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PROJECTION FORMULA AND ONE TYPE OF SPECTRAL

FACTORIZATION ASSOCIATED WITH p-ORDER CONE

XINHE MIAO∗, NUO QI, AND JEIN-SHAN CHEN†

Abstract. In this short paper, we establish the projection formula associated
with p-order cone and further discover one type of spectral factorization associ-
ated with p-order cone. These expressions will be key bricks for further analysis
and study about p-order cone optimization.

1. Introduction

Recently, there has been much attention on symmetric cone optimization, see
[5, 12, 13, 15, 16] and references therein, but not much on non-symmetric cone op-
timization. In general, non-symmetric cones include p-order cone [1, 17], circular
cone [3, 7, 18], Lp cone [10], and copositive cone [8], etc. Unlike symmetric cone
case in which the Euclidean Jordan algebra can unify the whole analysis, there has
not been found a special unified Jordan algebra for non-symmetric cones until now.
Nonetheless, analogous to tackling symmetric cone optimization, in which the spec-
tral decomposition [9] plays a key role, we believe that in order to find out a way to
deal with non-symmetric cone optimization problems, the first key step is to figure
out their corresponding projection formulae and spectral factorization.

A good spectral factorization, like the eigenvalue decomposition in linear algebra,
provides an efficient way for computer software to compute some special function,
for instance, projection function. Moreover, the efficiency of computing projection
formulae can help on designing some algorithms for solving non-symmetric cone
optimization problems, for example, the so-called projection gradient method and
merit function method, and so on. For circular cone case, its corresponding pro-
jection formula and spectral factorization are studied in [18]. However, there are
no further investigations for other non-symmetric cone cases yet. In this paper, we
characterize the projection formula of element z onto p-order cone, and establish
one type of spectral factorization associated with p-order cone. We believe that
these expressions are key bricks for further analysis and study about p-order cone
optimization.
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The p-order cone in IRn, which is a generalization of the second-order cone [4,6],
is defined as

(1.1) Kp :=

x ∈ IRn

∣∣∣∣∣x1 ≥
(

n∑
i=2

|xi|p
) 1

p

 (p > 1).

If we write x := (x1,x2) ∈ IR × IR(n−1), the p-order cone Kp can be equivalently
expressed as

Kp =
{
x = (x1,x2) ∈ IR× IR(n−1) |x1 ≥ ∥x2∥p

}
, (p > 1).

The pictures of three different cones Kp in IR3 are depicted in Figure 1.

Figure 1. Three different p-order cones in IR3.

From (1.1) and Figure 1, it is clear to see that when p = 2, K2 is exactly the

second-order cone Kn =
{
x = (x1,x2) ∈ IR× IR(n−1) |x1 ≥ ∥x2∥

}
, which confirms

that the second-order cone is a special case of p-order cone.

It is well known that Kp is a convex cone and its dual cone is given by

K∗
p =

y ∈ IRn

∣∣∣∣∣ y1 ≥
(

n∑
i=2

|yi|q
) 1

q


or equivalently

K∗
p =

{
y = (y1,y2) ∈ IR× IR(n−1) | y1 ≥ ∥y2∥q

}
= Kq,

where q > 1 and satisfies 1
p + 1

q = 1. In addition, the dual cone K∗
p is also a convex

cone.

For an application of p-order cone programming, we refer the readers to [17],
in which a primal-dual potential reduction algorithm for p-order cone constrained
optimization problems is studied. Besides, in [17], a special optimization problem
called sum of p-norms is transformed into an p-order cone constrained optimization
problems.

To end this section, we say a few words about the notations used in this paper.
We consider the Euclidean space IRn equipped with the standard inner product
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⟨·, ·⟩. The Euclidean norm is defined as ∥z∥ :=
√

⟨z, z⟩. Let K be any closed convex
cone. We denote its dual cone by

K∗ = {y | ⟨y,x⟩ ≥ 0 ∀x ∈ K},
and denote its polar cone by

K◦ = {y | ⟨y,x⟩ ≤ 0 ∀x ∈ K}.
Moreover, ∂K means the boundary of K and ΠK(z) is the projection of z onto K.

2. Projection formula and spectral factorization

In [18], we see that the spectral factorization associated with circular cone is
figured out first and then the projection onto circular cone is characterized. For the
p-order cone case, the procedure is totally opposite. More specifically, we need to
characterize the projection onto such cone, and then figure out its corresponding
spectral factorization. In particular, one type of spectral factorization associated
with p-order cone are provided.

First, we start with the general Orthogonal Projection Theorem associated with
any closed convex cone in Hilbert space (see [14, Theorem II.3]). The Orthogonal
Projection Theorem is also known in the optimization community as the Moreau
Decomposition(see [11]), which says for any z ∈ IRn, z can be decomposed as

(2.1) z = ΠK(z) + ΠK◦(z) = ΠK(z) + Π−K∗(z)

where K is any closed convex cone with polar cone K◦ and dual cone K∗. When K
represents the special structure of the p-order cone Kp, the explicit expression (2.1)
is characterized in following theorem.

Theorem 2.1. Let z = (z1, z2) ∈ IR × IR(n−1). Then, the projection of z onto Kp

is given by

(2.2) ΠKp(z) =


z, z ∈ Kp

0, z ∈ −K∗
p = −Kq

u, otherwise (i.e.,−∥z2∥q < z1 < ∥z2∥p)

where u = (u1, ū) with ū = (u2, u3, · · · , un)T ∈ IR(n−1) satisfying

u1 = ∥ū∥p = (|u2|p + |u3|p + · · ·+ |un|p)
1
p

and

ui − zi +
u1 − z1

up−1
1

|ui|p−2ui = 0, ∀i = 2, · · · , n.

Proof. From Projection Theorem [2, Prop. 2.2.1], we know that, for every z ∈ IRn,
a vector u ∈ Kp is equal to the projection point ΠKp(z) if and only if

u ∈ Kp, z− u ∈ K◦
p and ⟨z− u,u⟩ = 0.

With this, the first two cases of (2.2) are obvious. Hence, we only need to consider
the third case. Based on the expression of the element u, it is easy to verify that
u ∈ ∂Kp. Moreover, we have

z− u =

[
z1 − u1
z2 − ū

]
:=

[
z1 − u1

h̄

]
,
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where h̄ = (h2, h3, · · · , hn)T with

hi =
u1 − z1

up−1
1

|ui|p−2ui, ∀i = 2, · · · , n.

Noting that

∥h̄∥q =

∣∣∣∣∣u1 − z1

up−1
1

∣∣∣∣∣
(

n∑
i=2

|ui|(p−1)q

) 1
q

=

∣∣∣∣∣u1 − z1

up−1
1

∣∣∣∣∣ (∥ū∥pp) 1
q(2.3)

= |u1 − z1|,

where the second equality holds due to 1
p+

1
q = 1, and the last equality holds because

of ∥ū∥p = u1. Noting that

⟨z− u,u⟩ = (z1 − u1)u1 + ⟨h̄, ū⟩

= (z1 − u1)u1 +
u1 − z1

up−1
1

(
n∑

i=2

|ui|p
)

= (z1 − u1)u1 +
u1 − z1

up−1
1

∥ū∥pp

= (z1 − u1)u1 + (u1 − z1)u1

= 0,

On the other hand,

⟨z− u,u⟩ = (z1 − u1)z1 + ⟨h̄, ū⟩
= (z1 − u1)u1 − ∥h̄∥q∥ū∥p
= (z1 − u1)u1 − |z1 − u1|∥ū∥p
= ((z1 − u1)− |z1 − u1|)∥ū∥p,

where the second equality holds due to the equal case of Hölder inequality, This
implies that (z1 − u1)− |z1 − u1| = 0. Hence, we have z1 − u1 < 0. Together with
(2.3) again, this leads to ∥h̄∥q = u1 − z1, which implies z − u ∈ K◦

p. Hence, the
desired result is obtained. Furthermore, the projection of z onto Kp is expressed as
in (2.2). �

In the sequel, for the sake of simplicity, we denote z+ := ΠKp(z). Moreover,
because K◦

p = −K∗
p = −Kq, we know

Π−K∗
p
(z) = Π−Kq(z) = −ΠKq(−z).

This together with (2.2) and the proof of Theorem 2.1 gives

(2.4) z− := −ΠKq(−z) =


z, −z ∈ Kq

0, −z ∈ −K∗
q = −Kp

v, otherwise (i.e.,−∥z2∥p < −z1 < ∥z2∥q)
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where v = (v1, v̄) with v̄ = (v2, v3, · · · , vn)T ∈ IR(n−1) satisfying

−v1 = ∥v̄∥q = (|v2|q + |v3|q + · · ·+ |vn|q)
1
q

and

vi − zi − (−1)q−1 v1 − z1

vq−1
1

|vi|q−2vi = 0, ∀i = 2, · · · , n.

By the definition of z+ and z−, it follows that ⟨z+, z−⟩ = 0. Together the expression
of u in (2.2) with the expression of v in (2.4) again, we obtain

(2.5)

 v1 = z1 − u1

vi = zi − ui =
u1 − z1

uq−1
1

|ui|p−2ui, ∀i = 2, 3, · · · , n.

Remark 2.2. Unfortunately, from the formula (2.2) in Theorem 2.1 and the for-
mula (2.4), we can not obtain the spectral factorization for z = (z1, z2) ∈ IR ×
IR(n−1). This is different from the case of second-order cone. In order to get the
goal, we develop one type of factorization for z as below. Such factorization is called
the spectral factorization.

Theorem 2.3 (Spectral factorization). Let z = (z1, z2) ∈ IR × IR(n−1). Then, z
can be decomposed as

z = α1(z) · v(1)(z) + α2(z) · v(2)(z),

where 
α1(z) =

z1 + ∥z2∥p
2

α2(z) =
z1 − ∥z2∥p

2
and 

v(1)(z) =

[
1
w2

]
v(2)(z) =

[
1

−w2

]
with w2 = z2

∥z2∥p when z2 ̸= 0; while w2 being an arbitrary element satisfying

∥w2∥p = 1 when z2 = 0.

Proof. For z2 ̸= 0, we define ũ(z) :=

[
τ∥z2∥p
τz2

]
∈ ∂Kp such that ũ(z)− z ∈ ∂Kp,

where τ is an undetermined coefficient. From ũ(z)− z ∈ Kp, we have

τ∥z2∥p − z1 = ∥(τ − 1)z2∥p
which yields

τ =
z1 + ∥z2∥p
2∥z2∥p

.

This further implies

ũ(z) =


(
z1 + ∥z2∥p
2∥z2∥p

)
∥z2∥p(

z1 + ∥z2∥p
2∥z2∥p

)
z2

 .
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Therefore, we can rewrite z as

z = ũ(z) + (z− ũ(z))

=


(
z1 + ∥z2∥p
2∥z2∥p

)
∥z2∥p(

z1 + ∥z2∥p
2∥z2∥p

)
z2

+


(
z1 − ∥z2∥p
2∥z2∥p

)
∥z2∥p(

∥z2∥p − z1
2∥z2∥p

)
z2


=

(
z1 + ∥z2∥p

2

)[
1
z2

∥z2∥p

]
+

(
z1 − ∥z2∥p

2

)[
1

− z2
∥z2∥p

]
:= α1(z) · v(1)(z) + α2(z) · v(2)(z)

which gives the desired spectral factorization.
For z2 = 0, it is easy to verify that z = α1(z) · v(1)(z) + α2(z) · v(2)(z) with

v(1)(z) =

[
1
w2

]
and v(2)(z) =

[
1

−w2

]
,

where w2 is an arbitrary element satisfying ∥w2∥p = 1. Then, the desired factor-
ization holds. �

Remark 2.4. Theorem 2.3 can be proved by verifying the equality directly. Nonethe-
less, we provide the constructive way to show how to obtain v1(z), v2(z) and α1(z),
α2(z). Moreover, from Theorem 2.3, we also know that α1(z) ≥ α2(z).

As a consequence of Theorem 2.3 and Remark 2.4, we have the following corollary.

Corollary 2.5. Let z = α1(z) · v(1)(z) +α2(z) · v(2)(z) be the spectral factorization

of type II for z given as in Theorem 2.3. Then, v(i)(z) ∈ Kp for i = 1, 2. Moreover,
the following hold

z ∈ Kp ⇐⇒ α2(z) ≥ 0.

3. Concluding remarks

In this short paper, we have characterized the projection formula of any element z
onto p-order cone, and have established one type of spectral factorization associated
with p-order cone. As mentioned, this expression will be key bricks for further
analysis and study about p-order cone optimization.

One may ask what the advantages and disadvantages of the spectral factorization
are? To answer this question, we say a few words for this point. The advantage
of the spectral factorization is that the vectors v(i)(z) (i = 1, 2) both lie in Kp,
which implies that any z in IRn can be expressed by two vectors in p-order cone Kp.
However, to the contrast, this factorization for z is not an orthogonal decomposition,
which is different from the case in the second-order cone setting.
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