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ON THE GENERALIZED FISCHER-BURMEISTER MERIT

FUNCTION FOR THE SECOND-ORDER CONE

COMPLEMENTARITY PROBLEM

SHAOHUA PAN, SANGHO KUM, YONGDO LIM, AND JEIN-SHAN CHEN

Abstract. It has been an open question whether the family of merit functions
ψp (p > 1), the generalized Fischer-Burmeister (FB) merit function, associated

to the second-order cone is smooth or not. In this paper we answer it partly,
and show that ψp is smooth for p ∈ (1, 4), and we provide the condition for
its coerciveness. Numerical results are reported to illustrate the influence of p
on the performance of the merit function method based on ψp.

1. Introduction

Given two continuously differentiable mappings F,G : Rn → R
n, we consider the

second-order cone complementarity problem (SOCCP): to seek a ζ ∈ R
n such that

(1) F (ζ) ∈ K, G(ζ) ∈ K, 〈F (ζ), G(ζ)〉 = 0,

where 〈·, ·〉 denotes the Euclidean inner product that induces the norm ‖ · ‖, and K
is the Cartesian product of a group of second-order cones (SOCs). In other words,

(2) K = Kn1 ×Kn2 × · · · × Knm ,

where n1, . . . , nm ≥ 1, n1 + · · ·+ nm = n, and Kni is the SOC in R
ni defined by

Kni :=
{
(xi1, xi2) ∈ R× R

ni−1 | xi1 ≥ ‖xi2‖
}
.

As an extension of the nonlinear complementarity problem (NCP) over the non-
negative orthant cone R

n
+ (see [13]), the SOCCP has important applications in

engineering problems [21] and robust Nash equilibria [19]. In particular, it also
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arises from the suitable reformulation for the Karush-Kuhn-Tucker (KKT) opti-
mality conditions of the nonlinear second-order cone programming (SOCP):

(3)
minimize f(x)
subject to Ax = b, x ∈ K,

where f : Rn → R is a twice continuously differentiable function, A is an m × n
real matrix with full row rank, and b ∈ R

m. It is well known that the SOCP has
very wide applications in engineering design, control, management science, and so
on; see [1, 25] and the references therein.

In the past several years, there have various methods proposed for SOCPs and
SOCCPs. They include the interior-point methods [2, 26, 28, 31, 33], the smoothing
Newton methods [11, 15, 18], the semismooth Newton methods [22, 34], and the
merit function methods [4, 12]. The merit function method aims to seek a smooth
(continuously differentiable) function ψ : Rn × R

n → R+ satisfying

(4) ψ(x, y) = 0 ⇐⇒ x ∈ K, y ∈ K, 〈x, y〉 = 0,

so that the SOCCP can be reformulated as an unconstrained minimization problem

(5) min
ζ∈Rn

Ψ(ζ) := ψ(F (ζ), G(ζ))

in the sense that ζ∗ is a solution to (1) if and only if it solves (5) with zero op-
timal value. We call such ψ a merit function associated with K. Note that the
smooth merit functions also play a key role in the globalization of semismooth and
smoothing Newton methods.

This paper is concerned with the generalized Fischer-Burmeister (FB) merit
function

(6) ψp(x, y) :=
1

2
‖φp(x, y)‖2,

where p is a fixed real number from (1,+∞), and φp : Rn ×R
n → R

n is defined by

(7) φp(x, y) :=
p
√
|x|p + |y|p − (x+ y)

with |x|p being the vector-valued function (or Löwner function) associated with
|t|p (t ∈ R) (see Section 2 for the definition). Clearly, when p = 2, ψp reduces to
the FB merit function

ψ
FB
(x, y) :=

1

2
‖φ

FB
(x, y)‖2,

where φFB : Rn × R
n → R

n is the FB SOC complementarity function defined by

φ
FB
(x, y) :=

√
x2 + y2 − (x+ y),

with x2 = x ◦ x being the Jordan product of x with itself, and
√
x with x ∈ K

being the unique vector such that
√
x ◦

√
x = x. The function ψFB is shown to be a

smooth merit function with globally Lipschitz continuous derivative [10, 12]. Such
a desirable property is also proved for the FB matrix-valued merit function [30, 32].

In this paper, we study the favorable properties of ψp. The motivations for us
to study this family of merit functions are as follows. In the setting of NCPs, ψp is
shown to share all favorable properties as the FB merit function holds (see [9, 8]),
and the performance profile in [5] indicates that the semismooth Newton method
based on φp with a smaller p has better performance than a larger p. Thus, it is
very natural to ask whether ψp has the desirable properties of the FB merit function
or not in the setting of SOCCPs, and what performance the merit function method
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and the Newton-type methods based on φp display with respect to p. This work is
the first step in resolving these questions. Although there are some papers [4, 6, 12]
to study the smoothness of merit functions for the SOCCPs, the analysis techniques
therein are not applicable for the general function ψp. We wish that the analysis
technique of this paper would be helpful in handling general Löwner operators.

The main contribution of this paper is to show that ψp with p ∈ (1, 4) is a smooth
merit function associated with K, and to establish the coerciveness of Ψp(ζ) :=
ψp(F (ζ), G(ζ)) under the uniform Jordan P -property and the linear growth of F .

Throughout this paper, we will focus on the case of K = Kn, and all the analysis
can be carried over to the general case where K is the Cartesian product of Kni . To
this end, for any given x ∈ R

n with n > 1, we write x = (x1, x2) where x1 is the first
component of x, and x2 is the column vector consisting of the rest components of
x; and let x2 = x2

‖x2‖ whenever x2 = 0, and otherwise let x2 be an arbitrary vector

in R
n−1 with ‖x2‖ = 1. We denote intKn, bdKn and bd+Kn by the interior,

the boundary, and the boundary excluding the origin, respectively, of Kn. For any
x, y ∈ R

n, x �Kn y means x − y ∈ Kn; and x �Kn y means x − y ∈ intKn. For a
real symmetric matrix A, we write A � 0 (respectively, A � 0) to mean that A is
positive semidefinite (respectively, positive definite). For a differentiable mapping
F : Rn → R

m, ∇F (x) denotes the transposed Jacobian of F at x. For nonnegative
α and β, α = O(β) means α ≤ Cβ for some C > 0 independent of α and β. The
notation I always represents an identity matrix of appropriate dimension.

2. Preliminaries

The Jordan product of any two vectors x and y associated with Kn (see [14]) is
defined as

x ◦ y := (〈x, y〉, y1x2 + x1y2).

The Jordan product, unlike scalar or matrix multiplication, is not associative, which
is a main source of complication in the analysis of SOCCP. The identity element
under this product is e = (1, 0, . . . , 0)T ∈ R

n. For any given x ∈ R
n, define

Lx : Rn → R
n by

Lxy :=

[
x1 xT

2

x2 x1I

]
y = x ◦ y ∀y ∈ R

n.

Recall from [14] that each x ∈ R
n has a spectral factorization associated with Kn:

x = λ1(x)u
(1)
x + λ2(x)u

(2)
x ,(8)

where λi(x) and u
(i)
x for i = 1, 2 are the spectral values of x and the corresponding

spectral vectors, respectively, defined by

λi(x) := x1 + (−1)i‖x2‖ and u(i)
x :=

1

2

(
1, (−1)ix2

)
.(9)

The factorization is unique when x2 = 0. The following lemma states the relation
between the spectral factorization of x and the eigenvalue decomposition of Lx.

Lemma 2.1 ([14, 15]). For any given x ∈ R
n, let λ1(x), λ2(x) be the spectral values

of x, and let u
(1)
x , u

(2)
x be the corresponding spectral vectors. Then, we have

Lx = Uxdiag (λ2(x), x1, . . . , x1, λ1(x))U
T
x
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with Ux = [
√
2u

(2)
x u(3) · · · u(n)

√
2u

(1)
x ] ∈ R

n×n beings an orthogonal matrix,
where u(i) = (0, ui) for i = 3, . . . , n with u3, . . . , un being any unit vectors to span
the linear subspace orthogonal to x2.

By Lemma 2.1, clearly, Lx � 0 iff (if and only if) x �Kn 0, Lx � 0 iff x �Kn 0,
and Lx is invertible iff x1 = 0 and det(x) := x2

1−‖x2‖2 = 0. Also, if Lx is invertible,

L−1
x =

1

det(x)

[
x1 −xT

2

−x2
det(x)
x1

I + 1
x1
x2x

T
2

]
.(10)

Given a scalar function g : R → R, define a vector function gsoc : Rn → R
n by

gsoc(x) := g(λ1(x))u
(1)
x + g(λ2(x))u

(2)
x .(11)

If g is defined on a subset of R, then gsoc is defined on the corresponding subset
of Rn. The definition of gsoc is unambiguous whether x2 = 0 or x2 = 0. In this
paper, we often use the vector-valued functions associated with |t|p (t ∈ R) and
p
√
t (t ≥ 0), respectively, written as

|x|p := |λ1(x)|p u(1)
x + |λ2(x)|p u(2)

x ∀x ∈ R
n,

p
√
x := p

√
λ1(x) u

(1)
x + p

√
λ2(x) u

(2)
x ∀x ∈ Kn.

The two functions show that φp in (7) is well defined for any x, y ∈ R
n.

We next present four lemmas that will often be used in the subsequent analysis.

Lemma 2.2 ([23, 24]). For any given 0 ≤ ρ ≤ 1, ξρ �Kn ηρ when ξ �Kn η �Kn 0.

Lemma 2.3. For any nonnegative real numbers a and b, the following results hold:

(a): (a+ b)ρ ≥ aρ + bρ if ρ > 1, and the equality holds iff ab = 0;
(b): (a+ b)ρ ≤ aρ + bρ if 0 < ρ < 1, and the equality holds iff ab = 0.

Proof. Without loss of generality, we assume that a ≤ b and b > 0. Consider the
function h(t) = (t + 1)ρ − (tρ + 1) (t ≥ 0). It is easy to verify that h is increasing
on [0,+∞) when ρ > 1. Hence, h(a/b) ≥ h(0) = 0, i.e., (a + b)ρ ≥ aρ + bρ. Also,
h(a/b) = h(0) if and only if a/b = 0. That is, (a + b)ρ = aρ + bρ if and only if
ab = 0. This proves part (a). Note that h is decreasing on [0,+∞) when 0 < ρ < 1,
and a similar argument leads to part (b). �

Lemma 2.4. For any ξ, η ∈ Kn, if ξ + η ∈ bdKn, then one of the following cases
must hold: (i) ξ = 0, η ∈ bdKn; (ii) ξ ∈ bdKn, η = 0; (iii) ξ = γη for some γ > 0
with η ∈ bd+Kn.

Proof. From ξ, η ∈ Kn and ξ + η ∈ bdKn, we immediately obtain that

‖ξ2‖+ ‖η2‖ ≥ ‖ξ2 + η2‖ = ξ1 + η1 ≥ ‖ξ2‖+ ‖η2‖.
This shows that ξ2 = 0, or η2 = 0, or ξ2 = γη2 = 0 for some γ > 0. Substituting
ξ2 = 0, or η2 = 0, or ξ2 = γη2 into ‖ξ2 + η2‖ = ξ1 + η1 yields the result. �

To close this section, we show that φp in (7) is an SOC complementarity function,
and then its squared norm ψp is a merit function associated with Kn.

Lemma 2.5. Let φp be defined by (7). Then, for any x, y ∈R
n, it holds that

φp(x, y) = 0 ⇐⇒ x ∈ Kn, y ∈ Kn, 〈x, y〉 = 0.
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Proof. “⇐”. From [16, Proposition 6], there exists a Jordan frame
{
u(1), u(2)

}
such

that x = λ1u
(1) +λ2u

(2) and y = μ1u
(1) +μ2u

(2) with λi, μi ≥ 0 for i = 1, 2. Then,

(x+ y)p = (λ1 + μ1)
pu(1) + (λ2 + μ2)

pu(2),

xp + yp = (λp
1 + μp

1)u
(1) + (λp

2 + μp
2)u

(2).

Since 0 = 2〈x, y〉 = λ1μ1 + λ2μ2 implies λ1μ1 = λ2μ2 = 0, from the last two
equalities and Lemma 2.3(a) we obtain (x+ y)p = xp + yp, and then φp(x, y) = 0.

“⇒”. Since φp(x, y) = 0, we have x =
√
|x|p + |y|p − y �Kn |y| − y ∈ Kn, where

the inequality is due to Lemma 2.2. Similarly, we have y = p
√
|x|p + |y|p − x �Kn

|x| − x ∈ Kn. Now from φp(x, y) = 0, we have (x+ y)p = xp + yp, and then

(λ1(x+ y))p + (λ2(x+ y))p = (λ1(x))
p + (λ2(x))

p + (λ1(y))
p + (λ2(y))

p.

Noting that h(t) = (t0 + t)p + (t0 − t)p for a fixed t0 ≥ 0 is increasing on [0, t0], we
also have

[λ1(x+ y)]p + [λ2(x+ y)]p ≥ (x1 + y1 − ‖x2‖+ ‖y2‖)p + (x1 + y1 + ‖x2‖ − ‖y2‖)p

= (λ1(x) + λ2(y))
p + (λ2(x) + λ1(y))

p

≥ (λ1(x))
p + (λ2(y))

p + (λ2(x))
p + (λ1(y))

p,(12)

where the last inequality is due to Lemma 2.3(a) and x, y ∈ Kn. The last two
equations imply that all the inequalities on the right-hand side of (12) become
equalities. Therefore,

(13) ‖x2 + y2‖ = ‖x2‖ − ‖y2‖, λ1(x)λ2(y) = 0, λ2(x)λ1(y) = 0.

Assume that x2 = 0 and y2 = 0. Since x, y ∈ Kn, from the equalities in (13), we get
x1 = ‖x2‖, y1 = ‖y2‖, and x2 = γ̂y2 for some γ̂ < 0, which implies 〈x, y〉 = 0. When
x2 = 0 or y2 = 0, using the continuity of the inner product yields 〈x, y〉 = 0. �

3. Differentiability of ψp

Unless otherwise stated, in the rest of this paper, we assume that p > 1 with
q = (1−p−1)−1, and gsoc is the vector-valued function associated with |t|p (t ∈ R),
i.e., gsoc(x) = |x|p. For any x, y ∈ R

n, we define

w = w(x, y) := |x|p + |y|p and z = z(x, y) := p
√
|x|p + |y|p.(14)

By definitions of |x|p and |y|p, clearly,

w1 := w1(x, y) =
|λ2(x)|p + |λ1(x)|p

2
+

|λ2(y)|p + |λ1(y)|p
2

,

w2 := w2(x, y) =
|λ2(x)|p − |λ1(x)|p

2
x2 +

|λ2(y)|p − |λ1(y)|p
2

y2,(15)

where x2 = x2

‖x2‖ if x2 = 0, and otherwise x2 is an arbitrary vector in R
n−1 with

‖x2‖ = 1, and y2 has a similar definition.

Noting that z(x, y) = p
√
w(x, y), we have

z1 = z1(x, y) =
p
√
λ2(w) +

p
√
λ1(w)

2
,

z2 = z2(x, y) =
p
√
λ2(w)− p

√
λ1(w)

2
w2,(16)
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where w2 = w2

‖w2‖ if w2 = 0, and otherwise w2 is an arbitrary vector in R
n−1 with

‖w2‖ = 1.
To study the differentiability of ψp, we need the following two crucial lemmas.

The first one gives the properties of the points (x, y) satisfying w(x, y) ∈ bdKn,
and the second one provides a sufficient characterization for the continuously dif-
ferentiable points of z(x, y).

Lemma 3.1. For any (x, y) with w(x, y) ∈ bdKn, we have the following equalities:

w1(x, y) = ‖w2(x, y)‖ = 2p−1(|x1|p + |y1|p),
x2
1 = ‖x2‖2, y21 = ‖y2‖2, x1y1 = xT

2 y2, x1y2 = y1x2.(17)

If, in addition, w2(x, y) = 0, the following equalities hold with w2(x, y) =
w2(x,y)

‖w2(x,y)‖ :

(18) xT
2 w2(x, y) = x1, x1w2(x, y) = x2, yT2 w2(x, y) = y1, y1w2(x, y) = y2.

Proof. Fix any (x, y) with w(x, y) ∈ bdKn. Since |x|p, |y|p ∈ Kn, applying Lemma
2.4 with ξ = |x|p and η = |y|p, we have |x|p ∈ bdKn and |y|p ∈ bdKn. This means
that |λ2(x)|p·|λ1(x)|p = 0 and |λ2(y)|p·|λ1(y)|p = 0. So, x2

1 = ‖x2‖2 and y21 = ‖y2‖2.
Substituting this into w1(x, y), we readily obtain w1(x, y) = 2p−1(|x1|p + |y1|p).

To prove other equalities in (17) and (18), we first consider the case where
x1 + ‖x2‖ = 0 and y1 − ‖y2‖ = 0 with x2 = 0 and y2 = 0. Under this case,

w1 =
|λ1(x)|p + |λ2(y)|p

2
=

∥∥∥∥ |λ1(x)|p
2

x2

‖x2‖
− |λ2(y)|p

2

y2
‖y2‖

∥∥∥∥ = ‖w2‖,

which implies that xT
2 y2 = −‖x2‖‖y2‖ = x1y1. Together with x2

1 = ‖x2‖2 and
y21 = ‖y2‖2, we have that x1y2 = y1x2. From the definition of w2, it follows that

xT
2 w2 = −|λ1(x)|p

2
‖x2‖+

|λ2(y)|p
2

x1y1
‖y2‖

= 2p−1 (|x1|p + |y1|p)x1 = ‖w2‖x1,

x1w2 = −|λ1(x)|p
2

x1x2

‖x2‖
+

|λ2(y)|p
2

y1x2

‖y2‖
= 2p−1 (|x1|p + |y1|p)x2 = ‖w2‖x2.

Similarly, we also have yT2 w2 = ‖w2‖y1 and yT1 w2 = ‖w2‖y2. The above arguments
show that equations (17) and (18) hold under the case where x1 = −‖x2‖, y1 =
‖y2‖. Using the same arguments, we can prove that (17) and (18) hold under any
one of the following cases: x1 = ‖x2‖, y1 = ‖y2‖; or x1 = −‖x2‖, y1 = ‖y2‖; or
x1 = −‖x2‖, y1 = −‖y2‖. �

Lemma 3.2. z(x, y) is continuously differentiable at (x, y) with w(x, y) ∈ intKn,
and

∇xz(x, y) = ∇gsoc(x)∇gsoc(z)−1 and ∇yz(x, y) = ∇gsoc(y)∇gsoc(z)−1,

where ∇gsoc(z)−1 = (p q
√
w1)

−1I if w2 = 0, and otherwise

∇gsoc(z)−1 =
1

2p

⎡⎢⎣ 1
q
√

λ2(w)
+ 1

q
√

λ1(w)

wT
2

q
√

λ2(w)
− wT

2
q
√

λ1(w)

w2
q
√

λ2(w)
− w2

q
√

λ1(w)

2p(I−w2w
T
2 )

a(z) +
w2w

T
2

q
√

λ2(w)
+

w2w
T
2

q
√

λ1(w)

⎤⎥⎦ .

Proof. Since |t|p (t ∈ R) and p
√
t (t > 0) are continuously differentiable, by [15,

Proposition 5.2] or [7, Proposition 5], the functions gsoc(x) and
√
x are continuously

differentiable in R
n and intKn, respectively. This implies the first part of this
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lemma. A simple calculation gives the expression of ∇z(x, y). By the formula in
[15, Proposition 5.2],

∇gsoc(x) =

⎧⎨⎩
p sign(x1)|x1|p−1I if x2 = 0;[

b(x) c(x)xT
2

c(x)x2 a(x)I + (b(x)− a(x))x2x
T
2

]
if x2 = 0,

(19)

where

x2 =
x2

‖x2‖
, a(x) =

|λ2(x)|p − |λ1(x)|p
λ2(x)− λ1(x)

,

b(x) =
p

2

[
sign(λ2(x))|λ2(x)|p−1 + sign(λ1(x))|λ1(x)|p−1

]
,

c(x) =
p

2

[
sign(λ2(x))|λ2(x)|p−1 − sign(λ1(x))|λ1(x)|p−1

]
.(20)

We next derive the formula of∇gsoc(z)−1. When w2 = 0, we have λ1(w) = λ2(w) =
w1 > 0, which by (16) implies z1 = p

√
w1 and z2 = 0. From formula (19), it then

follows that ∇gsoc(z) = p|z1|p−1I = p q
√
w1I. Consequently, ∇gsoc(z)−1 = 1

p q
√
w1

I.

When w2 = 0, since p
√
λ2(w) > p

√
λ1(w), we have z2 = 0 and z2 = z2

‖z2‖ = w2

by (16). Using the expression of ∇gsoc(z), it is easy to verify that b(z) + c(z)
and b(z) − c(z) are the eigenvalues of ∇gsoc(z) with (1, w2) and (1,−w2) being
the corresponding eigenvectors, and a(z) is the eigenvalue of multiplicity n − 2
with corresponding eigenvectors of the form (0, vi), where v1, . . . , vn−2 are any unit
vectors in R

n−1 that span the subspace orthogonal to w2. Hence,

∇gsoc(z) = Udiag (b(z)− c(z), a(z), . . . , a(z), b(z) + c(z))UT ,

where U = [u1 v1 · · · vn−2 u2] ∈ R
n×n is an orthogonal matrix with

u1 =

(
1

−w2

)
, u2 =

(
1
w2

)
, vi =

(
0
vi

)
for i = 1, . . . , n− 2.

By this, we know that ∇gsoc(z)−1 has the expression given as in the lemma. �

Now we are in a position to prove the following main result of this section.

Proposition 3.1. The function ψp for p ∈ (1, 4) is differentiable everywhere. Also,
for any given x, y ∈ R

n, if w(x, y) = 0, then ∇xψp(x, y) = ∇yψp(x, y) = 0; if
w(x, y) ∈ intKn, then

∇xψp(x, y) =
(
∇gsoc(x)∇gsoc(z)−1 − I

)
φp(x, y),

∇yψp(x, y) =
(
∇gsoc(y)∇gsoc(z)−1 − I

)
φp(x, y);(21)

and if w(x, y) ∈ bd+Kn, then

∇xψp(x, y) =

(
sign(x1)|x1|p−1

q
√

|x1|p + |y1|p
− 1

)
φp(x, y),

∇yψp(x, y) =

(
sign(y1)|y1|p−1

q
√

|x1|p + |y1|p
− 1

)
φp(x, y).(22)

Proof. Fix any (x, y) ∈ R
n×R

n. If w(x, y) ∈ intKn, the result is implied by Lemma
3.2 since φp(x, y) = z(x, y) − (x + y). In fact, in this case, ψp is continuously
differentiable at (x, y). Hence, it suffices to consider the cases w(x, y) = 0 and
w(x, y) ∈ bd+Kn. In the following arguments, x′ and y′ are arbitrary vectors in



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1150 SHAOHUA PAN, SANGHO KUM, YONGDO LIM, AND JEIN-SHAN CHEN

R
n, and μ1(x

′, y′), μ2(x
′, y′) are the spectral values of w(x′, y′) with ξ(1), ξ(2) ∈ R

n

being the corresponding spectral vectors.

Case 1. w(x, y) = 0. Note that (x, y) = (0, 0) in this case. Hence, we only need to
prove, for any x′, y′ ∈ R

n,

ψp(x
′, y′)− ψp(0, 0) =

1

2
‖z(x′, y′)− (x′ + y′)‖2 = O(‖(x′, y′)‖),(23)

which shows that ψp is differentiable at (0, 0) with ∇xψp(0, 0) = ∇yψp(0, 0) = 0.
Indeed,

‖z(x′, y′)− (x′ + y′)‖ =
∥∥∥ p
√
μ1(x′, y′) ξ(1) + p

√
μ2(x′, y′) ξ(2) − (x′ + y′)

∥∥∥
≤

√
2 p
√
μ2(x′, y′) + ‖x′‖+ ‖y′‖.(24)

From the definition of w1(x, y) and w2(x, y), it is easy to obtain that

μ2(x
′, y′) = w1(x

′, y′) + w2(x
′, y′) ≤ |λ2(x

′)|p + |λ1(x
′)|p + |λ2(y

′)|p + |λ1(y
′)|p.

Using the nondecreasing property of p
√
t and Lemma 2.3(b), it then follows that

p
√
μ2(x′, y′) ≤ (|λ2(x

′)|p + |λ1(x
′)|p + |λ2(y

′)|p + |λ1(y
′)|p)1/p

≤ |λ2(x
′)|+ |λ1(x

′)|+ |λ2(y
′)|+ |λ1(y

′)| ≤ 2(‖x′‖+ ‖y′‖).

This, together with (24), implies that equation (23) holds.

Case 2. w(x, y) ∈ bd+Kn. Now w1(x, y) = ‖w2(x, y)‖ = 0, and one of x2 and y2 is
nonzero by (18). We proceed with the arguments in three steps, as shown below.

Step 1. We prove that w1(x
′, y′) and w2(x

′, y′) are �p� times differentiable at
(x′, y′) = (x, y), where �p� denotes the maximum integer not greater than p. Since
one of x2 and y2 is nonzero, we prove this result by considering three possible
cases: (i) x2 = 0, y2 = 0; (ii) x2 = 0, y2 = 0; and (iii) x2 = 0, y2 = 0. For case (i),

since
x′
2

‖x′
2‖
,

y′
2

‖y′
2‖
, λ2(x

′), λ1(x
′), λ2(y

′), and λ1(y
′) are infinite times differentiable at

(x, y), and |t|p is �p� times continuously differentiable in R, it follows that w1(x
′, y′)

and w2(x
′, y′) are �p� times differentiable at (x, y). Now assume that case (ii) is

satisfied. From the arguments in case (i), we know that

|λ2(y
′)|p + |λ1(y

′)|p
2

and
|λ2(y

′)|p − |λ1(y
′)|p

2

y′2
‖y′2‖

are �p� times differentiable at (x, y). In addition, since |λi(x
′)|p ≤ 2

p
2 ‖x′‖p

for i = 1, 2, and x = 0 in this case, we have that |λ2(x
′)|p + |λ1(x

′)|p and
1
2 (|λ2(x

′)|p − |λ1(x
′)|p)x′

2 are �p� times differentiable at x with the first �p�−1
order derivatives being zero. Thus, w1(x

′, y′) and w2(x
′, y′) are �p� times differen-

tiable at (x, y). By the symmetry of x′, y′ in w(x′, y′) and the arguments in case
(ii), the result also holds for case (iii).

Step 2. We show that ψp is differentiable at (x, y). By the definition of ψp, we have

2ψp(x
′, y′) = ‖x′ + y′‖2 + ‖z(x′, y′)‖2 − 2〈z(x′, y′), x′ + y′〉.

Since ‖x′ + y′‖2 is differentiable, it suffices to argue that the last two terms on the
right-hand side are differentiable at (x, y). By formulas (8)-(9), it is not hard to
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calculate that

2 ‖z(x′, y′)‖2 = (μ2(x
′, y′))

2
p + (μ1(x

′, y′))
2
p ,(25)

2 〈z(x′, y′), x′ + y′〉 = p
√
μ2(x′, y′)

(
x′
1 + y′1 +

(w2(x
′, y′))T (x′

2 + y′2)

‖w2(x′, y′)‖

)
+ p
√
μ1(x′, y′)

(
x′
1 + y′1 −

(w2(x
′, y′))T (x′

2 + y′2)

‖w2(x′, y′)‖

)
.(26)

Since w2(x, y) = 0, μ2(x, y) = λ2(w) > 0, and w1(x
′, y′) and w2(x

′, y′) are differ-

entiable at (x, y), by Step 1 we have that (μ2(x
′, y′))

2
p and the first term on the

right-hand side of (26) is differentiable at (x, y). Thus, it suffices to prove that

(μ1(x
′, y′))

2
p and the last term on the right-hand side of (26) are differentiable at

(x, y).

We first argue that (μ1(x
′, y′))

2
p is differentiable at (x, y). Since w2(x, y) =

0, and w1(x
′, y′) and w2(x

′, y′) are �p� times differentiable at (x, y) by Step 1,
the function μ1(x

′, y′) is �p� times differentiable at (x, y). When p < 2, by the
mean-value theorem and μ1(x, y) = λ1(w) = 0, it follows that μ1(x

′, y′) =
O(‖x′ − x‖ + ‖y′ − y‖) for any (x′, y′) sufficiently close to (x, y), and therefore

(μ1(x
′, y′))

2
p = O[(‖x′ − x‖ + ‖y′ − y‖) 2

p ]. This shows that (μ1(x
′, y′))

2
p is differ-

entiable at (x, y) with zero derivative. When p ≥ 2, μ1(x
′, y′) is infinite times

differentiable at (x, y), and its first derivative equals zero by the result in the Ap-
pendix. From the second-order Taylor expansion of μ1(x

′, y′) at (x, y), it follows

that (μ1(x
′, y′))

2
p = O[(‖x′ − x‖ + ‖y′ − y‖) 4

p ]. This implies that (μ1(x
′, y′))

2
p is

differentiable at (x, y) with zero gradient when 2 ≤ p < 4. Thus, we prove that

(μ1(x
′, y′))

2
p is differentiable at (x, y) with zero gradient when p ∈ (1, 4).

We next consider the last term on the right-hand side of (26). Observe that

x′
1 + y′1 −

(w2(x
′, y′))T (x′

2 + y′2)

‖w2(x′, y′)‖

is differentiable at (x, y), and its function value at (x, y) equals zero by (18).
Hence, this term is O(‖x′ − x‖ + ‖y′ − y‖), which, along with μ1(x

′, y′) =
O(‖x′ − x‖ + ‖y′ − y‖), means that the last term of (26) is O((‖x′ − x‖+
‖y′ − y‖)1+ 1

p ) = o(‖x′ − x‖ + ‖y′ − y‖). This shows that the last term of (26)
is differentiable at (x, y) with zero derivative.

Step 3. We derive the formula of ∇xψp(x, y). From Step 2, we see that 2∇ψp(x, y)

equals the difference between the gradient of 1
2 (μ2(x

′, y′))
2
p +‖x′+y′‖2 and that of

the first term on the right-hand side of (26), evaluated at (x, y). By the Appendix,
the gradients of (μ2(x

′, y′))1/p and (μ2(x
′, y′))2/p with respect to x′, evaluated at

(x′, y′) = (x, y), are

∇x′(μ2(x
′, y′))1/p|(x′,y′)=(x,y) = (λ2(w))

1
p−12p−1 sign(x1)|x1|p−1

(
1
w2

)
,(27)

∇x′(μ2(x
′, y′))2/p|(x′,y′)=(x,y) = (λ2(w))

2
p−12p sign(x1)|x1|p−1

(
1
w2

)
.(28)
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By the product and quotient rules for differentiation, the gradient of x′
1 + y′1 +

(w2(x
′,y′))T (x′

2+y′
2)

‖w2(x′,y′)‖ with respect to x′, evaluated at (x′, y′) = (x, y), works out to be(
1
w2

)
+∇x′w2(x

′, y′)|(x′,y′)=(x,y)

(
x2 + y2
‖w2‖

− w2w
T
2 (x2 + y2)

‖w2‖

)
=

(
1
w2

)
,

where the equality uses (18). Along with (27), the gradient of the first term on the
right-hand side of (26) with respect to x′, evaluated at (x′, y′) = (x, y), is

(λ2(w))
1
p−1(x1 + y1)2

p sign(x1)|x1|p−1

(
1
w2

)
+ (λ2(w))

1
p

(
1
w2

)
.(29)

In addition, the gradient of ‖x′ + y′‖2 with respect to x′, evaluated at (x′, y′) =
(x, y), is 2(x+ y). Together with equations (28)-(29), we obtain that

2∇xψp(x, y) = 2(x+ y) + (λ2(w))
2
p−12p−1 sign(x1)|x1|p−1

(
1
w2

)
−(λ2(w))

1
p−1(x1 + y1)2

p sign(x1)|x1|p−1

(
1
w2

)
− (λ2(w))

1
p

(
1
w2

)
.

Since λ1(w) = 0, from (16) it follows that

φp(x, y) = z(x, y)− (x+ y) =
1

2
(λ2(w))

1
p

(
1
w2

)
− (x+ y).

Combining the last two equations and using x1w2 = x2 and y1w2 = y2, we get

2∇xψp(x, y) = (λ2(w))
1
p−12p sign(x1)|x1|p−1(φp(x, y) + (x+ y))

− (λ2(w))
1
p−12p sign(x1)|x1|p−1(x+ y)− 2φp(x, y)

= 2

[
sign(x1)|x1|p−1

(|x1|p + |y1|p)1/q
− 1

]
φp(x, y),

where the last equality is from λ2(w) = 2w1 = 2p(|x1|p + |y1|p). This proves the
first equality in (22). By the symmetry of x and y in ψp, the second equality in
(22) also holds. �

From the arguments in Step 2 of Case 2, we see that ψp will be differentiable
for p ≥ 4 if the first �p

2�-order derivatives of μ1(x
′, y′) = w1(x

′, y′) − ‖w2(x
′, y′)‖,

evaluated at (x′, y′) = (x, y), are equal to zero. We are not clear whether this holds
or not.

4. Smoothness of ψp

In the last section ψp for p ∈ (1, 4) is proved to be differentiable everywhere. A
natural question is whether∇ψp is continuous or not. In this section we will provide
an affirmative answer to it. For this purpose, we first establish three technical
lemmas which hold for all p > 1.

Lemma 4.1. There exists a constant c1 such that for all (x, y) with w(x, y) ∈
intKn,

(30)
∥∥L|x|p−1L−1

zp−1

∥∥
F
≤ c1 and

∥∥L|y|p−1L−1
zp−1

∥∥
F
≤ c1,

where c is independent of x and y, and ‖ · ‖F means the Frobenius norm.
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Proof. Due to the symmetry of x and y in z(x, y), it suffices to prove the first
inequality. To this end, we first prove that for any (x, y) with w(x, y) ∈ intKn,

0 ≤ λ
(
L|x|p−1L−1

zp−1

)
≤ 1,(31)

where, for a matrix A ∈ R
n×n, λ(A) ∈ R

n denotes the vector of eigenvalues of
A, and 1 means a vector with all components being 1. Indeed, since z �Kn 0
and |x|p−1 �Kn 0, we have Lz � 0 and L|x|p−1 � 0. Applying [20, Theorem

7.6.3] with A = L−1
zp−1 and B = L|x|p−1 yields that λ(L−1

zp−1L|x|p−1) ≥ 0, and then

λ(L|x|p−1L−1
zp−1) ≥ 0. In addition, since zp �Kn |x|p, from Lemma 2.2 it follows that

(zp)
p−1
p �Kn (|x|p)

p−1
p , i.e., zp−1 �Kn |x|p−1. Then Lzp−1 − L|x|p−1 � 0. Applying

the result of Exercise 7 in [20, p. 468] with A = Lzp−1 and B = −L|x|p−1 , we have

that λ
(
−L−1

zp−1L|x|p−1

)
≥ −1. Consequently, λ

(
L|x|p−1L−1

zp−1

)
≤ 1. Together with

λ(L|x|p−1L−1
zp−1) ≥ 0, we prove that (31) holds.

Next we prove that there exists a constant c1 > 0 such that for all (x, y) satis-
fying w(x, y) ∈ intKn, ‖L|x|p−1L−1

zp−1‖F ≤ c1 where c1 is independent of x and y.
Suppose on the contrary that such c1 does not exist. Then, there exists a sequence
{(xk, yk)} ⊂ R

n × R
n with w(xk, yk) ∈ intKn such that ‖L|xk|p−1L−1

(zk)p−1‖F is

unbounded. We assume (taking a subsequence if necessary) that

lim
k→∞

‖L|xk|p−1L−1
(zk)p−1‖F = +∞.

For each k, let Ak = L|xk|p−1 and Bk = L−1
(zk)p−1 . Subsequencing if necessary, we

may assume that

lim
k→∞

Ak

‖Ak‖F
= A∗ and lim

k→∞

Bk

‖Bk‖F
= B∗.

In the following arguments, for any A,B ∈ R
n×n with all eigenvalues in R, we

let λ↓(A) and λ↑(A) be the vectors obtained by rearranging the coordinates of
λ(A) in the decreasing and increasing orders, respectively. That is, if λ↓(A) =

(λ↓
1(A), . . . , λ↓

n(A)), then λ↓
1(A) ≥ · · · ≥ λ↓

n(A). Similarly, if λ↑(A) = (λ↑
1(A), . . . ,

λ↑
n(A)), then λ↑

1(A) ≤ · · · ≤ λ↑
n(A). We write λ(A) ≺ λ(B) if

∑l
j=1 λ

↓
j (A) ≤∑l

j=1 λ
↓
j (B) for any 1 ≤ l ≤ n and

∑n
j=1 λ

↓
j (A) =

∑n
j=1 λ

↓
j (B). Since Ak � 0 and

Bk � 0 for each k, applying the result of [3, Problem III.6.14] gives that

λ↓
(

Ak

‖Ak‖F

)
· λ↑

(
Bk

‖Bk‖F

)
≺ λ

(
AkBk

‖Ak‖F ‖Bk‖F

)
≺ λ↓

(
Ak

‖Ak‖F

)
· λ↓

(
Bk

‖Bk‖F

)
,

where “·” denotes the componentwise product. Since limk→∞ ‖Ak‖F ‖Bk‖F = +∞,
taking the limit k → +∞ and using (31) and the continuity of λ(·), we get

λ↓(A∗) · λ↑(B∗) ≺ 0 ≺ λ↓(A∗) · λ↓(B∗).(32)

Since A∗ � 0 and B∗ � 0, each component of λ↓(A∗) and λ↑(B∗) is nonnegative,
and the first relation of (32) then implies λ↓(A∗) · λ↑(B∗) = 0. Note that for each
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k, all eigenvalues of Ak and Bk, respectively are given as follows:

|λ1(x
k)|p−1,

[
|λ1(x

k)|p−1 + |λ2(x
k)|p−1

]
, . . . ,

[
|λ1(x

k)|p−1 + |λ2(x
k)|p−1

]
︸ ︷︷ ︸

n−2

, |λ2(x
k)|p−1,

1

[λ1(zk)]p−1
,

1

[λ1(zk)]p−1 + [λ2(zk)]p−1
, . . . ,

1

[λ1(zk)]p−1 + [λ2(zk)]p−1︸ ︷︷ ︸
n−2

,
1

[λ2(zk)]p−1
,

which, by the positive homogeneousness of eigenvalue function, means that

λ↓
1(A

∗) ≥ λ↓
2(A

∗) = · · · = λ↓
n−1(A

∗) ≥ λ↓
n(A

∗) ≥ 0,

0 ≤ λ↑
1(B

∗) ≤ λ↑
2(B

∗) = · · · = λ↑
n−1(B

∗) ≤ λ↑
n(B

∗).

Then, from λ↓(A∗) · λ↑(B∗) = 0, we deduce that λ↑
1(B

∗) = 0 and λ↓
1(A

∗) > 0. (If

not, we will have λ↓
1(A

∗) = 0, which implies λ(A∗) = 0, and then A∗ = 0 follows
by the positive semidefiniteness of A∗. This contradicts the fact that ‖A∗‖F = 1.)

Similarly, we can deduce that λ↑
n(B

∗) > 0 and λ↓
n(A

∗) = 0. Also, either of λ↓
2(A

∗)

and λ↑
2(B

∗) is zero. Without loss of generality, we assume that λ↓
2(A

∗) = 0. Thus,
the above arguments show that

λ↓
1(A

∗) > λ↓
2(A

∗) = 0 = · · · = 0 = λ↓
n(A

∗),

λ↑
n(B

∗) ≥ λ↑
n−1(B

∗) = · · · = λ↑
2(B

∗) ≥ λ↑
1(B

∗) = 0 and λ↑
n(B

∗) > 0.

However, from the second relation of (32) and the last two equations, we have that

0 =
n∑

j=1

λ↓
j (A

∗)λ↓
j (B

∗) = λ↓
1(A

∗)λ↑
n(B

∗) + (n− 1)λ↓
2(A

∗)λ↑
2(B

∗) + λ↓
n(A

∗)λ↑
1(B

∗)

= λ↓
1(A

∗)λ↑
n(B

∗) > 0,

which is clearly impossible. Thus, the constant c1 satisfies the requirement. �

Lemma 4.1 generalizes the result of [12, Lemma 4] for p = 2, where it is achieved
by direct computation, but we here adopt a different proof technique. Combining
Lemma 4.1 with the expressions of L|x|p−1L−1

zp−1 and L|y|p−1L−1
zp−1 , we have the

following result.

Lemma 4.2. For any x, y with w(x, y) ∈ intKn, let x̃ = |x|p−1 and ỹ = |y|p−1.
Then,

x̃1 + (−1)ix̃T
2 w2

q
√
λi(w)

= O(1),
x̃2 + (−1)ix̃1w2

q
√
λi(w)

= O(1),

ỹ1 + (−1)iỹT2 w2

q
√

λi(w)
= O(1),

ỹ2 + (−1)iỹ1w2

q
√
λi(w)

= O(1)(33)

for i = 1, 2, where w2 = w2(x,y)
‖w2(x,y)‖ , and O(1) denotes a uniformly bounded term.

Proof. Fix any (x, y) satisfying w ∈ intKn. We write λ1 = λ1(w) and λ2 = λ2(w)

for simplicity. From (15), we have q
√
λ2 ≥ q

√
w1 ≥ q

√
|λ2(x)|p+|λ1(x)|p

2 . Note that

q

√
|λ2(x)|p + |λ1(x)|p

2
≥

(
max(|λ2(x)|, |λ1(x)|)

p
√
2

) p
q

≥
(√

|λ2(x)|2 + |λ1(x)|2

2
1
p
+1

) p
q

=
‖x‖

p
q

2
p+2
2q
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for p > 2, and for 1 < p ≤ 2,

q

√
|λ2(x)|p + |λ1(x)|p

2
≥ q

√
(|λ2(x)|2 + |λ1(x)|2)

p
2

2
= 2

p−2
2q ‖x‖

p
q .

Therefore,

(34) q
√
λ2 ≥

{
2−

p+2
2q ‖x‖

p
q if p > 2;

2
p−2
2q ‖x‖

p
q if p ∈ (1, 2].

Since x̃1 = 1
2 (|λ2(x)|p−1+ |λ1(x)|p−1) and x̃2 = 1

2 (|λ2(x)|p−1−|λ1(x)|p−1), we have

x̃1 =
1

2
(|λ2(x)|

p
q + |λ1(x)|

p
q ) ≤ ‖x‖

p
q ,

‖x̃2‖ ≤ 1

2
(|λ2(x)|

p
q + |λ1(x)|

p
q ) ≤ ‖x‖

p
q .(35)

Together with (34), we obtain the first two relations in (33) for i = 2. Notice that

zp−1 = q
√
w =

(
q
√
λ2 +

q
√
λ1

2
,

q
√
λ2 − q

√
λ1

2
w2

)
.

By formula (10) and x̃ = |x|p−1, we calculate that L|x|p−1L−1
zp−1 equals⎡⎢⎢⎣x̃1+x̃T

2 w2

2 q
√
λ2

+
x̃1−x̃T

2 w2

2 q
√
λ1

(
x̃1w

T
2

2 q
√
λ2

− x̃1w
T
2

2 q
√
λ1

)
+

2x̃T
2

q
√
λ2+

q
√
λ1

+

q
√

λ2
q
√

λ1
−2+

q
√

λ1
q
√

λ2

2( q
√
λ2+

q
√
λ1)

x̃T
2 w2w

T
2

x̃2+x̃1w2

2 q
√
λ2

+ x̃2−x̃1w2

2 q
√
λ1

(
x̃2w

T
2

2 q
√
λ2

− x̃2w
T
2

2 q
√
λ1

)
+ 2x̃1I

q
√
λ2+

q
√
λ1

+

q
√

λ2
q
√

λ1
−2+

q
√

λ1
q
√

λ2

2( q
√
λ2+

q
√
λ1)

x̃1w2w
T
2

⎤⎥⎥⎦ .

Substituting the first two relations in (33) for i = 2 into the last equation and
noting that

x̃1w
T
2

2 q
√
λ2

,
x̃2w

T
2

2 q
√
λ2

,
x̃T
2

q
√
λ2 +

q
√
λ1

, and
x̃1

q
√
λ2 +

q
√
λ1

are all uniformly bounded by equations (34)-(35), we obtain that

L|x|p−1L−1
zp−1 =

⎡⎣O(1) +
x̃1−x̃T

2 w2

2 q
√
λ1

O(1)− x̃1w
T
2

2 q
√
λ1

+
q
√
λ2

2( q
√
λ2+

q
√
λ1)

q
√
λ1
x̃T
2 w2w

T
2

O(1) + x̃2−x̃1w2

2 q
√
λ1

O(1)− x̃2w
T
2

2 q
√
λ1

+
q√λ2

2( q
√
λ2+

q
√
λ1)

q
√
λ1
x̃1w2w

T
2

⎤⎦
=

⎡⎣O(1) +
x̃1−x̃T

2 w2

2 q
√
λ1

O(1)− x̃1w
T
2

2( q
√
λ2+

q
√
λ1)

−
q
√
λ2(x̃1−x̃T

2 w2)

2( q
√
λ2+

q
√
λ1)

q
√
λ1
wT

2

O(1) + x̃2−x̃1w2

2 q√λ1
O(1)− x̃2w

T
2

2( q√λ2+
q√λ1)

+
q√λ2(x̃2−x̃1w2)

2( q√λ2+
q√λ1)

q√λ1
wT

2

⎤⎦ .

This, by Lemma 4.1, implies that the first two relations in (33) hold for i = 1. By
the symmetry of x and y in w(x, y), the last two relations in (33) also hold. �

Remark 4.1. The first relation of (33) for i = 1 is equivalent to saying that

|λ2(x)|p−1(1− xT
2 w2) + |λ1(x)|p−1(1 + xT

2 w2)
q
√
λ1(w)

= O(1),(36)
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whereas the second relation for i = 1 is equivalent to saying that∥∥∥∥∥ (|λ2(x)|p−1 − |λ1(x)|p−1)x2 − (|λ2(x)|p−1 + |λ1(x)|p−1)w2

q
√
λ1(w)

∥∥∥∥∥
2

,

=
|λ2(x)|2p−2(1− xT

2 w2) + |λ1(x)|2p−2(1 + xT
2 w2)

( q
√
λ1(w))2

= O(1).(37)

Equations (36) and (37) play an important role in the proof of the following lemma.

Lemma 4.3. There exists a positive constant c2 (independent of x and y) such
that for all (x, y) with w(x, y) ∈ intKn,∥∥∇gsoc(x)∇gsoc(z)−1

∥∥
F
≤ c2 and

∥∥∇gsoc(y)∇gsoc(z)−1
∥∥
F
≤ c2.

Proof. By the symmetry of x and y in ∇gsoc(z), it suffices to prove the first in-
equality. Fix any (x, y) with w = w(x, y) ∈ intKn. Suppose w2 = 0 and x2 = 0.
By the expressions of ∇gsoc(x) and ∇gsoc(z)−1 given by Lemma 3.2, it is not hard
to calculate that

2p∇gsoc(x)∇gsoc(z)−1 =

[
a1(x, z) aT2 (x, z)
b2(x, z) A1(x, z)

]
,

where

a1(x, z) =
1

q
√
λ2(w)

(
b(x) + c(x)xT

2 w2

)
+

1
q
√
λ1(w)

(
b(x)− c(x)xT

2 w2

)
,

a2(x, z) =

(
b(x)+c(x)xT

2 w2

)
w2

q
√
λ2(w)

−
(
b(x)−c(x)xT2 w2

)
w2

q
√
λ1(w)

+
2pc(x)

(
x2−xT

2 w2w2

)
a(z)

,

b2(x, z) =
1

q
√
λ2(w)

[
c(x)x2 + a(x)w2 + (b(x)− a(x))xT2 w2x2

]
+

1
q
√
λ1(w)

[
c(x)x2 − a(x)w2 − (b(x)− a(x))xT

2 w2x2

]
,

A1(x, z) =
1

q
√
λ2(w)

[
c(x)x2w

T
2 + a(x)w2w

T
2 + (b(x)− a(x))xT2 w2x2w

T
2

]
− 1

q
√
λ1(w)

[
c(x)x2w

T
2 − a(x)w2w

T
2 − (b(x)− a(x))xT2 w2x2w

T
2

]
+

2p

a(z)

[
a(x)(I − w2w

T
2 ) + (b(x)− a(x))

(
x2x

T
2 − xT

2 w2x2w
T
2

)]
.

From the definitions of a(x), b(x) and c(x) in (20), it follows that

max(|b(x)|, |c(x)|) ≤ p

2

(
|λ2(x)|p−1 + |λ1(x)|p−1) ,

|a(x)| = p
∣∣t1λ2(x) + (1− t1)λ1(x)

∣∣p−1 ≤ pmax(|λ2(x)|p−1, |λ1(x)|p−1)(38)

for some t1 ∈ (0, 1), where the equality is using the mean-value theorem. Therefore,

(39) |a(x)| ≤ p‖x‖
p
q , |b(x)| ≤ p‖x‖

p
q and |c(x)| ≤ p‖x‖

p
q .

Noting that 0 ≤ λ1(w)/λ2(w) < 1 and p
√
λ1(w)/λ2(w) ≥ λ1(w)/λ2(w), we have

a(z) =
λ2(w)− λ1(w)

p
√
λ2(w)− p

√
λ1(w)

= q
√
λ2(w)

1− λ1(w)/λ2(w)

1− p
√
λ1(w)/λ2(w)

≥ q
√
λ2(w).(40)
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By (39), (40), and (34), we simplify a1(x, z), a2(x, z), b1(x, z), and A1(x, z) as

a1(x, z) = O(1) +
1

q
√
λ1(w)

(
b(x)− c(x)xT

2 w2

)
,

a2(x, z) = O(1)− 1
q
√
λ1(w)

(
b(x)− c(x)xT

2 w2

)
w2,(41)

b2(x, z)=O(1)+
1

q
√
λ1(w)

[(
c(x)−b(x)xT

2 w2

)
x2+a(x)(xT2 w2x2−w2)

]
,

A1(x, z)=O(1)− 1
q
√
λ1(w)

[(
c(x)−b(x)xT

2 w2

)
x2w

T
2 +a(x)(xT2 w2x2w

T
2 −w2w

T
2 )
]
.

By the definitions of b(x) and c(x), it is easy to verify that∣∣b(x)− c(x)xT
2 w2

∣∣ ≤ p

2

[
|λ2(x)|p−1(1− xT

2 w2) + |λ1(x)|p−1(1 + xT
2 w2)

]
,∣∣c(x)− b(x)xT

2 w2

∣∣ ≤ p

2

[
|λ2(x)|p−1(1− xT

2 w2) + |λ1(x)|p−1(1 + xT
2 w2)

]
,

which, together with (36), implies that

b(x)− c(x)xT
2 w2

q
√
λ1(w)

= O(1),
c(x)− b(x)xT

2 w2

q
√
λ1(w)

= O(1).(42)

In addition, it is easy to compute that

‖a(x)(xT
2 w2x2 − w2)‖2 = a2(x)(1− xT

2 w2)(1 + xT
2 w2),

‖a(x)(xT2 w2x2w
T
2 − w2w

T
2 )‖2F ≤ a2(x)(1− xT

2 w2)(1 + xT
2 w2).

By equation (38), we have a2(x) ≤ p2 max(|λ2(x)|2p−2, |λ1(x)|2p−2). Using (37)
and noting that 0 ≤ 1− xT

2 w2 ≤ 2 and 0 ≤ 1 + xT
2 w2 ≤ 2, we may obtain that

‖a(x)(xT2 w2x2 − w2)‖
q
√
λ1(w)

= O(1),
‖a(x)(xT

2 w2x2w
T
2 − w2w

T
2 )‖F

q
√

λ1(w)
= O(1).(43)

By (41)-(43), a1(x, z), a2(x, z), b2(x, z), and A1(x, z) are all uniformly bounded, and
hence there exists a constant C2 > 0 such that

∥∥∇gsoc(x)[∇gsoc(z)]−1
∥∥
F
≤ C2.

Suppose that x2 = 0 or w2 = 0. Then there exists a sequence {(xk, yk)} ⊂ R
n ×

R
n with xk

2 = 0, w2(x
k, yk) = 0 and w(xk, yk) ∈ intKn for all k such that xk → x

and wk → w as k → ∞. From the above result, ‖∇gsoc(xk)∇gsoc(zk)−1‖F ≤ c2 for
all k. Noting that∇gsoc(x) is continuous since |t|p is continuously differentiable, and
∇gsoc(z)−1 is continuous at any z(x, y) ∈ intKn, we get ‖∇gsoc(x)∇gsoc(z)−1‖F ≤
c2. The proof is complete. �

Now we are in a position to prove the continuity of the gradient function ∇ψp.

Proposition 4.1. The function ψp with p ∈ (1, 4) is smooth everywhere on R
n×R

n.

Proof. By Proposition 3.1 and the symmetry of x and y in ∇ψp, it suffices to prove
that ∇xψp is continuous at every (x, y) ∈ R

n×R
n. Choose a point (x, y) ∈R

n×R
n

arbitrarily. When w(x, y) ∈ intKn, the conclusion was shown in Proposition 3.1.
We next consider the other two cases where w(x, y) = 0 and w(x, y) ∈ bd+Kn.

Case 1. w(x, y) = 0. Now we have (x, y) = (0, 0) and ∇xψp(0, 0) = 0 by Propo-
sition 3.1 it suffices to show that ∇x′ψp(x

′, y′) → 0 as (x′, y′) → (0, 0). If w(x′, y′) ∈
intKn, then ∇x′ψp(x

′, y′) is given by (21); and if w(x′, y′) ∈ bd+Kn, then
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∇x′ψp(x
′, y′) is given by (22). Since ∇gsoc(x′)∇gsoc(z′)−1 − I and

sign(x′
1)|x′

1|p−1

q
√

|x′
1|p+|y′

1|p

are uniformly bounded, where the uniform boundedness of the former is due to
Lemma 4.3, using the continuity of φp and noting that φp(0, 0) = 0 immediately
yields that ∇x′ψp(x

′, y′) → 0 as (x′, y′) → (0, 0).

Case 2. w(x, y) ∈ bd+Kn. For any (x′, y′) sufficiently close to (x, y), in order to
prove that ∇xψp(x

′, y′) → ∇xψp(x, y), we only need to consider the cases where

w(x′, y′) ∈ intKn and w(x′, y′) ∈ bd+Kn. When w(x′, y′) ∈ bd+Kn, ∇xψp(x
′, y′)

has an expression of (22) which is continuous at (x, y) since |x1|p + |y1|p > 0 by
Lemma 3.1, and then ∇xψp(x

′, y′) → ∇xψp(x, y). We next concentrate on the case
w(x′, y′) ∈ intKn, for which case

∇xψp(x
′, y′) =∇gsoc(x′)∇gsoc(z′)−1z′

−∇gsoc(x′)∇gsoc(z′)−1(x′ + y′)− φp(x
′, y′).

(44)

We next proceed with the arguments for the following two subcases: x2 = 0 and
x2 = 0.

Subcase (2.1). x2 = 0. By the expression of ∇xψp(x, y) in (22), we have

∇xψp(x, y) =
sign(x1)|x1|p−1

q
√
|x1|p + |y1|p

φp(x, y)− φp(x, y)

=
sign(x1)|x1|p−1 p

√
|x1|p+ |y1|p

q
√
|x1|p + |y1|p

(
1
w2

)
− sign(x1)|x1|p−1

q
√
|x1|p+ |y1|p

(x+ y)−φp(x, y),

where the second equality is by z(x, y) = p
√
|x1|p + |y1|p

(
1
w2

)
. Comparing it with

(44), we see that to prove ∇xψp(x
′, y′) → ∇xψp(x, y) as (x

′, y′) → (x, y), it suffices
to argue that, when (x′, y′) → (x, y),

(45) ∇gsoc(x′)∇gsoc(z′)−1z′ → sign(x1)|x1|p−1 p
√
|x1|p+ |y1|p

q
√
|x1|p + |y1|p

(
1
w2

)
and

∇gsoc(x′)∇gsoc(z′)−1x′ → sign(x1)|x1|p−1

q
√
|x1|p + |y1|p

x,

∇gsoc(x′)∇gsoc(z′)−1y′ → sign(x1)|x1|p−1

q
√
|x1|p + |y1|p

y.(46)

First of all, we prove (45). Since w(x, y) ∈ bd+Kn implies |x|p ∈ bdKn, we have

a(x) = 2p−1sign(x1)|x1|p−1, b(x) = 2p−2p sign(x1)|x1|p−1, c(x) = 2p−2p|x1|p−1.

(47)

Since w2(x, y) = 0 (if not, w(x, y) = 0), we have w′
2 = w2(x

′, y′) = 0. By
the expressions of ∇gsoc(x′) and ∇gsoc(z′)−1, it is not hard to calculate that
∇gsoc(x′)∇gsoc(z′)−1z′ equals

λ2(w
′)

1
p−

1
q

2p
∇gsoc(x′)

(
1
w′

2

)
+

p
√

λ1(w′)

2
∇gsoc(x′)∇gsoc(z′)−1

(
1

−w′
2

)
,
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where z′ = z(x′, y′), w′ = w(x′, y′), and w′
2 =

w′
2

‖w′
2‖
. Note that λ1(w

′) → 0 and

w′
2 → w2 with w2 = w2

‖w2‖ as (x′, y′) → (x, y). By Lemma 4.3, the last term

on the right-hand side tends to 0, whereas by the continuity of ∇gsoc the first

term approaches 1
2pλ2(w)

1
p−

1
q ∇gsoc(x)

(
1
w2

)
. Thus, together with λ2(w) = 2w1 =

2p(|x1|p + |y1|p), it holds that as (x′, y′) → (x, y),

(48) ∇gsoc(x′)∇gsoc(z′)−1z′ → p−12−
p
q (|x1|p + |y1|p)

1
p−

1
q ∇gsoc(x)

(
1
w2

)
.

In addition, using equations (47) and (19), we readily obtain that

∇gsoc(x) = 2p−2p sign(x1)|x1|p−1

⎡⎣ 1
xT
2

x1

x2

x1

2
pI +

(
1− 2

p

)
x2x

T
2

x2
1

⎤⎦ .

This along with (48) means that as (x′, y′) → (x, y), ∇gsoc(x′)∇gsoc(z′)−1z′ ap-
proaches

1

2
sign(x1)|x1|p−1(|x1|p + |y1|p)

1
p−

1
q

[
1 xT

2 /x1

x2

x1

2
pI +

(
1− 2

p

)
x2x

T
2

x2
1

](
1
w2

)
,

= sign(x1)|x1|p−1(|x1|p + |y1|p)
1
p−

1
q

(
1
w2

)

where the equality is using Lemma 3.1. This shows that equation (45) holds.

Next, we prove the second relation of (46), and an analogous argument can be
used to prove the first relation. Let (ζ1, ζ2) := ∇gsoc(x′)∇gsoc(z′)−1y′. We only
need to establish, when (x′, y′) → (x, y),

ζ1 → sign(x1)|x1|p−1

q
√
|x1|p + |y1|p

y1 and ζ2 → sign(x1)|x1|p−1

q
√
|x1|p + |y1|p

y2.(49)

Note that x′
2 = 0 for (x′, y′) sufficiently close to (x, y). By equation (19) and the

expression of ∇gsoc(z′)−1 in Lemma 3.2, a direct calculation yields that

2pζ1 =
1

q
√
λ2(w′)

[
b(x′) + c(x′)(x′

2)
Tw′

2

]
[y′1 + (w′

2)
T y′2]

+
1

q
√
λ1(w′)

[
b(x′)− c(x′)(x′

2)
Tw′

2

]
[y′1 − (w′

2)
T y′2](50)

+
2p

a(z′)
c(x′)

[
(x′

2)
T y′2 − (x′

2)
Tw′

2(w
′
2)

T y′2
]
,
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2pζ2 =
1

q
√

λ2(w′)

[
c(x′)x′

2 + a(x′)w′
2 + (b(x′)− a(x′))(x′

2)
Tw′

2x
′
2

]
y′
1

(51)

+
1

q
√

λ2(w′)

[
c(x′)x′

2(w
′
2)

T + a(x′)w′
2(w

′
2)

T + (b(x′)− a(x′))(x′
2)

Tw′
2x

′
2(w

′
2)

T
]
y′
2

+
2p

a(z′)

[
a(x′)(I − w′

2(w
′
2)

T ) + (b(x′)− a(x′))
(
x′
2(x

′
2)

T − (x′
2)

Tw′
2x

′
2(w

′
2)

T
)]

y′
2

+
1

q
√

λ1(w′)

[
c(x′)x′

2 − a(x′)w′
2 − (b(x′)− a(x′))(x′

2)
Tw′

2x
′
2

]
y′
1,

− 1
q
√

λ1(w′)

[
c(x′)x′

2(w
′
2)

T − a(x′)w′
2(w

′
2)

T − (b(x′)− a(x′))(x′
2)

Tw′
2x

′
2(w

′
2)

T
]
y′
2

where a(x′), b(x′) and c(x′) are defined as in (20) with x replaced by x′. Since
q
√
λ2(w′), b(x′), c(x′), x′

2 and w′
2 are continuous at (x, y), it follows that

q
√
λ2(w′) → q

√
2w1 = 2

p
q (|x1|p + |y1|p)

1
q ,[

b(x′) + c(x′)(x′
2)

Tw′
2

]
[y′1 + (w′

2)
T y′2] →

(
b(x) + c(x)xT2 w2

)
(y1 + yT2 w2)

as (x′, y′) → (x, y). This, along with Lemma 3.1 and equation (47), implies that

the first term on the right-hand side of (50) tends to 2p sign(x1)|x1|p−1

q
√

|x1|p+|y1|p
y1. Since

y′1 − (w′
2)

T y′2 → y1 − yT2 w2 = 0,

(x′
2)

T y′2 − (x′
2)

Tw′
2(w

′
2)

T y′2 → xT
2 y2 − xT

2 w2w
T
2 y2 = 0,

whereas (b(x′)− c(x′)(x′
2)

Tw′
2)/

q
√
λ1(w′) and 2pc(x′)/a(z′) are uniformly bounded

by the proof of Lemma 4.2, the last two terms of (50) tend to 0 as (x′, y′) → (x, y),
and we prove the first relation in (49). We next prove the second relation of (49).
From the above discussions, the first three terms on the right-hand side of (51),
respectively, tend to

1
q
√
2w1

[
c(x)x2 + a(x)w2 + (b(x)− a(x))xT2 w2x2

]
y1,

1
q
√
2w1

[
c(x)x2 + a(x)w2 + (b(x)− a(x))xT2 w2x2

]
wT

2 y2,

2p

a(z)

[
a(x)(I − w2w

T
2 ) + (b(x)− a(x))

(
x2x

T
2 − xT

2 w2x2w
T
2

)]
y2,

as (x′, y′) → (x, y), whose sum, by Lemma 3.1 and formula (47), can be simplified
as

2
q
√
2w1

[sign(x1)c(x) + b(x)] y2 =
2p sign(x1)|x1|p−1

q
√
|x1|p + |y1|p

y2.

Observe that the sum of the last two terms on the right-hand side of (51) can be
rewritten as

1
q
√
λ1(w′)

[
c(x′)x′

2 − a(x′)w′
2 − (b(x′)− a(x′))(x′

2)
Tw′

2x
′
2

]
(y′1 − (w′

2)
T y′2),

which clearly tends to zero as (x′, y′) → (x, y), since the first term is uniformly
bounded by the proof of Lemma 4.2, whereas the term y′1−(w′

2)
T y′2 → y1−wT

2 y2 =
0. Thus, we complete the proof of the second relation in (49). Consequently, the
second relation in (45) follows. This shows that ∇x′ψp(x

′, y′) → ∇xψp(x, y) as
(x′, y′) → (x, y).
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Subcase (2.2). x2 = 0. Now we have x = 0 from |x|p ∈ bdKn, and ∇gsoc(x) = 0.
Hence,

∇xψp(x, y) =
sign(x1)|x1|p−1

q
√
|x1|p + |y1|p

φp(x, y)− φp(x, y) = −φp(0, y).(52)

On the other hand, since ∇gsoc(x) = 0, it follows from (48) that

∇gsoc(x′)∇gsoc(z′)−1z′ → 0 as (x′, y′) → (x, y);

while using Lemma 4.3 and x = 0, we have

∇gsoc(x′)∇gsoc(z′)−1x′ → 0 as (x′, y′) → (x, y);

and from the continuity of φp and x = 0, it follows that

φp(x
′, y)′ → φp(0, y) as (x′, y′) → (x, y).

Using the last three equations and comparing (44) with (52), we see, in order to
prove that ∇xψp(x

′, y′) → ∇xψp(x, y) as (x
′, y′) → (x, y), it suffices to show that

∇gsoc(x′)∇gsoc(z′)−1y′ → 0 as (x′, y′) → (x, y).(53)

Next, for any (x′, y′) sufficiently close to (x, y), we write

(ζ1, ζ2) := ∇gsoc(x′)∇gsoc(z′)−1y′.

If x′
2 = 0, then 2pζ1 and 2pζ2 are given by (50) and (51), respectively. Us-

ing the same arguments as Subcase 2.1, we have that the second term of (50)
and the sum of the last two terms of (51) tend to 0 as (x′, y′) → (x, y). Since
q
√
λ2(w′), a(z′), b(x′), c(x′), and w′

2 are continuous at (x, y), ‖x′
2‖ = 1, and b(x) =

c(x) = 0 from (47) and x = 0, the first term and the third term of (50) also
tend to 0. This proves that 2pζ1 → 0 as (x′, y′) → (x, y). We next prove
that the first three terms of (51) also tend to 0. From the mean-value theorem,

|a(x′)| = p |t1λ2(x
′) + (1− t1)λ1(x

′)|p−1 for some t1 ∈ (0, 1). Note that the func-
tion |t|p−1 (p > 1) is continuous on R, whereas λ2(x

′) → 0 and λ1(x
′) → 0

as (x′, y′) → (x, y). So, |a(x′)| → 0 when (x′, y′) → (x, y). In addition, as
(x′, y′) → (x, y),

b(x′) → 0, c(x′) → 0, q
√
λ2(w′) → q

√
2w1 > 0, and a(z′) → a(z) > 0.

This implies that the first three terms of (51) also tend to 0. Consequently, 2pζ2 → 0
as (x′, y′) → (x, y). Thus, (53) holds for this case.

If x′
2 = 0, then using (19) and the expression of ∇gsoc(z′)−1 in Lemma 3.2, we

have

ζ1 =
psign(x′

1)|x′
1|p−1

q
√
λ2(w′)

[
y′1 + (w′

2)
T y′2

]
+

psign(x′
1)|x′

1|p−1

q
√
λ1(w′)

[
y′1 − (w′

2)
T y′2

]
,

ζ2 =
psign(x′

1)|x′
1|p−1

q
√
λ2(w′)

[
y′1 + (w′

2)
T y′2

]
w′

2 −
psign(x′

1)|x′
1|p−1

q
√
λ1(w′)

[
y′1 − (w′

2)
T y′2

]
w′

2

+
2p2 sign(x′

1)|x′
1|p−1

a(z′)

[
y′2 − w′

2(w
′
2)

T y′2
]
.

Since sign(x′
1)|x′

1|p−1 is continuous and q
√
λ2(w) > 0, we have, as (x′, y′) → (x, y),

psign(x′
1)|x′

1|p−1

q
√
λ2(w′)

[y′1 + (w′
2)

T y′2] → psign(x1)|x1|p−1

q
√
λ2(w)

(y1 + wT
2 y2) = 0.
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In addition, |x′
1|p−1/ q

√
λ1(w′) is bounded with the bound independent of x′ and y′

because λ1(w
′) = w′

1−‖w′
2‖ ≥ |x′

1|p by (15) when x′
2 = 0. Besides, y′1− (w′

2)
T y′2 →

y1 − wT
2 y2 = 0 as (x′, y′) → (x, y), where the equality is due to Lemma 3.1. Hence

we have

psign(x′
1)|x′

1|p−1

q
√
λ1(w′)

(y′1 − (w′
2)

T y′2) → 0 as (x′, y′) → (x, y).

Thus, we prove that ζ1 → 0 and the first two terms of ζ2 tend to 0 as (x′, y′) →
(x, y). Since a(z′) = λ2(w

′)−λ1(w
′)

p
√

λ2(w′)− p
√

λ1(w′)
and (y′2 − w′

2(w
′
2)

T y′2) are continuous, we

have

a(z′) → λ2(w)− λ1(w)
p
√
λ2(w)− p

√
λ1(w)

= q
√
λ2(w)

and [
y′2 − w′

2(w
′
2)

T y′2
]
→ y2 − w2w

T
2 y2 = 0

as (x′, y′) → (x, y), where the last equality is due to Lemma 3.1. This, together
with sign(x′

1)|x′
1|p−1 → sign(x1)|x1|p−1 = 0, means that the last term of ζ2 also

tends to 0. Thus, we show that ζ2 tends to 0 as (x′, y′) → (x, y). Consequently,
(53) holds in this case. �

Remark 4.2. Note that the proof of Proposition 4.1 is also suitable for p ≥ 4. Hence,
if ψp with p ≥ 4 is differentiable, then it must be continuously differentiable.

To close this section, we present a property of the partial gradients ∇xψp and
∇yψp. Since the proof is easy by a direct calculation and Lemma 3.1, we omit it.

Lemma 4.4. For any x, y ∈ R
n, it always holds that

〈x,∇xψp(x, y)〉+ 〈y,∇yψp(x, y)〉 = ‖φp(x, y)‖2.

5. Coerciveness of the function Ψp

In this section, we study under what conditions the merit function Ψp is coercive,
i.e., lim sup‖x‖→∞ Ψp(x) = ∞, which plays a crucial role in analyzing the global
convergence of merit function methods and equation-based methods based on φp.
The following two technical lemmas are needed.

Lemma 5.1. Let φp and ψp be given by (7) and (6), respectively. Then,

4ψp(x, y) ≥ 2 ‖[φp(x, y)]+‖2 ≥ max
(
‖(−x)+‖2, ‖(−y)+‖2

)
∀x, y ∈R

n,

where (·)+ means the minimum Euclidean distance projection onto Kn.

Proof. The first inequality is direct, and the second one is due to [12, Lemma 7(c)]

and the fact that p
√
|x|p + |y|p − x ∈ Kn and p

√
|x|p + |y|p − y ∈ Kn. �

Lemma 5.2. Assume that {(xk, yk)} ⊆ R
n × R

n satisfies either of the conditions

(a): λ1(x
k) → −∞ or λ1(y

k) → −∞;
(b): {λ1(x

k)} and {λ1(y
k)} are bounded below, λ2(x

k), λ2(y
k) → +∞, and

〈 xk

‖xk‖ ,
yk

‖yk‖ 〉 � 0.

Then, when p is a rational number, it holds that lim supk→∞ ψp(x
k, yk) = +∞.
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Proof. If {(xk, yk)} satisfies (a), the result follows from Lemma 5.1 and the fact

2‖(−xk)+‖2 = min
(
0, λ1(x

k)
)2

+min
(
0, λ2(x

k)
)2

.

It remains to consider the case where {(xk, yk)} satisfies (b). Now from the given
assumptions we have (taking a subsequence if necessary), xk

1 → +∞ and yk1 → +∞.
Without loss of generality, we assume (subsequencing if necessary) that

(54) lim
k→∞

xk/‖xk‖ = x∗ and lim
k→∞

yk/‖yk‖ = y∗.

Since {λ1(x
k)} and {λ1(y

k)} are bounded below, there exists a fixed element d ∈ R
n

such that xk − d ∈ intKn and yk − d ∈ intKn for each k. (Indeed, letting γ be
the lower bound of {λ1(x

k)} and {λ1(y
k)}, we have xk − (γ − 1)e ∈ intKn and

yk−(γ−1)e ∈ intKn since λ1(z
k−(γ−1)e) ≥ λ1(z

k)+λ1((1−γ)e) ≥ γ+1−γ = 1

for zk = xk or yk.) So, xk−d
‖xk‖ ∈ intKn and yk−d

‖yk‖ ∈ intKn for each k. This implies

that xk

‖xk‖ ∈ Kn and yk

‖yk‖ ∈ Kn, and consequently xk ∈ Kn and yk ∈ Kn, for all

sufficiently large k. We will continue the arguments using three cases as shown
below, where all k are assumed to be sufficiently large.

Case 1. The sequence {‖xk‖/‖yk‖} is unbounded. Since p is a rational number,
we may write p = n/m with n,m being natural numbers and n > m. Suppose that
the conclusion does not hold, i.e., {φp(x

k, yk)} is bounded. From the definition of

φp and xk, yk ∈ Kn, we have (xk)
n
m + (yk)

n
m =

[
xk + yk + φp(x

k, yk)
] n

m , which is
equivalent to

(55)
[
(xk)

n
m + (yk)

n
m

]m
=
[
xk + yk + φp(x

k, yk)
]n

.

Since {‖xk‖/‖yk‖} is unbounded, ‖xk‖ → +∞, ‖yk‖ → +∞, and n > m, by

expanding
[
(xk)

n
m + (yk)

n
m

]m
=
[
(xk)

n
m + (yk)

n
m

]
◦ · · · ◦

[
(xk)

n
m + (yk)

n
m

]︸ ︷︷ ︸
m

, we ob-

tain that the left-hand side of (55) is (xk)n + (yk)n + o(‖xk‖n−1‖yk‖), whereas

by expanding
[
xk + yk + φp(x

k, yk)
]n

and noting that {φp(x
k, yk)} is bounded and

{‖xk‖/‖yk‖} is unbounded, the right-hand side of (55) is (xk+yk)n+o(‖xk‖n−1‖yk‖),
which can be further written as

(xk)n + (yk)n + (xk)n−1 ◦ yk + (xk) ◦ ((xk)n−2 ◦ yk)
+ · · ·+ xk ◦ (xk ◦ (· · · ((xk)2 ◦ yk ) · · · )︸ ︷︷ ︸

n−3

)) + 2xk ◦ (xk ◦ (xk ◦ (· · · (xk ◦ yk ) · · · )︸ ︷︷ ︸
n−2

))

+ o(‖xk‖n−1‖yk‖).

Here, o(‖xk‖n−1‖yk‖) denotes the term ek satisfying limk→∞
‖ek‖

‖xk‖n−1‖yk‖ = 0.

Therefore,

(xk)n−1 ◦ yk + (xk) ◦ ((xk)n−2 ◦ yk) + · · ·+ xk ◦ (xk ◦ (· · · ((xk)2 ◦ yk ) · · · )︸ ︷︷ ︸
n−3

))

+2xk ◦ (xk ◦ (xk ◦ (· · · (xk ◦ yk ) · · · )︸ ︷︷ ︸
n−2

)) = o(‖xk‖n−1‖yk‖).

Making the inner product with the unit element e for the both sides then gives

n〈(xk)n−1, yk〉 = o(‖xk‖n−1‖yk‖).
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Dividing the both sides by ‖xk‖n−1‖yk‖ and taking the limit k → ∞, we
get 〈(x∗)n−1, y∗〉 = 0. Noting that x∗, y∗ ∈ Kn and ‖x∗‖ = ‖y∗‖ = 1, from
〈(x∗)n−1, y∗〉 = 0 we deduce that

y∗1 = ‖y∗2‖ and (x∗)n−1 = α(y∗1 ,−y∗2) for some α > 0.

From this, it is easy to get 〈x∗, y∗〉 = 0, which by (54) contradicts the

given condition that 〈 xk

‖xk‖ ,
yk

‖yk‖ 〉 � 0. Thus, we prove that the conclusion

lim supk→∞ ψp(x
k, yk) = +∞ holds.

Case 2. The sequence {‖yk‖/‖xk‖} is unbounded. By the symmetry of x and y in
φp(x, y), using the same arguments as in Case 1 leads to the desired result.

Case 3. The sequences {‖yk‖/‖xk‖} and {‖xk‖/‖yk‖} are bounded. In this
case, taking subsequences of {xk} and {yk} if necessary, we may assume that

limk→∞
‖yk‖
‖xk‖ = c for some 0 < c < +∞. By the definition of φp and xk, yk ∈ Kn,

we have
(xk)p + (yk)p =

[
xk + yk + φp(x

k, yk)
]p

.

Suppose that the conclusion does not hold. Then, dividing the both sides of the
last equality by ‖xk‖ and taking the limit k → ∞, it is not hard to obtain

(x∗)p + (cy∗)p = (x∗ + cy∗)p,

which is equivalent to saying that φp(x
∗, cy∗) = 0 since x∗, y∗ ∈ Kn. Therefore,

x∗ ◦ cy∗ = 0. This clearly contradicts the given condition 〈 xk

‖xk‖ ,
yk

‖yk‖ 〉 � 0, and the

result follows. �
Remark 5.1. So far, we cannot prove the result of Lemma 5.2 for an irrational
number p by using the dense of rational numbers in R, although numerical test
shows that it is correct.

In the following, assume that K has the Cartesian structure in (2). Recall that
F : Rn → R

n is said to have the uniform Jordan P -property if there exists a constant
� > 0 such that, for any ζ, ξ ∈ R

n, there is a ν ∈ {1, . . . ,m} such that

λ2[(ζν − ξν) ◦ (Fν(ζ)− Fν(ξ))] ≥ �‖ζ − ξ‖2,
where λ2[(ζν − ξν) ◦ (Fν(ζ)−Fν(ξ))] means the second spectral value of (ζν − ξν) ◦
(Fν(ζ)−Fν(ξ)); and F is said to have the linear growth if there is a constant c > 0
such that ‖F (ζ)‖ ≤ ‖F (0)‖+ c‖ζ‖.

Proposition 5.1. Suppose that G is an identity mapping and F has the uniform
Jordan P -property and satisfies the linear growth. Then, Ψp(ζ) is coercive for a
rational p.

Proof. Suppose on the contrary that there is a constant γ > 0 and a sequence
{ζk} ⊂ R

n with ‖ζk‖ → ∞ such that Ψp(ζ
k) ≤ γ for all k. Let ζk = (ζk1 , . . . , ζ

k
m)

with ζki ∈ R
ni for i = 1, . . . ,m. Let I :=

{
i ∈ {1, . . . ,m} | {ζki } is unbounded

}
.

Clearly, I = ∅. Define

ξki =

{
0 if i ∈ I,
ζki otherwise,

i = 1, 2, . . . ,m.

Then, the sequence {ξk} is bounded. Since F has the uniform Jordan P -property,

λ2

[
(ζk − ξk) ◦ (F (ζk)− F (ξk))

]
≥ �‖ζk − ξk‖2
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for some � > 0. Let zk = (ζk − ξk) ◦ (F (ζk)−F (ξk)) for each k. Suppose that each
zk has the spectral decomposition λ1(z

k)uk
1 + λ2(z

k)uk
2 . Then, we obtain that

�‖ζk − ξk‖2 ≤ 2〈zk, uk
2〉 = 2

〈
(ζk − ξk) ◦ (F (ζk)− F (ξk)), uk

2

〉
≤ 2‖ζk − ξk‖‖F (ζk)− F (ξk)‖.(56)

This implies that ‖F (ζk)‖ → ∞. Since Ψp(ζ
k) ≤ γ for each k, from Lemma 5.2(a) it

follows that {λ1(ζ
k)} and {λ1(F (ζk))} are bounded below. Together with ‖ζk‖ →

∞ and ‖F (ζk)‖ → ∞, we obtain λ2(ζ
k), λ2(F (ζk)) → +∞. In addition, from (56)

and the linear growth of F , we necessarily have limk→∞
ζk

‖ζk‖ ◦
F (ζk)

‖F (ζk)‖ = 0. If not, on

one hand, from the boundedness of {ξk} we have limk→∞
(ζk−ξk)◦(F (ζk)−F (ξk))

‖ζk‖‖F (ζk)‖ = 0;

and on the other hand,

lim
k→∞

�‖ζk − ξk‖2
‖ζk‖‖F (ζk)‖ ≥ lim

k→∞

�‖ζk − ξk‖2
‖ζk‖(‖F (0)‖+ c‖ζk‖) =

�

c
> 0,

which is impossible by (56). By Lemma 5.2(b), lim supk→∞ ‖ψp(ζ
k, F (ζk))‖ = ∞.

This gives a contradiction to Ψp(ζ
k) ≤ γ for all k. Hence, Ψp is coercive. �

6. Numerical results

In this section, we check the numerical performance of the merit function Ψp

corresponding to different p ∈ (1, 4] † by solving the unconstrained minimization
reformulation minζ∈Rn Ψp(ζ) for convex SOCPs in the form of (3), whose KKT
conditions can be rewritten as (1) with

(57) F (ζ) := x̂+(I −AT (AAT )−1A)ζ and G(ζ) := ∇f(F (ζ))−AT (AAT )−1Aζ,

where x̂ ∈ R
n satisfies Ax̂ = b. All tests were done on a PC using a Pentium 4 with

2.8GHz CPU and 512MB memory, and the codes were all written in Matlab 6.5.
During the testing, we used the Cholesky factorization of AAT to evaluate F

and G in (57), which was completed via Matlab routine chol. For the vector x̂
satisfying Ax̂ = b, we computed it with Matlab’s solver “\”, i.e., x̂ = A\b. We
employed the L-BFGS method, a limited-memory quasi-Newton method, with five
limited-memory vector-updates to solve the minimization problem minζ∈Rn Ψp(ζ).

For the scaling matrix H0 = γI in the L-BFGS, we adopted γ = ζ
T
η/ηT η as

recommended by [27, p. 226], where ζ := ζ − ζold and η := ∇Ψp(ζ) − ∇Ψp(ζ
old).

To ensure convergence, we reverted to the steepest descent direction −∇Ψp(ζ)

whenever ζ
T
η ≤ 10−5‖ζ‖ · ‖η‖. We adopted a nonmonotone line search in [17] to

seek a suitable step-length, i.e., we computed the smallest nonnegative integer l
such that

Ψp(ζ
k + ρldk) ≤ Wk + σρl∇Ψp(ζ

k)Tdk,

where dk means the direction in kth iteration generated by L-BFGS, ρ, σ ∈ (0, 1) are
given parameters, and Wk = maxj=k−mk,...,k Ψp(ζ

j) where, for given nonnegative
integers m̂ and s,

mk =

{
0 if k ≤ s,

min
{
mk−1 + 1, m̂

}
otherwise.

†For p = 4, we use the gradient formula in Proposition 3.1, though its differentiability is not
established.
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Throughout the experiments, we chose the following parameters for the algorithm:

ρ = 0.5, σ = 10−4, m̂ = 5, and s = 5.

The initial point was set to be ζ0 = 0, and the algorithm was terminated whenever
max{Ψp(ζ

k), |〈F (ζk), G(ζk)〉|} ≤ 10−6, or the step-length is less than 10−12.
The first group of test instances is the linear SOCPs with sparse A from [29].

Numerical results are reported in Table 1, where the first row gives the name of
problems and the dimension (m,n) of A, and in the second row, Ψp(ζ) means the
value of Ψp at the final iteration, Gap denotes the value of |〈G(ζ), F (ζ)〉| at the
final iteration, NF and Cpu records the number of function evaluations and the
CPU time in seconds for solving each test problem, and “−” means that the method
fails due to too small a step-length.

Table 1 shows that the merit function method based on Ψp with p ∈ [1.1, 4] can
solve “nb-L2” and “nb-L2-bessel” successfully, but for problem “nb”, it fails due
to too small a step-length when p > 3.5 or p < 1.1, and it cannot yield desirable
decrease for Ψp even for p = 2. The convergence process plotted in Figure 1 for
“nb-L2-bessel” shows that the method with a smaller p has a faster reduction of Ψp

at the beginning of the iterations, and when the value of Ψp(ζ) is less than 10−5,
the method with a larger p has a faster reduction of Ψp. This implies that the
method with a larger p seems to have a better convergence rate, which coincides
with the numerical performance of generalized FB NCP functions; see [8].

Table 1. Numerical results with different p for three DIMACS problems

nb (123, 2383) nb-L2 (123, 4195) nb-L2-bessel (123, 2641)

p Ψp(ζ) NF Gap Cpu Ψp(ζ) NF Gap Cpu Ψp(ζ) NF Gap Cpu

4.0 – – – – 1.2e–8 742 1.85e–7 329.2 1.7e–8 359 8.73e–7 147.5

3.5 – – – – 9.9e–13 502 1.49e–7 233.9 2.6e–9 188 7.57e–7 87.3

3.0 3.8e-8 6551 2.04e–5 2622.4 4.3e–13 763 9.54e–7 305.2 2.0e–9 248 1.79e–8 106.1

2.5 6.8e-7 2920 9.47e–8 1148.1 2.5e–13 505 7.97e–7 241.8 7.3e–10 268 8.85e–7 108.6

2.0 5.7e-7 3297 2.52e–7 1211.9 2.8e–10 665 7.97e–7 245.9 1.2e–10 316 9.40e–10 112.8

1.8 3.2e–8 5676 2.86e–5 2459.9 2.9e–11 548 3.97e–7 225.2 5.3e–10 174 4.54e–7 80.68

1.5 7.8e–7 1895 1.78e–7 712.7 9.7e–11 526 5.45e–7 224.3 3.1e–10 204 8.45e–7 88.10

1.3 2.5e–7 4807 7.39e–7 1869.9 4.8e–13 644 3.41e–7 301.5 1.2e–9 339 3.15e–7 137.6

1.1 – – – – 3.5e–11 1471 7.42e–7 640.8 7.2e–13 956 9.67e–7 405.8
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Figure 1. Numerical results with different p for the problem “nb-
L2-bessel”

The second group of test problems is the convex SOCPs with dense A. To
generate such test problems randomly, we considered the problem of minimiz-
ing a sum of the k largest Euclidean norms with a convex regularization term:

minu≥0

∑k
i=1 ‖s[i]‖ + h(u), where ‖s[1]‖, . . . , ‖s[r]‖ are the norms ‖s1‖, . . . , ‖sr‖

sorted in nonincreasing order with r ≥ k and si = bi − Aix for i = 1, . . . , r with
Ai ∈ R

mi×l and bi ∈ R
mi , and h : Rl → R is a twice continuously differentiable

convex function. The problem can be converted into

min (1− k/r)
∑r

i=1 vi + (k/r)
∑r

i=1 wi + h(u)
s.t. Aiu+ si = bi, i = 1, 2, . . . , r,

(w1 − v1)− (w2 − v2) = 0,
...

(w1 − v1)− (wr − vr) = 0,
u ≥ 0, vi ≥ 0, (wi, si) ∈ ×Kmi+1, i = 1, 2, . . . , r.

In our tests, we set h(u) := 1
3‖u‖33 with ‖ · ‖3 being the 3-norm, and generated

each mi randomly from {2, 3, . . . , 10}, and each entry of Ai and bi randomly by
a uniform distribution from the interval [−1, 1] and [−5, 5], respectively. Thus, if
d ≥ m = m1 + · · · +mr, the constraint matrix is dense. The problem parameters
and the numerical results are reported in Table 2, in which the first row lists several
groups of different (l, r, k), and the second row gives the corresponding dimension
(m,n) of A. From Table 2, we see that for the test problems with dense A, Ψp

displays a similar performance to those with sparse A.
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Table 2. Numerical results with different p for convex SOCPs with dense A

(500, 50, 1) (1000,50, 5) (1000, 100, 5) (2000, 100, 5)

(353, 904) (374, 1425) (671, 1772) (727, 2828)

p NF Gap Cpu NF Gap Cpu NF Gap Cpu NF Gap Cpu

4.0 4000 9.96e–7 287.5 268 7.80e–7 42.32 1237 3.23e–7 322.1 – – –

3.5 2328 8.29e–7 203.0 327 7.67e–7 54.28 1407 6.13e–7 351.0 – – –

3.0 2215 2.52e–7 189.6 319 9.14e–7 51.61 1224 6.69e–7 311.7 200 9.12e–7 101.8

2.5 2292 8.76e–7 200.6 293 9.07e–7 48.31 1483 1.01e–7 381.4 125 7.77e–7 60.57

2.0 2258 6.28e–7 180.0 340 1.69e–7 49.53 1012 7.34e–7 225.9 144 9.84e–7 67.55

1.8 2482 4.88e–7 208.4 357 9.71e–7 51.56 1257 6.07e–7 305.2 168 9.41e–7 81.87

1.5 3180 5.09e–7 269.5 245 1.48e–7 39.37 1595 3.72e–7 376.7 150 2.24e–8 61.96

1.3 2309 8.19e–7 192.8 371 7.97e–7 55.20 1296 8.67e–7 316.9 212 8.77e–7 95.42

1.1 – – – 2999 6.08e–7 189.9 3968 6.11e–7 963.9 576 9.20e–7 245.2

7. Conclusions

We established the smoothness of the generalized FB merit function Ψp with
p ∈ (1, 4), and studied its coerciveness under some mild conditions, which par-
tially generalized the results of the FB merit function for the SOCCP [12] and the
generalized FB merit functions for the NCPs [9]. There are some topics worthy
of further study, for example, the stationary point conditions of Ψp, the strong
semismoothness of φp, the characterization of directional derivative of φp, and the
characterization of the B-subdifferential of φp.

Appendix

Lemma 1. Assume that p ≥ 2. Let x, y ∈ R
n satisfy w(x, y) ∈ bd+Kn. Then, we

have

∇x′w1(x
′, y′)|(x′,y′)=(x,y) = ∇x′‖w2(x

′, y′)‖|(x′,y′)=(x,y)

=

(
2p−2sign(x1)|x1|p−1

2p−2psign(x1)|x1|p−1w2

)
.

(58)
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Proof. Assume that x2 = 0. By the exprssions of w1(x
′, y′) and w2(x

′, u′), we
calculate

∇x′w1(x
′, y′)|(x′,y′)=(x,y)

=
p

2

(
sign(λ2(x))|λ2(x)|p−1 + sign(λ1(x))|λ1(x)|p−1

sign(λ2(x))|λ2(x)|p−1 − sign(λ1(x))|λ1(x)|p−1 x2

‖x2‖

)
,

∇x′‖w2(x
′, y′)‖|(x′,y′)=(x,y)

=
p

2

(
sign(λ2(x))|λ2(x)|p−1 − sign(λ1(x))|λ1(x)|p−1

sign(λ2(x))|λ2(x)|p−1 − sign(λ1(x))|λ1(x)|p−1 x2

‖x2‖

)
xT
2 w2

‖x2‖‖w2‖

+
|λ2(x)|p − |λ1(x)|p

2

(
0

w2

‖x2‖‖w2‖ − x2x
T
2 w2

‖x2‖3‖w2‖

)
.

Using the equalities in (18), the last two equalities can be simplified as

∇x′w1(x
′, y′)|(x′,y′)=(x,y) = ∇x′‖w2(x

′, y′)‖ |(x′,y′)=(x,y)

=

(
2p−2sign(x1)|x1|p−1

2p−2psign(x1)|x1|p−1w2

)
.

If x2 = 0, using the result for x2 = 0 and the continuity of ∇w1(x
′, y′) and

∇‖w2(x
′, y′)‖ at (x, y), we easily obtain equation (58). �
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