem (SOCCP) and show analogous
properties as in NCP and SDCP cases. In addition, we study another class of merit
functions which are based on a slight modification of the aforementioned class
of merit functions. Both classes of merit functions provide an error bound for the
SOCCP and have bounded level sets.

Keywords Error bound · Jordan product · Level set · Merit function · Second-order
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1 Introduction

We consider the following conic complementarity problem of finding x, y ∈ IRn

and ζ ∈ IRn satisfying

〈x, y〉 = 0, x ∈ K, y ∈ K, (1)

x = F(ζ ), y = G(ζ ), (2)

Member of Mathematics Division, National Center for Theoretical Sciences, Taipei Office. The
author’s work is partially supported by National Science Council of Taiwan.

J.-S. Chen
Department of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan
E-mail: jschen@math.ntnu.edu.tw



496 J.-S. Chen

where 〈·, ·〉 is the Euclidean inner product, F : IRn → IRn and G : IRn → IRn are
smooth (i.e., continuously differentiable) mappings, and K is the Cartesian prod-
uct of second-order cones (SOC), also called Lorentz cones (Faraut and Korányi
1994). In other words,

K = Kn1 × · · · × KnN , (3)

where N , n1, . . . , nN ≥ 1, n1 + · · · + nN = n, and

Kni := {(x1, x2) ∈ IR × IRni −1 | ‖x2‖ ≤ x1}, (4)

with ‖ · ‖ denoting the Euclidean norm and K1 denoting the set of nonnegative
reals IR+. A special case of (3) is K = IRn+, the nonnegative orthant in IRn , which
corresponds to N = n and n1 = · · · = nN = 1. We will refer to (1), (2), (3) as the
second-order cone complementarity problem (SOCCP).

An important special case of SOCCP corresponds to G(ζ ) = ζ for all ζ ∈ IRn .
Then (1) and (2) reduce to

〈F(ζ ), ζ 〉 = 0, F(ζ ) ∈ K, ζ ∈ K, (5)

which is a natural extension of the nonlinear complementarity problem (NCP)
where K = IRn+. Another important special case of SOCCP corresponds to the
Karush–Kuhn–Tucker (KKT) optimality conditions for the second-order cone
program (SOCP) (see Chen and Tseng 2005 for details):

minimize cTx
subject to Ax = b, x ∈ K, (6)

where A ∈ IRm×n has full row rank, b ∈ IRm and c ∈ IRn .
For simplicity, we will focus on K = Kn throughout the whole paper. All the

analysis can be carried over to the general case where K has the direct product
structure as (3). It is known that Kn is a closed convex cone with interior given by

int(Kn) = {(x1, x2) ∈ IR × IRn−1 | ‖x2‖ < x1}.
For any x, y in IRn , we write x 	Kn y if x − y ∈ Kn; and write x 
Kn y if
x − y ∈ int(Kn). In other words, we have x 	Kn 0 if and only if x ∈ Kn and
x 
Kn 0 if and only if x ∈ int(Kn). The relation 	Kn is a partial ordering, i.e., it
is anti-symmetric, transitive, and reflexive. Nonetheless, it is not a total ordering
in Kn .

There have been various methods proposed for solving SOCP and SOCCP. They
include interior-point methods (Alizadeh and Schmieta 2000; Andersen et al. 2003;
Lobo et al. 1998; Mittelmann 2003; Monteiro and Tsuchiya 2000; Schmieta and
Alizadeh 2001; Tsuchiya 1999), non-interior smoothing Newton methods (Chen
et al. 2003; Fukushima et al. 2002; Hayashi et al. 2002), and smoothing–regulariza-
tion methods (Hayashi et al. 2005). Recently, the author and his co-author studied
an alternative approach based on reformulating SOCP and SOCCP as an uncon-
strained smooth minimization problem (Chen and Tseng 2005). In that approach,
it aimed to find a smooth function ψ : IRn × IRn → IR+ such that

ψ(x, y) = 0 ⇐⇒ x ∈ Kn, y ∈ Kn, 〈x, y〉 = 0. (7)
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Then SOCCP can be expressed as an unconstrained smooth (global) minimization
problem:

min
ζ∈IRn

f (ζ ) := ψ(F(ζ ),G(ζ )). (8)

We call such a f a merit function for the SOCCP.
A popular choice of ψ is the squared norm of Fischer–Burmeister function,

i.e., ψFB : IRn × IRn → IR+ associated with second-order cone given by

ψFB(x, y) = 1

2
‖φFB(x, y)‖2, (9)

where φFB : IRn × IRn → IRn is the well-known Fischer–Burmeister function
(Fischer 1992, 1997) defined by

φFB(x, y) = (x2 + y2)1/2 − x − y. (10)

More specifically, for any x = (x1, x2), y = (y1, y2) ∈ IR × IRn−1, we define their
Jordan product associated with Kn as

x ◦ y := (〈x, y〉, y1x2 + x1 y2). (11)

The Jordan product ◦, unlike scalar or matrix multiplication, is not associative,
which is a main source on complication in the analysis of SOCCP. The identity
element under this product is e := (1, 0, . . . , 0)T ∈ IRn . We write x2 to mean x ◦ x
and write x + y to mean the usual componentwise addition of vectors. It is known
that x2 ∈ Kn for all x ∈ IRn . Moreover, if x ∈ Kn , then there exists a unique vector
in Kn , denoted by x1/2, such that (x1/2)2 = x1/2 ◦ x1/2 = x . Thus, φFB defined as
(10) is well-defined for all (x, y) ∈ IRn × IRn and maps IRn × IRn to IRn . It was
shown by Fukushima et al. (2002) that φFB(x, y) = 0 if and only if (x, y) satisfies
(1). Therefore, ψFB defined as (9) induces a merit function for the SOCCP.

In this paper, we study two classes of merit functions for the SOCCP. The first
class is

fLT(ζ ) := ψ0(〈F(ζ ),G(ζ )〉)+ ψ(F(ζ ),G(ζ )), (12)

where ψ0 : IR → IR+ satisfies

ψ0(t) = 0 ∀t ≤ 0 and ψ ′
0(t) > 0 ∀t > 0, (13)

and ψ : IRn × IRn → IR+ satisfies

ψ(x, y) = 0, 〈x, y〉 ≤ 0 ⇐⇒ (x, y) ∈ Kn × Kn, 〈x, y〉 = 0. (14)

The function fLT was proposed by Luo and Tseng (1997) for NCP case and was
extended to the SDCP case by Tseng (1998). We explore the extension to the SOC-
CP as will be seen in Sects. 3 and 4. In addition, we make a slight modification of
fLT which forms another class of merit function as below.

̂fLT(ζ ) := ψ∗
0 (F(ζ ) ◦ G(ζ ))+ ψ(F(ζ ),G(ζ )), (15)
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where ψ∗
0 : IRn → IR+ is given as

ψ∗
0 (w) = 1

2
‖(w)+‖2. (16)

andψ : IRn × IRn → IR+ satisfies (14). We notice thatψ∗
0 possesses the following

property:

ψ∗
0 (w) = 0 ⇐⇒ w �Kn 0, (17)

which is a similar feature to (13) in some sense. Examples of ψ0 and ψ will be
given in Sect. 3. The second class of merit functions for SDCP case was recently
studied (Goes and Oliveira 2002) and a variant of̂fLT was also studied by the author
(Chen 2006).

We will show that both fLT and ̂fLT provide global error bound (Propositions
4.1 and 4.2), which plays an important role in analyzing the convergence rate of
some iterative methods for solving the SOCCP, if F and G are jointly strongly
monotone. We will also prove that if F and G are jointly monotone and a strictly
feasible solution exists then both fLT and̂fLT have bounded level sets (Propositions
4.3 and 4.4) which will ensure that the sequence generated by a descent algorithm
has at least an accumulation point. All these properties will make it possible to con-
struct a descent algorithm for solving the equivalent unconstrained reformulation
of the SOCCP. In contrast, the merit function induced byψFB lacks these properties.
In addition, we will show that both fLT and̂fLT are differentiable and their gradients
have computable formulas. All the aforementioned features are significant reasons
for choosing and studying these new merit functions.

Finally, we point out that SOCCP can be reduced to an SDCP by observing
that, for any x = (x1, x2) ∈ IR × IRn−1, we have x ∈ Kn if and only if

Lx :=
[

x1 xT
2

x2 x1 I

]

is positive semidefinite (also see Fukushima et al. 2002, p. 437 and Sim and Zhao
2005). However, this reduction increases the problem dimension from n to n(n +
1)/2 and it is not known whether this increase can be mitigated by exploiting the
special “arrow” structure of Lx .

Throughout this paper, IRn denotes the space of n-dimensional real column vec-
tors and T denotes transpose. For any differentiable function f : IRn → IR, ∇ f (x)
denotes the gradient of f at x . For any differentiable mapping F = (F1, ..., Fm)

T :
IRn → IRm , ∇F(x) = [∇F1(x) · · · ∇Fm(x)] is a n ×m matrix which denotes the
transpose Jacobian of F at x . For any symmetric matrices A, B ∈ IRn×n , we write
A 	 B (respectively, A 
 B) to mean A − B is positive semidefinite (respectively,
positive definite). For nonnegative scalars α and β, we write α = O(β) to mean
α ≤ Cβ, with C independent of α and β. For any x ∈ IRn , (x)+ is used to denote
the orthogonal projection of x onto Kn , whereas (x)− means the orthogonal pro-
jection of x onto −Kn . Also we denote C∗ := {y | 〈x, y〉 ≥ 0 ∀x ∈ K } the dual
cone of C, given any closed convex cone C.
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2 Preliminaries

In this section, we review some background materials and preliminary results
obtained by the author and his co-author in (Chen and Tseng 2005) that will be
used later. We begin with the determinant and trace of x . For any x = (x1, x2) ∈
IR × IRn−1, its determinant and trace are defined by

det(x) := x2
1 − ‖x2‖2, tr(x) := 2x1.

In general, det(x ◦ y) �= det(x)det(y) unless x2 = y2. Besides, we observe that
tr(x ◦ y) = 2〈x, y〉. We next recall from Fukushima et al. (2002) that each x =
(x1, x2) ∈ IR × IRn−1 admits a spectral factorization, associated with Kn , of the
form

x = λ1u(1) + λ2u(2),

where λ1, λ2 and u(1), u(2) are the spectral values and the associated spectral vec-
tors of x given by

λi = x1 + (−1)i‖x2‖,

u(i) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
2

(

1, (−1)i
x2

‖x2‖
)

if x2 �= 0;
1
2

(

1, (−1)iw2

)

if x2 = 0,

for i = 1, 2, with w2 being any vector in IRn−1 satisfying ‖w2‖ = 1. If x2 �= 0,
the factorization is unique.

The above spectral factorization of x , as well as x2 and x1/2 and the matrix
Lx , have various interesting properties; see Fukushima et al. (2002). We list four
properties that we will use in the subsequent sections.

Property 2.1 For any x = (x1, x2) ∈ IR × IRn−1, with spectral values λ1, λ2 and
spectral vectors u(1), u(2), the following results hold.

(a) tr(x) = λ1 + λ2 and det(x) = λ1λ2.
(b) If x ∈ Kn, then 0 ≤ λ1 ≤ λ2 and x1/2 = √

λ1 u(1) + √
λ2 u(2).

(c) If x ∈ int(Kn), then 0 < λ1 ≤ λ2, and Lx is invertible with

L−1
x = 1

det(x)

⎡

⎣

x1 −xT
2

−x2
det(x)

x1
I + 1

x1
x2xT

2

⎤

⎦ .

(d) x ◦ y = Lx y for all y ∈ IRn, and Lx 
 0 if and only if x ∈ int(Kn).

In the following, we present some preliminary properties about φFB and ψFB

given as (10) and (9), respectively, which are crucial to proving the results in Sects. 3
and 4. We only indicate their sources and omit the proofs since they can be found
in Chen and Tseng (2005) and Fukushima et al. (2002).
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Lemma 2.1 ([Fukushima et al. (2002), Proposition 2.1]) LetφFB : IRn×IRn → IRn

be given by (10). Then

φFB(x, y) = 0 ⇐⇒ x, y ∈ Kn, x ◦ y = 0,

⇐⇒ x, y ∈ Kn, 〈x, y〉 = 0.

Lemma 2.2 ([Chen and Tseng (2005), Lemma 3.2]) For any x = (x1, x2), y =
(y1, y2) ∈ IR × IRn−1 with x2 + y2 �∈ int(Kn), we have

x2
1 = ‖x2‖2,

y2
1 = ‖y2‖2,

x1 y1 = xT
2 y2,

x1 y2 = y1x2.

Lemma 2.3 ([Chen and Tseng (2005), Proposition 3.1, 3.2]) Let φFB ,ψFB be given
as (10) and (9), respectively. Then, ψFB has the following properties.

(a) ψFB : IRn × IRn → IR+ satisfies (7).
(b) ψFB is continuously differentiable at every (x, y) ∈ IRn × IRn. Moreover,

∇xψFB(0, 0) = ∇yψBF(0, 0) = 0. If (x, y) �= (0, 0) and x2 + y2 ∈ int(Kn),
then

∇xψFB(x, y) =
(

Lx L−1
(x2+y2)1/2

− I

)

φFB(x, y),

∇yψFB(x, y) =
(

L y L−1
(x2+y2)1/2

− I

)

φFB(x, y).
(18)

If (x, y) �= (0, 0) and x2 + y2 �∈ int(Kn), then x2
1 + y2

1 �= 0 and

∇xψFB(x, y) =
⎛

⎝

x1
√

x2
1 + y2

1

− 1

⎞

⎠φFB(x, y), (19)

∇yψFB(x, y) =
⎛

⎝

y1
√

x2
1 + y2

1

− 1

⎞

⎠φFB(x, y). (20)

Lemma 2.4 ([Chen and Tseng (2005), Lemma 5.1]) Let C be any closed convex
cone in IRn. For each x ∈ IRn, let x+

C and x−
C denote the nearest-point (in the

Euclidean norm) projection of x onto C and −C∗, respectively. Then, the following
results hold.

(a) For any x ∈ IRn, we have x = x+
C + x−

C and ‖x‖2 = ‖x+
C ‖2 + ‖x−

C ‖2.
(b) For any x ∈ IRn and y ∈ C, we have 〈x, y〉 ≤ 〈x+

C , y〉.
(c) If C is self-dual, then for any x ∈ IRn and y ∈ C, we have

∥

∥(x + y)+C
∥

∥ ≥ ∥∥x+
C
∥

∥.

Proof In fact, part (a) and (b) are classical results of Korányi (1984). ��
Lemma 2.5 ([Chen and Tseng 2005, Lemma 5.2]) Let φFB, ψFB be given by (10)
and (9), respectively. For any (x, y) ∈ IRn × IRn, we have

4ψFB(x, y) ≥ 2

∥

∥

∥

∥

φFB(x, y)+
∥

∥

∥

∥

2

≥
∥

∥

∥

∥

(−x)+
∥

∥

∥

∥

2

+
∥

∥

∥

∥

(−y)+
∥

∥

∥

∥

2

.
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To close this section, we recall some definitions that will be used for analysis
in subsequent sections. We say that F and G are jointly monotone if

〈F(ζ )− F(ξ),G(ζ )− G(ξ)〉 ≥ 0 ∀ζ, ξ ∈ IRn .

Similarly, F and G are jointly strongly monotone if there exists ρ > 0 such that

〈F(ζ )− F(ξ),G(ζ )− G(ξ)〉 ≥ ρ‖ζ − ξ‖2 ∀ζ, ξ ∈ IRn .

In the case where G(ζ ) = ζ for all ζ ∈ IRn , the above notions are equivalent to
the well-known notions of F being, respectively, monotone and strongly monotone
(Facchinei and Pang 2003, Sect. 2.3).

3 Two classes of merit functions

In this section, we study two classes of merit functions for the SOCCP. We are
motivated by a class of merit functions proposed by Luo and Tseng (1997) for the
NCP case originally and was already extended to the SDCP by Tseng (1998). We
introduce them as below. Let fLT be given as (12), i.e.,

fLT(ζ ) := ψ0(〈F(ζ ),G(ζ )〉)+ ψ(F(ζ ),G(ζ )),

where ψ0 satisfies (13) and ψ satisfies (14). We notice that ψ0 is differentiable
and strictly increasing on [0,∞). An example of ψ0 is ψ0(t) = 1

4 (max{0, t})4.
Let 
+ (we adopt the notation used as in Tseng 1998) denote the collection of
ψ : IRn × IRn → IR+ satisfying (14) that are differentiable and satisfy the follow-
ing conditions:

{ 〈∇xψ(x, y),∇yψ(x, y)〉 ≥ 0, ∀(x, y) ∈ IRn × IRn .
〈x,∇xψ(x, y)〉 + 〈y,∇yψ(x, y)〉 ≥ 0 ∀(x, y) ∈ IRn × IRn .

(21)

We will give an example of ψ belonging to
+ in Proposition 3.1. Before that,
we need couple technical lemmas which will be used for proving Propositions 3.1
and 3.2.

Lemma 3.1 (a) For any x ∈ IRn, 〈x, (x)−〉 = ‖(x)−‖2 and 〈x, (x)+〉 = ‖(x)+‖2.
(b) For any x ∈ IRn and y ∈ IRn, we have

x ∈ Kn ⇐⇒ 〈x, y〉 ≥ 0 ∀y ∈ Kn . (22)

Proof (a) By definition of trace, we know that tr(x ◦ y) = 2〈x, y〉. Thus,

〈x, (x)−〉 = 1

2
tr

(

x ◦ (x)−
)

= 1

2
tr

(

[(x)+ + (x)−] ◦ (x)−
)

= 1

2
tr

(

(x)2−
)

= ‖(x)−‖2,

where the last inequality is from definition of trace again. Similar arguments
applied for 〈x, (x)+〉 = ‖(x)+‖2.
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(b) Since Kn is self-dual, that is Kn = (Kn)∗. Hence, the desired result follows.
��

Lemma 3.2 [Fukushima et al. 2002, Proposition 3.4] For any x, y ∈ IRn and
w ∈ Kn, we have

w2 	 x2 + y2 �⇒ L2
w 	 L2

x + L2
y,

w2 	 x2 �⇒ w 	 x .

Proposition 3.1 Let ψ1 : IRn × IRn → IR+ be given by

ψ1(x, y) := 1

2

(

‖(−x)+‖2 + ‖(−y)+‖2
)

. (23)

Then, the following results hold.

(a) ψ1 satisfies (14).
(b) ψ1 is convex and differentiable at every (x, y) ∈ IRn × IRn with ∇xψ1(x, y) =

(x)− and ∇yψ1(x, y) = (y)−.
(c) For every (x, y) ∈ IRn × IRn, we have

〈∇xψ1(x, y),∇yψ1(x, y)〉 ≥ 0.

(d) For every (x, y) ∈ IRn × IRn, we have

〈x,∇xψ1(x, y)〉 + 〈y,∇yψ1(x, y)〉 = ‖(x)−‖2 + ‖(y)−‖2.

(e) ψ1 belongs to 
+.

Proof (a) Suppose ψ1(x, y) = 0 and 〈x, y〉 ≤ 0. Then by definition of ψ1 as
(23), we have (−x)+ = 0, (−y)+ = 0 which implies x ∈ Kn, y ∈ Kn .
Since Kn is self-dual, x, y ∈ Kn leads to 〈x, y〉 ≥ 0 by (22). This together
with 〈x, y〉 ≤ 0 yields 〈x, y〉 = 0. The other direction is clear from the above
arguments. Hence, we proved that ψ1 satisfies (14).

(b) For any x ∈ IRn , we have the decomposition x = (x)++(x)− = (x)+−(−x)+.
Hence,

1

2
‖(−x)+‖2 = 1

2
‖(x)+ − x‖2 = min

w∈Kn

1

2
‖w − x‖2,

which is convex and differentiable in x (see Rockafellar 1970; page 255).
Moreover, the chain rule gives

∇x

[

1

2
‖(−x)+‖2

]

= −(−x)+ = (x)−.

Similar formula holds for y. Thus, ψ1 is convex and differentiable at every
(x, y) ∈ IRn × IRn with ∇xψ1(x, y) = −(−x)+ = (x)− and ∇yψ1(x, y) =
−(−y)+ = (y)−.

(c) From part(b), we have

〈∇xψ1(x, y),∇yψ1(x, y)〉 = 〈(x)−, (y)−〉 = 〈(−x)+, (−y)+〉 ≥ 0,

where the inequality is true by (22).
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(d) By applying Lemma 3.1(a), we obtain

〈x,∇xψ1(x, y)〉 = 〈x, (x)−〉 = ‖(x)−‖2.

Similarly, 〈y,∇xψ1(x, y)〉 = ‖(y)−‖2 and hence the desired result holds.
(e) This is an immediate consequence of (a) through (d). ��

Next, we consider a further restriction on ψ . Let 
++ denote the collection of
ψ ∈ 
+ satisfying the following conditions:

ψ(x, y) = 0 ∀(x, y) ∈ IRn × IRn whenever 〈∇xψ(x, y),∇yψ(x, y)〉 = 0.

(24)

We notice that the ψ1 defined as (23) in Proposition 3.1 does not belong to 
++.
An example of such ψ belonging to 
++ is given in Proposition 3.2.

Proposition 3.2 Let ψ2 : IRn × IRn → IR+ be given by

ψ2(x, y) := 1

2
‖φFB(x, y)+‖2, (25)

where φFB is defined as (10). Then, the following results hold.

(a) ψ2 satisfies (14).
(b) ψ2 is differentiable at every (x, y) ∈ IRn × IRn Moreover, ∇xψ2(0, 0) =

∇yψ2(0, 0) = 0. If (x, y) �= (0, 0) and x2 + y2 ∈ int(Kn), then

∇xψ2(x, y) =
(

Lx L−1
(x2+y2)1/2

− I

)

φFB(x, y)+,

∇yψ2(x, y) =
(

L y L−1
(x2+y2)1/2

− I

)

φFB(x, y)+.
(26)

If (x, y) �= (0, 0) and x2 + y2 �∈ int(Kn), then x2
1 + y2

1 �= 0 and

∇xψ2(x, y) =
⎛

⎝

x1
√

x2
1 + y2

1

− 1

⎞

⎠φFB(x, y)+,

∇yψ2(x, y) =
⎛

⎝

y1
√

x2
1 + y2

1

− 1

⎞

⎠φFB(x, y)+. (27)

(c) For every (x, y) ∈ IRn × IRn, we have

〈∇xψ2(x, y),∇yψ2(x, y)〉 ≥ 0,

and the equality holds whenever ψ2(x, y) = 0.
(d) For every (x, y) ∈ IRn × IRn, we have

〈x,∇xψ2(x, y)〉 + 〈y,∇yψ2(x, y)〉 = ‖φFB(x, y)+‖2.

(e) ψ2 belongs to 
++.
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Proof (a) Suppose ψ2(x, y) = 0 and 〈x, y〉 ≤ 0. Let z := −φFB(x, y). Then
(−z)+ = φFB(x, y)+ = 0 which says z ∈ Kn . Since x + y = (x2 + y2)1/2 + z,
squaring both sides and simplifying yield

2(x ◦ y) = 2

(

(x2 + y2)1/2 ◦ z

)

+ z2.

Now, taking trace of both sides and using the fact tr(x ◦ y) = 2〈x, y〉, we obtain

4〈x, y〉 = 4〈(x2 + y2)1/2, z〉 + 2‖z‖2. (28)

Since (x2 + y2)1/2 ∈ Kn and z ∈ Kn , then we know 〈(x2 + y2)1/2, z〉 ≥ 0
by Lemma 3.1(b). Thus, the right hand-side of (28) is nonnegative, which tog-
ethers with 〈x, y〉 ≤ 0 implies 〈x, y〉 = 0. Therefore, with this, the equation
(28) says z = 0 which is equivalent to φFB(x, y) = 0. Then by Lemma 2.1, we
have x, y ∈ Kn . Conversely, if x, y ∈ Kn and 〈x, y〉 = 0, then again Lemma
2.1 yields φFB(x, y) = 0. Thus, ψ2(x, y) = 0 and 〈x, y〉 ≤ 0.

(b) For the proof of part(b), we need to discuss three cases.
Case 1: If (x, y) = (0, 0), then for any h, k ∈ IRn , let μ1 ≤ μ2 be the spectral
values and let v(1), v(2) be the corresponding spectral vectors of h2 + k2. Hence,
by Property 2.1(b),

‖(h2 + k2)1/2 − h − k‖ = ‖√μ1v
(1) + √

μ2v
(2) − h − k‖

≤ √
μ1‖v(1)‖ + √

μ2‖v(2)‖ + ‖h‖ + ‖k‖
= (

√
μ1 + √

μ2)/
√

2 + ‖h‖ + ‖k‖.
Also

μ1 ≤ μ2 = ‖h‖2 + ‖k‖2 + 2‖h1h2 + k1k2‖
≤ ‖h‖2 + ‖k‖2 + 2|h1|‖h2‖ + 2|k1|‖k2‖
≤ 2‖h‖2 + 2‖k‖2.

Combining the above two inequalities yields

ψ2(h, k)− ψ2(0, 0) = 1

2
‖φFB(h, k)+‖2

≤ ‖φFB(h, k)‖2

= ‖(h2 + k2)1/2 − h − k‖2

≤
(

(
√
μ1 + √

μ2)/
√

2 + ‖h‖ + ‖k‖
)2

≤
(

2
√

2‖h‖2 + 2‖k‖2/
√

2 + ‖h‖ + ‖k‖
)2

= O(‖h‖2 + ‖k‖2),

where the first inequality is from Lemma 2.5. This shows that ψ2 is differentiable
at (0, 0) with

∇xψ2(0, 0) = ∇yψ2(0, 0) = 0.
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Case 2: If (x, y) �= (0, 0) and x2 + y2 ∈ int(Kn), let z be factored as z =
λ1u(1) + λ2u(2) for any z ∈ IRn . Now, let g : IRn → IRn be defined as

g(z) := 1

2
((z)+)2 = ĝ(λ1)u

(1) + ĝ(λ2)u
(2),

where ĝ : IR → IR is given by ĝ(λ) := 1
2 (max(0, λ))2. From the continuous

differentiability of ĝ and Proposition 5.2 of Chen et al. (2004), the vector-valued
function g is also continuously differentiable. Hence, the first component g1(z) =
1
2‖(z)+‖2 of g(z) is continuously differentiable as well. By an easy computation,
we have ∇g1(z) = (z)+. Since ψ2(x, y) = g1(φFB(x, y)) and φFB is differentiable
at (x, y) �= (0, 0) with x2 + y2 ∈ int(Kn) (see Fukushima et al. 2002, Corrollary
5.2). Hence, the chain rule yields

∇xψ2(x, y) = ∇xφFB(x, y)∇g1(φFB(x, y)) =
(

Lx L−1
(x2+y2)1/2

− I

)

φFB(x, y)+,

∇yψ2(x, y) = ∇yφFB(x, y)∇g1(φFB(x, y)) =
(

L y L−1
(x2+y2)1/2

− I

)

φFB(x, y)+.

Case 3: If (x, y) �= (0, 0) and x2 + y2 �∈ int(Kn), by direct computation, we know
‖x‖2 + ‖y‖2 = 2‖x1x2 + y1 y2‖ under this case. Since (x, y) �= (0, 0), this also
implies x1x2 + y1 y2 �= 0. We notice that we can not apply the chain rule as in
case 2 since φFB is no longer differentiable at such (x, y) of case 3. By the spectral
factorization, we observe that

φFB(x, y)+ = φFB(x, y) ⇐⇒ φFB(x, y) ∈ Kn

φFB(x, y)+ = 0 ⇐⇒ φFB(x, y) ∈ −Kn (29)

φFB(x, y)+ = λ2u(2) ⇐⇒ φFB(x, y) �∈ Kn ∪ −Kn,

where λ2 is the bigger spectral value of φFB(x, y) and u(2) is the corresponding
spectral vector. Indeed, by applying Lemma 2.2, under this case, we have (as in
Chen and Tseng 2005, Eq. (26))

φFB(x, y) =
(
√

x2
1 + y2

1 − (x1 + y1),
x1x2 + y1 y2
√

x2
1 + y2

1

− (x2 + y2)

)

. (30)

Therefore, λ2 and u(2) are given as below:

λ2 =
√

x2
1 + y2

1 − (x1 + y1)+ ‖w2‖, (31)

u(2) = 1

2

(

1,
w2

‖w2‖
)

, (32)

where w2 = x1x2+y1 y2
√

x2
1+y2

1

− (x2 + y2). To prove the differentiability of ψ2 under this

case, we shall discuss the following three subcases according to the above obser-
vation (29).
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(i) If φFB(x, y) �∈ Kn ∪−Kn then φFB(x, y)+ = λ2u(2) where λ2 and u(2) are given
as in (31). From the fact that ‖u(2)‖ = 1√

2
, we obtain

ψ2(x, y) = 1

2
‖φFB(x, y)+‖2 = 1

4
λ2

2

= 1

4

[(
√

x2
1 + y2

1 − (x1 + y1)

)2

+ 2

(
√

x2
1 + y2

1 − (x1 + y1)

)

· ‖w2‖ + ‖w2‖2
]

.

Since (x, y) �= (0, 0) in this case, ψ2 is differentiable clearly. Moreover, using the
product rule and chain rule for differentiation, the derivative of ψ2 with respect to
x1 works out to be

∂

∂x1
ψ2(x, y) = 1

4

⎡

⎣2

(
√

x2
1 + y2

1 −(x1 + y1)

)

⎛

⎝

x1
√

x2
1 + y2

1

−1

⎞

⎠

+ 2

⎛

⎝

x1
√

x2
1 + y2

1

−1

⎞

⎠‖w2‖

+ 2

(
√

x2
1 + y2

1 − (x1 + y1)

)

· w
T
2 ∇x1w2

‖w2‖ + 2wT
2 ∇x1w2

]

= 1

2

⎡

⎣

⎛

⎝

x1
√

x2
1 + y2

1

− 1

⎞

⎠

(
√

x2
1 + y2

1 − (x1 + y1)+ ‖w2‖
)

⎤

⎦ .

The last equality of the above expression is true because of

∇x1w2 =
x2 ·
√

x2
1 + y2

1 − (x1x2 + y1 y2) · x1
√

x2
1+y2

1

(x2
1 + y2

1 )

=
1

√

x2
1+y2

1

[

x2(x2
1 + y2

1 )− (x2
1 x2 + x1 y1 y2)

]

(x2
1 + y2

1 )

= x2
1 x2 + y2

1 x2 − x2
1 x2 − x1 y1 y2

(
√

x2
1 + y2

1

)3

= 0,
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where the last equality holds by Lemma 2.2. Similarly, the gradient of ψ2 with
respect to x2 works out to be

∇x2ψ2(x, y) = 1

4

[

2

(
√

x2
1 + y2

1 − (x1 + y1)

)∇x2w2 · w2

‖w2‖ + 2∇x2w2 · w2

]

= 1

2

⎡

⎣

(
√

x2
1 + y2

1 − (x1 + y1)

)

⎛

⎝

x1
√

x2
1 + y2

1

− 1

⎞

⎠

w2

‖w2‖

+
⎛

⎝

x1
√

x2
1 + y2

1

− 1

⎞

⎠w2

⎤

⎦

= 1

2

⎡

⎣

⎛

⎝

x1
√

x2
1 + y2

1

−1

⎞

⎠

(
√

x2
1 + y2

1 −(x1 + y1)+‖w2‖
)

w2

‖w2‖

⎤

⎦ .

Then, we can rewrite ∇xψ2(x, y) as

∇xψ2(x, y) =
[

∂
∂x1
ψ2(x, y)

∇x2ψ2(x, y)

]

:=
[

�1
�2

]

=
⎛

⎝

x1
√

x2
1 + y2

1

− 1

⎞

⎠ λ2u(2)

=
⎛

⎝

x1
√

x2
1 + y2

1

− 1

⎞

⎠φFB(x, y)+, (33)

where

�1 := 1

2

⎛

⎝

x1
√

x2
1 + y2

1

− 1

⎞

⎠

(
√

x2
1 + y2

1 − (x1 + y1)+ ‖w2‖
)

∈ IR

�2 := 1

2

⎛

⎝

x1
√

x2
1 + y2

1

− 1

⎞

⎠

(
√

x2
1 + y2

1 − (x1 + y1)+ ‖w2‖
)

w2

‖w2‖ ∈ IRn−1.

(ii) If φFB(x, y) ∈ Kn then φFB(x, y)+ = φFB(x, y) and hence ψ2(x, y) =
1
2‖φFB(x, y)+‖2 = 1

2‖φFB(x, y)‖2. Thus, by Chen and Tseng (2005, Prop. 3.1(b)),
we know that the gradient of ψ2 under this subcase is as below:
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∇xψ2(x, y)=
⎛

⎝

x1
√

x2
1 + y2

1

−1

⎞

⎠φFB(x, y)=
⎛

⎝

x1
√

x2
1 + y2

1

−1

⎞

⎠φFB(x, y)+

∇yψ2(x, y) =
⎛

⎝

y1
√

x2
1 + y2

1

−1

⎞

⎠φFB(x, y)=
⎛

⎝

y1
√

x2
1 + y2

1

−1

⎞

⎠φFB(x, y)+. (34)

If there is (x ′, y′) such that φFB(x
′, y′) �∈ Kn ∪−Kn and φFB(x

′, y′) → φFB(x, y) ∈
Kn (the neighborhood of point belonging to this subcase). From (33) and (34), it
can be seen that

∇xψ2(x
′, y′) → ∇xψ2(x, y), ∇yψ2(x

′, y′) → ∇yψ2(x, y).

Thus, ψ2 is differentiable under this subcase.
(iii) If φFB(x, y) ∈ −Kn then φFB(x, y)+ = 0. Thus,ψ2(x, y)= 1

2‖φFB(x, y)+‖2 =
0 and it is clear that its gradient under this subcase is

∇xψ2(x, y) = 0 =
⎛

⎝

x1
√

x2
1 + y2

1

− 1

⎞

⎠φFB(x, y)+,

∇yψ2(x, y) = 0 =
⎛

⎝

y1
√

x2
1 + y2

1

− 1

⎞

⎠φFB(x, y)+. (35)

Again, if there is (x ′, y′) such that φFB(x
′, y′) �∈ Kn ∪ −Kn and φFB(x

′, y′) →
φFB(x, y) ∈ −Kn (the neighborhood of point belonging to this subcase). From (33)
and (35), it can be seen that

∇xψ2(x
′, y′) → 0 = ∇xψ2(x, y), ∇yψ2(x

′, y′) → 0 = ∇yψ2(x, y).

Thus, ψ2 is differentiable under this subcase.
From the above, we complete the proof of this case and therefore the proof for
part(b) is done.
(c) We wish to show that 〈∇xψ2(x, y),∇yψ2(x, y)〉 ≥ 0 and the equality holds if
and only if ψ2(x, y) = 0. We follow the three cases as above.
Case 1: If (x, y) = (0, 0), by part (b), we know ∇xψ2(x, y) = ∇yψ2(x, y) = 0.
Therefore, the desired equality holds.
Case 2: If (x, y) �= (0, 0) and x2 + y2 ∈ int(Kn), by part (b), we have

〈∇xψ2(x, y), ∇yψ2(x, y)〉 = 〈(Lx L−1
z − I )(φFB)+, (L y L−1

z − I )(φFB)+〉
= 〈(Lx −Lz)L

−1
z (φFB)+, (L y −Lz)L

−1
z (φFB)+〉

= 〈(L y − Lz)(Lx − Lz)L
−1
z (φFB)+, L−1

z (φFB)+〉.
(36)
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Let S be the symmetric part of (L y − Lz)(Lx − Lz). Then

S = 1

2

(

(L y − Lz)(Lx − Lz)+ (Lx − Lz)(L y − Lz)

)

= 1

2

(

Lx L y + L y Lx − Lz(Lx + L y)− (Lx + L y)Lz + 2L2
z

)

= 1

2
(Lz − Lx − L y)

2 + 1

2
(L2

z − L2
x − L2

y).

Since z ∈ Kn and z2 = x2 + y2, Lemma 3.2 implies L2
z − L2

x − L2
y 	 O . Then

(36) yields

〈∇xψ2(x, y), ∇yψ2(x, y)〉
= 〈SL−1

z (φFB)+, L−1
z (φFB)+〉

= 1

2
〈(Lz − Lx − L y)

2L−1
z (φFB)+, L−1

z (φFB)+〉

+1

2
〈(L2

z − L2
x − L2

y)L
−1
z (φFB)+, L−1

z (φFB)+〉

≥ 1

2
〈(Lz − Lx − L y)

2L−1
z (φFB)+, L−1

z (φFB)+〉

= 1

2
‖LφFB

L−1
z (φFB)+‖2,

where the last equality uses Lz −Lx −L y = Lz−x−y = LφFB
. If the equality holds,

then the above relation yields ‖LφFB
L−1

z (φFB)+‖2 = 0 and, by Property 2.1(d),

LφFB
L−1

z (φFB)+ = φFB ◦ (L−1
z (φFB)+) = L−1

z (φFB)+ ◦ φFB = 0.

Since z = (x2 + y2)1/2 ∈ int(Kn) so that L−1
z 
 O (see Property 2.1(d)), multi-

plying L−1
z both sides gives φFB ◦ (φFB)+ = 0. From definition of Jordan product

(11) and Lemma 3.1(a), it implies (φFB)+ = 0; and hence ψ2 = 0. Conversely, if
(φFB)+ = 0, then it is clear that 〈∇xψ2(x, y),∇yψ2(x, y)〉 = 0.
Case 3: If (x, y) �= (0, 0) and x2 + y2 �∈ int(Kn), by part (b), we have

〈∇xψ2(x, y), ∇yψ2(x, y)〉

=
⎛

⎝

x1
√

x2
1 + y2

1

− 1

⎞

⎠

⎛

⎝

y1
√

x2
1 + y2

1

− 1

⎞

⎠ ‖φFB(x, y)+‖2 ≥ 0.

If the equality holds, then either φFB(x, y)+ = 0 or x1
√

x2
1+y2

1

= 1 or y1
√

x2
1+y2

1

= 1.

In the second case, we have y1 = 0 and x1 ≥ 0, so that Lemma 2.2 yields
y2 = 0 and x1 = ‖x2‖. In the third case, we have x1 = 0 and y1 ≥ 0, so that
Lemma 2.2 yields x2 = 0 and y1 = ‖y2‖. Thus, in these two cases, we have
x ◦ y = 0, x ∈ Kn, y ∈ Kn . Then, by (14), ψ2(x, y) = 0 .

(d) Again, we need to discuss the three cases as below.
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Case 1: If (x, y) = (0, 0), by part (b), we know ∇xψ2(x, y) = ∇yψ2(x, y) = 0.
Therefore, the desired equality holds.
Case 2: If (x, y) �= (0, 0) and x2 + y2 ∈ int(Kn), by part (b), we have

∇xψ2(x, y) =
(

Lx L−1
z − I

)

φFB(x, y)+,

∇yψ2(x, y) =
(

L y L−1
z − I

)

φFB(x, y)+,

where we let z := (x2 + y2)1/2. For simplicity, we will write φ(x, y)+ as φ+.
Thus,

〈x,∇xψ2(x, y)〉 + 〈y,∇yψ2(x, y)〉
= 〈x, (Lx L−1

z − I )(φFB)+〉 + 〈y, (L y L−1
z − I )(φFB)+〉

= 〈(L−1
z Lx − I )x, (φFB)+〉 + 〈(L−1

z L y − I )y, (φFB)+〉
= 〈L−1

z Lx x + L−1
z L y y − x − y, (φFB)+〉

= 〈L−1
z (x2 + y2)− x − y, (φFB)+〉

= 〈L−1
z z2 − x − y, (φFB)+〉

= 〈z − x − y, (φFB)+〉
= ‖(φFB)+‖2,

where the next-to-last equality follows from Lzz = z2, so that L−1
z z2 = z and the

last equality is from Lemma 3.1(a).
Case 3: If (x, y) �= (0, 0) and x2 + y2 �∈ int(Kn), by part(b), we have

∇xψ2(x, y) =
⎛

⎝

x1
√

x2
1 + y2

1

− 1

⎞

⎠φFB(x, y)+,

∇yψ2(x, y) =
⎛

⎝

y1
√

x2
1 + y2

1

− 1

⎞

⎠φFB(x, y)+.

Thus,

〈x,∇xψ2(x, y)〉 + 〈y,∇yψ2(x, y)〉

=
⎛

⎝

x1
√

x2
1 + y2

1

− 1

⎞

⎠ 〈x, (φFB)+〉 +
⎛

⎝

y1
√

x2
1 + y2

1

− 1

⎞

⎠ 〈y, (φFB)+〉

=
〈

⎛

⎝

x1
√

x2
1 + y2

1

− 1

⎞

⎠ x +
⎛

⎝

y1
√

x2
1 + y2

1

− 1

⎞

⎠ y, (φFB)+

〉

=
〈

x1x + y1 y
√

x2
1 + y2

1

− x − y, (φFB)+

〉
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= 〈φFB, (φFB)+〉
= ‖(φFB)+‖2,

where the next-to-last equality uses (30) and the last equality is from Lemma 3.1(a)
again.
(e) This is an immediate consequence of (a) through (d). ��

We notice that (26) can be rewritten as

∇xψ2(x, y) = L−1
z

[

[z − x − y]+
]

◦ (x − z),

∇yψ2(x, y) = L−1
z

[

[z − x − y]+
]

◦ (y − z),

where z = (x2 + y2)1/2. This is a similar form as in Tseng (1998, Lemma 7.2).
Nonetheless, (27) can not be rewritten as the above form since L−1

z does not exist
whenever x2 + y2 is on the boundary of Kn . The next proposition is a result which
is an extension of (Tseng 1998, Proposition 7.1) for SDCP to the case of SOCCP.
Though the ideas for arguments are similar, we present the proof for completion.

Proposition 3.3 Let fLT : IRn → IR+ be given as (12) with ψ0 satisfying (13) and
ψ satisfying (14). Then, the following results hold.

(a) For all ζ ∈ IRn, we have fLT(ζ ) ≥ 0 and fLT(ζ ) = 0 if and only if ζ solves the
SOCCP.

(b) If ψ0, ψ and F,G are differentiable, then so is fLT and

∇ fLT(ζ ) = ψ
′
0(〈F(ζ ),G(ζ )〉)

[

∇F(ζ )G(ζ )+ ∇G(ζ )F(ζ )

]

+∇F(ζ )∇xψ(F(ζ ),G(ζ ))

+∇G(ζ )∇yψ(F(ζ ),G(ζ )).

(c) Assume F,G are differentiable on IRn and ψ belongs to 
+ (respectively,

++). Then, for every ζ ∈ IRn where ∇G(ζ )−1∇F(ζ ) is positive definite
(respectively, positive semi-definite), either (i) fLT(ζ ) = 0 or (ii) ∇ fLT(ζ ) �= 0
with 〈d(ζ ),∇ fLT(ζ )〉 < 0, where

d(ζ ) := −(∇G(ζ )−1)T
[

ψ
′
0(〈F(ζ ),G(ζ )〉)G(ζ )+ ∇xψ(F(ζ ),G(ζ ))

]

.

Proof (a) This consequence follows from (12) and (13), (14).
(b) By direct computation and chain rule, the result follows.
(c) First, we consider the case ofψ ∈ 
++ and fix ζ ∈ IRn where ∇G(ζ )−1∇F(ζ )

is positive semi-definite. Let α := ψ
′
0(〈F(ζ ),G(ζ )〉) and drop the argument

“(ζ )” for simplicity. Then

〈d,∇ fLT〉
= 〈−(∇G−1)T(αG + ∇xψ(F,G)),∇F(αG + ∇xψ(F,G))

+∇G(αF + ∇yψ(F,G))〉
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= −〈αG + ∇xψ(F,G),∇G−1∇F(αG + ∇xψ(F,G))〉
−〈αG + ∇xψ(F,G), αF + ∇yψ(F,G)〉

≤ −〈αG + ∇xψ(F,G), αF + ∇yψ(F,G)〉
= −α2〈F,G〉 − α

(〈F,∇xψ(F,G)〉 + 〈G,∇yψ(F,G)〉)
−〈∇xψ(F,G),∇yψ(F,G)〉

= −α2〈F,G〉 − 〈∇xψ(F,G),∇yψ(F,G)〉,
where the first inequality holds since ∇G−1∇F is positive semi-definite and the
inequality follows from α ≥ 0 and equation (21). Now, we observe that tψ

′
0(t) > 0

if and only if t > 0 sinceψ0 is strictly increasing on [0,∞). Therefore, the first term
on the right-hand side is non-positive and equals zero if 〈F,G〉 ≤ 0. In addition,
by equations (21) and (24), the second term on the right-hand side is non-positive
and equals zero only if ψ(F,G) = 0. Thus, we have 〈d(ζ ),∇ fLT(ζ )〉 ≤ 0 and the
equality holds only when 〈F(ζ ),G(ζ )〉 ≤ 0 and ψ(F(ζ ),G(ζ )) = 0, in which
equation (14) implies ζ satisfies (1)–(2), i.e., fLT(ζ ) = 0.

Similar arguments can be applied for the case ofψ ∈ 
+ and ∇G(ζ )−1∇F(ζ )
being positive definite. ��

Next, we further consider another class of merit functions by modifying fLT a bit
where ψ0 is replaced by ψ∗

0 : IRn → IR+ given as (16), i.e., ψ∗
0 (w) = 1

2‖(w)+‖2.
It is known that the function ψ∗

0 given in (16) is continuously differentiable (see
Rockafellar 1970, p. 255) with ∇ψ∗

0 (w) = [w]+ (by the chain rule). In other
words, we will study ̂fLT : IRn → IR+ defined as (15), (16):

̂fLT(ζ ) := ψ∗
0 (F(ζ ) ◦ G(ζ ))+ ψ(F(ζ ),G(ζ )),

where ψ∗
0 is given as (16) and ψ satisfies (14). By imitating the steps for proving

Proposition 3.3 and using Lemma 3.3 as below, we obtain Proposition 3.4 which
is a result analogous to Proposition 3.3. We omit its proof.

Lemma 3.3 The function ψ∗
0 (x ◦ y) := 1

2‖(x ◦ y)+‖2 is differentiable for all
(x, y) ∈ IRn × IRn. Moreover,

∇xψ
∗
0 (x ◦ y) = L y · (x ◦ y)+

∇yψ
∗
0 (x ◦ y) = Lx · (x ◦ y)+

Proof This is result of Chen (2006, Lemma 3.1). ��
Proposition 3.4 Let ̂fLT : IRn → IR+ be given as (15), (16). Then, the following
results hold.

(a) For all x ∈ IRn, we have ̂fLT(ζ ) ≥ 0 and ̂fLT(ζ ) = 0 if and only if ζ solves the
SOCCP.

(b) If ψ∗
0 , ψ and F,G are differentiable, then so is ̂fLT and

∇̂fLT(ζ ) =
[

∇F(ζ )LG(ζ ) + ∇G(ζ )L F(ζ )

]

(F(ζ ) ◦ G(ζ ))+

+ ∇F(ζ )∇xψ(F(ζ ),G(ζ ))

+ ∇G(ζ )∇yψ(F(ζ ),G(ζ )).
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We originally thought there should have parallel results to Proposition 3.3(c)
for ̂fLT and whose proofs are also similar. In other words, we wish to have the
following:
Assume F,G are differentiable on IRn and ψ belongs to 
+ (respectively, 
++).
Then, for every ζ ∈ IRn where ∇G(ζ )−1∇F(ζ ) is positive definite (respec-
tively, positive semi-definite), either (i) ̂fLT(ζ ) = 0 or (ii) ∇̂fLT(ζ ) �= 0 with
〈d(ζ ),∇̂fLT(ζ )〉 < 0, where

d(ζ ) := −(∇G(ζ )−1)T
[

LG(ζ ) · (F(ζ ) ◦ G(ζ ))+ + ∇xψ(F(ζ ),G(ζ ))

]

.

However, we are not able to complete the arguments even though ψ∗
0 is in relation

to ψ0 in certain sense. We thank a referee for pointing this out. We suspect that
there needs more subtle properties of ψ∗

0 to finish it.

4 Error bound and bounded level sets

The error bound is an important concept that indicates how close an arbitrary point
is to the solution set of SOCCP. Thus, an error bound may be used to provide stop-
ping criterion for an iterative method. As below, we establish propositions about the
error bound properties of fLT ,

̂fLT given as (12) and (15). We need some technical
lemmas as below to prove the error bound properties.

Lemma 4.1 Let x = (x1, x2) ∈ IR × IRn−1 and y = (y1, y2) ∈ IR × IRn−1. Then,
we have

〈x, y〉 ≤ √
2‖(x ◦ y)+‖.

Proof See Chen (2006, Lemma 4.1). ��
Lemma 4.2 Let ψ1, ψ2 be given as (23) and (25), respectively. Then, ψ1 and ψ2
satisfy the following inequality.

ψi (x, y) ≥ α

(

‖(−x)+‖2 + ‖(−y)+‖2
)

∀(x, y) ∈ IRn × IRn, (37)

for some positive constant α and i = 1, 2.

Proof For ψ1, it is clear by definition (23) where α = 1
2 . For ψ2, the inequality is

still true, where α = 1
4 , due to Lemma 2.5. ��

Lemma 4.3 Let ψ∗
0 be given as (16). Then, ψ∗

0 satisfies

ψ∗
0 (w) ≥ β‖(w)+‖2 ∀w ∈ IRn, (38)

for some positive constant β.

Proof It is clear by definition of ψ∗
0 given as (16) where β = 1

2 . ��
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Proposition 4.1 Let fLT be given by (12)–(14) withψ satisfying (37). Suppose that
F and G are jointly strongly monotone mapping from IRn to IRn and SOCCP has
a solution ζ ∗. Then, there exists a scalar τ > 0 such that

τ‖ζ − ζ ∗‖2 ≤ max{0, 〈F(ζ ),G(ζ )〉} + ‖(−F(ζ ))+‖ + ‖(−G(ζ ))+‖ ∀ζ ∈ IRn .

(39)

Moreover,

τ‖ζ − ζ ∗‖2 ≤ ψ−1
0 ( fLT(ζ ))+

√
2√
α

fLT(ζ )
1/2 ∀ζ ∈ IRn, (40)

where α is a positive constant .

Proof Since F and G are jointly strongly monotone, there exists a scalar ρ > 0
such that, for any ζ ∈ IRn ,

ρ‖ζ − ζ ∗‖2

≤ 〈F(ζ )− F(ζ ∗), G(ζ )− G(ζ ∗)〉
= 〈F(ζ ),G(ζ )〉 + 〈−F(ζ ),G(ζ ∗)〉 + 〈F(ζ ∗),−G(ζ )〉
≤ max{0, 〈F(ζ ),G(ζ )〉} + 〈(−F(ζ ))+,G(ζ ∗)〉 + 〈F(ζ ∗), (−G(ζ ))+〉
≤ max{0, 〈F(ζ ),G(ζ )〉} + ‖(−F(ζ ))+‖ ‖G(ζ ∗)‖ + ‖F(ζ ∗)‖ ‖(−G(ζ ))+‖
≤ max

{

1, ‖F(ζ ∗)‖, ‖G(ζ ∗)‖}
× (max{0, 〈F(ζ ),G(ζ )〉} + ‖(−F(ζ ))+‖ + ‖(−G(ζ ))+‖) ,

where the second inequality uses Lemma 2.4(b). Setting τ :=
ρ

max{1, ‖F(ζ ∗)‖, ‖G(ζ ∗)‖} yields (39).

Notice thatψ−1
0 is well-defined by (13), and by using thatψ0 is strictly increas-

ing on [0,∞), we thus have

max{0, 〈F(ζ ),G(ζ )〉} ≤ ψ−1
0

(

fLT(ζ )
)

.

In addition, it is clear that

ψ(F(ζ ),G(ζ )) ≤ fLT(ζ ).

Now using Lemma 4.2 and the above inequality, we obtain

‖(−F(ζ ))+‖ + ‖(−G(ζ ))+‖ ≤ √
2
(‖(−F(ζ ))+‖2 + ‖(−G(ζ ))+‖2)1/2

≤
√

2√
α
ψ(F(ζ ),G(ζ ))1/2

≤
√

2√
α

fLT(ζ )
1/2.

Thus,

max {0, 〈F(ζ ),G(ζ )〉} + ‖(−F(ζ ))+‖ + ‖(−G(ζ ))+‖
≤ ψ−1

0

(

fLT(ζ )
)+

√
2√
α

fLT(ζ )
1/2.

This together with (39) yields (40). ��
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Proposition 4.2 Let̂fLT be given by (15), (16) withψ satisfying (37). Suppose that
F and G are jointly strongly monotone mapping from IRn to IRn and the SOCCP
has a solution ζ ∗. Then, there exists a scalar τ > 0 such that

τ‖ζ − ζ ∗‖2 ≤ ‖(F(ζ ) ◦ G(ζ ))+‖ + ‖(−F(ζ ))+‖ + ‖(−G(ζ ))+‖ ∀ζ ∈ IRn .

(41)

Moreover,

τ‖ζ − ζ ∗‖2 ≤
(

1√
β

+
√

2√
α

)

̂fLT(ζ )
1/2 ∀ζ ∈ IRn, (42)

where α and β are positive constants.

Proof Since F and G are jointly strongly monotone, there exists a scalar ρ > 0
such that, for any ζ ∈ IRn ,

ρ‖ζ − ζ ∗‖2

≤ 〈F(ζ )− F(ζ ∗), G(ζ )− G(ζ ∗)〉
= 〈F(ζ ),G(ζ )〉 + 〈−F(ζ ),G(ζ ∗)〉 + 〈F(ζ ∗),−G(ζ )〉
≤ 〈F(ζ ),G(ζ )〉 + 〈(−F(ζ ))+,G(ζ ∗)〉 + 〈F(ζ ∗), (−G(ζ ))+〉
≤ 〈F(ζ ),G(ζ )〉 + ‖(−F(ζ ))+‖ ‖G(ζ ∗)‖ + ‖F(ζ ∗)‖ ‖(−G(ζ ))+‖
≤ √

2‖(F(ζ ) ◦ G(ζ ))+‖ + ‖(−F(ζ ))+‖ ‖G(ζ ∗)‖ + ‖F(ζ ∗)‖ ‖(−G(ζ ))+‖
≤ max{√2, ‖F(ζ ∗)‖, ‖G(ζ ∗)‖}

× (‖(F(ζ ) ◦ G(ζ ))+‖ + ‖(−F(ζ ))+‖ + ‖(−G(ζ ))+‖) ,
where the second inequality uses Lemma 2.4(b) while the fourth inequality is from

Lemma 4.1. Then, setting τ := ρ

max{√2, ‖F(ζ ∗)‖, ‖G(ζ ∗)‖} yields (41).

Moreover, by Lemma 4.3, we have

‖(F(ζ ) ◦ G(ζ ))+‖ ≤ 1√
β
ψ∗

0 (F(ζ ) ◦ G(ζ ))1/2 ≤ 1√
β
̂fLT(ζ )

1/2,

and (as in Proposition 4.1)

‖(−F(ζ ))+‖ + ‖(−G(ζ ))+‖ ≤ √
2
(‖(−F(ζ ))+‖2 + ‖(−G(ζ ))+‖2)1/2

≤
√

2√
α
ψ(F(ζ ),G(ζ ))1/2

≤
√

2√
α
̂fLT(ζ )

1/2,

where the second inequality is true by Lemma 4.2. Thus,

‖(F(ζ ) ◦ G(ζ ))+‖ + ‖(−F(ζ ))+‖ + ‖(−G(ζ ))+‖ ≤
(

1√
β

+
√

2√
α

)

̂fLT(ζ )
1/2.

This together with (41) yields (42). ��
Now, we give conditions under which fLT , ̂fLT has bounded level sets in Prop-

ositions 4.3 and 4.4, respectively. We need the next lemma which is key to proving
the properties of bounded level sets.
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Lemma 4.4 Let ψ1, ψ2 be given by (23) and (25), respectively. For any {(xk,
yk)}∞k=1 ⊆ IRn × IRn, let λk

1 ≤ λk
2 and μk

1 ≤ μk
2 denote the spectral values of xk

and yk, respectively. Then, the following results hold.

(a) If λk
1 → −∞ or μk

1 → −∞, then ψi (xk, yk) → ∞, for i = 1, 2.
(b) Suppose that {λk

1} and {μk
1} are bounded below. If λk

2 → ∞ or μk
2 → ∞, then

〈x, xk〉 + 〈y, yk〉 → ∞ for any x, y ∈ int(Kn).

Proof (a) For ψ1, the proof follows by the fact that

2‖(−xk)+‖2 =
2
∑

i=1

(

max{0,−λk
i }
)2

and similarly for ‖(−yk)+‖2; see Fukushima et al. (2002), Property 2.2 and Prop-
osition 3.3.
For ψ2, using the same fact plus Lemma 2.5 leads to the desired result.

(b) Fix any x = (x1, x2), y = (y1, y2) ∈ IR×IRn−1 with‖x2‖ < x1,‖y2‖ < y1.
Using the spectral decomposition

xk =
(

λk
1 + λk

2

2
,
λk

2 − λk
1

2
wk

2

)

with ‖wk
2‖ = 1,

we have

〈x, xk〉 =
(

λk
1 + λk

2

2

)

x1 +
(

λk
2 − λk

1

2

)

xT
2w

k
2

= λk
1

2

(

x1 − xT
2w

k
2

)+ λk
2

2

(

x1 + xT
2w

k
2

)

. (43)

Since ‖wk
2‖ = 1, we have x1 − xT

2w
k
2 ≥ x1 − ‖x2‖ > 0 and x1 + xT

2w
k
2 ≥

x1 − ‖x2‖ > 0. Since {λk
1} is bounded below, the first term on the right-hand side

of (43) is bounded below. If {λk
2} → ∞, then the second term on the right-hand

side of (43) tends to infinity. Hence, 〈x, xk〉 → ∞. A similar argument shows
that 〈y, yk〉 is bounded below. Thus, 〈x, xk〉 + 〈y, yk〉 → ∞. If {μk

2} → ∞, the
argument is symmetric to the one above. ��
Proposition 4.3 Let fLT be given as (12)–(14) with ψ satisfying the condition of
Lemma 4.4(a). Suppose that F,G are differentiable, jointly monotone mappings
from IRn to IRn satisfying

lim‖ζ‖→∞

(

‖F(ζ )‖ + ‖G(ζ )‖
)

= ∞. (44)

Suppose also that SOCCP is strictly feasible, i.e., there exists ζ̄ ∈ IRn such that
F(ζ̄ ),G(ζ̄ ) ∈ int(Kn). Then, the level set

L(γ ) := {ζ ∈ IRn | fLT(ζ ) ≤ γ }
is bounded for all γ ≥ 0.
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Proof Suppose there exists an unbounded sequence {ζ k} ⊆ L(γ ) for some γ ≥ 0.
It can be seen that the sequence of the smaller spectral values of {F(ζ k)} and
{G(ζ k)} are bounded below. In fact, if not, it follows from Lemma 4.4(a) that
ψ(F(ζ k),G(ζ k)) → ∞. Thus, we have fLT(ζ

k) → ∞, which contradicts {ζ k} ⊆
L(γ ). Therefore, the unboundedness of {ζ k} and (44) yield that the sequence of
the bigger spectral values of {F(ζ k)} or {G(ζ k)} tends to infinity. Since F,G are
jointly monotone, we have

〈F(ζ k)− F(ζ̄ ), G(ζ k)− G(ζ̄ )〉 ≥ 0,

which is equivalent to

〈F(ζ k),G(ζ̄ )〉 + 〈F(ζ̄ ),G(ζ k)〉 ≤ 〈F(ζ k),G(ζ k)〉 + 〈F(ζ̄ ),G(ζ̄ )〉. (45)

Then, by Lemma 4.4(b) and F(ζ̄ ),G(ζ̄ ) ∈ int(Kn), we obtain 〈F(ζ k),G(ζ̄ )〉 +
〈F(ζ̄ ),G(ζ k)〉 → ∞, which together with (45) lead to 〈F(ζ k),G(ζ k)〉 → ∞.
Thus, fLT(ζ

k) → ∞. But, this contradicts {ζ k} ⊆ L(γ ). Hence, we proved that
L(γ ) is bounded. ��
Proposition 4.4 Let ̂fLT be given as (15)-(16) with ψ satisfying the condition of
Lemma 4.4(a). Suppose that F,G are differentiable, jointly monotone mappings
from IRn to IRn satisfying

lim‖ζ‖→∞

(

‖F(ζ )‖ + ‖G(ζ )‖
)

= ∞.

Suppose also that the SOCCP is strictly feasible, i.e., there exists ζ̄ ∈ IRn such that
F(ζ̄ ),G(ζ̄ ) ∈ int(Kn). Then, the level set

L(γ ) := {ζ ∈ IRn | ̂fLT(ζ ) ≤ γ }
is bounded for all γ ≥ 0.

Proof The arguments are similar to those in Proposition 4.3, so we omit the proof.
��

5 Final remarks

In this paper, we have studied two classes of merit functions for the second-order
cone complementarity problem. The first class is motivated by a class of merit
functions for NCP Luo and Tseng (1997) and SDCP Tseng (1998), while the sec-
ond class is based on a slight modification of the first one. We have also presented
examples of merit functions which belong to the two classes we studied. More-
over, we have shown conditions under which the merit functions have properties of
error bounds and bounded level sets. The related topics for future study are about
the descent methods including numerical examples for solving the unconstrained
minimization via these merit functions. On the other hand, recently there have
been definitions of P-properties for nonlinear transformations on Euclidean Jor-
dan Algebras (see Tao and Gowda 2004 for details), which are related to SOCCP
due to the Jordan Algebra. In particular, there have been some special implications
as below:
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strongly monotone �⇒ uniform Jordan P-property �⇒
uniform P-property �⇒ P-property.

In a recent paper (Liu et al. 2005) where a symmetric cone complementarity prob-
lem (SCCP) is considered, it indicates that the uniform Jordan P-property is suffi-
cient to guarantee the boundedness of the level sets of some merit functions which is
a weaker assumption than that used in this paper. We suspect that similar conditions
will hold for the merit functions studied in this paper.

Acknowledgment. The author thanks for the referees for their careful reading of the paper and
helpful suggestions.

References

Alizadeh F, Schmieta S (2000) Symmetric cones, potential reduction methods, and word-by-
word extensions. In: Wolkowicz H, Saigal R, Vandenberghe L (eds) Handbook of semidefinite
programming. Kluwer, Boston, pp 195–233

Andersen ED, Roos C, Terlaky T (2003) On implementing a primal-dual interior-point method
for conic quadratic optimization. Math Program Ser B 95:249–277

Chen J-S (2006) A new merit function and its related properties for the second-order cone com-
plementarity problem. Pacific J Optim 2:167–179

Chen J-S, Tseng P (2005) An unconstrained smooth minimization reformulation of the second-
order cone complementarity problem. Math Program 104:293–327

Chen J-S, Chen X, Tseng P (2004) Analysis of nonsmooth vector-valued functions associated
with second-order cone. Math Program 101:95–117

Chen X-D, Sun D, Sun J (2003) Complementarity functions and numerical experiments for
second-order cone complementarity problems. Comput Optim Appl 25:39–56

Facchinei F, Pang J-S (2003) Finite-dimensional variational inequalities and complementarity
problems. Vol I, II. Springer, Berlin Heidelberg New York

Faraut U, Korányi A (1994) Analysis on symmetric cones. Oxford Mathematical Monographs.
Oxford University Press, New York

Fischer A (1992) A special Newton-type optimization methods. Optimization 24:269–284
Fischer A (1997) Solution of the monotone complementarity problem with locally Lipschitzian

functions. Math Program 76:513–532
Fukushima M, Luo Z-Q, Tseng P (2002) Smoothing functions for second-order cone comple-

mentarity problems. SIAM J Optim 12:436–460
Goes RMB, Oliveira PR (2002) A new class of merit functions for the semidefinite complemen-

tarity problem. Annals of the Brazilian Workshop on Continuous Optimization, pp 1–18
Hayashi S, Yamashita N, Fukushima M (2002) On the coerciveness of merit functions for the

second-order cone complementarity problem. Technical Report, Department of Applied Math-
ematics and Physics, Kyoto University

Hayashi S, Yamashita N, Fukushima M (2005) A combined smoothing and regularization method
for monotone second-order cone complementarity problems. SIAM J Optim 15:593–615

Korányi A (1984) Monotone functions on formally real Jordan algebras. Mathematische Annalen
269:73–76

Liu Y-J, Zhang Z-W, Wang Y-H (2005) Some properties of a class of merit functions for symmetric
cone complementarity problems. Asia-Pacific J Oper Res (to appear)

Lobo MS, Vandenberghe L, Boyd S, Lebret H (1998) Application of second-order cone program-
ming. Linear Algebra Appl 284:193–228

Luo Z-Q, Tseng P (1997) A new class of merit functions for the nonlinear complementarity
problem. In: Ferris MC, Pang J-S (eds) Complementarity and variational problems: state of
the art. SIAM, Philadelphia, pp 204–225

Mittelmann HD (2003) An independent benchmarking of SDP and SOCP solvers. Math Program
95:407–430

Monteiro RDC, Tsuchiya T (2000) Polynomial convergence of primal-dual algorithms for the
second-order cone programs based on the MZ-family of directions. Math Program 88:61–83



Two classes of merit functions 519

Rockafellar RT (1970) Convex analysis. Princeton Mathematical Series, Princeton
Schmieta S, Alizadeh F (2001) Associative and Jordan algebras, and polynomial time interior-

point algorithms for symmetric cones. Math Oper Res 26:543–564
Sim C-K, Zhao G (2005) A note on treating second order cone problem as a special case of

semidefinite problem. Math Program 102:609–613
Tao J, Gowda MS (2004) Some P-properties for the nonlinear transformations on Euclidean

Jordan Algebra. Technical Report, Department of Mathematics and Statistics, University of
Maryland

Tseng P (1998) Merit function for semidefinite complementarity problems. Math Program
83:159–185

Tsuchiya T (1999) A convergence analysis of the scaling-invariant primal-dual path-following
algorithms for second-order cone programming. Optim Meth Softw 11:141–182



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


