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a b s t r a c t

In this paper, we consider a neural network model for solving the nonlinear complemen-
tarity problem (NCP). The neural network is derived from an equivalent unconstrained
minimization reformulation of the NCP, which is based on the generalized Fischer–Burmei-
ster function /pða; bÞ ¼ kða; bÞkp � ðaþ bÞ. We establish the existence and the convergence
of the trajectory of the neural network, and study its Lyapunov stability, asymptotic stabil-
ity as well as exponential stability. It was found that a larger p leads to a better conver-
gence rate of the trajectory. Numerical simulations verify the obtained theoretical results.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

For decades, the nonlinear complementarity problem (NCP) has attracted a lot of attention because of its wide applica-
tions in operations research, economics, and engineering [9,12]. Given a mapping F : Rn ! Rn, the NCP is to find a point
x 2 Rn such that
x P 0; FðxÞP 0; hx; FðxÞi ¼ 0; ð1Þ
where h�; �i is the Euclidean inner product. Throughout this paper, we assume that F is continuously differentiable, and let
F ¼ ðF1; . . . ; FnÞT with Fi : Rn ! R for i ¼ 1; . . . ;n.

There have been many methods proposed for solving the NCP [9,12]. One of the most popular approaches is to reformu-
late the NCP as an unconstrained minimization problem via a merit function; see [14,19–21]. A merit function is a function
whose global minimizers coincide with the solutions of the NCP. The class of NCP-functions defined below is used to con-
struct a merit function.

Definition 1.1. A function / : R� R! R is called an NCP-function if it satisfies
/ða; bÞ ¼ 0() a P 0; b P 0; ab ¼ 0: ð2Þ
A popular NCP-function is the Fischer–Burmeister (FB) function [10,11], which is defined as
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/FBða; bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
� ðaþ bÞ: ð3Þ
The FB merit function wFB : R� R! Rþ can be obtained by taking the square of /FB, i.e.,
wFBða; bÞ :¼ 1
2
j/FBða; bÞj

2
: ð4Þ
In [1,3,4], we studied a family of NCP-functions that subsumes the FB function /FB as a special case. More specifically, we
define /p : R� R! R by
/pða; bÞ :¼ kða; bÞkp � ðaþ bÞ; ð5Þ
where p is any fixed real number from ð1;þ1Þ and kða; bÞkp denotes the p-norm of ða; bÞ, i.e., kða; bÞkp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jajp þ jbjpp

p
. In other

words, in the function /p, we replace the 2-norm of ða; bÞ in the FB function /FB by a more general p-norm of ða; bÞ. The func-
tion /p is still an NCP-function, as noted in Tseng’s paper [29]. There has been no further study on this NCP-function, even for
p ¼ 3, until recently [1,3,4]. Similar to /FB, the square of /p induces a nonnegative NCP-function wp : R� R! Rþ:
wpða; bÞ :¼ 1
2
j/pða; bÞj

2
: ð6Þ
The function wp is continuously differentiable and it has some favorable properties; see [1,3,4]. Moreover, if we define the
function Wp : Rn ! Rþ by
WpðxÞ :¼
Xn

i¼1

wpðxi; FiðxÞÞ ¼
1
2
kUpðxÞk2

; ð7Þ
where Up : Rn ! Rn is a mapping given as
UpðxÞ ¼

/pðx1; F1ðxÞÞ

..

.

/pðxn; FnðxÞÞ

0
BB@

1
CCA; ð8Þ
then the NCP can be reformulated into the following smooth minimization problem:
min
x2Rn

WpðxÞ: ð9Þ
Thus, WpðxÞ in (7) is a smooth merit function for the NCP.
Effective gradient-type methods can be applied to the unconstrained smooth minimization problem (9). However, in

many scientific and engineering applications, it is desirable to have a real-time solution of the NCP. Thus, traditional uncon-
strained optimization algorithms may not be suitable for real-time implementation because the computing time required for
a solution greatly depends on the dimension and structure of the problem. One promising way to overcome this problem is
to apply neural networks.

Neural networks for optimization were first introduced in the 1980s by Hopfield and Tank [16,28]. Since then, neural net-
works have been applied to various optimization problems, including linear programming, nonlinear programming, varia-
tional inequalities, and linear and nonlinear complementarity problems; see [6,8,7,15,17,18,22,24,31–35]. There have
been many studies on neural-network approaches to real-world problems in some other fields, such as [26,27,36]. The main
idea of the neural-network approach for optimization is to construct a nonnegative energy function and establish a dynamic
system that represents an artificial neural network. The dynamic system is usually in the form of first order ordinary differ-
ential equations. Furthermore, it is expected that the dynamic system will approach its static state (or an equilibrium point),
which corresponds to the solution for the underlying optimization problem, starting from an initial point. In addition, neural
networks for solving optimization problems are hardware-implementable; that is, the neural networks can be implemented
using integrated circuits.

In this paper, we focus on a neural-network approach to the NCP. We utilize WpðxÞ as the traditional energy function. As
mentioned above, the NCP is equivalent to the unconstrained smooth minimization problem (9). Therefore, it is natural to
adopt the following steepest descent-based neural network model for NCP:
dxðtÞ
dt
¼ �qrWpðxðtÞÞ; xð0Þ ¼ x0; ð10Þ
where q > 0 is a scaling factor. Most neural networks in the existing literature are projection-type ones based on other kinds
of NCP-functions, such as natural residual function (e.g. [18,33]) and the regularized gap function (e.g. [6]). Recently, neural
networks based on the FB function have been designed for linear and quadratic programming, and for nonlinear complemen-
tarity problems [8,24]. Our model is based on the generalized FB function, which is a generalization of the functions used in
[8,24]. We show that the neural network (10) is Lyapunov stable, asymptotically stable, and exponentially stable. We ob-
served in [2] that p has a great influence on the numerical performance of certain descent-type methods; a larger p yields
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a better convergence rate, whereas a smaller p often gives a better global convergence. Thus, whether such phenomena occur
in our neural network model is also investigated.

Throughout this paper, Rn denotes the space of n-dimensional real column vectors and T denotes the transpose. For any
differentiable function f : Rn ! R; rf ðxÞ means the gradient of f at x. For any differentiable mapping
F ¼ ðF1; . . . ; FmÞT : Rn ! Rm; rFðxÞ ¼ ½rF1ðxÞ � � �rFmðxÞ� 2 Rn�m denotes the transposed Jacobian of F at x. The p-norm of x
is denoted by kxkp and the Euclidean norm of x is denoted by kxk. Besides, ei is the n-dimensional vector whose i-th compo-
nent is 1 and 0 elsewhere. Unless otherwise stated, we assume that p in the sequel is any fixed real number in ð1;þ1Þ if not
specified.

2. Preliminaries

In this section, we review some properties of /p and wp, as well as materials of ordinary differential equations that will
play an important role in the subsequent analysis. We start with some concepts for a nonlinear mapping.

Definition 2.1. Let F ¼ ðF1; . . . ; FnÞT : Rn ! Rn. Then, the mapping F is said to be
(a) monotone if hx� y; FðxÞ � FðyÞiP 0 for all x; y 2 Rn;
(b) strongly monotone with modulus l > 0 if hx� y; FðxÞ � FðyÞiP lkx� yk2 for all x; y 2 Rn;
(c) an P0-function if max16i6n

xi–yi

ðxi � yiÞðFiðxÞ � FiðyÞÞP 0 for all x; y 2 Rn and x–y;
(d) a uniform P-function with modulus j > 0 if max16i6nðxi � yiÞðFiðxÞ � FiðyÞÞP jkx� yk2, for all x; y 2 Rn;
(e) Lipschitz continuous if there exists a constant L > 0 such that kFðxÞ � FðyÞk 6 Lkx� yk for all x; y 2 Rn.

From Definition 2.1, the following one-sided implications can be obtained:
F is strongly monotone ) F is a uniformP-function ) F is an P0 function; rF is positive semidefinite

) F is monotone ) F is an P0 function:
Nevertheless, we point out that F being a uniform P-function does not necessarily imply that F is monotone. The following
two lemmas summarize some favorable properties of /p and wp, respectively. Since their proofs can be found in [2–4], we
here omit them.

Lemma 2.1. Let /p : R� R! R be given by (5). Then, the following properties hold.
(a) /p is a positive homogeneous and sub-additive NCP-function.
(b) /p is Lipschitz continuous with L ¼

ffiffiffi
2
p
þ 2ð1=p�1=2Þ for 1 < p < 2, and L ¼

ffiffiffi
2
p
þ 1 for p P 2.

(c) /p is strongly semismooth.
(d) If fðak; bkÞg# R� R with ak ! �1, or bk ! �1, or ak !1; bk !1, then j/pðak; bkÞj ! 1 when k!1.
(e) Given a point ða; bÞ 2 R� R, every element in the generalized gradient @/pða; bÞ has the representation ðn� 1; f� 1Þ with
n ¼ sgnðaÞ � jajp�1

kða; bÞkp�1
p

and f ¼ sgnðbÞ � jbjp�1

kða; bÞkp�1
p

for ða; bÞ–ð0;0Þ, where sgnð�Þ represents the sign function; otherwise, n and f are real numbers that satisfy jnj
p

p�1 þ jfj
p

p�1 6 1.

Lemma 2.2. Let /p and wp be defined as in (5) and (6), respectively. Then,

(a) wpða; bÞP 0 for all a; b 2 R and wp is an NCP-function, i.e., it satisfies (2).
(b) wp is continuously differentiable everywhere. Moreover, rawpða; bÞ ¼ rbwpða; bÞ ¼ 0 if ða; bÞ ¼ ð0;0Þ; otherwise,
rawpða; bÞ ¼
sgnðaÞ � jajp�1

kða; bÞkp�1
p

� 1

 !
/pða; bÞ;

rbwpða; bÞ ¼
sgnðbÞ � jbjp�1

kða; bÞkp�1
p

� 1

 !
/pða; bÞ:

ð11Þ
(c) rawpða; bÞ � rbwpða; bÞP 0 for all a; b 2 R. The inequality becomes an equality if and only if /pða; bÞ ¼ 0.
(d) rawpða; bÞ ¼ 0()rbwpða; bÞ ¼ 0() /pða; bÞ ¼ 0() wpða; bÞ ¼ 0.
(e) The gradient of wp is Lipschitz continuous for p P 2, i.e., there exists L > 0 such that
krwpða; bÞ � rwpðc;dÞk 6 Lkða; bÞ � ðc;dÞk for all ða; bÞ; ðc;dÞ 2 R2 and p P 2:
(f) For all a; b 2 R, we have ð2� 21=pÞminfa; bg 6 j/pða; bÞj 6 ð2þ 21=pÞminfa; bg.
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Next, we recall some materials about first order differential equations (ODE):
_xðtÞ ¼ HðxðtÞÞ; xðt0Þ ¼ x0 2 Rn; ð12Þ
where H : Rn ! Rn is a mapping. We also introduce three kinds of stability that will be discussed later. These materials can
be found in ODE textbooks; see [25].

Definition 2.2. A point x� ¼ xðt�Þ is called an equilibrium point or a steady state of the dynamic system (12) if Hðx�Þ ¼ 0. If there
is a neighborhood X�# Rn of x� such that Hðx�Þ ¼ 0 and HðxÞ–0 8x 2 X� n fx�g, then x� is called an isolated equilibrium point.

Lemma 2.3. Assume that H : Rn ! Rn is a continuous mapping. Then, for any t0 P 0 and x0 2 Rn, there exists a local solution xðtÞ
for (12) with t 2 ½t0; sÞ for some s > t0. If, in addition, H is locally Lipschitz continuous at x0, then the solution is unique; if H is
Lipschitz continuous in Rn, then s can be extended to 1.

If a local solution defined on ½t0; sÞ cannot be extended to a local solution on a larger interval ½t0; s1Þ; s1 > s, then it is
called a maximal solution, and the interval ½t0; sÞ is the maximal interval of existence. Clearly, any local solution has an
extension to a maximal one. We denote ½t0; sðx0ÞÞ by the maximal interval of existence associated with x0.

Lemma 2.4. Assume that H : Rn ! Rn is continuous. If xðtÞ with t 2 ½t0; sðx0ÞÞ is a maximal solution and sðx0Þ <1, then
limt"sðx0ÞkxðtÞk ¼ 1.

Definition 2.3. Stability in the sense of LyapunovLet xðtÞ be a solution for (12). An isolated equilibrium point x� is Lyapunov
stable if for any x0 ¼ xðt0Þ and any e > 0, there exists a d > 0 such that kxðtÞ � x�k < e for all t P t0 and kxðt0Þ � x�k < d.
Definition 2.4 (Asymptotic stability). An isolated equilibrium point x� is said to be asymptotically stable if in addition to
being Lyapunov stable, it has the property that xðtÞ ! x� as t !1 for all kxðt0Þ � x�k < d.

Definition 2.5 (Lyapunov function). Let X # Rn be an open neighborhood of �x. A continuously differentiable function
W : Rn ! R is said to be a Lyapunov function at the state �x over the set X for Eq. (12) if
Wð�xÞ ¼ 0; WðxÞ > 0; 8x 2 X n f�xg:
dWðxðtÞÞ

dt ¼ rWðxðtÞÞT HðxðtÞÞ 6 0; 8x 2 X:

(
ð13Þ
Lemma 2.5

(a) An isolated equilibrium point x� is Lyapunov stable if there exists a Lyapunov function over some neighborhood X� of x�.
(b) An isolated equilibrium point x� is asymptotically stable if there is a Lyapunov function over some neighborhood X� of x�

such that dWðxðtÞÞ
dt < 0 for all x 2 X� n fx�g.
Definition 2.6 (Exponential stability). An isolated equilibrium point x� is exponentially stable if there exists a d > 0 such that
arbitrary point xðtÞ of (10) with the initial condition xðt0Þ ¼ x0 and kxðt0Þ � x�k < d is well-defined on ½0;þ1Þ and satisfies
kxðtÞ � x�k2 6 ce�xtkxðt0Þ � x�k 8t P t0;
where c > 0 and x > 0 are constants independent of the initial point.
3. Neural network model

We now discuss properties of the neural network model introduced in (10). First, from Lemma 2.2(a), we obtain the fol-
lowing result.

Proposition 3.1. Let Wp : Rn ! Rþ be defined as in (7). Then, WpðxÞP 0 for all x 2 Rn and WpðxÞ ¼ 0 if and only if x solves the
NCP.

Proposition 3.2. Let Wp : Rn ! Rþ be given by (7). Then, the following results hold.

(a) The function Wp is continuously differentiable everywhere with
rWpðxÞ ¼ VTUpðxÞ for any V 2 @UpðxÞ ð14Þ
or
rWpðxÞ ¼ rawpðx; FðxÞÞ þ rFðxÞrbwpðx; FðxÞÞ ð15Þ
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with
rawpðx; FðxÞÞ :¼ rawpðx1; F1ðxÞÞ; . . . ;rawpðxn; FnðxÞÞ
� �T

;

rbwpðx; FðxÞÞ :¼ rbwpðx1; F1ðxÞÞ; . . . ;rbwpðxn; FnðxÞÞ
� �T

:

(b) If F is an P0-function, then every stationary point of (9) is a global minimizer of WpðxÞ, and it consequently solves the NCP.
(c) If F is a uniform P-function, then the level sets LðWp; cÞ :¼ fx 2 RnjWpðxÞ 6 cg are bounded for all c 2 R.
(d) WpðxðtÞÞ is nonincreasing with respect to t.
Proof. The first equality in (a) follows from Lemma 2.2(c) and [5, Theorem 2.6.6]. The second one follows from the chain
rule. Part (b) is the result of [3, Proposition 3.4], and part (c) is the result of [4, Proposition 3.5]. It remains to show part
(d). By the definition of WpðxÞ and (10), it is not difficult to compute
dWpðxðtÞÞ
dt

¼ rWpðxðtÞÞT
dxðtÞ

dt
¼ rWpðxðtÞÞT �qrWpðxðtÞÞ

� �
¼ �qkrWpðxðtÞÞk2

6 0: ð16Þ
Therefore, WpðxðtÞÞ is a monotonically decreasing function with respect to t. h

Proposition 3.2(a) provides two ways to computerWpðxÞ, which is needed in the network (10). One is to use formula (14),
for which we give an algorithm (see Algorithm 3.1 below), to evaluate an element V 2 @UpðxÞ. The other is to adopt formula
(15).

Algorithm 3.1. The procedure to evaluate an element V 2 @UpðxÞ

(S.0) Let x 2 Rn be given, and let Vi denote the i-th row of a matrix V 2 Rn�n.
(S.1) Set IðxÞ :¼ fi 2 f1;2; . . . ;ngj xi ¼ FiðxÞ ¼ 0g.
(S.2) Set z 2 Rn such that zi ¼ 0 for i R IðxÞ, and zi ¼ 1 for i 2 IðxÞ.
(S.3) For i 2 IðxÞ, let ui ¼ ½jzij

p
p�1 þ jrFiðxÞT zj

p
p�1�

p�1
p , and
Vi ¼
zi

ui
� 1

� �
eT

i þ
rFiðxÞT z

ui
� 1

 !
rFiðxÞT :
(S.4) For i R IðxÞ, set
Vi ¼
sgnðxiÞ � jxijp�1

kðxi; FiðxÞÞkp�1
p

� 1

 !
eT

i þ
sgnðFiðxÞÞ � jFiðxÞjp�1

kðxi; FiðxÞÞkp�1
p

� 1

 !
rFiðxÞT :
The above procedure is a traditional way of obtainingrWpðxðtÞÞ. For example, the neural network in [24] uses (14) and a
similar algorithm to evaluate an element of V 2 @UFBðxÞ. We propose a simpler way of obtainingrWpðxðtÞÞ which is to com-
pute rWpðxðtÞÞ by using formula (15) rather than formula (14). Formula (15) also provides an indication on how the neural
network (10) can be implemented on hardware; see Fig. 1.

To close this section, we claim that Wp provides a global error bound for the solution of the NCP. This result is important
and will be used to analyze the influence of p on the convergence rate of the trajectory xðtÞ of the neural network (10) in the
next section.

Proposition 3.3. Suppose F is a uniform P-function with modulus j > 0 and Lipschitz continuous with constant L > 0. Then,
the NCP has a unique solution x�, and
kx� x�k2
6

4L2

j2ð2� 21=pÞ2
WpðxÞ 8x 2 Rn:
Proof. Since F is a uniform P-function, by Proposition 3.2(c), there exists a global minimizer of WpðxÞwhich says the NCP has
a solution. Assume that the NCP has two different solutions x� and y�, then by Definition 2.1(d) we have
jkx� � y�k2
6 max

16i6m
ðx�i � y�i ÞðFiðx�Þ � Fiðy�ÞÞ ¼ max

16i6m
�x�i Fiðy�Þ � y�i Fiðx�Þ
	 


6 0;
where the equality is due to the fact that x�i Fiðx�Þ ¼ y�i Fiðy�Þ ¼ 0 for i ¼ 1;2; . . . ;n (note that x� and y� are the solutions to the
NCP), and the last inequality holds since x�; y� P 0 and Fðx�Þ; Fðy�ÞP 0. This leads to a contradiction. Hence, the NCP has a
unique solution.

For any x 2 Rn, let rðxÞ :¼ ðr1ðxÞ; . . . ; rnðxÞÞT with riðxÞ ¼ minfxi; FiðxÞg for i ¼ 1; . . . ; n. Since F is Lipschitz continuous with
constant L > 0, by [21, Lemma 7.4] we have
ðxi � x�i ÞðFiðxÞ � Fiðx�ÞÞ 6 2LjriðxÞjkx� x�k;



Fig. 1. A simplified block diagram for the neural network (10).

702 J.-S. Chen et al. / Information Sciences 180 (2010) 697–711
for all x 2 Rn and i ¼ 1;2; . . . ;n. On the other hand, since F is a uniform P-function with modulus j > 0, from Definition 2.1(d)
it follows that
jkx� x�k2
6 max

16i6n
ðxi � x�i ÞðFiðxÞ � Fiðx�ÞÞ
for any x 2 Rn. Combining the last two equations yields
kx� x�k 6 ð2L=jÞmax
16i6n

jriðxÞj 8x 2 Rn:
This together with Lemma 2.2(f) implies
kx� x�k 6 2L

jð2� 21=pÞ
max
16i6n

j/pðxi; FiðxÞÞj 6
2L

jð2� 21=pÞ
kUpðxÞk:
Consequently, we obtain the desired result. h
4. Convergence and stability of the trajectory

This section focuses on issues of convergence and stability of the neural network (10). We analyze the behavior of the
solution trajectory of (10) including the existence and convergence, and establish three kinds of stability for an isolated equi-
librium point. We first state the relationships between an equilibrium point of (10) and a solution to the NCP.

Proposition 4.1

(a) Every solution to the NCP is an equilibrium point of (10).
(b) If F is an P0-function, then every equilibrium point of (10) is a solution to the NCP.
Proof

(a) Suppose that x is a solution to the NCP. Then, from Proposition 3.1, it is clear that UpðxÞ ¼ 0. Using Lemma 2.2(d) and
(15), we then have rWpðxÞ ¼ 0. This, by Definition 2.2, shows that x is an equilibrium point of (10).

(b) This is a direct consequence of Proposition 3.2(b). h

The following proposition establishes the existence of the solution trajectory of (10).

Proposition 4.2. For any fixed p P 2, the following hold.

(a) For any initial state x0 ¼ xðt0Þ, there exists exactly one maximal solution xðtÞ with t 2 ½t0; sðx0ÞÞ for the neural network (10).
(b) If the level set Lðx0Þ ¼ fx 2 RnjWpðxÞ 6 Wpðx0Þg is bounded or F is Lipschitz continuous, then sðx0Þ ¼ þ1.
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Proof

(a) Since F is continuously differentiable, rFðxÞ is continuous, and therefore, rFðxÞ is bounded on a local compact neigh-
borhood of x. On the other hand, rawp and rbwp are Lipschitz continuous by Lemma 2.2(e). These two facts together
with formula (15) show that rWpðxÞ is locally Lipschitz continuous. Thus, applying Lemma 2.3 leads to the desired
result.

(b) We proceed the arguments by the two cases as shown below.
Case (i): The level set Lðx0Þ is bounded. We prove the result by contradiction. Suppose sðx0Þ <1. Then, by Lemma 2.4,
limt"sðx0ÞkxðtÞk ¼ 1. Let Lcðx0Þ :¼ Rn nLðx0Þ and
s0 :¼ inffs P 0js < sðx0Þ; xðsÞ 2Lcðx0Þg <1:
We know that xðs0Þ lies on the boundary of Lðx0Þ and Lcðx0Þ. Moreover, Lðx0Þ is compact since it is bounded by assumption
and it is also closed because of the continuity of WpðxÞ. Therefore, we have xðs0Þ 2Lðx0Þ and s0 < sðx0Þ, implying that
WpðxðsÞÞ > Wpðx0Þ > Wpðxðs0ÞÞ for some s 2 ðs0; sðx0ÞÞ: ð17Þ
However, Proposition 3.2(d) says that Wpðxð�ÞÞ is nonincreasing on ½t0; sðx0ÞÞ, which contradicts (17). This completes the proof
of Case (i).
Case (ii): F is Lipschitz continuous. From the proof of part (a), we know that rWpðxÞ is Lipschitz continuous. Thus, by

Lemma 2.3, we have sðx0Þ ¼ 1. h

Next, we investigate the convergence of the solution trajectory of (10).

Theorem 4.1

(a) Let xðtÞ with t 2 ½t0; sðx0ÞÞ be the unique maximal solution to (10). If sðx0Þ ¼ 1 and fxðtÞg is bounded, then
limt!1rWpðxðtÞÞ ¼ 0.

(b) If F is strongly monotone or a uniform P-function, then Lðx0Þ is bounded and every accumulation point of the trajectory xðtÞ
is a solution to the NCP.
Proof. With Proposition 3.2 (b) and (d) and Proposition 4.2, the arguments are exactly the same as those for [24, Corollary
4.3]. Thus, we omit them. h

From Proposition 4.1 (a), every solution x� to the NCP is an equilibrium point of the neural network (10). If, in addition, x�

is an isolated equilibrium point of (10), then we can show that x� is not only Lyapunov stable but also asymptotically stable.

Theorem 4.2. Let x� be an isolated equilibrium point of the neural network (10). Then, x� is Lyapunov stable for (10), and
furthermore, it is asymptotically stable.

Proof. Since x� is a solution to the NCP, Wpðx�Þ ¼ 0. In addition, since x� is an isolated equilibrium point of (10), there exists a
neighborhood X�# Rn of x� such that
rWpðx�Þ ¼ 0; and rWpðxÞ–0 8x 2 X� n fx�g:
Next, we argue that WpðxÞ is indeed a Lyapunov function at x� over the set X� for (10) by showing that the conditions in (13)
are satisfied. First, notice that WpðxÞP 0. Suppose that there is an �x 2 X� n fx�g such that Wpð�xÞ ¼ 0. Then, by formula (15)
and Lemma 2.2(d), we have rWð�xÞ ¼ 0, i.e., �x is also an equilibrium point of (10), which clearly contradicts the assumption
that x� is an isolated equilibrium point in X�. Thus, we prove that WpðxÞ > 0 for any x 2 X� n fx�g. This together with (16)
shows that the conditions in (13) are satisfied, and hence WpðxÞ is a Lyapunov function at x� over the set X� for (10). There-
fore, x� is Lyapunov stable by Lemma 2.5(a).

Now, we show that x� is asymptotically stable. Since x� is isolated, from (16) we have
dWpðxðtÞÞ
dt

< 0; 8 xðtÞ 2 X� n fx�g:
This, by Lemma 2.5(b), implies that x� is asymptotically stable. h

Furthermore, using the same arguments we can prove that the neural network (10) is also exponentially stable if x� is a
regular solution to the NCP. Recall that x� is a regular solution to the NCP if every element V 2 @Upðx�Þ is nonsingular.

Theorem 4.3. If x� is a regular solution of the NCP, then it is exponentially stable.
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Remark 4.1

(a) Using arguments similar to those used in Proposition 3.2 of [13], we can prove that x� is regular ifrFaa is nonsingular
and the Schur complement of rFaa in
rFaaðx�Þ rFabðx�Þ
rFbaðx�Þ rFbbðx�Þ

� �

is an P-matrix, where a :¼ fijx�i > 0g and b :¼ fijx�i ¼ Fiðx�Þ ¼ 0g. Clearly, if rF is positive definite, then the conditions
hold true.
(b) From Definition 2.6, if an isolated equilibrium point x� is exponentially stable, then there exists a d > 0 such that xðtÞ
with x0 ¼ ðt0Þ, and kxðt0Þ � x�k < d satisfies
kxðtÞ � x�k 6 ce�xtkxðt0Þ � x�k 8t P t0;

which together with Proposition 3.3 implies that

kxðtÞ � x�k 6 2cL

jð2� 21=pÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wpðx0Þ

q
e�xt 8t P t0: ð18Þ

Since the strong monotonicity of F implies that F is a uniform P-function and thatrF is positive definite, from (18) we
obtain that the neural network (10) can yield a trajectory with an exponential convergence rate under the condition
that F is strongly monotone and Lipschitz continuous.
(c) We observe from (18) that, when p increases, the coefficient of e�xt in the right hand side term becomes smaller,
which in turn implies that a larger p yields a better convergence rate. This agrees with the result obtained by [2]
for a descent-type method based on Wp. In addition, from (18) we notice that the energy of the initial state, i.e.,
Wpðx0Þ also has an influence on the convergence rate. A higher initial energy will lead to a worse convergence rate.
5. Simulation results

In this section, we test four well-known nonlinear complementarity problems by our neural network model (10). For each
test problem, we also compare the numerical performance of the proposed neural network with various values of p and var-
ious initial states xðt0Þ. The test instances are described below.

Example 5.1 [31, Example 2]. Consider the NCP, where F : R5 ! R5 is given by
FðxÞ ¼

x1 þ x2x3x4x5=50
x2 þ x1x3x4x5=50� 3
x3 þ x1x2x4x5=50� 1

x4 þ x1x2x3x5=50þ 1=2
x5 þ x1x2x3x4=50

0
BBBBBB@

1
CCCCCCA
:

The NCP has only one solution x� ¼ ð0;3;1;0;0Þ.

Example 5.2 [30, Watson]. Consider the NCP, where F : R5 ! R5 is given by
FðxÞ ¼ 2 exp
X5

i¼1

ðxi � iþ 2Þ2
 ! x1 þ 1

x2

x3 � 1
x4 � 2
x5 � 3

0
BBBBBB@

1
CCCCCCA
:

Note that F is not a P0-function on Rn. The solution to this problem is x� ¼ ð0;0;1;2;3Þ.

Example 5.3 [23, Kojima–Shindo]. Consider the NCP, where F : R4 ! R4 is given by
FðxÞ ¼

3x2
1 þ 2x1x2 þ 2x2

2 þ x3 þ 3x4 � 6
2x2

1 þ x1 þ x2
2 þ 3x3 þ 2x4 � 2

3x2
1 þ x1x2 þ 2x2

2 þ 2x3 þ 3x4 � 1
x2

1 þ 3x2
2 þ 2x3 þ 3x4 � 3

0
BBB@

1
CCCA:
This is a non-degenerate NCP and the solution is x� ¼ ð
ffiffiffi
6
p

=2;0;0;1=2Þ.
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Example 5.4 [23, Kojima–Shindo]. Consider the NCP, where F : R4 ! R4 is given by
FðxÞ ¼

3x2
1 þ 2x1x2 þ 2x2

2 þ x3 þ 3x4 � 6
2x2

1 þ x1 þ x2
2 þ 10x3 þ 2x4 � 2

3x2
1 þ x1x2 þ 2x2

2 þ 2x3 þ 9x4 � 9
x2

1 þ 3x2
2 þ 2x3 þ 3x4 � 3

0
BBB@

1
CCCA:
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Fig. 3. Convergence behavior of the error kxðtÞ � x�k in Example 5.2 with given x0.
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Fig. 2. Convergence behavior of the error kxðtÞ � x�k in Example 5.1 with given x0.
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This is a degenerate NCP and has two solutions x� ¼ ð
ffiffiffi
6
p

=2;0;0;1=2Þ and x� ¼ ð1;0;3;0Þ.

The numerical implementation is coded by Matlab 7.0 and the ordinary differential equation solver adopted is ode23,
which uses an Runge–Kutta (2,3) formula. We first test the influence of the parameter p on the value of kxðtÞ � x�k. Figs.
2–5 in the appendix describe how kxðtÞ � x�k varies with p for these instances with the initial states
x0 ¼ ð10�2;1;0:5;10�2;10�2ÞT ; x0 ¼ ð10�2;10�2;0:5;0:5;0:5ÞT ; x0 ¼ ð2;10�2;10�2;0:1ÞT , and x0 ¼ ð10�3;10�3;10�3;10�3ÞT ,
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Fig. 5. Convergence behavior of the error kxðtÞ � x�k in Example 5.4 with given x0.
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Fig. 4. Convergence behavior of the error kxðtÞ � x�k in Example 5.3 with given x0.
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respectively. In the tests, the design parameter q in the neural network (10) is set to be 1000. From Figs. 2–5, we see that,
when p ¼ 1:1, the neural network (10) generates the slowest decrease of kxðtÞ � x�k for all test instances, whereas when
p ¼ 20 it generates the fastest decrease of kxðtÞ � x�k. This verifies the analysis of Remark 4.1(c). We should emphasize that
the conclusion in Remark 4.1(c) requires the initial state x0 to be sufficiently close to an equilibrium point. If this condition is
not satisfied, we cannot draw such conclusion; see Fig. 6.
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Fig. 7. Convergence behavior of kxðtÞ � x�k in Example 5.1 with three different initial points xð1Þ0 , xð2Þ0 , and xð3Þ0 (p ¼ 1:8).
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Fig. 6. Convergence behavior of kxðtÞ � x�k in Example 5.1 with x0 ¼ ½0;0; 0; 0;0�.
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Example 5.1 shows how the value of kxðtÞ � x�k varies with initial state x0. Fig. 7 describes the convergence behavior of
kxðtÞ � x�k with initial states xð1Þ0 ¼ ð1;1;1;1;1Þ

T , xð2Þ0 ¼ ð5;5;5;5;5Þ
T , and xð3Þ0 ¼ ð10;10;10;10;10ÞT . Notice that the initial

energies corresponding to these three states are Wpðxð1Þ0 Þ ¼ 5:814;Wpðxð2Þ0 Þ ¼ 39:367, and Wpðxð3Þ0 Þ ¼ 226:333, respectively.
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Fig. 9. Transient behavior of xðtÞ of the neural network with 6 random initial points and p ¼ 1:4 in Example 5.2.
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Fig. 8. Transient behavior of xðtÞ of the neural network with 6 random initial points and p ¼ 1:8 in Example 5.1.
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In the tests, we choose p ¼ 1:8 and q ¼ 1000. Fig. 7, shows that a larger initial energy yields a slower decrease of the error
kxðtÞ � x�k if the initial state is close to the solution of the NCP. This agrees with the analysis in Remark 4.1(c).

The convergence behavior of xðtÞ from several initial states with a fixed p and q ¼ 1000 for each example is shown in Figs.
8–12. The transient behavior of xðtÞ for Example 5.4 is depicted in Figs. 11 and 12 since there are two solutions for this prob-
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Fig. 11. Transient behavior of xðtÞ of the neural network with 9 random initial points and p ¼ 1:2 in Example 5.4.
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Fig. 10. Transient behavior of xðtÞ of the neural network with 6 random initial points and p ¼ 2:4 in Example 5.3.
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Fig. 12. Transient behavior of xðtÞ of the neural network with 3 random initial points and p ¼ 1:2 in Example 5.4.
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lem. More specifically, we test 12 random initial points for the NCP, 9 of which converge to ð
ffiffiffi
6
p

=2;0;0;1=2Þ; the remaining 3
converge to ð1;0;3;0Þ. When finding the solution trajectory xðtÞ, we employ krWpðxðtÞÞk 6 10�5 as the stopping criterion.

To sum up, the neural network (10) is a better alternative for the network based on the FB function /FB if an appropriate p
is chosen. Based on the analysis of Remark 4.1(c) and the above numerical simulations, we see that, to obtain a better con-
vergence rate of the trajectory xðtÞ, the parameter p cannot be set too small. In addition, we should emphasize that the initial
state xðt0Þ has a great influence on the convergence behavior of kxðtÞ � x�k.

To end this section, we answer a natural question: are there advantages of our proposed neural network compared to the
existing ones? To answer this, we summarize what we have observed from numerical experiments and theoretical results as
below.

� We compare our neural network model with some existing models which also work for NCP, for instance, the ones used in
[6,31,32]. At first glance, the neural network models based on projection in [6,31,32] look having lower complexity. How-
ever, we observe that the difference of the numerical performance is very marginal by testing MCPLIB benchmark
problems.

� Our proposed model seems having better properties from theoretical view. Note that there requires monotonicity (strong
monotonicity) of F to guarantee the Lyapunov stability (exponential stability) of the neural network models used in
[6,31,32]. In contrast, such conditions are not needed for our neural network model. In fact, it can be verified that all
F’s are non-monotone in previous examples except Example 5.2 (by checking the positive semi-definiteness of their Jaco-
bian matrices).

� For the following special NCP:
x ¼ ðx1; x2; x3ÞP 0; FðxÞ ¼ ðx1;�x2;�x3ÞP 0; hx; FðxÞi ¼ x2
1 � x2

2 � x2
3 ¼ 0;

it is easy to verify that the unique solution is ð0; 0;0Þ which can be solved easily by our neural network model. But, the
solution trajectory diverges by using the model in [31].

� Changing initial points may not having much effect for our neural network model, whereas it does for other existing mod-
els. For instance, choosing x0 ¼ ð12;�12;12;�12;12Þ as the initial point in Example 5.1 causes the divergence of solution
trajectory solved by the neural network model used in [31], while it does not affect anything by our neural network model.
6. Conclusions

In this paper, we have studied a (class of) neural network based on the generalized FB function /p defined as in (5). We
establish the Lyapunov stability, the asymptotic stability, and the exponential stability for the neural network. In addition,
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we also analyze the influence of the parameter p on the convergence rate of the trajectory (or the local convergence behavior
of the error kxðtÞ � x�k) and obtain that a larger p leads to a better convergence rate. This agrees with the result obtained by
[2] for a descent-type method based on /p, which also indicates how to choose a suitable p in practice. Numerical experi-
ments verify the obtained theoretical results. The advantages of our proposed neural network compared to other existing
neural networks are reported as well. One future topic is to modify the proposed neural network model for various optimi-
zation problems and establish its related stability accordingly.

Appendix

See Figs. 2–12.
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