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An R-Linearly Convergent Nonmonotone Derivative-Free Method for SCCP

1 Introduction

Let V be a finite-dimensional vector space over the real field R, A ≡ (V, ◦, 〈·, ·〉)
be a Euclidean Jordan algebra (see Section 2 for the definition), and K be a

symmetric cone in A. Given a continuously differentiable mapping F : V → V,

we are interested in the following symmetric cone complementarity problem

(SCCP): to find a ζ ∈ V such that

ζ ∈ K, F (ζ) ∈ K, 〈ζ, F (ζ)〉 = 0. (1)

This class of problem provides a unified framework for the classical nonlinear

complementarity problem (NCP), the second-order cone complementarity prob-

lem (SOCCP), and the semidefinite complementarity problem (SDCP), as well

as arises from the KKT system of a nonlinear symmetric cone optimization

problem. When F (ζ) = L(ζ) + q with L : V → V being a linear transformation

and q ∈ V, the problem (1) reduces to the linear complementarity problem over

symmetric cones (LSCCP):

ζ ∈ K, L(ζ) + q ∈ K, 〈ζ,L(ζ) + q〉 = 0. (2)

Recently, there is active research for the solution of the symmetric cone

optimization and complementarity problems, and have been proposed various

solution methods. They include the interior-point methods [3, 22, 29], the

merit function methods [14, 16], the regularized smoothing method [13], and

the smoothing Newton method [8]. This paper is concerned with a derivative-

free method based on the implicit Lagrangian reformulation (5) of the SCCP

(1). An attractive feature of this method is that no derivatives of F (·) need to

be computed, which makes the method suitable for large-scale problems, as well

as for applications where the derivatives of F (·) are not available or are costly

to compute.

The implicit Lagrangian function was first introduced by Mangasarian and

Solodov [17] as a smooth merit function for the NCP, and further studied un-

der the setting of nonnegative orthant cones by [10, 15, 18, 25, 27] and other

literature. Recently, Kong, Tuncel and Xiu [14] utilized the Jordan-algebraic

technique to extend the implicit Lagrangian to the symmetric cone K. The

corresponding function is defined as

ψα(x, y) := 〈x, y〉+ 1

2α

{

‖(x−αy)+‖2−‖x‖2+‖(y−αx)+‖2−‖y‖2
}

, ∀x, y ∈ V

(3)

where α > 1 is a parameter, ‖ · ‖ is the norm induced by the inner product 〈·, ·〉,
and (·)+ denotes the metric projection onto the symmetric cone K. They have

showed that ψα is a continuously differentiable merit function associated with
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K, that is,

ψα(x, y) = 0 ⇐⇒ x ∈ K, y ∈ K, 〈x, y〉 = 0, (4)

and thus the SCCP can be formulated as an unconstrained smooth minimization

problem

min
ζ∈V

Ψα(ζ) := ψα(ζ, F (ζ)) (5)

in the sense that the minimizer of (5) with zero objective value is a solution

of (1). For the unconstrained reformulation, they particularly gave a sufficient

and necessary condition for each stationary point of Ψα to be a solution of (1),

and established that Ψα offers a global error bound for the SCCP (1) when F

has the uniform Cartesian P -property.

Although the literature on derivative-free algorithms for the NCPs is vast

(see, e.g., [1, 7, 9, 12, 18, 26, 27]), to our best knowledge, there are few papers to

consider the ones for the nonpolyhedral symmetric cone complementarity prob-

lems except [20, 28]. In these two papers, the derivative-free methods are de-

veloped for the SDCP and the SOCCP, respectively, by the Fischer-Burmeister

type merit function. Moreover, the rate of convergence result is not established

in [28] and the one in [20] is only shown to be Q-linear. We also note that

almost all derivative-free methods mentioned above are descent ones with the

monotone Armijo-type line search.

To the contrast, in this work we develop a nonmonotone derivative-free

method for the SCCP by using the vector of the form d(ζ) ≡ −θ∇xψα(ζ, F (ζ))−
(1 − θ)∇yψα(ζ, F (ζ)) with θ ∈ [0, 1] as the search direction. As shown in

Prop.3.4, when θ is sufficiently small, d(ζ) is a descent direction, and it re-

duces to the one adopted in [18]. However, for a general θ ∈ [0, 1], d(ζ) is not

necessarily descent, and we adopt a nonmonotone line search rule to seek a de-

sirable stepsize. We show that the method converges in terms of the implicit

Lagrangian value for a large class of SCCPs, and if θ is restricted to be less

than a threshold θ̄ ∈ (0, 1) and the SCCP is strongly monotone, the sequence

generated converges to the solution at a R-linear rate. Numerical tests verify

the theoretical results, and show that the method with a smaller θ does not

have better performance than the method with a θ close to 1, though it may

have a R-linear rate of convergence when θ is sufficiently small.

Throughout this paper, int K denotes the interior of the cone K and ‖ · ‖
represents the norm induced by the inner product 〈·, ·〉, i.e., ‖ · ‖ :=

√

〈·, ·〉. For
any x ∈ V, we write (x)+ and (x)− as the metric projection of x onto K and

−K, respectively, i.e.,

(x)+ := argminy∈K{‖x− y‖}.
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For a differentiable mapping F : V → V, we denote its transposed Jacobian at

x ∈ V by ∇F (x). Unless otherwise stated, the parameter α in the sequel always

satisfies α > 1.

2 Preliminaries

A Euclidean Jordan algebra is a triple (V, ◦, 〈·, ·〉V), where (V, 〈·, ·〉V) is a finite-

dimensional inner product space over R and (x, y) 7→ x ◦ y : V × V → V is a

bilinear mapping satisfying:

(i) x ◦ y = y ◦ x for all x, y ∈ V;

(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ V, where x2 := x ◦ x;

(iii) 〈x ◦ y, z〉V = 〈y, x ◦ z〉V for all x, y, z ∈ V.

We call x◦y the Jordan product of x and y. We assume that there is an element

e ∈ V such that x ◦ e = x for all x ∈ V, and call such e the unit element. Let

ζ(x) := min
{

k : {e, x, x2, . . . , xk} are linearly dependent
}

.

Since ζ(x) is bounded by the dimension of V, denoted by dim(V), the rank of

(V, ◦) is well defined by r := max{ζ(x) : x ∈ V}. Define the set of squares

as K :=
{

x2 : x ∈ V
}

. Then, from [11, Theorem III.2.1], it follows that K is

a symmetric cone. This means that K is a self-dual closed convex cone with

nonempty interior int K, and for any x, y ∈ int K, there exists an invertible

linear transformation T : V → V such that T (K) = K.

Recall that an element c ∈ V is idempotent if c2 = c, and two idempotents c

and d are orthogonal if c ◦ d = 0. A nonzero idempotent is primitive if it cannot

be written as the sum of two other nonzero idempotents. A complete system

of orthogonal idempotents is a finite set {c1, c2, . . . , ck} of idempotents with

ci ◦ cj = 0 (i 6= j) and
∑k

i=1 ci = e. We call a complete system of orthogonal

primitive idempotents a Jordan frame.

Theorem 2.1 [11, Theorem III.1.2] Suppose that A = (V, ◦, 〈·, ·〉V) is a Eu-

clidean Jordan algebra with rank r. Then for each x ∈ V, there exist a Jordan

frame {c1, c2, . . . , cr} and real numbers λ1(x), λ2(x), . . . , λr(x) such that

x = λ1(x)c1 + λ2(x)c2 + · · ·+ λr(x)cr.

The numbers λ1(x), . . . , λr(x) (counting multiplicities) are called the eigenval-

ues of x. Furthermore, the trace of x, denoted by tr(x), is defined as tr(x) =
∑r

j=1 λj(x).
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Since, by [11, Prop.III.1.5], a Jordan algebra A = (V, ◦) over R with a unit

element e ∈ V is Euclidean if and only if the symmetric bilinear form tr(x ◦ y)
is positive definite, we may define another inner product 〈·, ·〉 on V by

〈x, y〉 := tr(x ◦ y), ∀ x, y ∈ V. (6)

By the associativity of tr(·) (see [11, Prop.II.4.3]), the inner product 〈·, ·〉 is

associative, i.e., for all x, y, z ∈ V, it holds that 〈x ◦ y, z〉 = 〈y, x ◦ z〉.

Unless otherwise stated, in the rest of this paper, we always assume that

A = (V, ◦, 〈·, ·〉) is a Euclidean Jordan algebra of rank r and dim(V) = n with

〈·, ·〉 defined as in (6).

Let ϕ : R → R be a scalar-valued function. By Theorem 2.1, it is natural

to define a vector-valued function associated with the Euclidean Jordan algebra

A = (V, ◦, 〈·, ·〉) by

ϕ
V
(x) := ϕ(λ1(x))c1 + ϕ(λ2(x))c2 + · · ·+ ϕ(λr(x))cr, (7)

where x ∈ V has the spectral decomposition x =
∑r

j=1 λj(x)cj . The function

ϕ
V
is also called Löwner operator in [23] and shown to inherit many properties

from ϕ. Especially, when ϕ(t) is chosen as max{0, t} and min{0, t} for t ∈ R,

the Löwner operator ϕ
V
(·) respectively becomes the metric projection operator

onto K and −K:

(x)+ :=

r
∑

j=1

max
{

0, λj(x)
}

cj and (x)− :=

r
∑

j=1

min
{

0, λj(x)
}

cj . (8)

A Euclidean Jordan algebra is called simple if it is not the direct sum of two

Euclidean Jordan algebras. By [11, Prop.III.4.4-4.5 & Theorem V.3.7], each

Euclidean Jordan algebra is, in a unique way, a direct sum of simple Euclidean

Jordan algebras. Also, the symmetric cone in a given Euclidean Jordan algebra

is, in a unique way, a direct sum of symmetric cones in the constituent simple

Euclidean Jordan algebras. In the sequel, we assume that V ≡ V1×· · ·×Vm and

K ≡ K1 × · · · × Km, where each Ai = (Vi, ◦, 〈·, ·〉) is a simple Euclidean Jordan

algebra and Ki is a symmetric cone in Vi. Corresponding to the Cartesian struc-

ture of V and K, let ζ = (ζ1, . . . , ζm) with ζi ∈ Vi and F (ζ) = (F1(ζ), . . . , Fm(ζ))

with Fi : V → Vi.

To close this section, we recall the definitions of uniform Cartesian P -

property [5, 14] and uniform Jordan P -property [24].

Definition 2.1 The mapping F = (F1, F2, . . . , Fm) with Fi : V → Vi is said to

have
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(a) the uniform Cartesian P -property if there exists a positive scalar ρ such

that for any ζ, ξ ∈ V, there is an index i ∈ {1, 2, . . . ,m} such that

〈ζi − ξi, Fi(ζ)− Fi(ξ)〉 ≥ ρ‖ζ − ξ‖2.

(b) the uniform Jordan P -property if there is a scalar ρ > 0 such that for any

ζ, ξ ∈ V,

λmax [(ζ − ξ) ◦ (F (ζ)− F (ξ))] ≥ ρ‖ζ − ξ‖2

where λmax(x) denotes the largest eigenvalue of a vector x ∈ V.

3 Properties of the function Ψα

This section is devoted to the favorable properties of the implicit Lagrangian

function Ψα. Most of the properties have been given by Kong, Tuncel and

Xiu [14], and we supplement some ones that play an important role in the

convergence analysis of the algorithms. For this purpose, let rα : V × V → V

and Rα : V → V be respectively defined by

rα(x, y) := x− (x− αy)+ for α > 0 (9)

and

Rα(ζ) := rα(ζ, F (ζ)) for α > 0. (10)

Then, by using the same arguments as those of [4, Lemma 1] and [21, Theorem

4.2], it is easy to obtain the following properties of rα, and we omit the proof

for simplicity.

Lemma 3.1 Let rα be defined as in (9). Then, there hold that

(a) min{1, α}‖r1(x, y)‖ ≤ ‖rα(x, y)‖ ≤ max{1, α}‖r1(x, y)‖ for all x, y ∈ V

and α > 0;

(b) min{1, α}‖r1(x, y)‖ ≤ ‖rα(y, x)‖ ≤ max{1, α}‖r1(x, y)‖ for all x, y ∈ V

and α > 0;

(c) α−1(α − 1)‖r1(x, y)‖2 ≤ ψα(x, y) ≤ (α − 1)‖r1(x, y)‖2 for all x, y ∈ V and

α > 1.

Now we give a proposition to summarize the favorable properties of the

function Ψα.

Proposition 3.1 Let Ψα be defined as in (5). Then the following statements

hold:
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(a) Ψα(ζ) ≥ 0 for all ζ ∈ V, and Ψα(ζ) = 0 if and only if ζ ∈ V solves the

SCCP (1).

(b) Ψα is continuously differentiable everywhere on V with the gradient given

by

∇Ψα(ζ) = ∇xψα(ζ, F (ζ)) +∇F (ζ)∇yψα(ζ, F (ζ)).

(c) ∇xψα(ζ, F (ζ)) +∇yψα(ζ, F (ζ)) = 0 if and only if ζ ∈ V solves the SCCP

(1).

(d)
〈

∇xψα(ζ, F (ζ)),∇yψα(ζ, F (ζ))
〉

≥ 0 for any ζ ∈ V.

(e)
∥

∥∇xψα(ζ, F (ζ)) +∇yψα(ζ, F (ζ))
∥

∥

2 ≥ (α2 − 1)2

α2(α2 + 1)
‖Rα(ζ)‖2 for any ζ ∈ V.

(f)
∥

∥∇xψα(ζ, F (ζ)) +∇yψα(ζ, F (ζ))
∥

∥

2 ≤ 2α(α− 1)Ψα(ζ) for any ζ ∈ V.

Proof. The proof of parts (a)–(d) can be found in the literature [14]. To prove

parts (e) and (f), we only need to show that for all x, y ∈ V,

∥

∥∇xψα(x, y) +∇yψα(x, y)
∥

∥

2 ≥ (α2 − 1)2

α2(α2 + 1)

[

‖rα(x, y)‖2 + ‖rα(y, x)‖2
]

,(11)

∥

∥∇xψα(x, y) +∇yψα(x, y)
∥

∥

2 ≤ 2α(α− 1)ψα(x, y). (12)

From [14], it follows that for any x, y ∈ V,

∇xψα(x, y) = y + α−1 [(x− αy)+ − x− α(y − αx)+] ,

∇yψα(x, y) = x+ α−1 [(y − αx)+ − y − α(x− αy)+] . (13)

Therefore, we have

∥

∥∇xψα(x, y) +∇yψα(x, y)
∥

∥

2
=

(α− 1)2

α2

∥

∥

[

x− (x− αy)+
]

+
[

y − (y − αx)+
]∥

∥

2

=
(α− 1)2

α2

[

∥

∥x− (x− αy)+
∥

∥

2
+
∥

∥y − (y − αx)+
∥

∥

2
]

+
2(α− 1)2

α2

〈

x− (x− αy)+, y − (y − αx)+
〉

. (14)

From part (d), we see that 〈∇xψα(x, y),∇yψα(x, y)〉 ≥ 0 for any x, y ∈ V, that

is,

0 ≤
〈

y − (y − αx)+ +
1

α
[(x− αy)+ − x], x− (x− αy)+ +

1

α
[(y − αx)+ − y]

〉

= − 1

α

∥

∥x− (x− αy)+
∥

∥

2 − 1

α

∥

∥y − (y − αx)+
∥

∥

2

+

(

1 +
1

α2

)

〈

x− (x− αy)+, y − (y − αx)+
〉

.
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This in turn implies that

〈

x− (x− αy)+, y − (y − αx)+
〉

≥ α

α2 + 1

[

‖x− (x− αy)+‖2 + ‖y − (y − αx)+‖2
]

∀ x, y ∈ V. (15)

Combining (14) with (15) and noting that α > 0, we immediately obtain

∥

∥∇xψα(x, y) +∇yψα(x, y)
∥

∥

2

≥ (α− 1)2(α+ 1)2

α2(α2 + 1)

[

‖x− (x− αy)+‖2 + ‖y − (y − αx)+‖2
]

=
(α2 − 1)2

α2(α2 + 1)

[

‖rα(x, y)‖2 + ‖rα(y, x)‖2
]

.

This completes the proof of (11). To see inequality (12), we verify the following:

∥

∥∇xψα(x, y) +∇yψα(x, y)
∥

∥

2
=

(α− 1)2

α2

∥

∥rα(x, y) + rα(y, x)
∥

∥

2

≤ 2
(α− 1)2

α2

(

‖rα(x, y)‖2 + ‖rα(y, x)‖2
)

≤ (α− 1)2

α2
· 2α2‖r1(x, y)‖2

≤ 2(α− 1)2 · α

α− 1
ψα(x, y)

= 2α(α− 1)ψα(x, y),

where the first equality is due to the first equation of (14) and the definition of

rα, and the second inequality holds by Lemma 3.1(a)-(b). Thus, we complete

the proof. 2

The assertions of Prop.3.1(e)-(f) are new, and they play a key role in es-

tablishing the rate of convergence result of the nonmonotone descent algorithm

of this paper. When V reduces to the Euclidean space R
n with the standard

inner product and Jordan product defined as the componentwise product of the

vectors, Prop.3.1(e) implies the second result of [18, Lemma 1] by observing

α > 1 and the following inequalities

∥

∥∇xψα(ζ, F (ζ)) +∇yψα(ζ, F (ζ))
∥

∥ ≥ α2 − 1

α
√
α2 + 1

‖Rα(ζ)‖

≥ (α− 1)(α+ 1)

α
√
α2 + 1

‖R1(ζ)‖

≥ α− 1

α
‖R1(ζ)‖

where the first inequality is by Lemma 3.1(b) and the second one is due to

α+ 1 >
√
α2 + 1.
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The following results for Ψα can be found in [14, Corollary 6.4] and [14,

Theorem 6.3].

Proposition 3.2 Assume that F has the uniform Cartesian P -property. Then,

(a) Each stationary point of Ψα is a solution of the SCCP (1).

(b) If, in addition, F is Lipschitz continuous with constant L > 0, then for any

ζ ∈ V,

1

(α− 1)(2 + L)2
Ψα(ζ) ≤ ‖ζ − ζ∗‖2 ≤ α(1 + L)2

(α− 1)ρ2
Ψα(ζ),

where ζ∗ be the unique solution of (1), and the constant ρ is same as in

Def.2.1.

It is well known that the coerciveness of the merit function plays an impor-

tant role in the convergence analysis of the unconstrained reformulation methods

for the complementarity problems. The next proposition presents a mild con-

dition to guarantee the coerciveness of Ψα, whose proof can be found in [19,

Theorem 4.1].

Proposition 3.3 The function Ψα is coercive under the following condition

that

(C.1) F has the uniform Jordan P -property and the linear growth, i.e., there

exists a constant C > 0 such that for any ζ ∈ V, ‖F (ζ)‖ ≤ ‖F (0)‖+C‖ζ‖.

Particularly, if F is given as in (2) with L having the P -property, then Ψα is

coercive.

To close this section, we present the direction d(ζ) that will be employed to

design our derivative-free algorithm. Specifically, let the mapping d : V → V be

given by

d(ζ) := −θ∇xψα(ζ, F (ζ))− (1− θ)∇yψα(ζ, F (ζ)) ∀θ ∈ [0, 1]. (16)

Such vector d enjoys the properties stated as in the following proposition.

Proposition 3.4 Suppose that ∇F is positive definite. Then, for sufficiently

small θ > 0,

d(ζ)T∇Ψα(ζ) < 0 when d(ζ) 6= 0.

If F is strongly monotone with modulus µ > 0 and S ⊆ V is any bounded set,

then there exists θ̄ ∈ (0, 1) such that for all θ ≤ θ̄,

d(ζ)T∇Ψα(ζ) ≤ −1

2
θ
∥

∥∇xψα(ζ, F (ζ)) +∇yψα(ζ, F (ζ))
∥

∥

2 ∀ζ ∈ S.
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Proof. By the formula of ∇Ψα and Prop.3.1(d), for any θ ∈ [0, 1], we have

d(ζ)T∇Ψα(ζ) = −θ‖∇xψα(ζ, F (ζ))‖2 − (1− θ)〈∇xψα(ζ, F (ζ)),∇yψα(ζ, F (ζ))〉
−θ 〈∇xψα(ζ, F (ζ)), ∇F (ζ)∇yψα(ζ, F (ζ))〉
−(1− θ) 〈∇yψα(ζ, F (ζ)), ∇F (ζ)∇yψα(ζ, F (ζ))〉

≤ −θ‖∇xψα(ζ, F (ζ))‖2 − θ 〈∇xψα(ζ, F (ζ)),∇F (ζ)∇yψα(ζ, F (ζ))〉
−(1− θ) 〈∇yψα(ζ, F (ζ)),∇F (ζ)∇yψα(ζ, F (ζ))〉 . (17)

Notice that for sufficiently small θ > 0 and any given ζ ∈ V, the vector d(ζ) 6= 0

must imply that ∇yψα(ζ, F (ζ)) 6= 0. Thus, the last term of the right hand side

is always strictly negative by the positive definiteness of ∇F , whereas the first

two terms are sufficiently small. Therefore, we obtain that d(ζ)T∇Ψα(ζ) < 0

whenever d(ζ) 6= 0.

Since ∇F is continuous and S is bounded, there exists a constant ν > 0 such

that

‖∇F (ζ)‖ ≤ ν ∀ ζ ∈ S. (18)

On the other hand, using the strong monotonicity of F , we have

〈∇F (ζ)u, u〉 ≥ µ‖u‖2 ∀ ζ, u ∈ V. (19)

Now, from equations (17)–(19), it follows that for any θ ∈ [0, 1] and ζ ∈ S,

d(ζ)T∇Ψα(ζ) ≤ −θ‖∇xψα(ζ, F (ζ))‖2 − (1− θ)µ‖∇yψα(ζ, F (ζ))‖2

+θν‖∇xψα(ζ, F (ζ))‖ · ‖∇yψα(ζ, F (ζ))‖

= −1

2
θ
(

‖∇xψα(ζ, F (ζ))‖+ ‖∇yψα(ζ, F (ζ))‖
)2

−1

2
θ
∥

∥∇xψα(ζ, F (ζ))
∥

∥

2 − 2(1− θ)µ− θ

2

∥

∥∇yψα(ζ, F (ζ))
∥

∥

2

+θ(ν + 1)‖∇xψα(ζ, F (ζ))‖ · ‖∇yψα(ζ, F (ζ))‖. (20)

If θ ≤ 2µ/(2µ+ 1), then the last inequality can be rewritten as

d(ζ)T∇Ψα(ζ) ≤ −1

2
θ
(

‖∇xψα(ζ, F (ζ))‖+ ‖∇yψα(ζ, F (ζ))‖
)2

−
(

√

θ

2

∥

∥∇xψα(ζ, F (ζ))
∥

∥−
√

2µ− (2µ+ 1)θ

2

∥

∥∇yψα(ζ, F (ζ))
∥

∥

)2

(21)

+
(

θ(ν + 1)−
√

2µθ − (2µ+ 1)θ2
)

‖∇xψα(ζ, F (ζ))‖‖∇yψα(ζ, F (ζ))‖.

If θ(ν+1) ≤
√

2µθ − (2µ+ 1)θ2, that is, θ ≤ 2µ/(2µ+1+(ν+1)2), then using

(21) and the Cauchy-Schwartz inequality yields

d(ζ)T∇Ψα(ζ) ≤ −1

2
θ
(

‖∇xψα(ζ, F (ζ))‖+ ‖∇yψα(ζ, F (ζ))‖
)2

≤ −1

2
θ
∥

∥∇xψα(ζ, F (ζ)) +∇yψα(ζ, F (ζ))
∥

∥

2
.
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Thus, by setting

θ̄ := min

{

2µ

2µ+ 1
,

2µ

2µ+ 1 + (ν + 1)2

}

=
2µ

2µ+ 1 + (ν + 1)2
, (22)

we obtain the desired result. The proof is complete. 2

4 Nonmonotone derivative-free algorithm

In this section, we utilize the direction d(ζ) defined by (16) to design a derivative-

free algorithm. By Prop.3.4, d(ζ) with θ ∈ [0, 1] may not satisfy the descent

condition. Moreover, the technique of nonmonotone line search is often more

effective than the Armijo-type line search. So, we adopt a nonmonotone line

search rule to seek a suitable stepsize.

Algorithm 4.1

(Step 0) Choose ζ0 ∈ V, ǫ ≥ 0, θ ∈ [0, 1] and γ, δ ∈ (0, 1). Let M > 0 be an

integer. Set k := 0.

(Step 1) If Ψα(ζ
k) ≤ ǫ, then stop. Otherwise, go to Step 2.

(Step 2) Let m(0) = 0, 0 ≤ m(k) ≤ min{m(k − 1) + 1,M − 1} for k ≥ 1. Let

lk be the smallest nonnegative integer l satisfying

Ψα(ζ
k + γldk) ≤ max

0≤j≤m(k)
Ψα(ζ

k−j)− δγ2lh(ζk), (23)

where dk := d(ζk) with d(ζ) defined as in (16), and

h(ζ) := ‖∇xψα(ζ, F (ζ)) +∇yψα(ζ, F (ζ))‖2. (24)

(Step 3) Set ζk+1 := ζk + γlkdk and k := k + 1, and then go to Step 1.

Observe that no derivatives of F are needed to compute the search direction

or the stepsize in Algorithm 4.1. Hence, Algorithm 4.1 requires little computa-

tion and storing work at each iteration. Since θ is any fixed constant in [0, 1],

the direction dk is different from the one used in [18] and at each iteration may

not satisfy the descent condition (dk)T∇Ψα(ζ
k) < 0. Based on this, a non-

monotone line search rule is used in Step 2. The line search rule is different

from the ones adopted in [2, 6] where the gradient of the merit (or objective)

function is needed, and when m(k) ≡ 0, the nonmonotone line search reduces

to the Armijo line search. Particularly, if θ is restricted to be less than θ̄ given

by (22) and F is strongly monotone, then Prop.3.4 implies that Algorithm 4.1
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will become a nonmonotone derivative-free descent algorithm.

In what follows, we study the convergence of Algorithm 4.1. To the end,

assume that Algorithm 4.1 generates an infinite sequence {ζk}, i.e., ǫ = 0. We

define the level set

L(Ψα, ζ
0) :=

{

ζ ∈ V | Ψα(ζ) ≤ Ψα(ζ
0)
}

.

Then L(Ψα, ζ
0) is bounded under one of the condition given in Prop.3.3. By

the continuity of F (·), we know that D(ζ0) := sup
{

‖d(ζ)‖ | ζ ∈ L(Ψα, ζ
0)
}

is

finite. Consequently,

B(ζ0) := L(Ψα, ζ
0) +

{

ζ ∈ V | ‖ζ‖ ≤ D(ζ0)
}

is also bounded under the condition stated in Prop.3.3.

Lemma 4.1 Let {ζk} be the sequence generated by Algorithm 4.1. Then,

(a) the sequence {ζk} is contained in L(Ψα, ζ
0);

(b) max
1≤i≤M

Ψα(ζ
Mp+i) ≤ max

1≤i≤M
Ψα(ζ

M(p−1)+i) − δ min
0≤i≤M−1

γ2l(Mp+i)h(ζMp+i)

for any p ≥ 1.

Proof. (a) For each k ≥ 0, let σ(k) be an integer from [k −m(k), k] such that

Ψα(ζ
σ(k)) = max

0≤j≤m(k)
Ψα(ζ

k−j).

Then, the line search condition (23) can be rewritten as

Ψα(ζ
k+1) ≤ Ψα(ζ

σ(k))− δγ2lkh(ζk). (25)

Noting that m(k + 1) ≤ m(k) + 1 and h(ζ) ≥ 0 for any ζ ∈ V, we have from

(23) that

Ψα(ζ
σ(k+1)) = max

0≤j≤m(k+1)
Ψα(ζ

k+1−j) ≤ max
0≤j≤m(k)+1

Ψα(ζ
k+1−j)

= max{Ψα(ζ
σ(k)),Ψα(ζ

k+1)}
= Ψα(ζ

σ(k)),

where the last equality is from (25) and the nonnegativity of h(ζk). This shows

that the sequence {Ψα(ζ
σ(k))} is nonincreasing. Noting that ζσ(0) = ζ0, we then

have Ψα(ζ
k) ≤ Ψα(ζ

0) for all k, which in turn implies {ζk} ⊆ L(Ψα, ζ
0).

(b) We only need to show that the following inequality holds for j = 1, 2, . . . ,M :

Ψα(ζ
Mp+j) ≤ max

1≤i≤M
Ψα(ζ

M(p−1)+i)− δγ2l(Mp+j−1)h(ζMp+j−1) ∀p ≥ 1. (26)
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Notice that the linear search condition (23) implies

Ψα(ζ
Mp+1) ≤ max

0≤i≤m(Mp)
Ψα(ζ

Mp−i)− δγ2lMph(ζMp),

which together with m(Mp) ≤M−1 shows that inequality (26) holds for j = 1.

Suppose that (26) holds for any 1 ≤ j ≤ M − 1. Then, from the nonnegativity

of h(ζ), it follows that

max
1≤i≤j

Ψα(ζ
Mp+i) ≤ max

1≤i≤M
Ψα(ζ

M(p−1)+i).

Consequently, by using (23), the induction hypothesis and m(Mp+ j) ≤M −1,

we get

Ψα(ζ
Mp+j+1) ≤ max

0≤i≤m(Mp+j)
Ψα(ζ

Mp+j−i)− δγ2l(Mp+j)h(ζMp+j)

≤ max

{

max
1≤i≤M

Ψα(ζ
M(p−1)+i), max

1≤i≤j
Ψα(ζ

Mp+j)

}

− δγ2l(Mp+j)h(ζMp+j)

≤ max
1≤i≤M

Ψα(ζ
M(p−1)+i)− δγ2l(Mp+j)h(ζMp+j).

This shows that (26) also holds for j + 1. By induction, we prove that (26) is

true for all 1 ≤ j ≤M . Consequently, the assertion of part (b) follows. 2

Now we are in a position to state and prove our convergent result for Algo-

rithm 4.1.

Theorem 4.1 Let {ζk} be the sequence generated by Algorithm 4.1. Suppose

that F is Lipschitz continuous and satisfies the condition in Prop.3.3, and ∇F (·)
is Lipschitz continuous on B(ζ0). Then, the following results hold.

(a) The sequence {ζk} is bounded.

(b) The sequence {Ψα(ζ
k)} is convergent.

(c) limk→∞ γ2lkh(ζk) = 0, limk→∞ γlk‖dk‖ = 0 and limk→∞ ‖ζk+1 − ζk‖ = 0.

(d) Each accumulation point of {ζk} either is a solution of the SCCP (1) or

satisfies
|∇Ψα(ζ)

T d(ζ)|
h(ζ)

= 0. (27)

Proof. (a) By Prop.3.3, L(Ψα, ζ
0) is bounded, and the result holds by Lemma

4.1(a).

(b) First, by the proof of Lemma 4.1(a), the sequence {Ψα(ζ
σ(k))} is nonin-

creasing. This together with the nonnegativity of Ψα(ζ) for any ζ ∈ V implies
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that {Ψα(ζ
σ(k))} admits a limit when k → ∞. Let j be an integer such that

1 ≤ j ≤M + 1. We first by induction on j show that

lim
k→∞

‖ζσ(k)−j+1 − ζσ(k)−j‖ = 0, (28)

lim
k→∞

Ψα(ζ
σ(k)) = lim

k→∞
Ψα(ζ

σ(k)−j), (29)

where σ(k) is defined as in Lemma 4.1, and the sequences are considered for

sufficiently large k such that σ(k)≥ k −M> 1. If j = 1, then using (25) with

k replaced by σ(k)− 1, we obtain that

Ψα(ζ
σ(k)) ≤ Ψα(ζ

σ(σ(k)−1))− δγ2lσ(k)−1h(ζσ(k)−1). (30)

Since {Ψα(ζ
σ(k))} admits a limit, taking limits to the both sides of (30) yields

lim
k→∞

γ2lσ(k)−1h(ζσ(k)−1) = 0.

From the definition of d(ζ) and h(ζ), it is easy to verify that

h(ζ) ≥ ‖d(ζ)‖2 for any ζ ∈ V.

Using the last two equations, it then follows that

0 ≥ lim
k→∞

‖γlσ(k)−1dσ(k)−1‖ = lim
k→∞

‖ζσ(k) − ζσ(k)−1‖ ≥ 0. (31)

On the other hand, since Ψα is continuously differentiable everywhere and

L(Ψα, ζ
0) is bounded, the function Ψα is Lipschitz continuous on L(Ψα, ζ

0).

This means that there exists a constant L2 > 0 such that

|Ψα(ζ)−Ψα(ξ)| ≤ L2‖ζ − ξ‖ ∀ζ, ξ ∈ L(Ψα, ζ
0). (32)

From equations (31)–(32), we immediately obtain

lim
k→∞

Ψα(ζ
σ(k)) = lim

k→∞
Ψα(ζ

σ(k)−1).

This shows that (28) and (29) hold at each k for j = 1. Now assume that (29)

holds for a given j. Using (25) with k replaced by σ(k)− j − 1, we have

Ψα(ζ
σ(k)−j) ≤ Ψα(ζ

σ(σ(k)−j−1))− δγ2lσ(k)−j−1h(ζσ(k)−j−1).

Taking limits for k → ∞ and recalling (29) give

lim
k→∞

γ2lσ(k)−j−1h(ζσ(k)−j−1) = 0.

This together with h(ζσ(k)−j−1) ≥ ‖dσ(k)−j−1‖2 implies

0 ≥ lim
k→∞

γlσ(k)−j−1‖dσ(k)−j−1‖ = lim
k→∞

‖ζσ(k)−j − ζσ(k)−j−1‖ = 0.
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Combining with (29) and (32), we then obtain

lim
k→∞

Ψα(ζ
σ(k)) = lim

k→∞
Ψα(ζ

σ(k)−j−1).

The last two equations show that (28) and (29) hold when replacing j with

j + 1, and hence (28) and (29) hold for any given j ∈ {1, . . . ,M}. Let σ̂(k) =

σ(k +M + 1). Then,

ζ σ̂(k) = ζk + (ζk+1 − ζk) + · · ·+ (ζ σ̂(k) − ζ σ̂(k)−1)

= ζk +

σ̂(k)−k
∑

j=1

(ζ σ̂(k)−j+1 − ζ σ̂(k)−j). (33)

Notice that σ(k +M + 1) ≤ k +M + 1 and σ̂(k) − k ≤ M + 1, and therefore,

from (33) and (28), it follows

lim
k→∞

‖ζk − ζ σ̂(k)‖ = 0. (34)

Since {Ψα(ζ
σ(k))} has a limit, using (32) and (34), we have

lim
k→∞

Ψα(ζ
k) = lim

k→∞
Ψα(ζ

σ̂(k)) = lim
k→∞

Ψα(ζ
σ(k+M+1)) = lim

k→∞
Ψα(ζ

σ(k)).

Thus, we complete the proof of assertion (b).

(c) From the line search condition (23) and part (b), it readily follows

lim
k→∞

γ2lkh(ζk) = 0.

This together with h(ζk) ≥ ‖dk‖2 and ‖γlkdk‖ = ‖ζk+1 − ζk‖ yields

lim
k→∞

γlk‖dk‖ = lim
k→∞

‖ζk+1 − ζk‖ = 0.

Consequently, the assertions of part (c) hold.

(d) If lk = 0 fails for the line search condition (23), then we have

Ψα(ζ
k + γlk−1dk) > max

0≤j≤m(k)
Ψα(ζ

k−j)− δγ2(lk−1)h(ζk)

≥ Ψα(ζ
k)− δγ2(lk−1)h(ζk). (35)

Since F (·) and ∇F (·) are Lipschitz continuous on B(ζ0), it is clear that ∇Ψα(·)
is Lipschitz continuous on this bounded set, i.e., there exists a constant L3 > 0

such that

‖∇Ψα(ζ)−∇Ψα(ξ)‖ ≤ L3‖ζ − ξ‖ ∀ζ, ξ ∈ B(ζ0). (36)

Notice that ζk and ζk + tdk for any t ∈ [0, 1] belong to the set B(ζ0). By

the mean-value theorem and the Lipschitz continuity of ∇Ψα on B(ζ0), it then
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follows that

Ψα(ζ
k + tdk)−Ψα(ζ

k)

= t∇Ψα(ζ
k)T dk +

∫ t

0

[∇Ψα(ζ
k + sdk)−∇Ψα(ζ

k)]T dkds

≤ t∇Ψα(ζ
k)T dk +

∫ t

0

L3‖dk‖2sds

= t∇Ψα(ζ
k)T dk + (1/2)L3t

2‖dk‖2

≤ t∇Ψα(ζ
k)T dk + (1/2)L3t

2h(ζk)

≤ −δt2h(ζk) for all t ∈
[

0,
2|∇Ψα(ζ

k)T dk|
h(ζk)(2δ + L3)

]

. (37)

Combining the inequality (37) with (35), we obtain that

γlk−1 >
2|∇Ψα(ζ

k)T dk|
h(ζk)(2δ + L3)

.

If lk = 0 succeeds for the line search condition (23), then γlk = 1. Thus, there

exists some constant C1 = 2γ/(2δ + L3) > 0 such that

γlk > min

{

1, C1
|∇Ψα(ζ

k)T dk|
h(ζk)

}

for all k. (38)

Now let ζ∗ be an accumulation point of {ζk} and {ζk}k∈K be the subsequence

such that

lim
k→∞,k∈K

ζk = ζ∗.

By part (c), limk→∞ γ2lkh(ζk) = 0. If limk→∞,k∈K h(ζk) = h(ζ∗) = 0, then

∥

∥∇xψα(ζ
∗, F (ζ∗)) +∇xψα(ζ

∗, F (ζ∗))
∥

∥ = 0.

By Proposition 3.1 (c), ζ∗ is a solution of the SCCP. If limk→∞ h(ζk) 6= 0, then

there holds limk→∞ γlk = 0. This together with (38) implies

0 = lim
k→∞

|∇Ψα(ζ
k)T dk|

h(ζk)
=

|∇Ψα(ζ
∗)T d(ζ∗)|

h(ζ∗)
.

Thus, we complete the proof. 2

Theorem 4.1 states that, when θ is any fixed real number in [0, 1], the non-

monotone derivative-free algorithm converges in terms of the value of merit

function Ψα and the sequence {ζk} is bounded for a large class of SCCPs which

may even not be monotone. If θ is chosen to be less than θ̄ and F is strongly

monotone, then by Prop.3.4,

|∇Ψα(ζ)
T d(ζ)| ≥ 1

2
θh(ζ) ∀ζ ∈ B(ζ0).
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This implies that any accumulation point of {ζk} can not satisfy (27), and

consequently, each accumulation of {ζk} is a solution of the SCCP (1). In fact,

under this case, {ζk} converges to the solution of (1) at a R-linear rate. We

next prove the assertion.

Theorem 4.2 Let {ζk} be the sequence generated by Algorithm 4.1. Suppose

that F is strongly monotone and Lipschitz continuous, and ∇F (·) is Lipschitz

continuous on B(ζ0). If θ ≤ θ̄ with θ̄ given by (22), then there exist constants

ν0 > 0 and ν6 ∈ (0, 1) such that

Ψα(ζ
k) ≤ ν0ν

k
6Ψα(ζ

1).

Moreover, {ζk} converges to the unique solution ζ∗ of the SCCP (1) with R-

linear rate.

Proof. Since strong monotonicity implies the uniform Jordan P -property,

which by Prop.3.3 implies that B(ζ0) is bounded and all results of Theorem

4.1 hold.

To prove the conclusion, we first show that there exist constants ν1, ν2 > 0

such that

Ψα(ζ
k+1) ≤ ν1Ψα(ζ

k) for all k ≥ 0, (39)

and

h(ζk+1) ≤ ν2h(ζ
k) for all k ≥ 0. (40)

Because θ ≤ θ̄ and F is strongly monotone, using (37) and Proposition 3.4 yields

Ψα(ζ
k+1)−Ψα(ζ

k) ≤ γlk
[

∇Ψα(ζ
k)T dk + (1/2)L3γ

lkh(ζk)
]

≤ −1

2
γlk(θ − L3γ

lk)h(ζk). (41)

By Proposition 3.1 (e)–(f), Lemma 3.1 (a) and (c), it is easy to verify that

h(ζ) ≥ (α− 1)2

α2
‖Rα(ζ)‖2 ≥ (α− 1)2

α2
‖R1(ζ)‖2 ≥ α− 1

α2
Ψα(ζ) ∀ζ ∈ V, (42)

and

h(ζ) ≤ 2α(α− 1)Ψα(ζ) ∀ζ ∈ V. (43)

Therefore, if θ − L3γ
lk ≥ 0, equations (41) and (42) imply

Ψα(ζ
k+1) ≤ Ψα(ζ

k)− 1

2
γlk(θ − L3γ

lk)
α− 1

α2
Ψα(ζ

k)

=

[

1− 1

2
γlk(θ − L3γ

lk)
α− 1

α2

]

Ψα(ζ
k) ≤ Ψα(ζ

k);

whereas if θ − L3γ
lk < 0, equations (41) and (43) lead to

Ψα(ζ
k+1) ≤

[

1− γlk(θ − L3γ
lk)α(α− 1)

]

Ψα(ζ
k)

≤ [1 + (L3 − θ)α(α− 1)]Ψα(ζ
k).
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This shows that (39) holds with ν1 := max
{

1, 1 + (L3 − θ)α(α − 1)
}

. Using

(43), (39) and (42), we have

h(ζk+1) ≤ 2α(α− 1)Ψα(ζ
k+1) ≤ 2α(α− 1)ν1Ψα(ζ

k) ≤ 2ν1α
3h(ζk),

which implies that (40) holds with ν2 := 2ν1α
3 > 0.

Now for any p ≥ 1, let φ(p) be any index in [Mp+ 1,M(p+ 1)] satisfying

Ψα(ζ
φ(p)) := max

1≤i≤M
Ψα(ζ

Mp+i).

From Lemma 4.1 (b), it then follows

Ψα(ζ
φ(p)) ≤ Ψα(ζ

φ(p−1))− δ min
0≤i≤M−1

γ2l(Mp+i)h(ζMp+i).

Notice that γlk ≥ min
{

1, C1θ/2
}

for all k by using (38) and the second assertion

of Proposition 3.4. Hence, there exists a constant ν3 := δmin{1, C1θ/2} > 0

such that

Ψα(ζ
φ(p)) ≤ Ψα(ζ

φ(p−1))− ν3 min
0≤i≤M−1

h(ζMp+i). (44)

Let s(p) and w(p) be any indices in [Mp+ 1,M(p+ 2)] for which

h(ζs(p)) := min
1≤i≤2M

h(ζMp+i) and Ψα(ζ
w(p)) := min

1≤i≤2M
Ψα(ζ

Mp+i), (45)

and denote by ν4 the constant given by

ν4 =

[

ν3 +
α2

α− 1
ν4M2

]−1

. (46)

We now define an infinite subsequence {ki : i ≥ 0}⊂ {1, 2, . . .} as follows. Let

k0 = φ(0). Suppose that ki = φ(p̄) has been chosen for some p̄. Define

ki+1 :=

{

w(p̄+ 1) if h(ζs(p̄+1)) ≤ ν4Ψα(ζ
φ(p̄))

φ(p̄+ 3) otherwise.
(47)

For the subsequence {ki} defined as above, it is obvious that

ki+1 − ki ≤ 4M. (48)

In addition, there necessarily exists a constant ν5 ∈ (0, 1) such that

Ψα(ζ
ki+1) ≤ ν5Ψα(ζ

ki), for all i ≥ 1. (49)

In fact, if h(ζs(p̄+1)) ≤ ν4Ψα(ζ
φ(p̄)), from (42), (40) and (48), it follows that

Ψα(ζ
ki+1) ≤ α2

α− 1
h(ζki+1) ≤ α2

α− 1
ν4M2 h(ζs(p̄+1)) ≤ α2

α− 1
ν4M2 ν4Ψα(ζ

ki).
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If h(ζs(p̄+1)) > ν4Ψα(ζ
φ(p̄)), using (44) and (45) yields

Ψα(ζ
ki+1) ≤ (1− ν3ν4)Ψα(ζ

ki)

By the choice of ν4, the last two equations imply that (49) holds with ν5 =

(1− ν3ν4).

For any k ≥ 1, assume that k ∈ [ki, ki+1) for some i. Then from (48) we have

that

k − ki ≤ 4M and ki ≤ 4Mi+ k0. (50)

Using equation (50) and noting that 1 ≤ k0 ≤M give

i ≥ ki − k0
4M

≥ k − 4M − k0
4M

≥ k

4M
− 5

4
. (51)

Thus, by (39), (49), (50)–(51), we obtain

Ψα(ζ
k) ≤ νk−ki

1 Ψα(ζ
ki) ≤ ν4M1 νi5Ψα(ζ

k0)

≤ ν4M1 ν
(k/(4M)−5/4)
5 Ψα(ζ

k0)

≤ ν5M1 ν
(k/(4M)−5/4)
5 Ψα(ζ

1).

Letting ν0 = ν5M1 ν
−5/4
5 and ν6 = ν

1/(4M)
5 and noting that ν5 = (1 − ν3ν4) <

1, we prove the first part of the conclusion. The second part is direct since

{Ψα(ζ
k)} converges Q-linearly to zero and ‖ζk − ζ∗‖ ≤ L+1

ρ

√

α
α−1

√

Ψα(ζk) by

Prop.3.2(b). 2

Theorem 4.2 is the first rate of convergence result for the class of derivative-

free descent methods with a nonmonotone line search rule for the non-polyhedral

SCCPs. In the next section, we compare the numerical performance of Algo-

rithm 4.1 with that of Algorithm 4.2 descried as below, which is a monotone

descent derivative-free method similar to the one in [26] for the NCPs. The

stepsize and the search direction of Algorithm 4.2 are adjusted during the back-

tracking search of Armijo-type.

Algorithm 4.2

(Step 0) Choose ζ0 ∈ V, ǫ ≥ 0, δ ∈ (0, 1), γ ∈ (0, 1), and a sufficiently small

β ∈ (0, 1). Set k := 0.

(Step 1) If Ψα(ζ
k) ≤ ε, then stop. Otherwise, go to Step 2.

(Step 2) Let lk be the smallest nonnegative integer l satisfying

Ψα(ζ
k + γldk(βl)) ≤ Ψα(ζ

k)− δγ2lh(ζk), (52)

where h(ζ) is defined as in (24) and

dk(βl) := −βl∇xψα(ζ
k, F (ζk))− (1− βl)∇yψα(ζ

k, F (ζk)). (53)
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(Step 3) Set ζk+1 := ζk + γlkdk(βlk), k := k + 1, and go to Step 1.

5 Numerical experiments

In this section, we test the performance of Algorithms 4.1 and 4.2 for the affine

SOCCP

ζ ∈ Kn
+, F (ζ) =Mζ + b ∈ Kn

+, 〈ζ, F (ζ)〉 = 0, (54)

where Kn
+ = Kn1

+ × · · · ×Knm

+ with n1 + · · ·+ nm = n, M ∈ R
n×n and b ∈ R

n.

During the testing, we set M ≡ diag(M1, · · · ,Mm) with Mi = NiN
T
i + τIi

for all i, where τ ≥ 0 is a given parameter, Ii is an ni × ni identity matrix, and

each Ni ∈ R
ni×ni was generated randomly such that it has 1% nonzero density

with the nonzero entries from a normal distribution of mean −1 and variance

4. It is not hard to see that the matrix M generated by such a way is positive

semidefinite (respectively, positive definite) if τ = 0 (respectively, τ > 0), which

means that the corresponding F is strongly monotone (or monotone). The vec-

tor b was obtained by setting b = −Mw with w = (w1, . . . , wm) ∈ Kn
+, where

wi ∈ Kni

+ was generated as follows: let the elements of wi be chosen randomly

from a normal distribution with mean −1 and variance 4, and then set the first

element wi1 of wi to be ‖wi2‖, where wi2 is a vector composed of the rest ni− 1

components of wi. In this way, the affine SOCCP is guaranteed to have a solu-

tion ζ∗ = w.

All experiments were done with a PC of Pentium 4 with 2.8GHz CPU and

512MB memory. The computer codes were written in Matlab 6.5. During the

tests, we chose ni and m such that n1 = · · · = nm = 10 and m = 100. We set

m(k) in Algorithm 4.1 as

m(k) :=

{

0 k < 5

min{m(k − 1) + 1,M − 1} otherwise
with M = 6.

We started Algorithms 4.1 and 4.2 from the initial point ζ0 = (ζ̄ni , . . . , ζ̄nm)

with ζ̄ni = (10, ωi/‖ωi‖), where ωi ∈ R
ni−1 for all i were generated randomly

by Matlab’s rand.m. The parameters γ and δ in the two algorithms, and β in

Algorithm 4.2 were chosen as

γ = 0.2, δ = 10−10, and β = 0.1.

The algorithms were terminated once one of the following conditions is satisfied:

(a) min
{

Ψα(ζ
k), |〈ζk, F (ζk)〉|

}

≤ 10−5;

(b) The stepsize is less than 10−8;
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(c) The maximum iteration number is over 5× 105.

If the algorithms are stopped under condition (a), we say that they solve the

test problem successfully, and otherwise say that they fail to the test problem.

We first tested the influence of α for the iterations and the function eval-

uations needed by Algorithms 4.1 and 4.2 for solving (54) with τ in each Mi

chosen as 0.1. For every α = 2, 5, 10, 20, 40, 50, 60, 80, 100, 150, 200, we applied

Algorithm 4.1 with θ = 0.95 and Algorithm 4.2, respectively, for solving the

same 50 test problems generated as above. The the average iteration and av-

erage function evaluation were respectively taken as the average of iterations

and function evaluations of the test problems solved successfully. The testing

results show that Algorithm 4.1 with α = 2 failed for 4 test problems due to

too small stepsize, and successfully solved all test problems with the other α;

whereas Algorithm 4.2 with α = 2 and α = 5 failed for 11 and 1 test problems,

respectively, due to too small stepsize, and successfully solved all test problems

with the rest α.

Figures 1 and 2 depict the curves of the average function evaluation and

the average iteration, respectively, of Algorithms 4.1 and 4.2 with respect to

α. From these figures, we see that the number of function evaluations and the

iteration times needed by Algorithm 4.1 and Algorithm 4.2 increase with α.

Taking into account that the global convergence of the two algorithms is not

stable when α is close to 1 (for example they fail to some test problems when

α = 2), a desirable choice for α should be in the interval [10, 50]. Also, the

average function evaluation and the average iteration of Algorithm 4.2 are more

than those of Algorithm 4.1, especially when α > 40. This implies that the non-

monotone derivative-free method has better performance than the monotone

descent one.

Then, we tested the influence of θ for the rate of convergence of Algorithm

4.1, by using this algorithm with α = 15 and four different θ to solve a test ex-

ample generated as above with τ = 0.01. Figure 3 below depicts the convergence

curve of Algorithm 4.1. From this figure, we see that the curve corresponding

to θ = 0.5 has the largest slope rate, the curve corresponding to θ = 10−4 has

the smallest slope rate, and the curve corresponding to a smaller θ has a smaller

slope rate when θ ≤ 0.1. This shows that Algorithm 4.1 with a smaller θ has

a better rate of convergence, and it has the worst rate of convergence when

θ = 0.5. This coincides with the theoretical results of Theorem 4.2.

We also tested the influence of θ for the performance of Algorithm 4.1.

Specifically, for every θ = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, we em-
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Figure 1: Influence of α on the average function evaluation of Algorithms 4.1

and 4.2
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Figure 2: Influence of α on the average iteration of Algorithms 4.1 and 4.2
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ployed Algorithm 4.1 with α = 15 to solve the same 50 test problems generated

as above with τ = 0. Note that this class of problems is more difficult than the

one used above since the mapping F is now only monotone, instead of strongly

monotone. The testing results show that Algorithm 4.1 successfully solved all

test problems with all these θ. This shows that Algorithm 4.1 is also suitable

for the solution of monotone SCCPs although the global convergence of the se-

quence generated is not established for this class of problems. Figure 4 below

depicts the curves of the function evaluation and the iteration times of Algo-

rithm 4.1 with respect to θ. From this figure, we see that Algorithm 4.1 has the

worst performance when θ = 0.5, and a desirable θ should be from the interval

[0.2, 0.4] or [0.9, 1).

6 Conclusion

We have extended the derivative-free method [18] for the NCP to the general

SCCPs by using a different search direction. It was shown that the algorithm

is convergent in terms of the value of Ψα for a large class of SCCPs which may

not even be monotone, whereas if θ ≤ θ̄ with θ̄ given by (22) and F is strongly

monotone, the sequence generated by the algorithm converge globally to the

solution of the problem at a R-linear rate. It is interesting to note that the lin-

ear convergence rate of the nonmonotone descent algorithm is obtained without

requiring any convexity of Ψα, and the relation among R1(ζ), h(ζ) and Ψα(ζ)

plays a key role. In the future research, it is worthwhile to study the convergence

rate of nomonotone derivative-free methods based on other merit functions, and

explore other derivative-free methods for the SCCPs, for example, the pattern

search algorithms.
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