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In this paper, we study several NCP-functions for the nonlinear complementarity prob-
lem (NCP) which are indeed based on the generalized Fischer–Burmeister function,
φp(a, b) = ‖(a, b)‖p − (a + b). It is well known that the NCP can be reformulated as
an equivalent unconstrained minimization by means of merit functions involving NCP-
functions. Thus, we aim to investigate some important properties of these NCP-functions
that will be used in solving and analyzing the reformulation of the NCP.
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1. Introduction

The nonlinear complementarity problem (NCP) (Harker and Pang, 1990; Pang,
1994) is to find a point x ∈ R

n such that

x ≥ 0, F (x) ≥ 0, 〈x, F (x)〉 = 0, (1.1)

where 〈·, ·〉 is the Euclidean inner product and F = (F1, F2, . . . , Fn)T maps from R
n

to R
n. We assume that F is continuously differentiable throughout this paper. The

NCP has attracted much attention due to its various applications in operations
research, economics, and engineering (Ferris and Pang, 1997; Harker and Pang,
1990; Pang, 1994).

There have been many methods proposed for solving the NCP (Harker and Pang,
1990; Pang, 1994). Among which, one of the most popular and powerful approaches
that has been studied intensively recently is to reformulate the NCP as a system of
nonlinear equations (Mangasario 1976) or as an unconstrained minimization prob-
lem (Facchinei and Soares, 1997; Fisher, 1992; Kanzow, 1996). Such a function that
can constitute an equivalent unconstrained minimization problem for the NCP is
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called a merit function. In other words, a merit function is a function whose global
minima are coincident with the solutions of the original NCP. For constructing a
merit function, the class of functions, so-called NCP-functions and defined as below,
serves an important role.

A function φ : R
2 → R is called an NCP-function if it satisfies

φ(a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0. (1.2)

Many NCP-functions and merit functions have been explored during the past two
decades (De Luca et al., 1996; Kanzow et al., 1997; San and Qi, 1999; Tseng,
1996). Among which, a popular NCP-function intensively studied recently is the
well-known Fischer–Burmeister NCP-function (Fisher, 1992, 1997) defined as

φFB(a, b) =
√

a2 + b2 − (a + b). (1.3)

With the above characterization of φFB , the NCP is equivalent to a system of
nonsmooth equations:

ΦFB(x) =




φFB(x1 , F1(x))
...

φFB(xn , Fn(x))


 = 0. (1.4)

For each NCP-function, there is a natural merit function, ΨFB : R
n → R+ given by

ΨFB(x) :=
1
2
‖ΦFB(x)‖2 =

1
2

n∑
i=1

φFB(xi, Fi(x))2, (1.5)

from which the NCP can be recast as an unconstrained minimization:

min
x∈Rn

ΨFB(x). (1.6)

In this paper, we are particularly interested in the generalized Fischer–
Burmeister function, i.e., φp : R

2 → R given by

φp(a, b) := ‖(a, b)‖p − (a + b), (1.7)

where p is a positive integer greater than one and ‖(a, b)‖p = p
√|a|p + |b|p means

the p-norm of (a, b). Notice that φp reduces to the well known Fischer–Burmeister
function φFB when p = 2 and its related properties were recently presented in (Chen
and Pan, 2006; Chen, 2006). Corresponding to φp, we define ψp : R

2 → R+ by

ψp(a, b) :=
1
2
|φp(a, b)|2. (1.8)

Then both φp and ψp are NCP-functions and yield a merit function

Ψp(x) :=
n∑

i=1

ψp(xi, Fi(x)) =
1
2

n∑
i=1

φp(xi, Fi(x))2, (1.9)
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from which the NCP can be reformulated as an unconstrained minimization:

min
x∈Rn

Ψp(x). (1.10)

However, there has some limitations for the (generalized) Fischer–Burmeister func-
tions and some of its variants when dealing with monotone complementarity prob-
lem. In particular, its natural merit function Ψp does not guarantee bounded level
sets for this class of problem which is an important class (see page 4 of Chen et al.,
2000). Some modifications to the Fischer–Burmeister have been proposed to con-
quer the above problem, see (Kanzow et al., 1997; Sun and Qi, 1999). In this paper,
we extend these modifications to the generalized Fischer–Burmeister function φp.
More specifically, we study the following NCP-functions:

φ1(a, b) := φp(a, b) − αa+b+, α > 0,

φ2(a, b) := φp(a, b) − α(ab)+, α > 0,

φ3(a, b) :=
√

[φp(a, b)]2 + α(a+b+)2, α > 0,

φ4(a, b) :=
√

[φp(a, b)]2 + α[(ab)+]2, α > 0,

(1.11)

The function φ1 is called penalized Fischer–Burmeister function when p = 2
and was studied in (Chen et al., 2000). The functions φ2, φ3, φ4 generalize the merit
functions of p = 2, which were discussed in Sun and Qi (1999) and Yamada et al.
(2000). Note that for i = 1, 2, 3, 4, we have

φi(a, b) ≡ φp(a, b) (1.12)

for all (a, b) ∈ N− (this notation is used in Sun and Qi, 1999) where

N− := {(a, b)| ab ≤ 0}. (1.13)

Thus, φi where i = 1, 2, 3, 4 are only different in the first or third quadrant.
Similarly, for each φi there is an associated ψi : R

2 → R+ given by

ψi(a, b) :=
1
2
|φi(a, b)|2, i = 1, 2, 3, 4, (1.14)

which is also an NCP-function for every i. Moreover, for φ ∈ {φ1, φ2, φ3, φ4}, we
can define

Φ(x) =




φ(x1 , F1(x))
...

φ(xn , Fn(x))


 , (1.15)

from which the NCP is equivalent to the unconstrained minimization:

min
x∈Rn

Ψ(x) (1.16)

where

Ψ(x) :=
1
2
‖Φ(x)‖2 =

1
2

n∑
i=1

φ(xi , Fi(x))2 (1.17)

is the natural merit function corresponding to φ ∈ {φ1, φ2, φ3, φ4}.



June 20, 2007 9:51 WSPC/APJOR 00129.tex

404 J.-S. Chen

The paper is organized as follows. In Section 2, we review some background
definitions including monotonicity, P0-function, semismoothness, etc. and known
results about Ψp and its related properties. In Section 3, we show that all
(φi)2, i ∈ {1, 2, 3, 4} are continuously differentiable and investigate properties of
the merit function Ψ constructed via φi with i ∈ {1, 2, 3, 4}. In particular, it pro-
vides bounded level sets for a monotone NCP with a strictly feasible point. In
addition, we give conditions under which a stationary point of Ψ is a solution
of the NCP. In general, the analytic techniques used in this paper are similar to
those in Chen et al. (2000), Ficchinei and Soares (1997), Sun and Qi (1999) since
the work is somewhat considered the extensions of NCP-functions studied in those
literatures.

Throughout this paper, R
n denotes the space of n-dimensional real column vec-

tors and T denotes transpose. For any differentiable function f : R
n → R, ∇f(x)

denotes the gradient of f at x. For any differentiable mapping F = (F1, . . . , Fm)T :
R

n → R
m, ∇F (x) = [∇F1(x) · · · ∇Fm(x)] denotes the transpose Jacobian of F at

x. We denote by ‖x‖p the p-norm of x and by ‖x‖ the Euclidean norm of x. In this
whole paper, we assume p is a positive integer greater than one.

2. Preliminaries

In this section, we recall some background concepts and materials which will play
an important role in the subsequent analysis. Let F : R

n → R
n. Then,

(1) F is monotone if 〈x − y, F (x) − F (y)〉 ≥ 0, for all x, y ∈ R
n.

(2) F is strictly monotone if 〈x − y, F (x) − F (y)〉 > 0, for all x, y ∈ R
n and x �= y.

(3) F is strongly monotone with modulus µ > 0 if 〈x−y, F (x)−F (y)〉 ≥ µ‖x−y‖2,
for all x, y ∈ R

n.
(4) F is a P0-function if max 1 ≤ i ≤ n

xi �= yi

(xi − yi)(Fi(x) − Fi(y)) ≥ 0, for all x, y ∈ R
n

and x �= y.
(5) F is a P -function if max1≤i≤n(xi − yi)(Fi(x)−Fi(y)) > 0, for all x, y ∈ R

n and
x �= y.

(6) F is a uniform P -function with modulus µ > 0 if max1≤i≤n(xi − yi)(Fi(x) −
Fi(y)) ≥ µ‖x − y‖2, for all x, y ∈ R

n. (7) F is a R0-function if for
every sequence {xk} satisfying {‖xk‖} → ∞, lim infk→∞

mini xk
i

‖x‖k ≥ 0, and

lim infk→∞
mini Fi(x

k)
‖x‖k ≥ 0, there exists an index j such that {xk

j } → ∞ and
{Fj(xk)} → ∞.

It is clear that strongly monotone functions are strictly monotone, and strictly
monotone functions are monotone. Moreover, F is a P0-function if F is mono-
tone and F is a uniform P -function with modulus µ > 0 if F is strongly mono-
tone with modulus µ > 0. In addition, when F is continuously differentiable, we
have the following: (i) F is monotone if and only if ∇F (x) is positive semi-definite
for all x ∈ R

n. (ii) F is strictly monotone if ∇F (x) is positive definite for all
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x ∈ R
n. (iii) F is strongly monotone if and only if ∇F (x) is uniformly positive

definite. An R0-function can be viewed as a generalization of a uniform P -function
since every uniform P -function is an R0-function (see, Chen and Harker, 1997,
Proposition 3.11).

A matrix M ∈ R
n×n is a P0-matrix if every of its principal minors is nonnegative,

and it is a P -matrix if every of its principal minors is positive. In addition, it is said
to be a R0-matrix if the following system has only zero solution:

x ≥ 0,

Mix = 0 if xi > 0,

Mix ≥ 0 if xi = 0,

It is obvious that every P -matrix is also a P0-matrix and it is known that the
Jacobian of every continuously differentiable P0-function is a P0-matrix. For more
properties about P -matrix and P0-matrix, please refer to Facchinei and Pang (2003).
It is also known that F is an R0-function if and only if M is an R0-matrix when F

is an affine function (see, Chen and Harker, 1997, Proposition 3.10).
Next, we recall the definition of semismoothness. First, we introduce that

F is strictly continuous (also called “locally Lipschitz continuous”) at x ∈ R
n

(Rockafellar and Wets, 1998, Chapter 9) if there exist scalars κ > 0 and δ > 0 such
that

‖F (y) − F (z)‖ ≤ κ‖y − z‖ ∀y, z ∈ R
n with ‖y − x‖ ≤ δ, ‖z − x‖ ≤ δ;

and F is strictly continuous if F is strictly continuous at every x ∈ R
n. If δ can be

taken to be ∞, then F is Lipschitz continuous with Lipschitz constant κ. We say
F is directionally differentiable at x ∈ R

n if

F ′(x; h) := lim
t→0+

F (x + th) − F (x)
t

exists ∀h ∈ R
n;

and F is directionally differentiable if F is directionally differentiable at every
x ∈ R

n.
Assume F : R

n → R
m is strictly continuous. We say F is semismooth at x if

F is directionally differentiable at x and, for any V ∈ ∂F (x + h) (the generalized
Jacobian), we have

F (x + h) − F (x) − V h = o(‖h‖).
We say F is ρ-order semismooth at x (0 < ρ < ∞) if F is semismooth at x and, for
any V ∈ ∂F (x + h), we have

F (x + h) − F (x) − V h = O(‖h‖1+ρ).

We say F is semismooth (respectively, ρ-order semismooth) if F is semismooth
(respectively, ρ-order semismooth) at every x ∈ R

k. We say F is strongly semis-
mooth if it is 1-order semismooth. Convex functions and piecewise continuously dif-
ferentiable functions are examples of semismooth functions. Examples of strongly
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semismooth functions include piecewise linear functions and LC1 functions meaning
smooth functions with gradients being locally Lipschitz continuous (strictly contin-
uous) (Facchinei and Soares, 2003; Qi, 1994). The composition of two (respectively,
ρ-order) semismooth functions is also a (respectively, ρ-order) semismooth function.
The property of semismoothness plays an important role in nonsmooth Newton
methods (Qi, 1993; Qi and Sun, 1993) as well as in some smoothing methods
mentioned in the Section 1. For extensive discussions of semismooth functions, see
Fischer (1997), Mifflin (1977), and Qi and Sun (1993).

To end this section, we collect some useful properties of φp, ψp defined as in (1.7)
and (1.8), respectively, that will be used in the subsequent analysis. All the proofs
can be found in Chen and Pan (2006).

Property 2.1 (Chen and Pan, 2006, Proposition 3.1, Lemma 3.1). Let φp : R
2 →

R be defined as (1.7). Then

(a) φp is an NCP-function, i.e. it satisfies (1.2).
(b) φp is sub-additive, i.e. φp(w + w′) ≤ φp(w) + φ(w′) for all w, w′ ∈ R

2.
(c) φp is positive homogeneous, i.e. φp(αw) = αφp(w) for all w ∈ R

2 and α ≥ 0.
(d) φp is convex, i.e. φp(αw+(1−α)w′) ≤ αφp(w)+(1−α)φp(w′) for all w, w′ ∈ R

2

and α ≥ 0.
(e) φp is Lipschitz continuous with L1 = 1+

√
2, i.e. |φp(w)−φp(w′)| ≤ L1‖w−w′‖;

or with L2 = 1+2(1−1/p), i.e. |φp(w)−φp(w′)| ≤ L2‖w−w′‖p for all w, w′ ∈ R
2.

(f) φp is semismooth.
(g) If {(ak, bk)} ⊆ R

2 with (ak → −∞) or (bk → −∞) or (ak → ∞ and bk → ∞),
then we have |φp(ak, bk)| → ∞ for k → ∞.

Property 2.2 (Chen and Pan, 2006, Proposition 3.2). Let φp, ψp be defined as
(1.7) and (1.8), respectively. Then

(a) ψp is an NCP-function, i.e. it satisfies (1.2).
(b) ψp(a, b) ≥ 0 for all (a, b) ∈ R

2.
(c) ψp is continuously differentiable everywhere.
(d) ∇aψp(a, b)·∇bψp(a, b) ≥ 0 for all (a, b) ∈ R

2. The equality holds ⇔ φp(a, b) = 0.
(e) ∇aψp(a, b) = 0 ⇔ ∇bψp(a, b) = 0 ⇔ φp(a, b) = 0.

From these properties, it was proved in Chen and Pan (2006) that Ψp(x) ≥ 0 for
all x ∈ R

n and Ψp(x) = 0 if and only if x solves the NCP (1.1), where Ψp : R
n → R

is defined as (1.9). Moreover, suppose that the NCP has at least one solution. Then
x is a global minimizer of Ψp if and only if x solves the NCP. In addition, it was
also shown in Chen and Pan (2006) that if F is either monotone or P0-function,
then every stationary point of Ψp is a global minima of (1.10); and therefore solves
the original NCP. We will investigate the analogous results for the merit func-
tion Ψ which is based on φi studied in this paper. On the other hand, as men-
tioned the natural merit function induced from the generalized Fischer–Burmeister
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(which behaves like the Fischer–Burmeister function) does not guarantee bounded
level sets under the assumption of F being monotone. Instead, there needs that F

is strongly monotone or uniform P -function to ensure that the property is held.
Another main purpose of this work is to obtain same results for the merit function
Ψ studied in this paper under the weaker assumption that F is monotone only
(see Section 4).

3. Properties of φ and ψ

In this section, we investigate properties of φ ∈ {φ1, φ2, φ3, φ4} and ψ ∈
{ψ1, ψ2, ψ3, ψ4} defined as in (1.11) and (1.14), respectively. These include strong
semismoothness of φ and continuous differentiability of ψ. First, we denote

Nφ := {(a, b)| a ≥ 0, b ≥ 0, ab = 0}. (3.1)

This notation is adopted from Chen et al. (2000) and it is easy to see that (a, b) ∈ Nφ

if and only if (a, b) satisfies (1.2). Now we are ready to show the favorable properties
of φ and ψ.

Proposition 3.1. Let φ ∈ {φ1, φ2, φ3, φ4} be defined as in (1.11). Then

(a) φ(a, b) = 0 ⇔ (a, b) ∈ Nφ ⇔ (a, b) satisfies (1.2).
(b) φ is strongly semismooth.
(c) Let {ak}, {bk} ⊆ R be any two sequences such that either ak

+bk
+ → ∞ or ak →

−∞ or bk → −∞. Then |φ(ak, bk)| → ∞ for k → ∞.

Proof. (a) It is enough to prove the first equivalence. Suppose φ(a, b) = 0, for i =
2, 3, 4, φi(a, b) = 0 yields φp(a, b) = 0 which says (a, b) ∈ Nφ by Property 2.1(a). For
i = 1, φ1(a, b) = 0 implies φp(a, b) = αa+b+. Since α could be any arbitrary positive
number, the above leads to φp(a, b) = a+b+ = 0 which which says (a, b) ∈ Nφ by
Property 2.1(a) again. On the other hand, suppose (a, b) ∈ Nφ then φp(a, b) = 0 by
by Property 2.1(a). Since a ≥ 0, b ≥ 0, we obtain a+b+ = ab = 0. Hence we see that
all φi(a, b) = 0, i = 1, 2, 3, 4.

(b) The verification of strong semismoothness of φ is a routine work which can
be done as in Yamada et al. (2000) of Lemma 1. We omit it.

(c) This follows from Property 2.1(g) and definition of (·)+.

Proposition 3.2. Let Φ be defined as in (1.15) with φ ∈ {φ1, φ2, φ3, φ4}. Then

(a) Φ is semismooth.
(b) Φ is strongly semismooth if Fi is LC1 function.

Proof. By using Proposition 3.1(b) and the fact that every LC1 function is strongly
semismooth, the results follow.

The following is a technical lemma which describes the generalized gradients of
all φi, i = 1, 2, 3, 4 defined as in Eq. (1.11). It will be used for proving Propotion 3.3.
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Lemma 3.1. Let φ1, φ2, φ3, φ4 be defined as (1.11).

(a) The generalized gradient ∂φ1(a, b) of φ1 at a point (a, b) is equal to the set of
all (va, vb) such that

(va, vb) =




(
ap−1

‖(a, b)‖p−1
p

− 1,
bp−1

‖(a, b)‖p−1
p

− 1

)
− α(b+∂a+, a+∂b+),

if (a, b) �= (0, 0) and p is even,(
sgn(a) · ap−1

‖(a, b)‖p−1
p

− 1,
sgn(b) · bp−1

‖(a, b)‖p−1
p

− 1

)
− α(b+∂a+, a+∂b+),

if (a, b) �= (0, 0) and p is odd,

(ξ − 1, ζ − 1), if (a, b) = (0, 0),

(3.2)

where (ξ, ζ) is any vector satisfying ‖(ξ, ζ)‖p ≤ 1 and

∂z+ =




1, if z > 0,

[0, 1], if z = 0,

0, if z < 0.

(b) The generalized gradient ∂φ2(a, b) of φ2 at a point (a, b) is equal to the set of
all (va, vb) such that

(va, vb) =

(
ap−1

‖(a, b)‖p−1
p

− 1,
bp−1

‖(a, b)‖p−1
p

− 1

)
− α(b, a),

if (a, b) �= (0, 0), ab > 0 and p is even,

(va, vb) =

(
ap−1

‖(a, b)‖p−1
p

− 1,
bp−1

‖(a, b)‖p−1
p

− 1

)
− α(b, a) · [0, 1],

if (a, b) �= (0, 0), ab = 0 and p is even,

(va, vb) =

(
ap−1

‖(a, b)‖p−1
p

− 1,
bp−1

‖(a, b)‖p−1
p

− 1

)
,

if (a, b) �= (0, 0), ab < 0 and p is even,

(va, vb) =

(
sgn(a) · ap−1

‖(a, b)‖p−1
p

− 1,
sgn(b) · bp−1

‖(a, b)‖p−1
p

− 1

)
− α(b, a),

if (a, b) �= (0, 0), ab > 0 and p is odd, (3.3)

(va, vb) =

(
sgn(a) · ap−1

‖(a, b)‖p−1
p

− 1,
sgn(b) · bp−1

‖(a, b)‖p−1
p

− 1

)
− α(b, a) · [0, 1],

if (a, b) �= (0, 0), ab = 0 and p is odd,
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(va, vb) =

(
sgn(a) · ap−1

‖(a, b)‖p−1
p

− 1,
sgn(b) · bp−1

‖(a, b)‖p−1
p

− 1

)
,

if (a, b) �= (0, 0), ab < 0 and p is odd,

(va, vb) = (ξ − 1, ζ − 1) − α(b, a) · [0, 1],

if (a, b) = (0, 0),

where (ξ, ζ) is any vector satisfying ‖(ξ, ζ)‖p ≤ 1.
(c) φ3 is continuously differentiable everywhere except at (0, 0) with

∇aφ3(a, b) =




φp(a, b) ·
[

ap−1

‖(a,b)‖p−1
p

− 1
]

+ α(a+)(b+)2

φ3(a, b)
,

if (a, b) �= (0, 0), and p is even,

φp(a, b) ·
[

sgn(a)·ap−1

‖(a,b)‖p−1
p

− 1
]

+ α(a+)(b+)2

φ3(a, b)
,

if (a, b) �= (0, 0), and p is odd,

(3.4)

∇bφ3(a, b) =




φp(a, b) ·
[

bp−1

‖(a,b)‖p−1
p

− 1
]

+ α(a+)2(b+)

φ3(a, b)
,

if (a, b) �= (0, 0), and p is even,

φp(a, b) ·
[

sgn(b)·bp−1

‖(a,b)‖p−1
p

− 1
]

+ α(a+)2(b+)

φ3(a, b)
,

if (a, b) �= (0, 0), and p is odd,

(3.5)

and ∂φ3(0, 0) = (va, vb) where (va, vb) ∈ (−∞,∞).
(d) φ4 is continuously differentiable everywhere except at (0, 0) with

∇aφ4(a, b) =




φp(a, b) ·
[

ap−1

‖(a,b)‖p−1
p

− 1
]

+ α(ab)+ · b
φ4(a, b)

,

if (a, b) �= (0, 0), and p is even,

φp(a, b) ·
[

sgn(a)·ap−1

‖(a,b)‖p−1
p

− 1
]

+ α(ab)+ · b
φ4(a, b)

,

if (a, b) �= (0, 0), and p is odd,

(3.6)
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∇bφ4(a, b) =




φp(a, b) ·
[

bp−1

‖(a,b)‖p−1
p

− 1
]

+ α(ab)+ · a
φ4(a, b)

,

if (a, b) �= (0, 0), and p is even,

φp(a, b) ·
[

sgn(b)·bp−1

‖(a,b)‖p−1
p

− 1
]

+ α(ab)+ · a
φ4(a, b)

,

if (a, b) �= (0, 0), and p is odd,

(3.7)

and ∂φ4(0, 0) = (va, vb) where (va, vb) ∈ (−∞,∞).

Proof. (a) First, we note that φp is continuously differentiable everywhere except
at (0, 0) (see Chen and Pan, 2006). Hence, by the Corollary to Proposition 2.2.1
in Clarke (1983), φp is strictly differentiable everywhere except at the origin. Let
φ+(a, b) := a+b+. Then φ+ is strictly differentiable at the origin as proved in Chen
et al. (2000) of Proposition 2.1. Both φ1 and φ+ are strongly semismooth functions,
we know that they are locally Lipschitz (strictly continuous) functions. Thus, the
Corollary 2 to Proposition 2.3.3 in Clarke (1983) yields

∂φ1(a, b) = ∂φp(a, b) − α · ∂φ+(a, b).

On the other hand, the generalized gradient of φp can be verified as below (see
Chen, 2004):

∂φp(a, b) =
(

ap−1

‖(a, b)‖p−1
p

− 1,
bp−1

‖(a, b)‖p−1
p

− 1
)

, if (a, b) �= (0, 0) and p is even,

∂φp(a, b) =
(

sgn(a) · ap−1

‖(a, b)‖p−1
p

− 1,
sgn(b) · bp−1

‖(a, b)‖p−1
p

− 1
)

, if (a, b) �= (0, 0) and p is odd,

∂φp(a, b) = (ξ − 1, ζ − 1), if (a, b) = (0, 0), (3.8)

where (ξ, ζ) is any vector satisfying ‖(ξ, ζ)‖p ≤ 1. In addition, it was already shown
in Chen et al. (2000) Proposition 2.1 that

∂φ+(a, b) = (b+∂a+, a+∂b+).

Thus, the desired results follow.
(b) Following the same arguments as in part(a) and using the fact that

∂(ab)+ =




(b, a), if ab > 0,

(0, 0), if ab < 0,

(b, a) · [0, 1], if ab = 0,

the desired results hold.
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(c) It is known that (φp)2 and (a+b+)2 are continuously differentiable. Then the
desired results follow by direct computations using the chain rule and the fact that

∂(
√

z) =




1
2
√

z
, if z > 0,

(−∞, ∞), if z = 0.

(d) Same arguments as part(c).

Proposition 3.3. Let ψ ∈ {ψ1, ψ2, ψ3, ψ4} be defined as in (1.14). Then

(a) ψ(a, b) = 0 ⇔ (a, b) ∈ Nφ ⇔ (a, b) satisfies (1.2).
(b) ψ is continuously differentiable on R

2.
(c) ∇aψ(a, b) · ∇bψ(a, b) ≥ 0 for all (a, b) ∈ R

2.
(d) ψ(a, b) = 0 ⇔ ∇ψ(a, b) = 0 ⇔ ∇aψ(a, b) = 0 ⇔ ∇bψ(a, b) = 0.

Proof. (a) The proof is straightforward by the same arguments as in
Propositon 3.1(a).

(b) The ideas for the proof are indeed borrowed from Facchinei and Soares (1997)
of Propositon 3.4.

For i = 1 and p is even, ψ1(a, b) = 1
2 (φ1(a, b))2. By the chain rule (see Clarke,

1983, Theorem 2.2.4) we obtain ∂ψ1(a, b) = ∂φ1(a, b)T φ1(a, b). We will show that
∂φ1(a, b)T φ1(a, b) is single-valued for all (a, b) ∈ R

2 because the zero of φ1 cancels
the multi-valued portion of ∂φ1(a, b)T . To see this, we discuss several cases as below.

(i) If a > 0, b > 0, then (b+∂a+, a+∂b+) = (b, a) which is single-valued. Hence,
by (3.2), it is easy to see that ∂φ1(a, b)T φ1(a, b) is single-valued.

(ii) If a > 0, b < 0, then (b+∂a+, a+∂b+) = (0, a) which is single-valued. Hence,
by (3.2), ∂φ1(a, b)T φ1(a, b) is single-valued.

(iii) If a > 0, b = 0, then (b+∂a+, a+∂b+) = (0, a · [0, 1]) which is multi-valued.
However, under this case, we observe that φ1(a, b) = ‖(a, b)‖p − (a + b) −
αa+b+ = 0. Hence, ∂φ1(a, b)T φ1(a, b) is still single-valued.

(iv) If a < 0, b > 0 or a < 0, b < 0, or a < 0, b = 0, then (b+∂a+, a+∂b+)
all equals (0, 0) which is single-valued. Hence, by (3.2), ∂φ1(a, b)T φ1(a, b) is
single-valued.

(v) If a = 0, b > 0, then (b+∂a+, a+∂b+) = (b · [0, 1], 0) which is multi-valued.
However, under this case, we observe that φ1(a, b) = ‖(a, b)‖p − (a + b) −
αa+b+ = 0. Hence, ∂φ1(a, b)T φ1(a, b) is still single-valued.

(vi) If a = 0, b < 0, then (b+∂a+, a+∂b+) = (0, 0) which is single-valued. Hence,
by (3.2), ∂φ1(a, b)T φ1(a, b) is single-valued.

(vii) If a = 0, b = 0 then φ1(a, b) = 0. Hence, ∂φ1(a, b)T φ1(a, b) is single-valued.
Thus, by applying the corollary to Theorem 2.2.4 in Clarke (1983), the above
facts yield that ψ1 is continuously differentiable everywhere. For p is odd,
going over the same cases, the proof follows.
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For i = 2, ψ2(a, b) = 1
2 (φ2(a, b))2. We discuss the following cases: (i) (a, b) �=

(0, 0) and ab > 0, (ii) (a, b) �= (0, 0) and ab = 0, (iii) (a, b) �= (0, 0) and ab < 0,
(iv) (a, b) = (0, 0). From (3.3), we know that ∂φ2(a, b) becomes multi-valued
when ab = 0 or (a, b) = (0, 0). However, φ2(a, b) = 0 under these two cases
which implies that ∂φ2(a, b)T φ2(a, b) is still single-valued. Hence, ψ2 is continu-
ously differentiable everywhere by the Corollary to Theorem 2.2.4 in Clarke (1983)
again.

For i = 3, 4, from (3.4)–(3.8), it is trivial that ∂φ3(a, b), ∂φ4(a, b) are single-
valued when (a, b) �= (0, 0). When (a, b) = (0, 0), we observe that φ3(a, b) =
φ4(a, b) = 0. Hence, ∂φ3(a, b)T φ3(a, b) and ∂φ4(a, b)T φ4(a, b) are still single-valued,
which yield that ψ3, ψ4 are continuously differentiable everywhere by the same rea-
son as above.

(c) For i = 1, ψ1 = 1
2 (φ1)2, we employ and go over the cases discussed as in

part (b).

(i) If a > 0, b > 0, then (b+∂a+, a+∂b+) = (b, a). Hence, from (3.3), we
obtain that

∇aψ1(a, b) =

(
ap−1

‖(a, b)‖p−1
p

− 1 − αb

)
φ1(a, b),

∇bψ1(a, b) =

(
bp−1

‖(a, b)‖p−1
p

− 1 − αa

)
φ1(a, b),

for both p are even and odd. Then, ∇aψ1(a, b) · ∇bψ1(a, b) equals(
ap−1

‖(a, b)‖p−1
p

− 1 − αb

)(
bp−1

‖(a, b)‖p−1
p

− 1 − αa

)
φ2

1(a, b).

Since,
∣∣∣ ap−1

‖(a,b)‖p−1
p

∣∣∣ ≤ 1,
∣∣∣ bp−1

‖(a,b)‖p−1
p

∣∣∣ ≤ 1, and αa > 0, αb > 0, we know

(
ap−1

‖(a, b)‖p−1
p

− 1 − αb

)
< 0 and

(
bp−1

‖(a, b)‖p−1
p

− 1 − αa

)
< 0,

which implies that ∇aψ1(a, b) · ∇bψ1(a, b) ≥ 0.
(ii) If a > 0, b < 0, then (b+∂a+, a+∂b+) = (0, a). Hence, from (3.2), we have

∇aψ1(a, b) =

(
ap−1

‖(a, b)‖p−1
p

− 1

)
φ1(a, b),

∇bψ1(a, b) =

(
bp−1

‖(a, b)‖p−1
p

− 1 − αa

)
φ1(a, b),
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for p is even; and

∇aψ1(a, b) =

(
ap−1

‖(a, b)‖p−1
p

− 1

)
φ1(a, b),

∇bψ1(a, b) =

(
−bp−1

‖(a, b)‖p−1
p

− 1 − αa

)
φ1(a, b),

for p is odd. Again, since
∣∣∣ ap−1

‖(a,b)‖p−1
p

∣∣∣ ≤ 1,
∣∣∣ bp−1

‖(a,b)‖p−1
p

∣∣∣ ≤ 1, and αa > 0, it can

be easily verified that ∇aψ1(a, b) · ∇bψ1(a, b) ≥ 0.
(iii) If a > 0, b = 0, then φ1(a, b) = 0 which says ∇aψ1(a, b) = 0 = ∇bψ1(a, b).

Hence, ∇aψ1(a, b) · ∇bψ1(a, b) = 0.
(iv) If a < 0, b > 0 or a < 0, b < 0, or a < 0, b = 0, then (b+∂a+, a+∂b+) = (0, 0).

Hence, from (3.3), we have

∇aψ1(a, b) =

(
ap−1

‖(a, b)‖p−1
p

− 1

)
φ1(a, b),

∇bψ1(a, b) =

(
bp−1

‖(a, b)‖p−1
p

− 1

)
φ1(a, b),

for p is even; and

∇aψ1(a, b) =

(
sgn(a) · ap−1

‖(a, b)‖p−1
p

− 1

)
φ1(a, b),

∇bψ1(a, b) =

(
sgn(b) · bp−1

‖(a, b)‖p−1
p

− 1

)
φ1(a, b),

for p is odd. Again, by
∣∣∣ ap−1

‖(a,b)‖p−1
p

∣∣∣ ≤ 1, and
∣∣∣ bp−1

‖(a,b)‖p−1
p

∣∣∣ ≤ 1, the desired
inequality holds.

(v) If a = 0, b > 0, then φ1(a, b) = 0 which says ∇aψ1(a, b) = 0 = ∇bψ1(a, b).
Hence, ∇aψ1(a, b) · ∇bψ1(a, b) = 0.

(vi) If a = 0, b < 0, then (b+∂a+, a+∂b+) = (0, 0). Hence, from (3.2), we have

∇aψ1(a, b) = −φ1(a, b), ∇bψ1(a, b) =

(
bp−1

‖(a, b)‖p−1
p

− 1

)
φ1(a, b),

for p is even; and

∇aψ1(a, b) = −φ1(a, b), ∇bψ1(a, b) =

(
−bp−1

‖(a, b)‖p−1
p

− 1

)
φ1(a, b),
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for p is odd. By the same reasons as in previous discussions, we obtain that
∇aψ1(a, b) · ∇bψ1(a, b) ≥ 0.

(vii) If a = 0, b = 0, then φ1(a, b) = 0. Hence, ∇aψ1(a, b) = 0 = ∇bψ1(a, b) and
∇aψ1(a, b) · ∇bψ1(a, b) = 0.

For i = 2, ψ2 = 1
2 (φ2)2, we discuss discuss four cases as in part (b).

(i) If (a, b) �= (0, 0) and ab > 0, from (3.3), we have

∇aψ2(a, b) =

(
ap−1

‖(a, b)‖p−1
p

− 1 − αb

)
φ2(a, b),

∇bψ2(a, b) =

(
bp−1

‖(a, b)‖p−1
p

− 1 − αa

)
φ2(a, b),

for p is even; and

∇aψ2(a, b) =

(
sgn(a) · ap−1

‖(a, b)‖p−1
p

− 1 − αb

)
φ2(a, b),

∇bψ2(a, b) =

(
sgn(b) · bp−1

‖(a, b)‖p−1
p

− 1 − αa

)
φ2(a, b),

for p is odd. By the same reasons as in previous discussions, it can be easily
verified that ∇aψ1(a, b) · ∇bψ1(a, b) ≥ 0.

(ii) If (a, b) �= (0, 0) and ab = 0, then φ2(a, b) = 0. Hence, ∇aψ2(a, b) = 0 =
∇bψ2(a, b) and ∇aψ2(a, b) · ∇bψ2(a, b) = 0.

(iii) If (a, b) �= (0, 0) and ab < 0, the arguments are the same as case
(iv) for i = 1 except that φ1 is replaced by φ2.
(iv) If (a, b) = (0, 0), then φ2(a, b) = 0. Hence, ∇aψ2(a, b) = 0 = ∇bψ2(a, b) and

∇aψ2(a, b) · ∇bψ2(a, b) = 0.

For i = 3, ψ3 = 1
2 (φ3)2, we have two cases as below.

(i) If (a, b) �= (0, 0), from (3.4)–(3.5), we have

∇aψ3(a, b) = φp(a, b)

(
ap−1

‖(a, b)‖p−1
p

− 1

)
+ α(a+)(b+)2,

∇bψ3(a, b) = φp(a, b)

(
bp−1

‖(a, b)‖p−1
p

− 1

)
+ α(a+)2(b+),
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for p is even; and

∇aψ3(a, b) = φp(a, b)

(
sgn(a) · ap−1

‖(a, b)‖p−1
p

− 1

)
+ α(a+)(b+)2,

∇bψ3(a, b) = φp(a, b)

(
sgn(b) · bp−1

‖(a, b)‖p−1
p

− 1

)
+ α(a+)2(b+),

for p is odd. Thus, ∇aψ3(a, b) · ∇bψ3(a, b) equals

φ2
p(a, b)

(
ap−1

‖(a, b)‖p−1
p

− 1

)(
bp−1

‖(a, b)‖p−1
p

− 1

)
+ α2(a+)3(b+)3

+ φp(a, b)

(
ap−1

‖(a, b)‖p−1
p

− 1

)
α(a+)2(b+)

+ φp(a, b)

(
bp−1

‖(a, b)‖p−1
p

− 1

)
α(a+)(b+)2

or

φ2
p(a, b)

(
sgn(a) · ap−1

‖(a, b)‖p−1
p

− 1

)(
sgn(b) · bp−1

‖(a, b)‖p−1
p

− 1

)
+ α2(a+)3(b+)3

+ φp(a, b)

(
sgn(a) · ap−1

‖(a, b)‖p−1
p

− 1

)
α(a+)2(b+)

+ φp(a, b)

(
sgn(b) · bp−1

‖(a, b)‖p−1
p

− 1

)
α(a+)(b+)2.

Note that in the above expressions, it is trivial that the first and second
terms are nonnegative. We also notice that

(a+)(b+) =
{

ab, if a > 0, b > 0
0, else.

Therefore, we only need to consider the subcase of a > 0, b > 0 for the third
and fourth terms. In fact, summing up the third and fourth term under this
subcase gives

αab · φp(a, b)

[(
ap−1

‖(a, b)‖p−1
p

− 1

)
a +

(
bp−1

‖(a, b)‖p−1
p

− 1

)
b

]

= αab · φp(a, b)

[
ap + bp

‖(a, b)‖p−1
p

− (a + b)

]
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= αab · φp(a, b)[‖(a, b)‖p − (a + b)]

= αab · φ2
p(a, b)

≥ 0.

Thus, we proved ∇aψ2(a, b) · ∇bψ2(a, b) ≥ 0.

For i = 4, ψ4 = 1
2 (φ4)2, we also have two cases as below.

(i) If (a, b) �= (0, 0), from (3.6) and (3.7), we have

∇aψ4(a, b) = φp(a, b)

(
ap−1

‖(a, b)‖p−1
p

− 1

)
+ α(ab)+ · b,

∇bψ4(a, b) = φp(a, b)

(
bp−1

‖(a, b)‖p−1
p

− 1

)
+ α(ab)+ · a,

for p is even; and

∇aψ4(a, b) = φp(a, b)

(
sgn(a) · ap−1

‖(a, b)‖p−1
p

− 1

)
+ α(ab)+ · b,

∇bψ4(a, b) = φp(a, b)

(
sgn(b) · bp−1

‖(a, b)‖p−1
p

− 1

)
+ α(ab)+ · a,

for p is odd. Thus, ∇aψ4(a, b) · ∇bψ4(a, b) equals

φ2
p(a, b)

(
ap−1

‖(a, b)‖p−1
p

− 1

)(
bp−1

‖(a, b)‖p−1
p

− 1

)
+ α2(ab)2+ · (ab)

+ φp(a, b)

(
ap−1

‖(a, b)‖p−1
p

− 1

)
α(ab)+ · a

+ φp(a, b)

(
bp−1

‖(a, b)‖p−1
p

− 1

)
α(ab)+ · b

or

φ2
p(a, b)

(
sgn(a) · ap−1

‖(a, b)‖p−1
p

− 1

)(
sgn(b) · bp−1

‖(a, b)‖p−1
p

− 1

)
+ α2(ab)2+ · (ab)

+ φp(a, b)

(
sgn(a) · ap−1

‖(a, b)‖p−1
p

− 1

)
α(ab)+ · a + φp(a, b)

(
sgn(b) · bp−1

‖(a, b)‖p−1
p

− 1

)

×α(ab)+ · b.
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The first and second terms are non-negative by the same reasons in previous
discussions. We notice that

(ab)+ =
{

ab, if ab > 0
0, else.

Thus, we only need to consider the subcase of ab > 0 for the third and fourth
terms. In fact, summing up the third and fourth term under this subcase gives

α(ab)+ · φp(a, b)

[(
ap−1

‖(a, b)‖p−1
p

− 1

)
a +

(
bp−1

‖(a, b)‖p−1
p

− 1

)
b

]

= α(ab)+ · φp(a, b)

[
ap + bp

‖(a, b)‖p−1
p

− (a + b)

]

= α(ab)+ · φp(a, b)[‖(a, b)‖p − (a + b)]

= α(ab)+ · φ2
p(a, b)

≥ 0.

The arguments hold as well for p is odd. Hence, we proved ∇aψ2(a, b) ·
∇bψ2(a, b) ≥ 0.

(d) Going over exactly the same cases for each i discussed as in part (c) where
∇aψ(a, b) and ∇bψ(a, b) are formed, it is not hard to verify that the desired result
is satisfied. We omit the details.

Based on the properties of ψ stated as in Proposition 3.3 and using the same
proof techniques developed in (De Luca et al., 1996; Kanzow and Kleinmichel, 1998;
Kanzow et al., 1997), we have the following condition for a stationary point to be
a solution of the NCP. We omit the details.

Proposition 3.4. Assume that x∗ ∈ R
n is a stationary point of Ψ defined as

(1.15)− (1.17) (except for Ψ induced from ψ2) such that the Jacobian ∇F (x∗) is a
P0-matrix. Then x∗ is a solution of the NCP.

As pointed out in Proposition 3.4, if Ψ is induced from ψ2 then Proposition 3.4
does not necessary hold for such a Ψ. The reason is that there needs ∇aψ(a, b) ·
∇bψ(a, b) > 0 when ψ(a, b) �= 0 in the proof. However, this is not always true
(we proved that ∇aψ(a, b) · ∇bψ(a, b) ≥ 0) for ψ2. A counterexample for p = 2
was given in Sun and Qi (1999, pp. 206–207). Hence, due to this reason, the merit
function induced from ψ2 may not be recommended even though it is continuously
differentiable.

4. Bounded Level Sets

As mentioned earlier, the merit function Ψp defined as in Eq. (1.9) does not guar-
antee bounded level sets for monotone NCP. In fact, it needs that F is either
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strongly monotone or uniform P -function to obtain property of bounded level sets,
see Proposition 3.5 of Chen and Pan (2006). In this section, we establish that if F

is either a monotone function with strictly feasible solution or a R0-function, the
merit function Ψ defined as in (1.17) provides the bounded level sets. This results
indicates that Ψ may be a better choice of merit function for the NCP than Ψp in
certain sense. The motivation is from Chen et al. (2000) where a condition, under
which a penalized Fischer–Burmeister function is guaranteed to have bounded level
sets property, was proposed. We also adopt the condition for our merit functions
studied in this paper.

Now, we begin to see under what condition the level sets

L(γ) := {x ∈ R
n| Ψ(x) ≤ γ} (4.1)

are to be bounded for all γ ≥ 0. When p = 2 and ψ = ψ1, as shown in Chen et al.
(2000), it turns out that the following condition on F is sufficient. We employ it for
our ψ’s and extend the existing results as for p = 2 to general p ≥ 2.

Condition A. For any sequence {xk} such that

‖xk‖ → ∞, [−xk]+ < ∞, [−F (xk)]+ < ∞, (4.2)

it holds

max
i

[xk
i ]+[Fi(xk)]+ → ∞. (4.3)

Proposition 4.1. If F satisfies Condition A, then the level sets L(γ) are bounded
for all γ ≥ 0.

Proof. Suppose not, then there exists an unbounded sequence {xk} ⊆ L(γ) for
some γ ≥ 0. Since Ψ(xk) ≤ γ for all k ∈ N and Ψ(x) = 1

2

∑n
i=1 φ2(xi, Fi(x)), there

is no index i such that xk
i → −∞ or Fi(xk) → −∞ by Proposition 3.1(c). Hence,

(4.2) in condition A is held, which says maxi(xk
i )+(Fi(xk))+ → ∞. In other words,

there is a j and at least a subsequence {xk
j } where k ∈ K ⊆ N such that

(xk
j )+(Fj(xk))+ → ∞ k ∈ K.

However, this implies Ψ(xk) is unbounded by definition of φ as in (1.11) and Propo-
sition 3.1(c) again which leads to a contradiction to the level sets assumption.

In fact, condition A is satisfied if F is either a monotone function with a strictly
feasible point or a R0-function (Chen et al., 2000, Proposition 3.10) which indicates
that the condition A on F may be the weakest assumption to guarantee bounded
level sets for the nonlinear complementarity problem since both F is monotone
with a strictly feasible point and a R0-function are sufficient to condition A. By
the way, it is also known that if F is a P0-function and the NCP has a nonempty
and bounded solution set, then there is a strictly feasible solution for the NCP (see
(Chen et al., 2000 of Proposition 3.12).
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5. Final Remarks

In this paper, we have studied several new NCP-functions based on the generalized
Fischer–Burmeister function and have shown that each of them enjoys all the prop-
erties possessed by their counterparts when p = 2. The property of error bounds is
not included in this paper though we also wished to investigate conditions under
which the merit functions Ψ derived from ψi, i = 1, 2, 3, 4 provide error bounds
for the NCP. In fact, it was shown in Chen et al. (2000) that if F is a uniform
P -function then the aforementioned property holds for p = 2 and ψ1. However,
we have not established the parallel results for general p ≥ 2 and the other ψis.
The main reason is that we could not yet derive analogous inequalities as in Tseng
(1996), Lemma 3.1 for φp, p ≥ 2 which plays an important role in proving the error
bounds property. We will keep an eye on this topic. On the other hand, according
to the the theoretical part built in this paper (not taking it for granted before we
prove it even though we think it should be true), the numerical implementation of
related algorithms may be interesting for future research. We also want to point
something out. During the reviewing, Chen and Pan (2006) relaxes the condition
of p being positive integer greater than one to more general condition of p > 1.
Moreover, Lemma 3.1(a) is improved in Pan and Chen (2007) where the condition
p > 1 is considered.
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