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Abstract We establish that the Fischer–Burmeister (FB) complementarity function
and the natural residual (NR) complementarity function associated with the symmetric
cone have the same growth, in terms of the classification of Euclidean Jordan alge-
bras. This, on the one hand, provides an affirmative answer to the second open question
proposed by Tseng (J Optim Theory Appl 89:17–37, 1996) for the matrix-valued FB
and NR complementarity functions, and on the other hand, extends the third impor-
tant inequality of Lemma 3.1 in the aforementioned paper to the setting of Euclidean
Jordan algebras. It is worthwhile to point out that the proof is surprisingly simple.
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1 Introduction

Let A = (V, ◦, 〈·, ·〉V) be a Euclidean Jordan algebra (see Sect. 2 for details). Let
K be the set of all squares in V. Given the continuously differentiable mappings
F, G : V→V, we consider the symmetric cone complementarity problem (SCCP): to
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154 S. Bi et al.

find a vector ζ ∈ V such that

F(ζ ) ∈ K, G(ζ ) ∈ K, 〈F(ζ ), G(ζ )〉V = 0. (1)

This class of problems provides a unified framework for the classical nonlinear
programming and complementarity problem [5] over the nonnegative orthant cone
in R

n , the second-order cone optimization and complementarity problem [1], and
the semidefinite programming and complementarity problem [16,21], and becomes
one of main research interests in the current optimization field; see, e.g., [4,6,10,12,
13,17–19,22].

Analogous to the three classes of special SCCPs above, the complementarity func-
tion associated with the symmetric cone plays a crucial role in the development of
merit function methods and smoothing (nonsmooth) Newton methods for solving the
SCCPs. Recall that φ : V × V → V is called a symmetric cone complementary
function if it satisfies the following equivalence:

φ(x, y) = 0 ⇐⇒ x ∈ K, y ∈ K, 〈x, y〉V = 0. (2)

With such a function, the SCCP can be reformulated as an unconstrained minimization

min
ζ∈V

�(ζ) := 1

2
‖φ(F(ζ ), G(ζ ))‖2

V
, (3)

in the sense that ζ ∗ solves (1) if and only if it is a solution of (3) with zero optimal
value, where ‖ · ‖V denotes the norm induced by the inner product 〈·, ·〉V. If � is
continuously differentiable, then the efficient unconstrained minimization methods
can be applied for (3) to yield a solution of (1). This method is often known as the
merit function approach.

Two most popular choices for φ are the natural residual (NR) symmetric cone com-
plementarity function φNR and the Fischer–Burmeister (FB) symmetric cone comple-
mentarity function φFB , respectively, defined as

φNR (x, y) := x − (x − y)+ ∀x, y ∈ V (4)

and

φFB(x, y) := (x + y) − (x2 + y2)1/2 ∀x, y ∈ V, (5)

where z+ means the metric projection of z ∈ V onto the symmetric cone K, x2 = x ◦x
denotes the Jordan product of x and itself, and x1/2 means the unique square root of
x ∈ K, i.e., (x1/2)2 = x . The squared norm ofφFB induces a smooth merit function with
global Lipschitz continuous gradients (see [9,15]). This implies that finding solutions
to (1) is equivalent to seeking solutions of the unconstrained smooth minimization
problem

min
ζ∈V

�FB(ζ ) := 1

2

∥
∥φFB(F(ζ ), G(ζ ))

∥
∥2

V
. (6)
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The same growth of FB and NR symmetric cone complementarity functions 155

However, in order to establish the convergence rate of the merit function method for
the SCCPs based on (6), the key is to prove that φFB and φNR has the same order of
growth, i.e., to show that there exist constants c1 > 0 and c2 > 0 such that for all
x, y ∈ V,

c1‖φNR (x, y)‖2
V

≤ ‖φFB(x, y)‖2
V

≤ c2‖φNR (x, y)‖2
V
. (7)

When A is the Euclidean Jordan algebra R equipped with the multiplication of real
numbers, Tseng showed in [20, Lemma 3.1] that inequality (7) holds with c1 = 2−√

2
and c2 = 2 + √

2; when A is the Jordan spin algebra Ln (see Example 2.3 in the next
section), Pan et al. [14] recently established inequality (7) by contradiction. We note
that for the case where A is the n × n real symmetric matrix algebra (see Example
2.2 in the next section), in 1998 Tseng [21] proposed an open question “whether the
FB function

∥
∥φFB(F(ζ ), G(ζ ))

∥
∥2

V
is bounded above and below by a constant multiple

of the NR function
∥
∥φNR (F(ζ ), G(ζ ))

∥
∥

2
V

”, which is equivalent to asking whether or
not inequality (7) holds under this case. To our best knowledge, until now this open
question is not resolved.

In this paper, we show that (7) holds with c1 = 2 − √
2 and c2 = 2 + √

2, which
does not only offer an affirmative answer to the open question of [21], but also extends
the results of [20, Lemma 3.1] and [14] to the setting of symmetric cones. Particularly,
the proof is surprisingly simpler than that of [20, Lemma 3.1] and [14]. As a direct
consequence of (7), we also establish the global error bound property of the FB merit
function for SCCPs.

2 Preliminaries

This section recalls some results on Euclidean Jordan algebras that will be used in the
next section. More detailed expositions of Euclidean Jordan algebras can be found in
the monograph by Faraut and Korányi [3] and Koecher’s lecture notes [7].

A Euclidean Jordan algebra is a triple (V, ◦, 〈·, ·〉
V
) where (V, 〈·, ·〉

V
) is a finite

dimensional inner product space over the real number field R and (x, y) �→ x ◦ y :
V × V → V is a bilinear mapping satisfying the following three conditions:

(i) x ◦ y = y ◦ x for all x, y ∈ V;
(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ V, where x2 = x ◦ x ;

(iii) 〈x ◦ y, z〉V = 〈y, x ◦ z〉V for all x, y, z ∈ V.

Henceforth, we assume that A = (V, ◦, 〈·, ·〉
V
) is a Euclidean Jordan algebra with an

element e ∈ V (called the unit element) such that x ◦ e = x for all x ∈ V. By [3,
Theorem III. 2.1], the set of squares K := {

x2 | x ∈ V
}

is a symmetric cone. In the
following, we present three common examples of Euclidean Jordan algebras.

Example 2.1 Consider R
n with the (usual) inner product and Jordan product defined

respectively as

〈x, y〉 =
n

∑

i=1

xi yi and x ◦ y = x ∗ y ∀x, y ∈ R
n
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156 S. Bi et al.

where xi denotes the i th component of x , etc., and x ∗ y denotes the component-
wise product of vectors x and y. Then, R

n is a Euclidean Jordan algebra with the
nonnegative orthant R

n+ as its cone of squares.

Example 2.2 The algebra Sn of n × n real symmetric matrices. Let S
n×n be the

space of all n × n real symmetric matrices with the trace inner product and Jordan
product, respectively, defined by

〈X, Y 〉T := Tr(XY ) and X ◦ Y := 1

2
(XY + Y X) ∀X, Y ∈ S

n×n .

Then, (Sn×n, ◦, 〈·, ·〉T) is a Euclidean Jordan algebra, and we write it as Sn . The cone
of squares S

n×n+ in Sn is the set of all positive semidefinite matrices in S
n×n .

Example 2.3 The Jordan spin algebra Ln . Consider R
n (n > 1) with the inner

product 〈·, ·〉 and Jordan product

x ◦ y :=
[ 〈x, y〉

x0 ȳ + y0 x̄

]

for any x = (x0; x̄), y = (y0; ȳ) ∈ R×R
n−1. We denote the Euclidean Jordan algebra

(Rn, ◦, 〈·, ·〉) by Ln . The cone of squares, called the Lorentz cone (or the second-order
cone), is given by L +

n := {

(x0; x̄) ∈ R × R
n−1 | x0 ≥ ‖x̄‖}.

For x ∈ V, let m(x) := min
{

k : {e, x, x2, . . . , xk} are linearly dependent
}

and
define the rank of A by r := max{m(x) : x ∈ V}. Recall that an element c ∈ V is
idempotent if c2 = c, and it is a primitive idempotent if it is nonzero and cannot be
written as a sum of two nonzero idempotents. One says that a finite set {c1, c2, . . . , ck}
of primitive idempotents in V is a Jordan frame if

c j ◦ ci = 0 if j �= i for all j, i = 1, 2, . . . , k, and
∑k

j=1 c j = e.

Now we may state the second version of the spectral decomposition theorem.

Theorem 2.1 ([3, Theorem III.1.2]) Let A be a Euclidean Jordan algebra with rank r .
Then, for every x ∈ V, there exist a Jordan frame {c1, c2, . . . , cr } and real numbers
λ1(x), λ2(x), . . . , λr (x), arranged in the decreasing order λ1(x) ≥ · · · ≥ λr (x), such
that

x = λ1(x)c1 + λ2(x)c2 + · · · + λr (x)cr .

The numbers λ j (x) (counting multiplicities), which are uniquely determined by x, are
called the eigenvalues of x, and tr(x) = ∑r

j=1 λ j (x) is called the trace of x.

Let φ : R → R be a scalar valued function. Then, it is natural to define a vector
valued function φV : V → V associated with the Euclidean Jordan algebra A [8,19]
by

φV(x) := φ(λ1(x))c1 + φ(λ2(x))c2 + · · · + φ(λr (x))cr ,
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The same growth of FB and NR symmetric cone complementarity functions 157

where x ∈ V has the spectral decomposition x = ∑r
j=1 λ j (x)c j . This function is

also called Löwner’s operator in recognition of Löwner’s contribution. When φ(t) =
t+ := max{0, t} for t ∈ R, φV(x) becomes the metric projector operator over K:

x+ = (λ1(x))+c1 + (λ1(x))+c2 + · · · + (λr (x))+cr ∀x ∈ V;

while φ(t) = t− := min{0, t} for t ∈ R, it is the metric projector operator over −K

x− = (λ1(x))−c1 + (λ1(x))−c2 + · · · + (λr (x))−cr ∀x ∈ V.

In the sequel, we let |x | be Löwner’s operator induced by φ(t) = |t | for t ∈ R. Then,

|x | = x+ − x− = 2x+ − x = x − 2x− ∀x ∈ V. (8)

Recall that a Euclidean Jordan algebra is said to be simple if it is not the direct
sum of two Euclidean Jordan algebras. It is easy to see that Sn and Ln are simple
Euclidean Jordan algebras, whereas the Euclidean Jordan algebra in Example 2.1 is
not simple. Let H

n×n denote the space of n×n complex Hermitian matrices, Q
n×n the

space of n × n quaternion Hermitian matrices, and O
3×3 the space of 3 × 3 octonion

Hermitian matrices.

Theorem 2.2 ([3, Theorem V.3.7]) Suppose that A = (V, ◦, 〈·, ·〉V) is a simple
Euclidean Jordan algebra of rank r ≥ 3. Then, A is isomorphic to one of the
following

(i) The algebra Sn of n × n real symmetric matrices given by Example 2.2;
(ii) The algebra Hn of all n ×n complex Hermitian matrices with trace inner prod-

uct 〈x, y〉T := �Tr(xy∗) and Jordan product x ◦ y := 1
2 (xy + yx) for any

x, y ∈ H
n×n;

(iii) The algebra Qn of all n × n quaternionic Hermitian matrices with trace inner
product 〈x, y〉T := �Tr(xy∗) and Jordan product x ◦ y := 1

2 (xy + yx) for any
x, y ∈ Q

n×n;
(iv) The algebra O3 of all 3 × 3 octonionic Hermitian matrices with trace inner

product 〈x, y〉T := �Tr(xy∗) and Jordan product x ◦ y := 1
2 (xy + yx) for any

x, y ∈ O
3×3;

(v) The Jordan spin algebra Ln given by Example 2.3.

where the notation “∗” means the conjugate transpose, Tr(xy) denotes the trace of
xy which is the multiplication of matrices x and y, and �a means the real part of a.

Unless otherwise stated, in the rest of this paper, we assume that A = (V, ◦, 〈·, ·〉V)

is a simple Euclidean Jordan algebra, and denote ‖·‖V, ‖·‖ and ‖·‖T the norm induced
by the inner product 〈·, ·〉V, 〈·, ·〉 and 〈·, ·〉T, respectively. We also write x �K y (respec-
tively, x �K y) to mean x − y ∈ K (respectively, x − y ∈ intK).
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3 Main result

To establish the main result of this paper, the following lemma plays an important
role.

Lemma 3.1 (a) For any x, y ∈ V, if x �K 0, y �K 0 and x �K y, then x1/2 �K
y1/2.

(b) For any u, v, w ∈ V, if w �K 0 and 2w2 = u2 + v2, then there holds that

w �K
1

2
(u + v).

Proof (a) This is result of [6, Prop. 8], which is also implied by [8].
(b) Since u2 + v2 − 2u ◦ v = (u − v) ◦ (u − v) ∈ K, using 2w2 = u2 + v2 yields

w2 = 1

2
(u2 + v2) �K

1

4
(u2 + v2) + 1

2
u ◦ v = 1

4
(u + v)2.

From part(a) and w �K 0, this implies that w �K 1
2 |u + v| �K 1

2 (u + v). ��

Proposition 3.1 Let Ln be the Euclidean Jordan algebra in Example 2.3. Then,

(2 − √
2)‖φNR (x, y)‖ ≤ ‖φFB(x, y)‖ ≤ (2 + √

2)‖φNR (x, y)‖, ∀x, y ∈ Ln .

Proof Fix any x, y ∈ V. If φNR (x, y)= 0, then we also have φFB(x, y) = 0, and the
desired result is immediate. Therefore, in the following arguments we assume that
φNR (x, y) �= 0. Using Eq. (8) and the definition of φNR , it is not hard to see that

φNR (x, y) = 1

2
[(x + y) − |x − y|].

This together with the definition of φFB gives

φFB(x, y) = 2φNR (x, y) + |x − y| − (x2 + y2)1/2

= 2φNR (x, y) + z(x, y) (9)

where z(x, y) ≡ |x − y| − (x2 + y2)1/2. By Eq. (9) and the triangle inequality, it
suffices to argue ‖z(x, y)‖ ≤ √

2‖φNR (x, y)‖, that is,

‖z(x, y)‖2 ≤ 1

2
‖x + y − |x − y|‖2 . (10)

123



The same growth of FB and NR symmetric cone complementarity functions 159

Substituting the expression of z(x, y) into (10), we obtain that (10) is equivalent to

∥
∥
∥|x − y| − (x2 + y2)1/2

∥
∥
∥

2 ≤ 1

2
‖x + y − |x − y|‖2

⇐⇒ ‖x − y‖2 − 2〈|x − y|, (x2 + y2)1/2〉 + ‖(x2 + y2)1/2‖2

≤ 1

2

[

‖x + y‖2 + ‖x − y‖2 − 2〈|x − y|, x + y〉
]

⇐⇒ ‖c(x, y)‖2 − 〈2c(x, y) − (x + y), |x − y|〉 − 2〈x, y〉 ≤ 0 (11)

where c(x, y) ≡ (x2 + y2)1/2. Thus, to prove the desired result, it suffices to argue
that inequality (11) holds. Indeed, since

‖c(x, y)‖2 = 〈c(x, y)2, e〉 = 〈x2 + y2, e〉 = ‖x‖2 + ‖y‖2,

we have

‖c(x, y)‖2 − 〈2c(x, y) − (x + y), |x − y|〉 − 2〈x, y〉
= ‖x − y‖2 − 〈2c(x, y) − (x + y), |x − y|〉
= 〈|x − y|,−2c(x, y) + (x + y) + |x − y|〉. (12)

Applying Lemma 3.1 with w = c(x, y), u = (x + y) and v = |x − y|, we know

−2c(x, y) + (x + y) + |x − y| ∈ −L +
n .

This, along with |x − y| ∈ L +
n and Eq. (12), shows that inequality (11) holds. ��

Proposition 3.2 Suppose that A = (V, ◦, 〈·, ·〉V) is a simple Euclidean Jordan alge-
bra with the rank r ≥ 3. Then, it holds that

(2 − √
2)‖φNR (x, y)‖T ≤ ‖φFB(x, y)‖T ≤ (2 + √

2)‖φNR (x, y)‖T ∀x, y ∈ V.

Proof By Theorem 2.2, it suffices to prove that the desired result holds for A = Sn ,
or Hn , or Qn , or O3. Fix any x, y ∈ V with V = S

n×n , or H
n×n , or Q

n×n , or
O

3×3. If φNR (x, y) = 0, the result is direct. Thus, it suffices to consider the case of
φNR (x, y) �= 0. Note that for the simple Euclidean Jordan algebra Sn , or Hn , or Qn ,
or O3, we still have

φFB(x, y) = 2φNR (x, y) + z(x, y)

with z(x, y) ≡ |x − y| − (x2 + y2)1/2. By the triangle inequality, it suffices to prove

‖z(x, y)‖2
T ≤ 2‖φNR (x, y)‖2

T = 1

2
‖x + y − |x − y|‖2

T . (13)
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Using the definition of ‖ · ‖2
T and noting that �Tr(uv∗) = �Tr(uv) = �Tr(vu) for

all u, v ∈ V, an elementary computation yields that (13) is equivalent to

�Tr
[

(x − y)2 + c(x, y)2 − 2|x − y|c(x, y)
]

≤ 1

2
�Tr

[

(x + y)2 + (x − y)2 − 2|x − y|(x + y)
]

⇐⇒ �Tr
[

−|x − y|(2c(x, y) − (x + y)) + (x − y)2
]

≤ 0

⇐⇒ 1

2
�Tr

[

|x − y|
(

c(x, y) − (x + y) + |x − y|
2

)]

≥ 0

⇐⇒ 1

2

〈

|x − y|, c(x, y) − (x + y) + |x − y|
2

〉

T
≥ 0 (14)

where c(x, y) ≡ (x2 + y2)1/2. Applying Lemma 3.1 with w = c(x, y), u = (x + y)

and v = |x − y| yields that c(x, y) − ((x + y) + |x − y|)/2 �K 0. This together with
|x − y| �K 0 implies that inequality (14) holds. Thus, we complete the proof. ��

Combining Propositions 3.1 with 3.2, we readily obtain the main result of this paper.

Theorem 3.1 Suppose that A = (V, ◦, 〈·, ·〉V) is a simple Euclidean Jordan algebra.
Let φNR and φFB be defined by (4) and (5), respectively. Then, it holds that

(2 − √
2)‖φNR (x, y)‖V ≤ ‖φFB(x, y)‖V ≤ (2 + √

2)‖φNR (x, y)‖V ∀x, y ∈ V.

By Theorem 3.1, we may establish the global error bound property for the FB merit
function of SCCPs under the jointly uniform Cartesian P-property of F and G. To this
end, we next assume that A is a direct product of simple Euclidean Jordan algebras:

A = A1 × A2 × · · · × Am,

where each Ai = (Vi , ◦, 〈·, ·〉Vi ) is a simple Euclidean Jordan algebra with
∑m

i=1 dim(Vi ) = dim(V). Then, K = K1 ×K2 ×· · ·×Km with Ki being a symmetric
cone in Vi . For any x, y ∈ V, we write x = (x1, . . . , xm), y = (y1, . . . , ym) with
xi , yi ∈ Vi . Then,

x ◦ y = (x1 ◦ y1, . . . , xm ◦ ym) and 〈x, y〉V = 〈x1, y1〉V1 + · · · + 〈xm, ym〉Vm .

Consequently, the SCCP (1) is equivalent to finding a vector ζ ∈ V such that

Fi (ζ ) ∈ Ki , Gi (ζ ) ∈ Ki , 〈Fi (ζ ), Gi (ζ )〉Vi = 0, i = 1, 2, . . . , m (15)

where F = (F1, . . . , Fm) and G = (G1, . . . , Gm) with Fi , Gi : V → Vi .
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The same growth of FB and NR symmetric cone complementarity functions 161

Definition 3.1 [2] The mappings F and G are said to have the jointly uniform
Cartesian P-property if there exists a constant ρ > 0 such that for any ζ, ξ ∈ V,
there is an index ν ∈ {1, . . . , m} such that

〈Fν(ζ ) − Fν(ξ), Gν(ζ ) − Gν(ξ)〉Vν
≥ ρ‖ζ − ξ‖2

V
.

Theorem 3.2 Suppose that F and G have the jointly uniform Cartesian P-property
and are globally Lipschitz continuous with constants L1 > 0 and L2 > 0, respectively.
If the SCCP (1) has an optimal solution, say ζ ∗, then

2 − √
2

(2L1 + L2)2 �FB(ζ ) ≤ ‖ζ − ζ ∗‖2
V

≤ (2 + √
2)(L1 + L2)

2

ρ2 �FB(ζ ) ∀ζ ∈ V

where the constant ρ is same as in Definition 3.1.

Proof Fix any ζ ∈ V. Let R(ζ ) ≡ (

φNR (F1(ζ ), G1(ζ )), . . . , φNR (Fm(ζ ), Gm(ζ ))
) ∈

V. Then, using Theorem 3.1 and noting that �FB(ζ ) ≡ 1
2

∑m
i=1 ‖φFB(Fi (ζ ),

Gi (ζ ))‖2
Vi

, we get

2 − √
2

2
‖R(ζ )‖2

V
≤ �FB(ζ ) ≤ 2 + √

2

2
‖R(ζ )‖2

V
.

In addition, using the same arguments as in [9, Theorem 6.3], we have

1

2L1 + L2
‖R(ζ )‖V ≤ ‖ζ − ζ ∗‖V ≤ L1 + L2

ρ
‖R(ζ )‖V.

From the last two inequalities, we immediately obtain the desired result. ��
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