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We present a nonlinear least-square formulation for the second-order cone complementarity problem
based on the Fischer–Burmeister (FB) function and the plus function. This formulation has two-fold
advantages. First, the operator involved in the over-determined system of equations inherits the favourable
properties of the FB function for local convergence, for example, the (strong) semi-smoothness; second,
the natural merit function of the over-determined system of equations share all the nice features of the
class of merit functions fYF studied in [J.-S. Chen and P. Tseng, An unconstrained smooth minimization
reformulation of the second-order cone complementarity problem, Math. Program. 104 (2005), pp. 293–
327] for global convergence. We propose a semi-smooth Levenberg–Marquardt method to solve the arising
over-determined system of equations, and establish the global and local convergence results.Among others,
the superlinear (quadratic) rate of convergence is obtained under strict complementarity of the solution and
a local error bound assumption, respectively. Numerical results verify the advantages of the least-square
reformulation for difficult problems.

Keywords: second-order cone complementarity problem; Fischer–Burmeister function; semi-smooth;
Levenberg–Marquardt method

1. Introduction

We consider the second-order cone complementarity problem (SOCCP), which is to find a vector
ζ ∈ R

n such that

F(ζ ) ∈ K, G(ζ ) ∈ K, 〈F(ζ ), G(ζ )〉 = 0, (1)

where 〈·, ·〉 denotes the Euclidean inner product, F : R
n → R

n and G : R
n → R

n are assumed
to be continuously differentiable throughout this paper, and K is the Cartesian product of second-
order cones (SOCs), also called Lorentz cones [11], i.e.

K = Kn1 × Kn2 × · · · × Knq , (2)

with n1 + · · · + nq = n and Kni := {(xi1, xi2) ∈ R × R
ni−1|xi1 ≥ ||xi2||}. In this paper, cor-

responding to the Cartesian structure of the cone K, we will write F = (F1, . . . , Fq) and
G = (G1, . . . , Gq) with Fi, Gi : R

n → R
ni .
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An important special case of problem (1) corresponds to G(ζ) ≡ ζ , i.e.

F(ζ ) ∈ K, ζ ∈ K, 〈F(ζ ), ζ 〉 = 0. (3)

This is a natural extension of the non-linear complementarity problem (NCP) [9,12], where
K = R

n+, the non-negative orthant in R
n, corresponds to n1 = · · · = nq = 1 and q = n. Another

important special case of (1) corresponds to the Karush–Kuhn–Tucker (KKT) conditions of the
convex second-order cone program (SOCP):

minimize g(x)

subject to Ax = b, x ∈ K,
(4)

where g : R
n → R is a twice continuously differentiable convex function, A ∈ R

m×n has full row
rank, and b ∈ R

m. The KKT conditions of (4) can be rewritten as (1) with

F(ζ ) := x̂ + (I − AT(AAT)−1A)ζ, G(ζ ) := ∇g(F (ζ )) − AT(AAT)−1Aζ, (5)

where x̂ ∈ R
n satisfies Ax = b; see [5] for details. The convex SOCP arises in many applications

from engineering design, finance, and robust optimization; see [1,20] and references therein.
Motivated by Kanno et al. [17] where the three-dimensional quasi-static frictional contact was
directly reformulated as a linear SOC complementarity problem, we believe that, besides these
applications, the SOCCP (1) will be found to have some applications in engineering which cannot
reduce to SOCPs.

Various methods have been proposed for solving convex SOCPs and SOCCPs, including the
interior point methods [1,2,20,21,28,30], the smoothing Newton methods [6,14,16], the merit
function method [5] and the semi-smooth Newton method [19]. Among others, the last three kinds
of methods are all based on an SOC complementarity function or a merit function. Specifically,
φ : R

ni × R
ni → R

ni is called an SOC complementarity function associated with Kni if

φ(xi, yi) = 0 ⇐⇒ x ∈ Kni , y ∈ Kni , 〈xi, yi〉 = 0. (6)

Clearly, when ni = 1, an SOC complementarity function becomes an NCP function. A popular
choice of φ is the Fischer–Burmeister (FB) function defined by

φFB(xi, yi) := (x2
i + y2

i )
1/2 − (xi + yi) ∀xi, yi ∈ R

ni , (7)

where x2
i = xi ◦ xi means the Jordan product of xi with itself (the definition of Jordan product is

given in Section 2), and (xi)
1/2 means a vector such that [(xi)

1/2]2 = xi . The function φFB is well-
defined and satisfies (6); see [14]. Hence, the SOCCP (1) can be reformulated as the following
non-smooth system

�FB(ζ ) :=
⎛⎜⎝φFB(F1(ζ ), G1(ζ ))

...

φFB(Fq(ζ ), Gq(ζ ))

⎞⎟⎠ = 0. (8)

The system (8) induces a natural merit function �FB : R
n → R+ for (1), given by

�FB(ζ ) := 1

2
||�FB(ζ )||2 =

q∑
i=1

ψFB(Fi(ζ ), Gi(ζ )) (9)

with

ψFB(xi, yi) := 1

2
||φFB(xi, yi)||2. (10)

The function ψFB was studied in [5] and used to develop a merit function method. Recently, we
analysed in [22] that, to guarantee the boundedness of the level sets of the FB merit function �FB,
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it requires that the mapping F at least has the uniform Cartesian P -property. This means that φFB

has some limitations in handling monotone SOCCPs.
Motivated by Kanzow and Petra [18] for the NCPs, we present a new reformulation for (1) in

this paper to overcome the disadvantage of φFB. Let φ0 : R
ni × R

ni → R+ be given by

φ0(xi, yi) := max{0, 〈xi, yi〉}, (11)

and define the operator � : R
n → R

n+q as

�(ζ) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ1φFB(F1(ζ ), G1(ζ ))
...

ρ1φFB(Fq(ζ ), Gq(ζ ))

ρ2φ0(F1(ζ ), G1(ζ ))
...

ρ2φ0(Fq(ζ ), Gq(ζ ))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (12)

where ρ1, ρ2 are arbitrary but fixed constants from (0,1) used as the weights for the first type of
terms and the second one, respectively. In other words, we define � by appending q components
to the mapping �FB. These additional components, as will be shown later, play a crucial role in
overcoming the disadvantage of �FB mentioned above. Noting that

ζ ∗ solves �(ζ) = 0 ⇐⇒ ζ ∗ solves (1), (13)

we have the following nonlinear least-square reformulation for the SOCCP (1)

min
ζ∈Rn

�(ζ ) := 1

2
||�(ζ)||2 =

q∑
i=1

ψ(Fi(ζ ), Gi(ζ )), (14)

where

ψ(xi, yi) := ρ2
1ψFB(xi, yi) + 1

2
ρ2

2φ0(xi, yi)
2. (15)

The reformulation has the following advantages: on the one hand, � belongs to the class of merit
functions fYF introduced in [5], which will be shown to have more desirable properties than �FB;
on the other hand, � inherits the semi-smoothness of �FB even strong semi-smoothness under
some conditions. By this, we propose a semi-smooth Levenberg–Marquardt type method for solv-
ing (14), and establish the superlinear (quadratic) rate of convergence under strict complementarity
and a local error bound assumption of the solution, respectively.

Throughout this paper, I represents an identity matrix of suitable dimension, || · || denotes the
Euclidean norm, Rn denotes the space of n-dimensional real column vectors, and R

n1 × · · · × R
nq

is identified with R
n1+···+nq . Thus, (x1, . . . , xq) ∈ R

n1 × · · · × R
nq is viewed as a column vector

in R
n1+···+nq . For a differentiable mapping F : R

n → R
m, ∇F(x) denotes the transpose of the

Jacobian F ′(x). For a (not necessarily symmetric) square matrix A ∈ R
n×n, we write A � 0

(respectively, A � 0) to mean A is positive semi-definite (respectively, positive definite). Given a
finite number of matrices Q1, . . . , Qn, we denote the block diagonal matrix with these matrices as
block diagonals by diag (Q1, . . . , Qn). If J and B are index sets such that J , B ⊆ {1, 2, . . . , q},
we denote PJ B by the block matrix consisting of the sub-matrices Pjk ∈ R

nj ×nk of P with j ∈ J
and k ∈ B. We denote int(Kn), bd(Kn) and bd+(Kn) by the interior, the boundary of Kn, and the
boundary of Kn excluding the origin, respectively.
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2. Preliminaries

This section recalls some background materials that will be used in the sequel. We start with the
definition of the Jordan product. For any x = (x1, x2), y = (y1, y2) ∈ R × R

n−1, we define their
Jordan product [11] associated with Kn as

x ◦ y := (〈x, y〉, x1y2 + y1x2). (16)

The Jordan product ‘◦’, unlike the scalar or matrix multiplication, is not associative, which is a
main source on complication in the analysis of SOCCPs. The identity element under this product is

e := (1, 0, . . . , 0)T ∈ R
n. Given a vector x = (x1, x2) ∈ R × R

n−1, let Lx :=
[
x1 xT

2
x2 x1I

]
which

can be viewed as a linear mapping from R
n to R

n. It is easy to verify that Lxy = x ◦ y and
Lx+y = Lx + Ly for any x, y ∈ R

n. Furthermore, x ∈ Kn if and only if Lx � 0, and x ∈ int(Kn)

if and only if Lx � 0. When x ∈ int(Kn), the inverse of Lx is given by

L−1
x = 1

det(x)

⎡⎣ x1 −xT
2

−x2
det(x)

x1
I + 1

x1
x2x

T
2

⎤⎦ , (17)

where det(x) denotes the determinant of x defined by det(x) := x2
1 − ||x2||2.

From [11,14], we recall that each x = (x1, x2) ∈ R × R
n−1 admits a spectral factorization

associated with Kn, of the form

x = λ1(x) · u(1)
x + λ2(x) · u(2)

x , (18)

where λi(x) and u(i)
x for i = 1, 2 are the spectral values and the associated spectral vectors of x,

respectively, defined by

λi(x) := x1 + (−1)i ||x2||, u(i)
x := 1

2
(1, (−1)i x̄2),

with x̄2 = x2/||x2|| if x2 �= 0 and otherwise being any vector in R
n−1 with ||x̄2|| = 1. If x2 �= 0, the

factorization is unique. The spectral factorizations of x, x2 as well as x1/2 have various interesting
properties [14]; for example, x ∈ Kn if and only if 0 ≤ λ1(x) ≤ λ2(x), and x ∈ int(Kn) if and
only if 0 < λ1(x) ≤ λ2(x).

We next recall from Chen and Qi, [4] the definition of Cartesian P -property for a matrix and a
nonlinear transformation.

Definition 2.1 A matrix M ∈ R
n×n is said to have

(a) the Cartesian P -property if for any non-zero ζ = (ζ1, . . . , ζq) ∈ R
n with ζi ∈ R

ni , there exists
an index ν ∈ {1, 2, . . . , q} such that 〈ζν, (Mζ)ν〉 > 0;

(b) the Cartesian P0-property if for any non-zero ζ = (ζ1, . . . , ζq) ∈ R
n with ζi ∈ R

ni , there
exists an index ν ∈ {1, 2, . . . , q} such that

ζν �= 0 and 〈ζν, (Mζ)ν〉 ≥ 0.

Definition 2.2 The mappings F =(F1, . . . , Fq) and G = (G1, . . . , Gq) are said to have

(a) the jointly uniform Cartesian P -property if there exists a constant ρ > 0 such that, for any
ζ, ξ ∈ R

n, there exists ν ∈ {1, 2, . . . , q} such that

〈Fν(ζ ) − Fν(ξ), Gν(ζ ) − Gν(ξ)〉 ≥ ρ‖ζ − ξ‖2,
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(b) the joint Cartesian P -property if for any ζ, ξ ∈ R
n with G(ζ) �= G(ξ), there exists ν ∈

{1, 2, . . . , q} such that

〈Fν(ζ ) − Fν(ξ), Gν(ζ ) − Gν(ξ)〉 > 0,

(c) the joint Cartesian P0-property if for any ζ, ξ ∈ R
n with G(ζ) �= G(ξ), there exists ν ∈

{1, 2, . . . , q} such that

Gν(ζ ) �= Gν(ξ) and 〈Fν(ζ ) − Fν(ξ), Gν(ζ ) − Gν(ξ)〉 ≥ 0,

When G(ζ) ≡ ζ , Definition 2.2 gives the Cartesian P -properties of F . Obviously, the uniform
Cartesian P -property ⇒ the Cartesian P -property ⇒ the Cartesian P0-property. Also, a contin-
uously differentiable mapping has the Cartesian P0-property if and only if its Jacobian matrix at
every point has the Cartesian P0-property, and if the Jacobian matrix of a continuously differen-
tiable mapping has the Cartesian P -property at every point, then the mapping has the Cartesian
P -property. From Definition 2.1, the positive semi-definitness implies the Cartesian P0-property.

Given a mapping H : R
n → R

m, if H is locally Lipschitz continuous, then

∂BH(ζ) := {V ∈ R
m×n | ∃{ζ k} ⊆ DH : ζ k → ζ, H ′(ζ k) → V }

is non-empty and called the B-subdifferential of H at ζ , where DH ⊆ R
n denotes the set of points

at which H is differentiable. The convex hull ∂H(ζ ) := conv∂BH(ζ) is the generalized Jacobian
of H at ζ in the sense of Clarke [4]. For the concepts of (strongly) semi-smooth functions, please
refer to [24,25] for details.

3. Properties of the operator �

To study the favourable properties of the operator �, we first give two technical lemmas to
summarize some properties of φ0 and φFB, respectively. The results of the first lemma are direct,
and the results of the second lemma can be found in [14, Prop. 4.2], [5, Prop. 2], [27, Cor. 3.3]
and [22, Prop. 3.1].

Lemma 3.1 Let φ0 : R
n × R

n → R+ be defined as in Equation (11). Then,

(a) the square of φ0 is continuously differentiable everywhere;
(b) φ0 is strongly semi-smooth everywhere on R

n × R
n;

(c) the B-subdifferential ∂Bφ0(x, y) of φ0 at any (x, y) ∈ R
n × R

n is given by

∂Bφ0(x, y) = [∂B(xTy)+yT ∂B(xTy)+xT],
where

∂B(xTy)+ =

⎧⎪⎨⎪⎩
{1} if xTy > 0,

{1, 0} if xTy = 0,

{0} if xTy < 0.

Lemma 3.2 Let φFB : R
n × R

n → R
n be defined as in Equation (7). Then, for any given x =

(x1, x2), y = (y1, y2) ∈ R × R
n−1, the following results hold.

(a) φFB(x, y) = 0 ⇐⇒ x ∈ Kn, y ∈ Kn, 〈x, y〉 = 0.
(b) φFB is strongly semismooth at (x, y).
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(c) Each element [Ux − I Uy − I ] of ∂BφFB(x, y) has the following representation:
(c.1) If x2 + y2 ∈ int(Kn), then Ux = L−1

(x2+y2)1/2Lx and Uy = L−1
(x2+y2)1/2Ly.

(c.2) If x2 + y2 ∈ bd+(Kn), then [Ux, Uy] belongs to the set{[
1

2
√

2w1

(
1 w̄T

2

w̄2 4I − 3w̄2w̄
T
2

)
Lx + 1

2

(
1

−w̄2

)
uT,

1

2
√

2w1

(
1 w̄T

2

w̄2 4I − 3w̄2w̄
T
2

)
Ly + 1

2

(
1

−w̄2

)
vT

] ∣∣ u = (u1, u2),

v = (v1, v2) ∈ R × R
n−1 satisfy |u1| ≤ ‖u2‖ ≤ 1, |v1| ≤ ‖v2‖ ≤ 1

}
,

where w = (w1, w2) = x2 + y2 and w2 = w2/‖w2‖.

(c.3) If (x, y) = (0, 0), [Ux, Uy] belongs to {[Lû, Lv̂]| ‖û‖2 + ‖v̂‖2 = 1} or{[
1

2

(
1

w̄2

)
ξT + 1

2

(
1

−w̄2

)
uT + 2

(
0 0

0 (I − w̄2w̄
T
2 )

)
Ls,

1

2

(
1

w̄2

)
ηT + 1

2

(
1

−w̄2

)
vT + 2

(
0 0

0 (I − w̄2w̄
T
2 )

)
Lω

]
|| w̄2 satisfies

‖w̄2‖ = 1 and u = (u1, u2), v = (v1, v2), ξ = (ξ1, ξ2), η = (η1, η2),

s = (s1, s2), ω = (ω1, ω2) ∈ R × R
n−1 satisfy |ξ1| ≤ ‖ξ2‖ ≤ 1,

|u1| ≤ ‖u2‖ ≤ 1, |η1| ≤ ‖η2‖ ≤ 1, |v1| ≤ ‖v2‖ ≤ 1, ‖s‖2 + ‖ω‖2 ≤ 1

2

}
.

(d) The squared norm of φFB, i.e. �FB, is continuously differentiable at (x, y).

From Lemma 3.1 (b) and Lemma 3.2 (b), we obtain the semi-smoothness of �.

Proposition 3.3 The operator � : R
n → R

n+q defined by (12) is semi-smooth. If, in addition,

F ′ and G′ are Lipschitz continuous, then � is strongly semi-smooth.

Proof Let �i denote the ith component function of � for i = 1, 2, . . . , 2q, i.e., �i(ζ ) =
φFB(Fi(ζ ), Gi(ζ )) for i = 1, 2, . . . , q and �i(ζ ) = φ0(Fi(ζ ), Gi(ζ )) for i = q + 1, . . . , 2q.
Then, the mapping � is (strongly) semi-smooth if every �i is (strongly) semi-smooth. Note that
�i : R

n → R
ni for i = 1, 2, . . . , q is the composite of the strongly semi-smooth function φFB

and the smooth function ζ �→ (Fi(ζ ), Gi(ζ )), whereas �q+i : R
n → R is the composite of the

strongly semi-smooth function φ0 and the function ζ �→ (Fi(ζ ), Gi(ζ )). Moreover, when F ′ and
G′ are Lipschitz continuous, ζ �→ (Fi(ζ ), Gi(ζ )) is strongly semi-smooth. By [13, Theorem 19],
we have that every component function of � is semi-smooth, and strongly semi-smooth if, in
addition, F ′ and G′ are Lipschitz continuous. �

Next, we present an estimation for the B-subdifferential of � at any ζ ∈ R
n.
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Proposition 3.4 Let � : R
n → R

n+q be given by (12). Then, for any ζ ∈ R
n,

∂B�(ζ)T ⊆ ∇F(ζ )[ρ1(A(ζ ) − I ) ρ2C(ζ )] + ∇G(ζ)[ρ1(B(ζ ) − I ) ρ2D(ζ)]
where C(ζ ) = diag(C1(ζ ), . . . , Cq(ζ )) and D(ζ) = diag(D1(ζ ), . . . , Dq(ζ )) with

Ci(ζ ) ∈ Gi(ζ )∂B(Fi(ζ )TGi(ζ ))+ and Di(ζ ) ∈ Fi(ζ )∂B(Fi(ζ )TGi(ζ ))+,

and A(ζ ) = diag(A1(ζ ), . . . , Aq(ζ )) and B(ζ ) = diag(B1(ζ ), . . . , Bq(ζ )) with the block diago-
nals Ai(ζ ), Bi(ζ ) ∈ R

ni×ni having the following representation:

(a) If Fi(ζ )2 + Gi(ζ )2 ∈ int(Kni ), then

Ai(ζ ) = LFi(ζ )L
−1
[Fi(ζ )2+Gi(ζ )2]1/2 and Bi(ζ ) = LGi(ζ )L

−1
[Fi(ζ )2+Gi(ζ )2]1/2 .

(b) If Fi(ζ )2 + Gi(ζ )2 ∈ bd+(Kni ), then [Ai(ζ ), Gi(ζ )] belongs to the set{[
1

2
√

2wi1(ζ )
LFi(ζ )

(
1 w̄i2(ζ )T

w̄i2(ζ ) 4I − 3w̄i2(ζ )w̄i2(ζ )T

)
+ 1

2
ui(1, −w̄i2(ζ )T),

1

2
√

2wi1(ζ )
LGi(ζ )

(
1 w̄i2(ζ )T

w̄i2(ζ ) 4I − 3w̄i2(ζ )w̄i2(ζ )T

)
+ 1

2
vi(1, −w̄i2(ζ )T)

]∣∣
ui = (ui1, ui2), vi = (vi1, vi2) satisfy |ui1| ≤ ‖ui2‖ ≤ 1, |vi1| ≤ ‖vi2‖ ≤ 1

}
,

where w(ζ ) = (wi1(ζ ), wi2(ζ )) = Fi(ζ )2 + Gi(ζ )2 and w̄i2(ζ ) = wi2(ζ )/‖wi2(ζ )‖.
(c) If (Fi(ζ ), Gi(ζ ))= (0, 0), [Ai(ζ ), Bi(ζ )] ∈ {[Lûi

, Lv̂i
] | ‖ûi‖2 +‖v̂i‖2 = 1} or{[

1

2
ξi(1, w̄T

i2) − 1

2
ui(−1, w̄T

i2) + 2Lsi

(
0 0
0 (I − w̄i2w̄

T
i2)

)
,

1

2
ηi(1, w̄T

i2) − 1

2
vi(−1, w̄T

i2) + 2Lωi

(
0 0
0 (I − w̄i2w̄

T
i2)

)]
| w̄i2 ∈ R

ni−1

satisfies ‖w̄i2‖ = 1 and ξi = (ξi1, ξi2), ui = (ui1, ui2), ηi = (ηi1, ηi2),

vi = (vi1, vi2), si = (si1, si2), ωi = (ωi1, ωi2) satisfy |ξi1| ≤ ‖ξi2‖ ≤ 1,

|ui1| ≤ ‖ui2‖ ≤ 1, |ηi1| ≤ ‖ηi2‖ ≤ 1, |vi1| ≤ ‖vi2‖ ≤ 1, ‖si‖2 + ‖ωi‖2 ≤ 1

2

}
.

Proof Let �i be the ith component function of �, i.e. �i(ζ ) = φFB(Fi(ζ ), Gi(ζ )) and
�q+i (ζ ) = φ0(Fi(ζ ), Gi(ζ )) for i = 1, . . . , q. By the concept of B-subdifferential,

∂B�(ζ)T ⊆ ∂B�1(ζ )T × ∂B�2(ζ )T × · · · × ∂B�2q(ζ )T, (19)

where the latter means the set of all matrices whose (ni−1 + 1)th to ni th columns belong to
∂B�i(ζ )T with n0 = 0, and (n + i)th column belongs to ∂B�q+i (ζ )T. Note that

∂B�i(ζ )T ⊆ ρ1[∇Fi(ζ ) ∇Gi(ζ )] ∂BφFB(Fi(ζ ), Gi(ζ ))T,

∂B�q+i (ζ )T ⊆ ρ2[∇Fi(ζ ) ∇Gi(ζ )] ∂Bφ0(Fi(ζ ), Gi(ζ ))T. (20)

Also, by Lemmas 3.1(c) and 3.2(c), each element in ∂BφFB(Fi(ζ ), Gi(ζ ))T and

∂Bφ0(Fi(ζ ), Gi(ζ ))T has the form of
(

Ai(ζ )−I
Bi (ζ )−I

)
and

(
Ci(ζ )
Di(ζ )

)
, respectively, with Ai(ζ ), Bi(ζ ) and
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Ci(ζ ), Di(ζ ) for i = 1, . . . , q characterized as in the proposition. Combining with Equations (19)
and (20), we obtain the desired result. �

To prove the fast local convergence of non-smooth Levenberg–Marquardt methods, we need to
know under what conditions every element H ∈ ∂B�(ζ ∗) has full rank n, where ζ ∗ is a solution
of the SOCCP (1). To the end, define the index sets

I := {i ∈ {1, 2, . . . , q} | Fi(ζ
∗) = 0, Gi(ζ

∗) ∈ int(Kni )},
B := {i ∈ {1, 2, . . . , q} | Fi(ζ

∗) ∈ bd+(Kni ), Gi(ζ
∗) ∈ bd+(Kni )},

J := {i ∈ {1, 2, . . . , q} | Fi(ζ
∗) ∈ int(Kni ), Gi(ζ

∗) = 0}. (21)

If ζ ∗ satisfies strict complementarity, i.e. Fi(ζ
∗) + Gi(ζ

∗) ∈ int(Kni ) for all i, then {1, 2, . . . , q}
can be partitioned as I ∪ B ∪ J . Thus, if ∇G(ζ ∗) is invertible, then by rearrangement the matrix
P(ζ ∗) = ∇G(ζ ∗)−1∇F(ζ ∗) can be rewritten as

P(ζ ∗) =
⎛⎝P(ζ ∗)II P(ζ ∗)IB P(ζ ∗)IJ

P(ζ ∗)BI P(ζ ∗)BB P(ζ ∗)BJ
P(ζ ∗)J I P(ζ ∗)J B P(ζ ∗)J J

⎞⎠ .

Now we have the following results for the full rank of every element H ∈ ∂B�(ζ ∗).

Theorem 3.5 Let ζ ∗ be a strictly complementary solution of (1). Suppose that ∇G(ζ ∗) is invert-
ible and let P(ζ ∗) = ∇G(ζ ∗)−1∇F(ζ ∗). If P(ζ ∗)II is non-singular and its Schur-complement

P̂ (ζ ∗)II := P(ζ ∗)BB − P(ζ ∗)BIP(ζ ∗)−1
IIP(ζ ∗)IB, in the matrix

(
P(ζ ∗)II P(ζ ∗)IB
P(ζ ∗)BI P(ζ ∗)BB

)
has the

Cartesian P -property, then every element H in the B-subdifferential ∂B�(ζ ∗) has full column
rank n.

Proof Let H ∈ ∂B�(ζ ∗). By Proposition 3.4, H =
(

ρ1H1
ρ2H2

)
with H T

1 from the set ∂B�1(ζ
∗)T ×

· · · × ∂B�q(ζ
∗)T. From Theorem 4.1 of [22], H T

1 is non-singular under the given assumptions.
This implies the desired result rank(H) = n. �

The proof ofTheorem 3.5 is based on the important property of the first block ofH . Nevertheless,
when the first block H1 is singular, the second block H2 may contribute something to guarantee
that H has a full column rank n.

To close this section, we give a technical lemma that will be used in Section 5.

Lemma 3.6 Let ζ ∗ be a solution of (1) such that all elements in ∂B�(ζ ∗) have full column rank.
Then, there exist constants ε > 0 and c > 0 such that ‖(H TH)−1‖ ≤ c for all ‖ζ − ζ ∗‖ < ε and
all H ∈ ∂B�(ζ). Furthermore, for any given ν̄ > 0, H TH + νI are uniformly positive definite
for all ν ∈ [0, ν̄] and H ∈ ∂B�(ζ) with ‖ζ − ζ ∗‖ < ε.

Proof The proof is similar to [24, Lemma 2.6]. For completeness, we include it here. Suppose
that the claim of the lemma is not true. Then there exists a sequence {ζ k} converging to ζ ∗ and a
corresponding sequence of matrices {Hk} with Hk ∈ ∂B�(ζ k) for all k ∈ IN such that either H T

k Hk

is singular or ‖(H T
k Hk)

−1‖ → +∞ on a subsequence. Noting that H T
k Hk is symmetric positive

semi-definite, for the non-singular case, we have ‖(H T
k Hk)

−1‖ = 1/λmin(H
T
k Hk), which implies

that the condition ‖(H T
k Hk)

−1‖ → +∞ is equivalent to λmin(H
T
k Hk) → 0. Since ζ k → ζ ∗ and the

mapping ζ �→ ∂B�(ζ) is upper semi-continuous, it follows that the sequence {Hk} is bounded, and
hence it has a convergent subsequence. LetH∗ be a limit of such a sequence. Thenλmin(H

T∗ H∗) = 0
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by the continuity of the minimum eigenvalue. This means that H T∗ H∗ is singular. However, from
the fact that the mapping ζ �→ ∂B�(ζ) is closed, we have H∗ ∈ ∂B�(ζ ∗), which by the given
condition implies that H T∗ H∗ is non-singular. Thus, we obtain a contradiction, and the first part
follows. By the result of the first part and the definition of matrix norm, there exist constants ε > 0
and c > 0 such that

[λmin(H
TH + νI)]−1 = ‖(H TH + νI)−1‖ ≤ c

for all ν ∈ [0, ν̄] and H ∈ ∂B�(ζ) with ‖ζ − ζ ∗‖ < ε. This implies that

uT(H TH + νI)u ≥ λmin(H
TH + νI)‖u‖2 ≥ 1

c
‖u‖2 ∀ u ∈ R

n.

Therefore, all the matrices H TH + νI are uniformly positive definite. �

4. Properties of the merit function �

This section is devoted to the favourable properties of � defined by (14) and (15). To this end,
we need the following lemma which summarizes the properties of ψ .

Lemma 4.1 Let ψ : R
n × R

n → R+ be defined as in (15). Then, for any x, y ∈ R
n,

(a) ψ(x, y) = 0 ⇐⇒ �FB(x, y) = 0 ⇐⇒ x ∈ Kn, y ∈ Kn, 〈x, y〉 = 0;
(b) ψ(x, y) is continuously differentiable;
(c) 〈x, ∇xψ(x, y)〉 + 〈y, ∇yψ(x, y)〉 ≥ 2ψ(x, y);
(d) 〈∇xψ(x, y),∇yψ(x, y)〉 ≥ 0, and the equality holds if and only if ψ(x, y) = 0;
(e) ψ(x, y) = 0 ⇐⇒ ∇ψ(x, y) = 0 ⇐⇒ ∇xψ(x, y) = 0 ⇐⇒ ∇yψ(x, y) = 0.

Proof Part (a) is direct by the definition of ψ , and part (b) is from Lemmas 3.1(a) and 3.2(d).
We next consider part (c). By the definition of ψ ,

∇xψ(x, y) = ρ2
1∇xψFB(x, y) + ρ2

2φ0(x, y)y,

∇yψ(x, y) = ρ2
1∇yψFB(x, y) + ρ2

2φ0(x, y)x. (22)

From Lemma 6 (a) of [5] and the definition of φ0(x, y), it then follows that

〈x, ∇xψ(x, y)〉 + 〈y, ∇yψ(x, y)〉
= ρ2

1 [〈x, ∇xψFB(x, y)〉 + 〈y, ∇yψFB(x, y)〉] + 2ρ2
2φ0(x, y)xTy

= ρ2
1‖φFB(x, y)‖2 + 2ρ2

2φ0(x, y)2

= 2

(
ρ2

1ψFB(x, y) + 1

2
ρ2

2φ0(x, y)2

)
+ ρ2

2φ0(x, y)2

≥ 2ψ(x, y).

(d) Using the formulas in (22) and [5, Lemma 6(a)], it follows that

〈∇xψ(x, y),∇yψ(x, y)〉 = ρ4
1 〈∇xψFB(x, y),∇yψFB(x, y)〉 + ρ4

2xTyφ0(x, y)2

+ ρ2
1ρ2

2φ0(x, y)[〈x,∇xψFB(x, y)〉 + 〈y, ∇yψFB(x, y)〉]
= ρ4

1 〈∇xψFB(x, y),∇yψFB(x, y)〉 + ρ4
2φ0(x, y)3

+ 2ρ2
1ρ2

2φ0(x, y)ψFB(x, y). (23)
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The first term on the right-hand side of (23) is non-negative by [5, Lemma 6(b)], and the
last two terms are also non-negative. Therefore, 〈∇xψ(x, y),∇yψ(x, y)〉 ≥ 0, and moreover,
〈∇xψ(x, y),∇yψ(x, y)〉 = 0 if and only if

〈∇xψFB(x, y),∇yψFB(x, y)〉 = 0 and φ0(x, y) = 0,

which, together with Lemma 6(b) of [5], implies the desired result.
(e) If ψ(x, y) = 0, then from the definition of ψ it follows that φFB(x, y) = 0 and φ0(x, y) = 0.

From Proposition 1 of [5], we immediately obtain ∇xψFB(x, y) = ∇yψFB(x, y) = 0, and conse-
quently ∇xψ(x, y) = 0 and ∇yψ(x, y) = 0 by (22). If ∇ψ(x, y) = 0, then by part (c) and the
non-negativity of ψ , we get ψ(x, y) = 0. Thus we prove the first equivalence. For the second
equivalence, it suffices to prove the sufficiency. Suppose that ∇xψ(x, y) = 0. From part (d),
we readily get ψ(x, y) = 0, which together with part (a) and (22) implies ∇ψ(x, y) = 0. Con-
sequently, ∇ψ(x, y) = 0 ⇐⇒ ∇xψ(x, y) = 0. Similarly, ∇ψ(x, y) = 0 ⇐⇒ ∇yψ(x, y) = 0.
This implies the last equivalence. �

Lemma 4.1(b) shows that � is continuously differentiable. By Lemma 4.1(d), we can prove
every stationary point of � is a solution of Equation (1) under mild conditions.

Proposition 4.2 Let � : R
n → R+ be given by (14) and (15). Then every stationary point of

� is a solution of (1) under one of the following assumptions:

(a) ∇F(ζ ) and −∇G(ζ) are column monotone1 for any ζ ∈ R
n.

(b) For any ζ ∈ R
n, ∇G(ζ) is invertible and ∇G(ζ)−1∇F(ζ ) has Cartesian P0-property.

Proof When the assumption (a) is satisfied, using the same arguments as those of [5, Prop.
3] yields the desired result. Now suppose that the assumption (b) holds. Let ζ̄ be an arbitrary
stationary point of � and write

∇xψ(F (ζ ), G(ζ )) = (∇x1ψ(F1(ζ ), G1(ζ )), . . . , ∇xq
ψ(Fq(ζ ), Gq(ζ ))),

∇yψ(F (ζ ), G(ζ )) = (∇y1ψ(F1(ζ ), G1(ζ )), . . . , ∇yq
ψ(Fq(ζ ), Gq(ζ ))

)
.

Then,

∇�(ζ̄ ) = ∇F(ζ̄ )∇xψ(F (ζ̄ ), G(ζ̄ )) + ∇G(ζ̄ )∇yψ(F (ζ̄ ), G(ζ̄ )) = 0,

which, by the invertibility of ∇G, can be rewritten as

∇G(ζ̄ )−1∇F(ζ̄ )∇xψ(F (ζ̄ ), G(ζ̄ )) + ∇yψ(F (ζ̄ ), G(ζ̄ )) = 0. (24)

Suppose that ζ̄ is not the solution of Equation (1). By Lemma 4.1(e), we necessarily have

∇xψ(F (ζ̄ ), G(ζ̄ )) �= 0.

Using the Cartesian P0-property of ∇G(ζ̄ )−1∇F(ζ̄ ), there must exist an index ν ∈ {1, 2, . . . , q}
such that ∇xν

ψ(Fν(ζ̄ ), Gν(ζ̄ )) �= 0 and

〈∇xν
ψ(Fν(ζ̄ ), Gν(ζ̄ )), [∇G(ζ̄ )−1∇F(ζ̄ )∇xψ(F (ζ̄ ), G(ζ̄ ))]ν〉 ≥ 0. (25)

In addition, note that (24) is equivalent to

[∇G(ζ̄ )−1∇F(ζ̄ )∇xψ(F (ζ̄ ), G(ζ̄ ))]i + ∇yi
ψ(Fi(ζ̄ ), Gi(ζ̄ )) = 0, i = 1, 2, . . . , q.
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Making the inner product with ∇xν
ψ(F (ζ̄ ), G(ζ̄ )) for the νth equality, we obtain

〈∇xν
ψ(Fν(ζ̄ ), Gν(ζ̄ )), [∇G(ζ̄ )−1∇F(ζ̄ )∇xψ(F (ζ̄ ), G(ζ̄ ))]ν〉

+ 〈∇xν
ψ(Fν(ζ̄ ), Gν(ζ̄ )), ∇yν

ψ(Fν(ζ̄ ), Gν(ζ̄ ))〉 = 0.

The first term on the left-hand side is non-negative by (25), whereas the second term is positive
by Lemma 4.1(d) since ζ is not a solution of (1). This leads to a contradiction, and consequently
ζ̄ must be a solution of (1). �

When ∇G(ζ) is invertible for any ζ ∈ R
n, the assumption in (a) is equivalent to the positive

semi-definiteness of ∇G(ζ)−1∇F(ζ ) at any ζ ∈ R
n, which implies the Cartesian P0-property of

∇G(ζ)−1∇F(ζ ). Thus, for the SOCCP (3), the assumption (a) is stronger than the assumption
(b) which is now equivalent to the Cartesian P0-property of F .

Next we provide a condition to guarantee the boundedness of the level sets of �

L�(γ ) := {ζ ∈ R
n | �(ζ) ≤ γ }

for all γ ≥ 0. This property is important since it guarantees that the descent sequence of � must
have a limit point, and the solution set of (1) is bounded if it is non-empty. It turns out that the
following condition for F and G is sufficient.

Condition A. For any sequence {ζ k} satisfying ‖ζ k‖ → +∞, whenever

lim sup ‖[−F(ζ k)]+‖ < +∞ and lim sup ‖[−G(ζ k)]+‖ < +∞, (26)

there exists an index ν ∈ {1, 2, . . . , q} such that lim sup〈Fν(ζ
k), Gν(ζ

k)〉 = +∞.

Proposition 4.3 If the mappings F and G satisfy Condition A, then the level sets L�(γ ) are
bounded for all γ ≥ 0.

Proof Assume that there is a unbounded sequence {ζ k} ⊆ L�(γ ) for someγ ≥ 0. Since�(ζ k) ≤
γ for all k, the sequence {�FB(ζ k)} is bounded. By Lemma 8 of [5],

lim sup ‖[−Fi(x
k)]+‖ < +∞ and lim sup ‖[−Gi(x

k)]+‖ < +∞
hold for all i ∈ {1, 2, . . . , q}. This shows that F and G satisfy Condition A, and hence there exists
an index ν such that lim sup〈Fν(ζ

k), Gν(ζ
k)〉 = +∞. From the definition of �, it follows that

the sequence {�(ζ k)} is unbounded, which clearly contradicts the fact that {ζ k} ⊆ L�(γ ). The
proof is completed. �

Condition A is rather weak to guarantee that � has bounded level sets since, as will be shown
below, the condition is implied by the joint monotonicity of F and G with the strict feasibility of
(1) used in [5] for fYF , the jointly uniform Cartesian P -functions with a feasible point, and the
joint R̃01-property in the following sense.

Definition 4.4 The mappings F, G : R
n → R

n are said to have the joint R̃01-property if for any
sequence {ζ k} with

‖ζ k‖ → +∞,
‖[−G(ζ k)]+‖

‖ζ k‖ → 0,
‖[−F(ζ k)]+‖

‖ζ k‖ → 0, (27)

there holds that

lim inf
k→+∞

〈F(ζ k), G(ζ k)〉
‖ζ k‖ > 0. (28)
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Proposition 4.5 Condition A is satisfied if one of the following conditions holds:

(a) F and G are jointly monotone mappings with lim‖ζ‖→+∞ ‖F(ζ )‖ + ‖G(ζ)‖ = +∞, and
there exists a point ζ̂ ∈ R

n such that F(ζ̂ ), G(ζ̂ ) ∈ int(K).
(b) The mappings F and G have jointly uniform Cartesian P -property, and there exists a point

ζ̂ ∈ R
n such that F(ζ̂ ), G(ζ̂ ) ∈ K.

(c) The mappings F and G have the joint R̃01-property.

Proof In the proof, let {ζ k} be a sequence satisfying ‖ζ k‖ → +∞ and (26) holds.
(a) First, {λ1[F(ζ k)]} and {λ1[G(ζ k)]} must be bounded from below. If not, using

‖[−x]+‖2 = (max{0, −λ1(x)})2 + (max{0, −λ2(x)})2,

we obtain lim sup ‖[−F(ζ k)]+‖ = +∞ or lim sup ‖[−G(ζ k)]+‖ = +∞, contradicting the
assumption that {ζ k} satisfies Equation (26). Noting that ‖F(ζ k)‖ + ‖G(ζ k)‖ → +∞ and

‖F(ζ k)‖ + ‖G(ζ k)‖ =
√

λ2
1[F(ζ k)] + λ2

2[F(ζ k)]
2

+
√

λ2
1[G(ζ k)] + λ2

2[G(ζ k)]
2

,

the lower boundness of {λ1[F(ζ k)]} and {λ1[G(ζ k)]} implies that

lim sup λ2[F(ζ k)] = +∞ or lim sup λ2[G(ζ k)] = +∞.

From the proof of [5, Lemma 9(b)] it then follows that

lim sup{〈F(ζ k), G(ζ̂ )〉 + 〈F(ζ̂ ), G(ζ k)〉} = +∞. (29)

Now suppose that Condition A is not satisfied. Then, we necessarily have

lim sup〈Fi(ζ
k), Gi(ζ

k)〉 < +∞ for all i = 1, 2, . . . , q.

In addition, from the joint monotonicity of F and G, we have

〈F(ζ k), G(ζ̂ )〉 + 〈F(ζ̂ ), G(ζ k)〉 ≤ 〈F(ζ k), G(ζ k)〉 + 〈F(ζ̂ ), G(ζ̂ )〉

=
q∑

i=1

〈Fi(ζ
k), Gi(ζ

k)〉 + 〈F(ζ̂ ), G(ζ̂ )〉.

The last two equations imply lim sup{〈F(ζ k), G(ζ̂ )〉 + 〈F(ζ̂ ), G(ζ k)〉} < +∞. This clearly
contradicts (29), and consequently the desired result follows.

(b) By Definition 2.2(a), there exists a constant ρ > 0 such that

ρ‖ζ k − ζ̂‖2 ≤ max
i∈{1,...,q}{〈Fi(ζ

k) − Fi(ζ̂ ), Gi(ζ
k) − Gi(ζ̂ )〉}

= 〈Fν(ζ
k), Gν(ζ

k)〉 + 〈Fν(ζ̂ ), −Gν(ζ
k)〉

+ 〈−Fν(ζ
k), Gν(ζ̂ )〉 + 〈Fν(ζ̂ ), Gν(ζ̂ )〉

≤ 〈Fν(ζ
k), Gν(ζ

k)〉 + 〈Fν(ζ̂ ), [−Gν(ζ
k)]+〉

+ 〈[−Fν(ζ
k)]+, Gν(ζ̂ )〉 + 〈F(ζ̂ ), Gν(ζ̂ )〉,



Optimization Methods & Software 13

where ν is one of the indices for which the max is attained which we have, without loss of
generality, assumed to be independent of k, and the second inequality is since

Fν(ζ̂ ) ∈ Knν , Gν(ζ̂ ) ∈ Knν , [−Fν(ζ
k)]− ∈ −Knν , [−Gν(ζ

k)]− ∈ −Knν .

Dividing the last inequality by ‖ζ k‖2 and taking the limit, it follows from (26) that

lim
k→+∞

〈Fν(ζ
k), Gν(ζ

k)〉
‖ζ k‖2

≥ ρ > 0,

which immediately implies the result.
(c) Clearly, {ζ k} satisfies (27), and the result follows by the following implications:

lim inf
k→+∞

〈F(ζ k), G(ζ k)〉
‖ζ k‖ > 0 =⇒ lim inf

k→+∞
maxi{〈Fi(ζ

k), Gi(ζ
k)〉}

‖ζ k‖ > 0

=⇒ max
i

{〈Fi(ζ
k), Gi(ζ

k)〉} → +∞.

So far, we complete the proof of this proposition. �

When G(ζ) ≡ ζ , if we replace (28) with lim infk→+∞ 〈F(ζ k), G(ζ k)〉/‖ζ k‖2 > 0, then
Definition 4.4 is saying that F is a R01-function. Thus, Propositions 4.3 and 4.5 (a) show that �

has bounded level sets under a weaker condition than the one given by [3, Prop. 4.1 (a)] for the
class of merit functions fYF.

To close this section, we show that the function � provides a global error bound for the solution
of SOCCP (1) under the jointly uniform Cartesian P -property of F and G. Since the jointly strong
monotonicity implies the jointly uniform Cartesian P -property, the global error bound condition
is weaker than that of [5, Prop. 5].

Proposition 4.6 Let ζ ∗ be a solution of (1). Suppose that F and G have the jointly uniform
Cartesian P -property. Then, there exists a scalar κ > 0 such that

‖ζ − ζ ∗‖2 ≤ κ�(ζ )1/2 ∀ζ ∈ R
n.

Proof Since F and G have the jointly uniform Cartesian P -property, there exists a scalar ρ > 0
such that, for any ζ ∈ R

n, there is an index ν ∈ {1, . . . , q} such that

ρ‖ζ − ζ ∗‖2 ≤ 〈Fν(ζ ) − Fν(ζ
∗), Gν(ζ ) − Gν(ζ

∗)〉
= 〈Fν(ζ ), Gν(ζ )〉 + 〈−Fν(ζ ), Gν(ζ

∗)〉 + 〈Fν(ζ
∗), −Gν(ζ )〉

≤ 〈Fν(ζ ), Gν(ζ )〉 + 〈[−Fν(ζ )]+, Gν(ζ
∗)〉 + 〈Fν(ζ

∗), [−Gν(ζ )]+〉
≤ φ0(Fν(ζ ), Gν(ζ )) + ‖[−Fν(ζ )]+‖‖Gν(ζ

∗)‖ + ‖Fν(ζ
∗)‖‖[−Gν(ζ )]+‖

≤ c(φ0(Fν(ζ ), Gν(ζ )) + ‖[−Fν(ζ )]+‖ + ‖[−Gν(ζ )]+‖)
≤ c(φ0(Fν(ζ ), Gν(ζ )) + 4ψFB(Fν(ζ ), Gν(ζ ))1/2)

≤ c(
√

2/ρ2 + 4/ρ1)�(ζ )1/2,

where c := max{1, ‖Gν(ζ
∗)‖, ‖Fν(ζ

∗)‖}, the second inequality is using the fact that Gν(ζ
∗) ∈

Knν and Fν(ζ
∗) ∈ Knν , and the next to last inequality is due to [5, Lemma 8]. Letting κ :=

(c/ρ)(
√

2/ρ2 + 4/ρ1), we obtain the desired result. �
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5. Algorithm and convergence

It is known that the Levenberg–Marquardt method using (12) has the advantage that it reduces
the complementarity gap 〈ζ, F (ζ )〉 for the NCPs faster than the traditional non-smooth method
based on (8) does [18]. This motivates us to employ a Levenberg–Marquardt type method with
line search for solving the nonlinear least-square problem (14). We state its iterative scheme as
below.

Algorithm 5.1 (semi-smooth Levenberg–Marquardt method)

(S.0) Choose ζ 0 ∈ R
n, ρ1, ρ2 ∈ (0, 1), η, β ∈ (0, 1), σ ∈ (0, 1/2) and ε ≥ 0. Set k := 0.

(S.1) If ‖∇�(ζ k)‖ ≤ ε, then stop. Otherwise, go to the next step.
(S.2) Choose Hk ∈ ∂B�(ζ k) and νk > 0. Find a solution dk ∈ R

n of the linear system

(H T
k Hk + νkI )d = −∇�(ζ k), (30)

where νk > 0 is the Levenberg–Marquardt parameter.
(S.3) If dk satisfies

‖�(ζ k + dk)‖ ≤ η‖�(ζ k)‖, (31)

then ζ k+1 := ζ k + dk . Otherwise, compute tk = max{βl | l = 0, 1, 2, . . .} such that

�(ζ k + tkd
k) ≤ �(ζ k) + σ tk∇�(ζ k)Tdk. (32)

(S.4) Let ζ k+1 := ζ k + tkd
k , k := k + 1, and go to (S.1).

The above method is different from the classical Levenberg–Marquardt method for non-linear
least-square problems in that � is not continuously differentiable. If νk ≡ 0, the solution of (30)
is exactly the solution of the linear least-square problem

min
d∈Rn

1

2
‖Hkd + �(ζ k)‖2, (33)

since ∇�(ζ k) = H T
k �(ζ k). In this paper, we choose the parameter νk by

νk := min {p1, p2‖�(ζ k)‖�}, (34)

where p1, p2 > 0 are given constants and � is a real number from [1,2]. Such a choice is consistent
with the requirements for local superlinear (quadratic) convergence stated in Theorems 5.3 and
5.6 below, as well as adopted by numerical experiments.

In what follows, we study the convergence properties of the algorithm. For this purpose, assume
that ε equals to 0. We first state a global convergence result.

Theorem 5.2 Let {ζ k} be the sequence generated by Algorithm 5.1 with νk updated by (34).
Then every accumulation point of {ζ k} is a stationary point of �.

Proof From the steps of Algorithm 5.1, {ζ k} is well-defined since νk > 0, and dk determined
by (30) is always a descent direction of � at ζ k . Let ζ ∗ be an arbitrary accumulation point of
{ζ k} and {ζ k}K be a subsequence converging to ζ ∗. Suppose that ∇�(ζ ∗) �= 0. Since {�(ζ k)}
is monotonically decreasing and bounded below, and {�(ζ k)}K converges to �(ζ ∗), the entire
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sequence {�(ζ k)} converges to �(ζ ∗) > 0. This implies that (31) holds for only finitely many
k ∈ K , and the inequality (32) is satisfied for all sufficiently large k. Since

�(ζ k+1) − �(ζ k) ≤ σ tk∇�(ζ k)Tdk ≤ 0

for sufficiently large k, using �(ζ k+1) − �(ζ k) → 0 yields that

{tk∇�(ζ k)Tdk}K → 0. (35)

We next prove that {∇�(ζ k)Tdk}K has a non-zero limit. By the definition of dk ,

∇�(ζ k)Tdk = −∇�(ζ k)T(H T
k Hk + νkI )−1∇�(ζ k) ∀k. (36)

Since the B-subdifferential ∂B�(ζ) is a non-empty compact set for any ζ ∈ R
n, {Hk}K is bounded.

Without loss of generality, assume that {Hk}K → H∗. Taking into account that the set-valued
mapping ζ �→ ∂B�(ζ) is closed and {ζ k}K → ζ ∗, we have H∗ ∈ ∂B�(ζ ∗). In addition, since
�(ζ ∗) �= 0, we have νk → ν∗ with ν∗ = min{p1, p2‖�(ζ ∗)‖�} > 0. Thus, {H T

k Hk + νkI }k∈K →
H T∗ H∗ + ν∗I � 0. This, together with (36) and the continuity of ∇�, implies that {∇�(ζ k)Tdk}K
has a non-zero limit as k → +∞. From (35), it then follows that {tk}K → 0. Now, for sufficiently
large k, let lk ∈ {0, 1, . . .} be the unique exponent such that tk = βlk . Since {tk}K → 0, we have
{lk}k∈K → ∞. From the Armijo line search in (S.3), for sufficiently large k ∈ K ,

�(ζ k + βlk−1dk) − �(ζ k)

βlk−1
> σ∇�(ζ k)Tdk. (37)

Taking the limit k → ∞ with k ∈ K and using {lk}K → ∞ and {ζ k}K → ζ ∗, we have
∇�(ζ ∗)Td∗ ≥ σ∇�(ζ ∗)Td∗. This means ∇�(ζ ∗)Td∗ ≥ 0. On the other hand, we learn from
Equation (30) that {dk}K → d∗ with d∗ being the solution of

(H T
∗ H∗ + ν∗I )d = −∇�(ζ ∗), (38)

which implies ∇�(ζ ∗)Td∗ < 0 since (H T∗ H∗ + ν∗I )� 0. Thus, we get a contradiction. �

Observe that the sequence {ζ k} generated by Algorithm 5.1 always belongs to the level set
L�(�(ζ 0)). By Propositions 4.3 and 4.5, the existence of accumulation points of {ζ k} is guaran-
teed by one of the assumptions of Proposition 4.5. Since when F and G have the jointly uniform
Cartesian P -property, the SOCCP (1) has at most one solution, {ζ k} must have a unique accu-
mulation point which is the unique solution of (1) if F and G satisfies the assumption (c) of
Proposition 4.5. For the SOCCP (3), the sequence {ζ k} has accumulation points and each of them
is a solution under the assumption that F is monotone and (3) is strictly feasible.

Next we establish the superlinear (or quadratic) convergence of Algorithm 5.1 under the strict
complementarity of the solution. This condition seems to be a little rigorous, and later we will
replace it with a local error bound assumption.

Theorem 5.3 Let {ζ k} be generated by Algorithm 5.1 with νk given by (34). Suppose that ζ ∗ is
an accumulation point of {ζ k} with ζ ∗ being a strictly complementary solution of Equation (1),
and F and G at ζ ∗ satisfy the condition of Theorem 3.5. Then,

(a) the entire sequence {ζ k} converges to ζ ∗.
(b) The full stepsize tk = 1 is always accepted for sufficiently large k and the rate of convergence

is Q-superlinear.
(c) The rate of convergence is Q-quadratic if, in addition, F ′ and G′ are locally Lipschitz

continuous around ζ ∗ and νk = O(‖�(ζ k)‖).
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Proof The proof is similar to the one given by [18]. We include it for completeness.
(a) By the proof technique of Theorem 3.1(b) of [8], it suffices to prove that ζ ∗ is an isolated

solution. From Theorem 3.5 and Lemma 3.6, there exist ε1, κ1 > 0 such that

‖H(ζ − ζ ∗)‖2 = (ζ − ζ ∗)H TH(ζ − ζ ∗) ≥ κ1‖ζ − ζ ∗‖2

for all ζ satisfying ‖ζ − ζ ∗‖ < ε1 and all H ∈ ∂B�(ζ). In addition, the semi-smoothness of �

implies that there exists ε2 > 0 such that

‖�(ζ) − �(ζ ∗) − H(ζ − ζ ∗)‖ ≤
(√

κ1

2

)
‖ζ − ζ ∗‖

for all H ∈ ∂B�(ζ) with ζ satisfying ‖ζ − ζ ∗‖ < ε2. Set ε = min{ε1, ε2}. Then,

‖�(ζ)‖ = ‖H(ζ − ζ ∗) + (�(ζ ) − �(ζ ∗) − H(ζ − ζ ∗))‖
≥ ‖H(ζ − ζ ∗)‖ − ‖�(ζ) − �(ζ ∗) − H(ζ − ζ ∗)‖

≥
(√

κ1

2

)
‖ζ − ζ ∗‖

for all ζ with ‖ζ − ζ ∗‖ < ε. This means that ζ ∗ is an isolated solution of the SOCCP.
(b) We first prove that for sufficiently large k,

‖ζ k + dk − ζ ∗‖ = o(‖ζ k − ζ ∗‖). (39)

By part (a), the sequence {ζ k} converges to a solution ζ ∗ satisfying the assumptions of Theorem 3.5.
By Lemma 3.6, there exists c > 0 such that ‖(H T

k Hk + νkI )−1‖ ≤ c for all k. Noting that the
sequence {Hk} is bounded, there exists c1 > 0 such that ‖H T

k ‖ ≤ c1 for all k. Using Theorem 5.2
and the fact that �(ζ ∗) = 0, we obtain

‖ζ k + dk − ζ ∗‖ = ‖ζ k − (H T
k Hk + νkI )−1∇�(ζ k) − ζ ∗‖

≤ ‖(H T
k Hk + νkI )−1‖‖∇�(ζ k) − (H T

k Hk + νkI )(ζ k − ζ ∗)‖
≤ c‖H T

k �(ζ k) − H T
k Hk(ζ

k − ζ ∗) − νk(ζ
k − ζ ∗)‖

= c‖H T
k (�(ζ k) − �(ζ ∗) − Hk(ζ

k − ζ ∗)) − νk(ζ
k − ζ ∗)‖

≤ c(c1‖�(ζ k) − �(ζ ∗) − Hk(ζ
k − ζ ∗)‖ + νk‖ζ k − ζ ∗‖).

Note that �(ζ k) − �(ζ ∗) − Hk(ζ
k − ζ ∗) = o(‖ζ k − ζ ∗‖) by the semi-smoothness of �, whereas

νk → 0 by part (a) and the continuity of �. Thus, the inequality above implies Equation (39). To
prove that the full step is eventually accepted, by (31) it suffices to show that

lim
k→∞

�(ζ k + dk)

�(ζ k)
= 0. (40)

Since all elements V ∈ ∂B�FB(ζ ∗) are non-singular by [22, Theorem 4.1], from Lemma 3.6 and
the proof of part (a), there exists a constant α > 0 such that

‖�(ζ k)‖ ≥ ρ1‖�FB(ζ k)‖ ≥ α‖ζ k − ζ ∗‖.
Using the locally Lipschitz continuity of � and Equation (39) then yields

‖�(ζ k + dk)‖
‖�(ζ k)‖ ≤ ‖�(ζ k + dk) − �(ζ ∗)‖

α‖ζ k − ζ ∗‖ ≤ L‖ζ k + dk − ζ ∗‖
α‖ζ k − ζ ∗‖ → 0,
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where L > 0 denotes the locally Lipschitz constant of �. Thus, the stepsize tk = 1 is eventually
accepted in the line search criterion, i.e. ζ k+1 = ζ k + dk for all k large enough. Consequently,
Q-suplinear convergence of {ζ k} to ζ ∗ follows from (39).

(c) The proof is essentially same as for the superlinear convergence. We only note that νk in
Equation (34) satisfies νk = O(‖�(ζ k)‖) = O(‖ζ k − ζ ∗‖) for k large enough, and

�(ζ k) − �(ζ ∗) − Hk(ζ
k − ζ ∗) = O(‖ζ k − ζ ∗‖2)

due to the strong semi-smoothness of � by Proposition 3.3. �

We next establish the superlinear (quadratic) convergence of Algorithm 5.1 under a local error
bound assumption, which is stated as follows:

Assumption 5.4 There exist constants κ2 > 0 and 0 < δ < 1 such that

κ2dist(ζ, S∗) ≤ ‖�(ζ)‖ ∀ζ ∈ N (ζ ∗, δ), (41)

where S∗ denotes the solution set of (1) and is assumed to be non-empty.

Lemma 5.5 Let ζ k be generated by Algorithm 5.1 with νk given by (34). Suppose that F ′ and G′
are Lipschitz continuous on N (ζ ∗, δ) and Assumption 5.4 holds. If νk = p2‖�(ζ k)‖� and ζ k ∈
N (ζ ∗, δ/2), then there exists a constant c1 > 0 such that ‖dk‖ ≤ c1dist(ζ k, S∗). If, in addition,
ζ k + dk ∈ N (ζ ∗, δ/2), then there exists a constant c3 > 0 such that

dist(ζ k + dk, S∗) ≤ c3dist(ζ k, S∗)(�+2)/2.

Proof Let ζ̄ k ∈ S∗ be such that ‖ζ k − ζ̄ k‖ = dist(ζ k, S∗). Then, ζ̄ k ∈ N (ζ ∗, δ) since

‖ζ̄ k − ζ ∗‖ ≤ ‖ζ̄ k − ζ k‖ + ‖ζ k − ζ ∗‖ ≤ 2‖ζ k − ζ ∗‖ ≤ δ.

Noting that � is Lipschitz continuous on N (ζ ∗, δ), there exists a L1 > 0 such that

‖�(ζ k)‖ = ‖�(ζ k) − �(ζ̄ k)‖ ≤ L1‖ζ k − ζ̄ k‖.
Combining with the inequality (41), we have

p2κ
�

2 ‖ζ̄ k − ζ k‖� ≤ νk = p2‖�(ζ k)‖� ≤ p2L
�

1‖ζ k − ζ̄ k‖�. (42)

On the other hand, since � is strongly semi-smooth on N (ζ ∗, δ) by Proposition 3.3, there exists
a constant ĉ > 0 such that

‖�(ζ k) + Hk(ζ̄
k − ζ k)‖ = ‖�(ζ k) − �(ζ̄ k) − Hk(ζ

k − ζ̄ k)‖ ≤ ĉ‖ζ k − ζ̄ k‖2. (43)

Define

ϕk(d) := ‖�(ζ k) + Hkd‖2 + νk‖d‖2. (44)

Then, dk is a minimizer of ϕk(d). This, together with (43) and (42), yields that

‖dk‖2 ≤ ϕk(d
k)

νk

≤ ϕk(ζ̄
k − ζ k)

νk

= ‖�(ζ k) + Hk(ζ̄
k − ζ k)‖2 + νk‖ζ̄ k − ζ k‖2

νk

≤ ĉ2p−1
2 κ

−�

2 ‖ζ̄ k − ζ k‖4−� + ‖ζ̄ k − ζ k‖2

= (ĉ2p−1
2 κ

−�

2 + 1)‖ζ̄ k − ζ k‖2,
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which implies the first part with c1 =
√

ĉ2p−1
2 κ

−�

2 + 1. Noting that

ϕk(d
k) ≤ ϕk(ζ̄

k − ζ k) ≤ ‖�(ζ k) + Hk(ζ̄
k − ζ k)‖2 + νk‖ζ̄ k − ζ k‖2

≤ ĉ2‖ζ̄ k − ζ k‖4 + p2L
�

1‖ζ k − ζ̄ k‖2+�

≤ (ĉ2 + p2L
�

1)‖ζ k − ζ̄ k‖2+�,

we have

‖�(ζ k + dk)‖ = ‖�(ζ k + dk) − �(ζ k) − Hkd
k + �(ζ k) + Hkd

k‖
≤ ‖�(ζ k + dk) − �(ζ k) − Hkd

k‖ +
√

ϕk(dk)

≤ ĉ‖dk‖2 + (ĉ2 + p2L
�

1)
1/2‖ζ k − ζ̄ k‖(�+2)/2

≤ ĉ(ĉ2p−1
2 κ

−�

2 + 1)‖ζ̄ k − ζ k‖2 + (ĉ2 + p2L
�

1)
1/2‖ζ k − ζ̄ k‖(�+2)/2

≤ c2‖ζ k − ζ̄ k‖(�+2)/2

with c2 = ĉ(ĉ2p−1
2 κ

−�

2 + 1) + (ĉ2 + p2L
�

1)
1/2. Consequently,

dist(ζ k + dk, S∗) ≤ 1

κ2
‖�(ζ k + dk)‖ ≤ c2

κ2
‖ζ k − ζ̄ k‖(�+2)/2

= c3dist(ζ k, S∗)(�+2)/2,

where c3 = c2/κ2. Thus, we complete the proof of the second part. �

By Lemma 5.5, using arguments similar to [10, Theorem 2.1] and [29, Theorem 3.1], we get
the quadratic rate of convergence of Algorithm 5.1 under Assumption 5.4.

Theorem 5.6 Let {ζ k} be generated by Algorithm 5.1 with νk given by (34), and ζ ∗ be an
accumulation point of {ζ k}. If ζ ∗ is a solution of (1), then the sequence {ζ k} converges to ζ ∗
superlinearly, and moreover, quadratically, when � = 2, provided that F ′ and G′ are locally
Lipschitz continuous and Assumption 5.4 holds.

Now, we do not know whether Assumption 5.4 is weaker than the strict complementarity of the
solution, although the assumptions of Theorem 5.6 are weaker than those of Theorem 5.3, since
the latter implies that each element in ∂B�(ζ ∗) is non-singular, and so ‖�(ζ)‖ provides a local
error bound on some neighbourhood of the solution ζ ∗, but from [29] the former does not imply
the non-sigularity of each element in ∂B�(ζ ∗). From the proof of Lemma 5.5, we find that the
condition (41) cannot be weakened to

κ2dist(ζ, S∗) ≤ ‖�(ζ)‖1/2 ∀ζ ∈ N (ζ ∗, δ),

in order to guarantee the superlinear (or quadratic) convergence of Algorithm 5.1, and therefore
the global error bound result of Proposition 4.6 may not be applied for it. If let �(ζ) = ‖�(ζ)‖4/4
instead of �(ζ) = ‖�(ζ)‖2/2, thenAssumption 5.4 holds automatically under the jointly uniform
Cartesian P -property of F and G, but this will bring difficulty to numerical implementation due
to the bad scaling of �. Thus, it is worthwhile to study what conditions of F and G are sufficient
for Assumption 5.4 to hold.
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6. Numerical results

This section will report numerical results with the least-square semi-smooth method (LS semi-
smooth method for short) solving the SOCCP (1), derived from the KKT conditions of convex
SOCPs. As one referee pointed out, for the solution of convex SOCPs, the reformulation seems
to be circuitous since the KKT conditions can be directly written as a mixed SOCCP. How-
ever, since the purpose of this paper is to develop an efficient method for the general SOCCP
(1), instead of convex SOCPs, we here adopt such reformulation to get the corresponding test
instances for (1).

All experiments were done with a PC of Intel Pentium Dual CPU E2200 and 2047 MB memory,
and the computer codes were written in Matlab 7.0. Since the non-monotone line search [15] is
usually superior to the classical monotone line search, we replaced the Armijo line search of
Algorithm 5.1 by the non-monotone version in [15], i.e. we computed tk such that

�(ζ k + tkd
k) ≤ Wk + σ tk∇�(ζ k)Tdk,

where

Wk := max
j=k−mk,...,k

�(ζ j ),

and where, for a given non-negative integer m̂ and s, mk = 0 if k ≤ s, and otherwise mk =
min{mk−1 + 1, m̂}. In our tests, the parameters in Algorithm 5.1 were chosen as

ρ1 = 0.9, ρ2 = 0.1, η = 1.0e − 6, σ = 1.0e − 4, β = 0.5, m̂ = 5 and s = 5.

The parameter νk was chosen as in (34) with p1 = 1.0, p2 =10−5/n, and � = 1. We started
Algorithm 5.1 with the initial point ζ 0 = 0 and terminated it whenever

max{|F(ζ k)TG(ζ k)|, �(ζ k)} ≤ 10−6, or k > 150, or tk < 10−15. (45)

We compared the numerical performance of Algorithm 5.1 with that of the least-square semi-
smooth Newton method based on (8), called the FB semi-smooth method, which corresponds
to the special case of ρ1 = 1, ρ2 = 0 of Algorithm 5.1. For the linear SOCPs, we compared
the numerical results of the two semi-smooth methods with those of SeDuMi [26], a successful
interior point method software for the linear SOCPs and the semi-definite programming. The
parameters of the SeduMi were set as default values.

The first group of test instances is the linear SOCPs from the DIMACS Implementation Chal-
lenge library [23]. During the tests, we computed x̂ ∈ R

n in F as a solution of minx ‖Ax − b‖ by
Matlab’s least square solver ‘LSQLIN’, and evaluated F and G in (5) via the Cholesky factoriza-
tion of AAT. The results were reported in Table 1, where Optval denotes the objective value of
the SOCPs at the final iteration, Iter records the number of iteration, and NF means the number
of function evaluations for each problem.

From Table 1, we see that the two least-square semi-smooth Newton methods are able to
yield a solution with favourable accuracy for all test problems, and require less iterations for
‘nb_L2_bessel’ than the SeduMi. However, for ‘nb’ and ‘nb_L1’, they are incomparable with
the SeduMi in terms of the number of iterations. We also checked that the solutions of the two
problems do not satisfy the strict complementarity. For the two difficult test problems, the LS
semi-smooth method requires less iterations and function evaluations than the FB semi-smooth
method. Also, for ‘nb_L1’, the advantage of the LS semi-smooth method is more remarkable.

The second group of test instances is the non-linear convex SOCP (4) with sparse A. To generate
such test problems, we consider the problem of minimizing a sum of the k largest Euclidean
norms with a convex regularization term: minu≥0

∑k
i=1 ‖s[i]‖ + h(u), where ‖s[1]‖, . . . , ‖s[r]‖
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Table 1. Numerical results for the DIAMCS linear SOCPs.

LS semi-smooth method FB semi-smooth method SeDuMi

Problem Optval Iter NF Optval Iter NF Optval Iter

nb −5.070456e−2 38 87 −5.070467e−2 39 108 −5.070310e−2 21
nb-L1 −1.301223e + 1 90 126 −1.301223e + 1 106 187 −1.301227e + 1 18
nb-L2-bessel −1.025697e−1 10 16 −1.025697e−1 10 16 −1.025695e−1 16

are the norms ‖s1‖, . . . , ‖sr‖ sorted in non-increasing order with r ≥ k and si = bi − Aix for
i = 1, . . . , r with Ai ∈ R

mi×l and bi ∈ R
mi , and h : R

l → R is a twice continuously differentiable
convex function. The problem can be converted to

min

(
1 − k

r

) r∑
i=1

vi +
(

k

r

) r∑
i=1

wi + h(u)

s.t. Aiu + si = bi, i = 1, 2, . . . , r,

(w1 − v1) − (w2 − v2) = 0,

...

(w1 − v1) − (wr − vr) = 0,

u ≥ 0, vi ≥ 0, (wi, si) ∈ ×Kmi+1, i = 1, 2, . . . , r.

In the tests, we set h(u) := 1/3‖u‖3
3 with ‖ · ‖3 denoting the 3-norm, and generated each mi

randomly from {2, 3, . . . , 10}. All Ai were chosen as sparse matrices with approximately 10% ·
mi · d uniformly distributed non-zero entries, and all entries of bi were chosen from the uniform
distribution in [−1, 0]. For each (l, r, k), we generated 10 test instances, and then solved the
SOCCP (1) derived from the KKT conditions of each problem with the LS semi-smooth method
and the FB semi-smooth method. The mappings F and G in (5) were evaluated in the same way
as above. The first inequality in (45) was replaced by

max{|F(ζ k)TG(ζ k)|, �(ζ k)} ≤ 10−8.

The numerical results were listed in Table 2, in which the second column gives the average
dimension (m, n) of A for 10 problems, Gap denotes the average value of |F(ζ k)TG(ζ k)| at the
final iteration, NF means the average function evaluations for solving each instance, and Iter
denotes the average number of iterations for each instance to satisfy the termination conditions,
and Time records the average CPU time in seconds for solving each test problem.

From Table 2, we see that for the second group of test problems which is much easier than
‘nb’ and ‘nb_L1’, the LS semi-smooth method does not have a remarkable superiority to the FB
semi-smooth method. Among eight groups of test instances, the average number of iterations and
the average number of function evaluations required by the LS semi-smooth method are basically
same as that of the FB semi-smooth method, but the FB semi-smooth method requires less CPU
time due to less computation work at each iteration. Combining with the results in Table 1, we
conclude that the LS semi-smooth method is superior to the FB semi-smooth method only for
those difficult problems.
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Table 2. Numerical results for the non-linear convex SOCPs.

Dim. LS semi-smooth method FB semi-smooth method

(l, r , k) (m, n) Gap NF Iter Time Gap NF Iter Time

(500, 10, 5) (77, 588) 3.20e−9 45.3 22.4 9.01 3.16e−9 52.3 22.5 6.29
(500, 20, 5) (132, 653) 2.68e−9 39.8 22.9 12.4 1.99e−9 42.7 21.4 8.00
(500, 50, 5) (355, 906) 2.15e−9 50.9 28.9 36.1 2.44e−9 41.8 25 22.3
(500, 100, 2) (688, 1289) 4.08e−9 33.9 26.4 83.1 4.71e−9 33.5 27.5 65.3
(1000, 10, 5) (71, 1082) 2.74e−9 58.9 24.8 53.4 2.79e−9 65.6 25.5 35.6
(1000, 20, 5) (136, 1157) 2.44e−9 55.9 22.4 62.4 2.30e−9 57 24.3 41.1
(1000, 50, 5) (347, 1398) 1.99e−9 49.6 27.9 117.9 2.92e−9 48.7 27.8 81.2
(2000, 10, 5) (70, 2081) 2.10e−9 92.3 32.5 445.6 1.82e−9 88 31.2 276.8

7. Conclusion

We have presented a nonlinear least-square reformulation for the SOCCP (1) by use of the FB func-
tion and the plus function, which was shown to have some advantages over the non-smooth system
reformulation (8). Based on the reformulation, a semi-smooth Levenberg–Marquardt method was
developed, and the superlinear (quadratic) rate of convergence was established under the strict
complementarity of the solution and a local error bound assumption, respectively. Although the
local error bound assumption makes no requirements for the solution, we do not know what
conditions of F and G can guarantee it to hold. We will leave it as a future research topic.

It should be pointed out that other least-square formulations can be constructed in a similar
way; for example, appending (x)+ ◦ (y)+ or (x ◦ y)+ to the mapping �FB. But, it seems that the
formulation based on φ0 is the best, since the merit function corresponding to (x)+ ◦ (y)+ is not
smooth, whereas the one corresponding to (x ◦ y)+ does not have all the properties of Lemma
4.1. This is completely different from the NCP case. Since the strong semi-smoothness of the FB
function over general symmetric cones is still an open problem, now the method of this paper
cannot be extended to general symmetric cone complementarity problems.
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Note

1. M1, M2 ∈ R
n×n are column monotone if, for any u, v ∈ R

n, M1u + M2v = 0 ⇒ uTv = 0.
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