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Abstract In last decades, there has been much effort on the solution and the analysis

of the nonlinear complementarity problem (NCP) by reformulating NCP as an uncon-

strained minimization involving an NCP function. In this paper, we propose a family

of new NCP functions, which include the Fischer-Burmeister function as a special case,

based on a p-norm with p being any fixed real number in the interval (1, +∞), and show

several favorable properties of the proposed functions. In addition, we also propose a de-

scent algorithm that is indeed derivative-free for solving the unconstrained minimization

based on the merit functions from the proposed NCP functions. Numerical results for the

test problems from MCPLIB indicate that the descent algorithm has better performance

when the parameter p decreases in (1, +∞). This implies that the merit functions asso-

ciated with p ∈ (1, 2), for example p = 1.5, are more effective in numerical computations

than the Fischer-Burmeister merit function, which exactly corresponds to p = 2.
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1 Introduction

The nonlinear complementarity problem (NCP) is to find a point x ∈ IRn such that

x ≥ 0, F (x) ≥ 0, 〈x, F (x)〉 = 0, (1)

where 〈·, ·〉 is the Euclidean inner product and F = (F1, F2, · · · , Fn)T is a map from IRn

to IRn. We assume that F is continuously differentiable throughout this paper. The

NCP has attracted much attention due to its various applications in operations research,

economics, and engineering [6, 12, 18].

There have been many methods proposed for solving the NCP [9, 12, 18]. Among

which, one of the most popular and powerful approaches that has been studied intensively

recently is to reformulate the NCP as a system of nonlinear equations [17, 24] or as an

unconstrained minimization problem [5, 7, 10, 14, 15, 16, 23]. Such a function that can

constitute an equivalent unconstrained minimization problem for the NCP is called a

merit function. In other words, a merit function is a function whose global minima are

coincident with the solutions of the original NCP. For constructing a merit function, the

class of functions, so-called NCP-functions and defined as below, serves an important

role.

Definition 1.1 A function φ : IR2 → IR is called an NCP-function if it satisfies

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0. (2)

Over the past two decades, a variety of NCP-functions have been studied, see [9,

20] and references therein. Among which, a popular NCP-function intensively studied

recently is the well-known Fischer-Burmeister NCP-function [7, 8] defined as

φ(a, b) =
√

a2 + b2 − (a + b). (3)

With the above characterization of φ, the NCP is equivalent to a system of nonsmooth

equations:

Φ(x) =




φ(x1 , F1(x))

·
·
·

φ(xn , Fn(x))




= 0. (4)

Then the function Ψ : IRn → IR+ defined by

Ψ(x) :=
1

2
‖Φ(x)‖2 =

1

2

n∑

i=1

φ(xi , Fi(x))2 (5)
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is a merit function for the NCP, i.e., the NCP can be recast as an unconstrained mini-

mization:

min
x∈IRn

Ψ(x). (6)

In this paper, we propose and investigate a family of new NCP functions based on

the Fischer-Burmeister function (3). In particular, we define φp : IR2 → IR by

φp(a, b) := ‖(a, b)‖p − (a + b), (7)

where p is any fixed real number in the interval (1, +∞) and ‖(a, b)‖p denotes the p-norm

of (a, b), i.e., ‖(a, b)‖p = p

√
|a|p + |b|p. In other words, in the function φp, we replace the

2-norm of (a, b) in the Fischer-Burmeister function (3) by a more general p-norm with

p ∈ (1, +∞). The function φp is still an NCP-function as was noted in Tseng’s paper

[21]. Nonetheless, to our knowledge, there was no further study on this family of NCP

functions except for p = 2. We aim to explore and study properties of φp in this paper.

More specifically, we define ψp : IR2 → IR+ by

ψp(a, b) :=
1

2
|φp(a, b)|2. (8)

For any given p > 1, the function ψp is a nonnegative NCP-function and smooth on IR2

as will be seen in Sec. 3. Analogous to Φ, the function Φp : IRn → IRn given as

Φp(x) =




φp(x1 , F1(x))

·
·
·

φp(xn , Fn(x))




(9)

yields a family of merit functions Ψp : IRn → IR for the NCP for which

Ψp(x) :=
1

2
‖Φp(x)‖2 =

1

2

n∑

i=1

φp(xi , Fi(x))2 =
n∑

i=1

ψp(xi , Fi(x)). (10)

As will be seen later, Ψp for any given p > 1 is a continuously differentiable merit

function for the NCP. Therefore, classical iterative methods such as Newton method can

be applied to the unconstrained smooth minimization of the NCP, i.e.,

min
x∈IRn

Ψp(x). (11)

On the other hand, derivative-free methods [22] have also attracted much attention which

do not require computation of derivatives of F . Derivative-free methods, taking advan-

tages of particular properties of a merit function, are suitable for problems where the

derivatives of F are not available or expensive.
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In this paper, we also study a derivative-free descent algorithm for solving the NCP

based on the merit function Ψp. The algorithm is shown to be convergent for strongly

monotone NCPs. In addition, we also do numerical experiments with three specific merit

functions Ψ1.5, Ψ2 and Ψ3 for the test problems from MCPLIB. Numerical results show

that the descent algorithm has better performance as p decreases in the interval (1, +∞).

This means that a more effective NCP function than the Fischer-Burmeister function, at

lest in numerical computations, can be obtained by setting p ∈ (1, 2) in φp(a, b).

Throughout this paper, IRn denotes the space of n-dimensional real column vectors

and T denotes transpose. For any differentiable function f : IRn → IR, ∇f(x) denotes

the gradient of f at x. For any differentiable mapping F = (F1, · · · , Fm)T : IRn → IRm,

∇F (x) = [∇F1(x) · · · ∇Fm(x)] denotes the transpose Jacobian of F at x. We denote by

‖x‖p the p-norm of x and by ‖x‖ the Euclidean norm of x. In addition, unless otherwise

stated, we always assume p in the sequel is any fixed real number in (1, +∞).

2 Preliminaries

In this section, we recall some background concepts and materials which will play an

important role in the subsequent analysis.

Definition 2.1 Let F : IRn → IRn, then

(a) F is monotone if 〈x− y, F (x)− F (y)〉 ≥ 0, for all x, y ∈ IRn.

(b) F is strictly monotone if 〈x− y, F (x)− F (y)〉 > 0, for all x, y ∈ IRn and x 6= y.

(c) F is strongly monotone with modulus µ > 0 if 〈x− y, F (x)−F (y)〉 ≥ µ‖x− y‖2, for

all x, y ∈ IRn.

(d) F is a P0-function if max
1≤i≤n
xi 6=yi

(xi − yi)(Fi(x)− Fi(y)) ≥ 0, for all x, y ∈ IRn and x 6= y.

(e) F is a P -function if max
1≤i≤n

(xi − yi)(Fi(x)− Fi(y)) > 0, for all x, y ∈ IRn and x 6= y.

(f) F is a uniform P -function with modulus µ > 0 if max
1≤i≤n

(xi − yi)(Fi(x) − Fi(y)) ≥
µ‖x− y‖2, for all x, y ∈ IRn.

(g) ∇F (x) is uniformly positive definite with modulus µ > 0 if dT∇F (x)d ≥ µ‖d‖2, for

all x ∈ IRn and d ∈ IRn.

(h) F is Lipschitz continuous if there exists a constant L > 0 such that ‖F (x)−F (y)‖ ≤
L‖x− y‖, for all x, y ∈ IRn.

4



From the above definitions, it is obvious that strongly monotone functions are strictly

monotone, and strictly monotone functions are monotone. Moreover, F is a P0-function

if F is monotone and F is a uniform P -function with modulus µ > 0 if F is strongly

monotone with modulus µ > 0. In addition, when F is continuously differentiable, we

have the following conclusions.

1. F is monotone if and only if ∇F (x) is positive semidefinite for all x ∈ IRn.

2. F is strictly monotone if ∇F (x) is positive definite for all x ∈ IRn.

3. F is strongly monotone if and only if ∇F (x) is uniformly positive definite.

Next, we recall the definition of P0-matrix and P -matrix.

Definition 2.2 A matrix M ∈ IRn×n is a

(a) P0-matrix if each of its principal minors is nonnegative.

(b) P -matrix if each of its principal minors is positive.

It is obvious that every P -matrix is also a P0-matrix. Furthermore, it is known that the

Jacobian of every continuously differentiable P0-function is a P0-matrix.

Finally, we state one of the characterizations of P0-matrices that will be used later,

and for more properties about P -matrix and P0-matrix, please refer to [4].

Lemma 2.1 A matrix M ∈ IRn×n is a P0-matrix if and only if for every nonzero vector

x there exists an index i such that xi 6= 0 and xi(Mx)i ≥ 0.

3 A family of NCP functions and their properties

In this section, we study a family of NCP functions φp defined as (7) with p > 1, which

are indeed variants of Fischer-Burmeister function, and show that these functions have

several favorable properties analogous to what Fischer-Burmeister function has. We first

present some similar properties of φp to those for Fischer-Burmeister function.

Proposition 3.1 Let φp : IR2 → IR be defined as (7) with p being any fixed real number

in the interval (1, +∞). Then

(a) φp is an NCP-function, i.e., it satisfies (2).

(b) φp is sub-additive, i.e., φp(w + w′) ≤ φp(w) + φp(w
′) for all w,w′ ∈ IR2.
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(c) φp is positive homogeneous, i.e., φp(αw) = αφp(w) for all w ∈ IR2 and α ≥ 0.

(d) φp is convex, i.e., φp(αw + (1− α)w′) ≤ αφp(w) + (1− α)φp(w
′) for all w, w′ ∈ IR2

and α ∈ (0, 1).

(e) φp is Lipschitz continuous with L1 =
√

2 + 2(1/p−1/2) when 1 < p < 2, and with

L2 = 1 +
√

2 when p ≥ 2. In other words, |φp(w) − φp(w
′)| ≤ L1‖w − w′‖ when

1 < p < 2 and |φp(w)− φp(w
′)| ≤ L2‖w − w′‖ when p ≥ 2 for all w,w′ ∈ IR2.

Proof. (a) The proof can be seen in [21, page 20]. For completeness, we here include it.

Consider any a ≥ 0 and b ≥ 0 satisfying ab = 0. Then, we have either a = 0 or b = 0. This

implies that φp(a, b) = p

√
|a|p − a or φp(a, b) = p

√
|b|p − b, and consequently φp(a, b) = 0.

Conversely, consider any (a, b) ∈ IR2 satisfying φp(a, b) = 0. Then there must hold a ≥ 0

and b ≥ 0, otherwise we have p

√
|a|p + |b|p > (a + b) and hence φp(a, b) > 0. Now we

prove that one of a and b must be 0. If not, then ‖(a, b)‖p < ‖(a, b)‖1 = a + b, which

obviously contradicts the fact that φp(a, b) = 0. The two sides show that φp is indeed an

NCP-function.

(b) Let w = (a, b) and w′ = (c, d). Then

φp(w + w′) = ‖(a, b) + (c, d)‖p − (a + b + c + d)

≤ ‖(a, b)‖p + ‖(c, d)‖p − (a + b)− (c + d)

= φp(a, b) + φp(c, d) = φp(w) + φp(w
′),

where the inequality is true since the triangle inequality holds for p-norm when p > 1.

(c) Let w = (a, b) ∈ IR2 and α > 0. Then the proof follows by

φp(αw) = p

√
|αa|p + |αb|p − (αa + αb) = α p

√
|a|p + |b|p − α(a + b) = αφp(w).

(d) This is true by part (b) and part (c).

(e) Let w = (a, b) and w′ = (c, d), we have

|φp(w)− φp(w
′)| =

∣∣∣∣‖(a, b)‖p − (a + b)− ‖(c, d)‖p + (c + d)
∣∣∣∣

≤
∣∣∣∣‖(a, b)‖p − ‖(c, d)‖p

∣∣∣∣ + |a− c|+ |b− d|

≤ ‖(a, b)− (c, d)‖p +
√

2
√
|a− c|2 + |b− d|2

≤ ‖(a, b)− (c, d)‖p +
√

2‖(a, b)− (c, d)‖
= ‖w − w′‖p +

√
2‖w − w′‖.

Then, from the inequality as below (see [13, (1.3)]),

‖x‖p2 ≤ ‖x‖p1 ≤ n(1/p1−1/p2)‖x‖p2 for x ∈ IRn and 1 < p1 < p2,
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we obtain the desired results. 2

As below, φp has more further properties which are key to proving results of the

subsequent section.

Lemma 3.1 Let φp : IR2 → IR be defined as (7) where p > 1. If {(ak, bk)} ⊆ IR2 with

(ak → −∞) or (bk → −∞) or (ak → ∞ and bk → ∞), then we have |φp(a
k, bk)| → ∞

for k →∞.

Proof. This result has been mentioned in [21, page 20]. 2

Next, we study another family of NCP functions ψp : IR2 → IR+ defined by (8). This

class of functions will lead the NCP to a reformulation of unconstrained minimization.

In other words, they are a family of merit functions for the NCP. Furthermore, they

have some favorable properties shown as below. Particularly, ψp for any given p > 1 is

continuously differentiable everywhere whereas φp is not differentiable everywhere.

Proposition 3.2 Let φp, ψp be defined as (7) and (8), respectively, where p is any fixed

real number in the interval (1, +∞). Then

(a) ψp is an NCP-function, i.e., it satisfies (2).

(b) ψp(a, b) ≥ 0 for all (a, b) ∈ IR2.

(c) ψp is continuously differentiable everywhere.

(d) ∇aψp(a, b) · ∇bψp(a, b) ≥ 0 for all (a, b) ∈ IR2. The equality holds if and only if

φp(a, b) = 0.

(e) ∇aψp(a, b) = 0 ⇐⇒ ∇bψp(a, b) = 0 ⇐⇒ φp(a, b) = 0.

Proof. (a) Since ψp(a, b) = 0 if and only if φp(a, b) = 0, the desired result is satisfied by

Prop. 3.1(a).

(b) It is clear by definition of ψp.

(c) From direct computation, we obtain ∇aψp(0, 0) = ∇bψp(0, 0) = 0. For (a, b) 6= (0, 0),

∇aψp(a, b) =

(
sgn(a) · |a|p−1

‖(a, b)‖p−1
p

− 1

)
φp(a, b)

∇bψp(a, b) =

(
sgn(b) · |b|p−1

‖(a, b)‖p−1
p

− 1

)
φp(a, b) (12)
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where sgn(·) is the sign function. Clearly,

∣∣∣∣∣
sgn(a) · |a|p−1

‖(a, b)‖p−1
p

∣∣∣∣∣ ≤ 1 and

∣∣∣∣∣
sgn(b) · |b|p−1

‖(a, b)‖p−1
p

∣∣∣∣∣ ≤ 1 (13)

(i.e., uniformly bounded) and moreover φp(a, b) → 0 as (a, b) → (0, 0). Therefore, we

have ∇aψp(a, b) → 0 and ∇bψp(a, b) → 0 as (a, b) → (0, 0). This means that ψp is

continuously differentiable everywhere.

(d) From part (c), we know that if (a, b) = (0, 0), it is clear that∇aψp(a, b)·∇bψp(a, b) = 0

and ψp(a, b) = 0. Now we assume that (a, b) 6= (0, 0). Then,

∇aψp(a, b) · ∇bψp(a, b) =

(
sgn(a) · |a|p−1

‖(a, b)‖p−1
p

− 1

) (
sgn(b) · |b|p−1

‖(a, b)‖p−1
p

− 1

)
φ2

p(a, b). (14)

Again, from (13), it follows immediately that∇aψp(a, b)·∇bψp(a, b) ≥ 0 for all (a, b) ∈ IR2.

The equality holds if and only if φp(a, b) = 0, sgn(a)·|a|p−1

‖(a,b)‖p−1
p

= 1 or sgn(b)·|b|p−1

‖(a,b)‖p−1
p

= 1. In fact,

if sgn(a)·|a|p−1

‖(a,b)‖p−1
p

= 1, then we have a > 0 and |a| = ‖(a, b)‖p, which leads to b = 0 and hence

φp(a, b) = p

√
|a|p− a = a− a = 0. Similarly, we have φp(a, b) = 0 if sgn(b)·|b|p−1

‖(a,b)‖p−1
p

= 1. Thus,

we conclude that the equality holds if and only if φp(a, b) = 0.

(e) It is already seen in the last part of proof for part (d). 2

It was shown that if F is monotone [10] or a P0-function [5], then any stationary point

of Ψ is a global minima of the unconstrained minimization min
x∈IRn

Ψ(x), and hence solves

the NCP. Moreover, it was also shown that if F is strongly monotone [10] or uniform

P -function [5], then the level sets of Ψ are bounded. In what follows, we will present

and prove analogous results for Ψp under the same conditions as in [5, 10]. The ideas for

proving the following propositions are borrowed from those analogous results in [5, 10].

Proposition 3.3 Let Ψp : IRn → IR be defined as (10) with p > 1. Then Ψp(x) ≥ 0 for

all x ∈ IRn and Ψp(x) = 0 if and only if x solves the NCP (1). Moreover, suppose that

the NCP (1) has at least one solution. Then x is a global minimizer of Ψp if and only if

x solves the NCP (1).

Proof. The results directly follow from Prop. 3.2. 2

Proposition 3.4 Let Ψp : IRn → IR be defined as (10) with p > 1. Assume F is either

monotone or P0-function, then every stationary point of Ψp is a global minima of (11);

and therefore solves the NCP (1).
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Proof. (I) For the assumption of monotonicity of F , suppose that x∗ is a stationary

point of Ψp . Then we have ∇Ψp(x
∗) = 0 which implies that

n∑

i=1

(
∇aψp(x

∗
i , Fi(x

∗))ei +∇bψp(x
∗
i , Fi(x

∗))∇Fi(x
∗)

)
= 0, (15)

where ei = (0, · · · , 1, · · · , 0)T . We denote ∇aψp(x
∗, F (x∗)) = (· · · ,∇aψp(x

∗
i , Fi(x

∗)), · · ·)T

and ∇bψp(x
∗, F (x∗)) = (· · · ,∇bψp(x

∗
i , Fi(x

∗)), · · ·)T , respectively. Then (15) can be ab-

breviated as

∇aψp(x
∗, F (x∗)) +∇F (x∗)∇bψp(x

∗, F (x∗)) = 0. (16)

Now, multiplying (16) by ∇bψp(x
∗, F (x∗))T leads to

n∑

i=1

(
∇aψp(x

∗
i , Fi(x

∗))·∇bψp(x
∗
i , Fi(x

∗))
)

+∇bψp(x
∗, F (x∗))T∇F (x∗)∇bψp(x

∗, F (x∗)) = 0.

(17)

Since F is monotone, ∇F (x∗) is positive semidefinite, the second term of (17) is nonneg-

ative. Moreover, each term in the first summation of (17) is nonnegative as well due to

Prop. 3.2(d). Therefore, we have

∇aψp(x
∗
i , Fi(x

∗)) · ∇aψp(x
∗
i , Fi(x

∗)) = 0, ∀i = 1, 2, · · · , n,

which yields φp(x
∗
i , Fi(x

∗)) = 0 for all i = 1, 2, · · · , n by Prop. 3.2(e). Thus, Ψp(x
∗) = 0

which says x∗ is a global minimizer of (11).

(II) If F is P0-function and suppose x∗ is a stationary point of Ψp. Then ∇Ψp(x
∗) = 0

which yields (16). Notice that ∇aψp(a, b) and ∇bψp(a, b) are given as forms of (12). If we

denote A(x∗) and B(x∗) the possibly multivalued n×n diagonal matrices whose diagonal

elements are given by

Aii(x
∗) =

sgn(x∗i ) · |x∗i |p−1

‖(x∗i , Fi(x∗))‖p−1
p

if (x∗i , Fi(x
∗)) 6= (0, 0)

and

Bii(x
∗) =

sgn(Fi(x
∗)) · |Fi(x

∗)|p−1

‖(x∗i , Fi(x∗))‖p−1
p

if (x∗i , Fi(x
∗)) 6= (0, 0).

If (x∗i , Fi(x
∗)) = (0, 0) then we let A(x∗) = B(x∗) = I, i.e., the n × n identity matrix.

With the notions of A(x∗), B(x∗) and (12), the equation (16) can be rewritten as

[(A(x∗)− I) +∇F (x∗)(B(x∗)− I)]Φp(x
∗) = 0. (18)

We want to prove that Φp(x
∗) = 0 (and hence Ψp(x

∗) = 0). Suppose not, i.e., Φp(x
∗) 6= 0.

Recall that Φp(x
∗) = 0 if and only if (1) is satisfied and the i-th component of Φp(x

∗) is

φp(x
∗
i , Fi(x

∗)). Thus, φp(xi, Fi(x
∗)) 6= 0 means one of the following occurs:

1. x∗i 6= 0 and Fi(x
∗) 6= 0.
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2. x∗i = 0 and Fi(x
∗) < 0.

3. x∗i < 0 and Fi(x
∗) = 0.

In every case, we have Bii(x
∗) 6= 1 (since Bii(x

∗) = 1 if and only if φp(x
∗
i , Fi(x

∗)) = 0 by

Prop. 3.2(d)(e)), so that (Bii(x
∗)−1)·φp(x

∗
i , Fi(x

∗)) 6= 0. Similar arguments apply for the

vector (A(x∗)− I)Φp(x
∗). Thus, from the above, we can easily verify that if Φp(x

∗) 6= 0

then (B(x∗)− I)Φp(x
∗) and (A(x∗)− I)Φp(x

∗) are both nonzero. Moreover, both of their

nonzero elements are in the same positions, and such nonzero elements have the same

sign. But, for equation (18) to hold, it would be necessary that ∇F (x∗) ”revert the sign”

of all the nonzero elements of (B(x∗)− I)Φp(x
∗), which contradicts the fact that ∇F (x∗)

is a P0-matrix by Lemma 2.1. 2

Proposition 3.5 Let Ψp : IRn → IR be defined as (10) with p > 1. Assume F is either

strongly monotone or uniform P -function, then the level sets

L(Ψp, γ) := {x ∈ IRn | Ψp(x) ≤ γ}

are bounded for all γ ∈ IR.

Proof. (I) First, we consider the assumption of strong monotonicity of F . Suppose

there exists an unbounded sequence {‖xk‖}k∈K →∞ with {xk}k∈K ⊆ L(Ψp, γ) for some

γ ≥ 0, where K is a subset of N . We define the index set

J :=
{
i ∈ {1, 2, · · · , n}| {xk

i } is unbounded
}

.

Since {xk} is unbounded, J 6= ∅. Let {zk} denote a bounded sequence defined by

zk
i =

{
0, if i ∈ J,

xk
i , if i 6∈ J.

Then from the definition of {zk} and the strong monotonicity of F , we obtain

µ
∑

i∈J

(xk
i )

2 = µ‖xk − zk‖2

≤ 〈xk − zk, F (xk)− F (zk)〉
=

n∑

i=1

(xk
i − zk

i )(Fi(x
k)− Fi(z

k)) (19)

=
∑

i∈J

xk
i (Fi(x

k)− Fi(z
k))

≤
( ∑

i∈J

(xk
i )

2
)1/2 ∑

i∈J

|Fi(x
k)− Fi(z

k)|.

10



Since
∑

i∈J

(xk
i )

2 6= 0 for k ∈ K, then dividing by
∑

i∈J

(xk
i )

2 on both sides of (19) yields

µ
( ∑

i∈J

(xk
i )

2
)1/2

≤ ∑

i∈J

|Fi(x
k)− Fi(z

k)|, k ∈ K. (20)

On the other hand, we know {Fi(z
k)}k∈K is bounded (i ∈ J) due to {zk}k∈K is bounded

and F is continuous. Therefore, from (20), we have

{|Fi0(x
k)|} → ∞ for some i0 ∈ J.

Also, {‖xk
i0
‖} → ∞ by the definition of the index set J . Thus, Lemma 3.1 yields

φp(x
k
i0
, Fi0(x

k)) →∞ as k →∞.

But this contradicts {xk} ⊆ L(Ψp, γ).

(II) If F is uniform P -function, then the proof almost follows the same arguments as

above. In particular, (19) is replaced by

µ
∑

i∈J

(xk
i )

2 = µ‖xk − zk‖2

≤ max
1≤i≤n

(xk
i − zk

i )(Fi(x
k)− Fi(z

k))

= max
i∈J

xk
i (Fi(x

k)− Fi(z
k)) (21)

= xk
j0

(Fj0(x
k)− Fj0(z

k))

≤ |xk
j0
| · |Fj0(x

k)− Fj0(z
k)|,

where j0 is one of the indices for which the max is attained. Then dividing by |xk
j0
| on

both sides of (21) and the proof follows. 2

4 A descent method

In this section, we study a descent method for solving the unconstrained minimization

(11), which does not require the derivative of F involved in the NCP. In addition, we prove

a global convergence result for this derivative-free descent algorithm. More precisely, we

consider the search direction as below:

dk := −∇bψp(x
k, F (xk)), (22)

where ∇bψp(x
k, F (xk)) =

(
∇bψp(x

k
1, F (xk

1)), · · · ,∇bψp(x
k
n, F (xk

n))
)T

. From the following

lemma, we see that dk is a descent direction of Ψp at xk under monotonicity assumption.

11



Lemma 4.1 Let xk ∈ IRn and F be a monotone function. Then the search direction

defined as (22) satisfies the descent condition ∇Ψp(x
k)T dk < 0 as long as xk is not a

solution of the NCP (1). Moreover, if F is strongly monotone with modulus µ > 0, then

∇Ψp(x
k)T dk ≤ −µ‖dk‖2.

Proof. Since ∇Ψp(x
k) = ∇aψp(x

k, F (xk)) +∇F (xk)∇bψp(x
k, F (xk)), we have that

∇Ψp(x
k)T dk = −

n∑

i=1

∇aψp(x
k
i , Fi(x

k)) · ∇bψp(x
k
i , Fi(x

k))− (dk)T∇F (xk)(dk). (23)

From the monotonicity of F , it follows that ∇F (xk) is positive semidefinite. Therefore,

the second term of (23) is nonnegative. Also, by Prop. 3.2(d), the first term of (23)

is nonnegative. Therefore, ∇Ψp(x
k)T dk ≤ 0. We next prove that ∇Ψp(x

k)T dk < 0 by

contradiction. Assume that∇Ψp(x
k)T dk = 0. Then∇aψp(x

k
i , Fi(x

k))·∇bψp(x
k
i , Fi(x

k)) =

0 for all i which, by Prop. 3.2(d) again, yields φp(x
k
i , Fi(x

k)) = 0. Thus, Φp(x
k, F (xk)) = 0

and Ψp(x
k, F (xk)) = 0. Consequently, xk solves the NCP (1). This obviously contradicts

our assumption that xk is not a solution of the NCP (1).

If F is strongly monotone with modulus µ > 0, then we have that

∇Ψp(x
k)T dk ≤ −(dk)T∇F (xk)(dk) ≤ −µ‖dk‖2,

where the first inequality follows from (23) and Prop. 3.2(d). 2

The above lemma motivates the following descent algorithm.

Algorithm 4.1

(Step 0) Given a real number p > 1 and x0 ∈ IRn. Choose the parameters ε ≥ 0,

σ ∈ (0, 1) and β ∈ (0, 1). Set k := 0.

(Step 1) If Ψp(x
k) ≤ ε, then Stop.

(Step 2) Let

dk := −∇bψp(x
k, F (xk)).

(Step 3) Compute a step-size tk := βmk , where mk is the smallest nonnegative integer

m satisfying the Armijo-type condition:

Ψp(x
k + βmdk) ≤ (1− σβ2m)Ψp(x

k). (24)

(Step 4) Set xk+1 := xk + tkd
k, k := k + 1 and Go to Step 1.

We next show the global convergence result for Algorithm 4.1 under the strongly

monotone assumption of F . To this end, we assume that the parameter ε used in Algo-

rithm 4.1 is set to be zero and Algorithm 4.1 generates an infinite sequence {xk}.

12



Proposition 4.1 Suppose that F is strongly monotone. Then the sequence {xk} gener-

ated by Algorithm 4.1 has at least one accumulation point and any accumulation point is

a solution of the NCP (1).

Proof. Firstly, we show that there exists a nonnegative integer mk in Step 3 of Algorithm

4.1 whenever xk is not a solution. Assume that the conclusion does not hold. Then for

any m > 0,

Ψp(x
k + βmdk)−Ψp(x

k) > −σβ2mΨp(x
k).

Dividing by βm on both sides and taking the limit m →∞ yield

〈∇Ψp(x
k), dk〉 ≥ 0.

Since F is strongly monotone, this obviously contradicts Lemma 4.1. Hence, we can find

an integer mk in Step 3.

Secondly, we show that the sequence {xk} generated by Algorithm 4.1 has at least one

accumulation point. By the descent property of Algorithm 4.1, the sequence {Ψp(x
k)} is

decreasing. Thus, by Prop. 3.5, the generated sequence is bounded and hence it has at

least one accumulation point.

Finally, we prove that every accumulation point is a solution of the NCP (1). Let x∗

be an arbitrary accumulation point of the generated sequence {xk}. Then there exists a

subsequence {xk}k∈K converging to x∗. We know that −∇bψp( · , F (·)) is continuous since

ψp is continuously differentiable, therefore, {dk}k∈K → d∗. Next, we need to discuss two

cases. First, we consider the case where there exists a constant β̄ such that βmk ≥ β̄ > 0

for all k ∈ K. Then, from (24), we obtain

Ψp(x
k+1) ≤ (1− σβ̄2)Ψp(x

k)

for all k ∈ K and the entire sequence {Ψp(x
k)} is decreasing. Thus, we have Ψp(x

∗) = 0

(by taking the limit) which says x∗ is a solution of the NCP (1). Now, we consider the

other case where there exists a further subsequence such that βmk → 0. Note that by

Armijo’s rule (24) in Step 3, we have

Ψp(x
k + βmk−1 · dk)−Ψp(x

k) > −σβ2(mk−1)Ψp(x
k).

Dividing both sides by βmk−1 and passing to the limit on the subsequence, we obtain

〈∇Ψp(x
∗), d∗〉 ≥ 0

which implies that x∗ is a solution of the NCP (1) by Lemma 4.1. 2
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5 Numerical experiments

We implemented Algorithm 4.1 with our code in MATLAB 6.1 for all test problems with

all available starting points in MCPLIB [1]. All numerical experiments were done at a PC

with CPU of 2.8 GHz and RAM of 512 MB. In order to improve the numerical behavior

of Algorithm 4.1, we replaced the standard (monotone) Armijo-rule by nonmonotone line

search as described in [11], i.e., we computed the smallest nonnegative integer l such that

Ψp(x
k + βldk) ≤ Wk − σβ2lΨp(x

k).

where Wk is given by

Wk = max
j=k−mk,...,k

Ψp(x
j)

and where, for given nonnegative integers m̂ and s, we set

mk =

{
0 if k ≤ s

min {mk−1 + 1, m̂} otherwise
.

Throughout the experiments, we use m̂ = 5 and s = 5. Moreover, we use the parameters

σ = 1.0e − 10 and β = 0.2 in Algorithm 4.1. We terminated our iteration when the

number of iteration is over 500000 or the steplength is less than 1.0e− 10 or one of the

following conditions is satisfied:

(C1) Ψp(x
k) ≤ 1.0e− 5 and (xk)T F (xk) ≤ 5.0e− 3;

(C2) Ψp(x
k) ≤ 3.0e− 7 and (xk)T F (xk) ≤ 3.0e− 2;

(C3) Ψp(x
k) ≤ 3.0e− 6 and (xk)T F (xk) ≤ 1.0e− 2.

Our computational results are summarized in Tables 1-3 (see the Appendix). In these

tables, the first column lists the name of the problems and the starting point number

in MCPLIB, Gap denotes the value of xT F (x) at the final iteration, NF indicates the

number of function evaluations of the merit function Ψp for solving each problem, and

Time represents the CPU time in seconds for solving each problem.

The results reported in Tables 1-3 show that our descent method based on the merit

function Ψ1.5(x), Ψ2(x) or Ψ3(x) was able to solve most complementarity problems in

MCPLIB. More precisely, there are seven failures (pgvon105, pgvon106, powell, scar-

fanum, scarfasum, scarfbnum, scarfbsum) for Algorithm 4.1 due to a too small

steplength. After a careful check, we find the direction d defined in Algorithm 4.1 is not

a descent one for these problems. In fact, the seven problems are regarded as difficult

ones for those Newton type algorithms [19, 20]. In addition, we may see that the descent

algorithm using the merit function Ψ1.5(x) has better numerical results than using the

Fischer-Burmeister function. Particularly, it appears from Tables 1-3 that the descent

algorithm based on Ψp(x) will take more function evaluations and yield larger value of
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Gap when the parameter p increases. A reasonable interpretation for this is that the

value of Ψp(x) become smaller when p increases and hence causes some difficulty for the

descent Algorithm 4.1. This also implies that the performance of Algorithm 4.1 will be-

come worse when the parameter p increases. This is an important new discovery, which

has big contribution in constructing new NCP-functions, not found in the literature to

our best knowledge.

6 Final remarks

In this paper, we have studied a family of NCP-functions φp(a, b) which include the well-

known Fischer-Burmeister function as a special case and have shown that this class of

functions enjoy some favorable properties as other NCP-functions do. In addition, we

propose a descent method for the unconstrained minimization (11) which is a reformula-

tion of the NCP via the proposed NCP-functions. Numerical results for the test problem

in MCPLIB have shown this method is promising when Ψp(x) is specified as Ψ1.5(x),

Ψ2(x) or Ψ3(x). Moreover, from our numerical implementations, there indicates that

the performance of the descent method become better when p decreases, which is a new

and important discovery. This implies that there does exist new NCP-function which is

better than Fischer-Burmeister function. It is yet unknown whether similar phenomena

happens in different algorithm, which is an interesting future topic.

There still are many issues for this NCP-function to be explored like those for other

NCP-functions done in the literature. For instance, it would be of interest to know the

semismoothness property of ψp and the Lipschitz continuous property of ∇ψp. In fact,

some of them are recently studied in [2, 3]. In addition, it is interesting to know whether

this class of NCP-functions can be used for SDCP and SOCCP. Some researchers have

started this issue but no update reports by now. We leave them for future research topics.
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Table 1: Numerical results for MCPLIB problems based on Ψ1.5(x), Ψ2(x) and Ψ3(x)

Ψ1.5(x) Ψ2(x) Ψ3(x)

Problem Gap NF Time Gap NF Time Gap NF Time

bertsekas(1) 9.99e-3 63094 30.74 3.00e-2 86826 36.42 3.00e-2 71127 35.92

bertsekas(2) 3.00e-2 63764 34.92 3.00e-2 65801 31.39 1.00e-2 89556 49.22

bertsekas(3) 3.00e-2 318308 176.4 3.00e-2 322751 161.5 3.00e-2 416869 231.8

billups 3.35e-19 25 0.00 3.35e-19 25 0.00 3.35e-19 25 0.00

colvdual(1) 1.48e-2 69675 41.84 2.33e-2 70393 36.72 3.00e-2 181627 109.2

colvdual(2) 1.00e-2 34266 21.36 9.98e-3 49436 24.81 9.94e-3 53895 32.13

colvnlp(1) 1.08e-2 206856 104.1 1.43e-2 207529 93.99 3.00e-2 221400 117.23

colvnlp(2) 9.99e-3 11390 5.37 9.99e-3 11753 4.84 9.96e-3 11964 5.83

cycle 1.14e-3 7 0.00 9.05e-6 5 0.00 2.81e-4 4 0.00

explcp 2.43e-3 5895 3.14 2.58e-3 6001 2.70 2.88e-3 6008 3.13

gafni(1) 2.15e-3 202 0.08 2.68e-3 203 0.06 4.65e-3 203 0.08

gafni(2) 2.08e-3 236 0.09 2.63e-3 229 0.08 4.64e-3 227 0.08

gafni(3) 2.05e-3 250 0.09 2.61e-3 240 0.08 4.62e-3 238 0.08
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Table 2: Numerical results for MCPLIB problems based on Ψ1.5(x), Ψ2(x) and Ψ3(x)

Ψ1.5(x) Ψ2(x) Ψ3(x)

Problem Gap NF Time Gap NF Time Gap NF Time

hanskoop(1) 2.86e-3 763 0.45 2.80e-3 2322 1.58 2.77e-3 1783 0.94

hanskoop(2) 2.86e-3 858 0.48 2.77e-3 2224 1.36 2.77e-3 1685 0.91

hanskoop(3) 2.03e-3 453 0.25 1.96e-3 1105 0.66 1.50e-3 974 0.63

hanskoop(4) 2.04e-3 440 0.27 1.96e-3 1082 0.66 1.20e-3 1860 1.02

hanskoop(5) * * * * * * * * *

josephy(1) 3.72e-3 1112 0.31 4.46e-3 1150 0.31 6.91e-3 1172 0.50

josephy(2) 1.00e-2 1393 0.42 1.00e-2 5104 1.36 1.00e-2 43398 13.08

josephy(3) 1.00e-2 632 0.17 1.00e-2 1373 0.36 1.00e-2 1211 0.34

josephy(4) 1.00e-2 3106 0.88 1.00e-2 15801 4.67 1.25e-2 500027 150.8

josephy(5) 2.34e-3 48 0.03 2.33e-3 47 0.02 2.42e-2 45 0.02

josephy(6) 1.00e-2 1399 0.41 1.00e-2 5114 1.36 1.00e-2 177730 52.36

kojshin(1) 2.43e-2 16827 4.89 2.42e-2 162856 45.84 9.76e-2 500001 148.8

kojshin(2) 2.42e-2 283119 84.59 9.22e-2 500001 142.6 6.51e-1 500001 154.0

kojshin(3) 2.43e-2 23533 6.98 2.42e-2 254703 66.86 1.22e-1 500001 158.0

kojshin(4) 6.98e-3 90 0.08 4.42e-3 553 0.13 3.73e-3 97 0.03

kojshin(5) 9.99e-3 4340 1.23 9.76e-3 26286 7.67 1.57e-2 500001 152.3

kojshin(6) 2.41e-2 182387 54.64 6.81e-2 500001 141.9 3.23e-1 500001 150.8

The ∗ in Table 2 means that the method fails for this problem.
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Table 3: Numerical results for MCPLIB problems based on Ψ1.5(x), Ψ2(x) and Ψ3(x)

Ψ1.5(x) Ψ2(x) Ψ3(x)

Problem Gap NF Time Gap NF Time Gap NF Time

mathinum(1) 9.36e-3 167 0.05 9.64e-3 125 0.03 8.87e-3 122 0.03

mathinum(2) 6.27e-3 133 0.03 8.00e-3 127 0.03 5.60e-3 113 0.03

mathinum(3) 9.15e-3 111 0.03 8.62e-3 81 0.03 8.41e-3 83 0.02

mathinum(4) 8.99e-3 252 0.08 9.49e-3 136 0.03 8.71e-3 128 0.05

mathisum(1) 1.18e-3 109142 31.84 2.70e-3 113416 32.72 7.80e-3 500056 152.7

mathisum(2) 1.20e-3 90185 26.97 2.80e-3 102412 29.98 7.90e-3 500005 155.3

mathisum(3) 1.19e-3 109323 32.34 2.84e-3 102416 29.81 7.90e-3 500004 153.5

mathisum(4) 1.20e-3 90285 27.30 2.84e-3 102417 29.81 7.90e-3 500003 159.2

nash(1) 1.52e-2 4764 2.50 1.52e-2 4837 2.30 1.52e-2 4842 2.47

nash(2) 1.52e-2 4633 2.33 1.52e-2 4669 2.19 1.52e-2 4669 2.58

sppe(1) 3.00e-2 88251 66.86 3.00e-2 88378 57.52 3.00e-2 88487 73.67

sppe(2) 3.00e-2 87482 66.58 3.00e-2 87460 59.30 3.00e-2 87523 71.06

tobin(1) 2.55e-2 14187 15.48 2.55e-2 14348 14.44 2.56e-2 14392 16.50

tobin(2) 2.72e-2 14174 16.12 3.00e-2 14467 13.61 2.10e-2 20330 24.39
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