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Abstract Recently this author studied several merit functions systematically for the
second-order cone complementarity problem. These merit functions were shown
to enjoy some favorable properties, to provide error bounds under the condition
of strong monotonicity, and to have bounded level sets under the conditions of
monotonicity as well as strict feasibility. In this paper, we weaken the condition of
strong monotonicity to the so-called uniform P ∗-property, which is a new concept
recently developed for linear and nonlinear transformations on Euclidean Jordan al-
gebra. Moreover, we replace the monotonicity and strict feasibility by the so-called
R01 or R02-functions to keep the property of bounded level sets.

Keywords Error bounds · Jordan products · Level sets · Merit functions ·
Second-order cones · Spectral factorization

1 Introduction

The second-order cone complementarity problem (SOCCP), which is a natural ex-
tension of nonlinear complementarity problem (NCP), is to find ζ ∈ R

n satisfying

〈F(ζ ), ζ 〉 = 0, F (ζ ) ∈ K, ζ ∈K, (1)

where 〈·, ·〉 is the Euclidean inner product, F : R
n → R

n is a continuous mapping,
and K is the Cartesian product of second-order cones (SOC), also called Lorentz
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cones [1]. In other words,

K = Kn1 × · · · ×Knm, (2)

where m,n1, . . . , nm ≥ 1, n1 + · · · + nm = n, and

Kni := {(x1, x2) ∈ R × R
ni−1 | ‖x2‖ ≤ x1}, (3)

with ‖ · ‖ denoting the Euclidean norm and K1 denoting the set of nonnegative reals
R+. A special case of (2) is K = R

n+, the nonnegative orthant in R
n, which corre-

sponds to m = n and n1 = · · · = nm = 1. If K = R
n+, then (1) reduces to the nonlinear

complementarity problem. Throughout this paper, we assume K = Kn for simplicity,
i.e., K is a single second-order cone (all the analysis can be easily carried over to the
general case where K has the direct product structure (2)).

Second-order cone programs (SOCP) are convex optimization problems in which
a linear function is minimized over the intersection of an affine linear manifold
with Cartesian product of SOCs. Linear programs, convex quadratic programs and
quadratically constrained convex quadratic programs can all be formulated as SOCP
problems. Many other problems from engineering, control, finance, and robust opti-
mization can also be recast as SOCP problems [2, 3]. It is well-known that the KKT
optimality conditions of SOCP forms a SOCCP which is also a natural extension
of nonlinear complementarity problems (NCP). Thus studying the SOCCP is very
important from the above points of view.

There have been various methods proposed for solving SOCCP. They include
interior-point methods [3–9], non-interior smoothing Newton methods [10–12]. Re-
cently in the papers [13–15], the author studied an alternative approach based on
reformulating SOCCP as an unconstrained smooth minimization problem. For this
approach, it aims to find a smooth function ψ : R

n × R
n → R+ such that

ψ(x, y) = 0 ⇐⇒ x ∈Kn, y ∈Kn, 〈x, y〉 = 0. (4)

Then SOCCP can be expressed as an unconstrained smooth (global) minimization
problem:

min
ζ∈Rn

f (ζ ) := ψ(F(ζ ), ζ ). (5)

We call such a f a merit function for the SOCCP.
A popular choice of ψ is the squared norm of Fischer-Burmeister function, i.e.,

ψFB : R
n × R

n → R+ associated with second-order cone given by

ψFB(x, y) = 1

2
‖φFB(x, y)‖2, (6)

where φFB : R
n × R

n → R
n is the well-known Fischer-Burmeister function (origi-

nally proposed for NCP, see [16, 17]) defined by

φFB(x, y) = (x2 + y2)1/2 − x − y. (7)



J Optim Theory Appl (2007) 135: 459–473 461

More specifically, for any x = (x1, x2), y = (y1, y2) ∈ R × R
n−1, we define their

Jordan product associated with Kn as

x ◦ y := (〈x, y〉, y1x2 + x1y2). (8)

The Jordan product ◦, unlike scalar or matrix multiplication, is not associative, which
is a main source on complication in the analysis of SOCCP. The identity element un-
der this product is e := (1,0, . . . ,0)T ∈ R

n. We write x2 to mean x ◦x and write x +y

to mean the usual componentwise addition of vectors. It is known that x2 ∈Kn for all
x ∈ R

n. Moreover, if x ∈ Kn, then there exists a unique vector in Kn, denoted by x1/2,
such that (x1/2)2 = x1/2 ◦ x1/2 = x. Thus, φFB defined as (7) is well-defined for all
(x, y) ∈ R

n ×R
n and maps R

n ×R
n to R

n. It was shown in [11] that φFB(x, y) = 0 if
and only if (x, y) satisfies (4). Therefore, ψFB defined as (6) induces a merit function
fFB := ψFB(F (ζ ), ζ )) for the SOCCP.

The function ψFB given as in (6) was proved smooth with computable gradient
formulas and enjoys several favorable properties, nonetheless, it does not have addi-
tional bounded level-set and error bound properties (see [15]). To conquer this, four
other functions associated with second-order cone were considered in [13–15]. The
first one is ψYF : R

n × R
n → R defined by

ψYF(x, y) := ψ0(〈x, y〉) + ψFB(x, y), (9)

where ψ0 : R → R+ is any smooth function satisfying

ψ0(t) = 0 ∀t ≤ 0 and ψ ′
0(t) > 0 ∀t > 0. (10)

The function ψYF was studied by Yamashita and Fukushima in [18] for SDCP (semi-
definite complementarity problems) case and was extended to SOCCP case in [15].
An example of ψ0(t) is ψ0(t) = 1

4 (max{0, t})4. A slight modification of ψYF yields
̂ψYF : R

n × R
n → R defined by

̂ψYF(x, y) := 1

2
‖(x ◦ y)+‖2 + ψFB(x, y), (11)

where (·)+ means the orthogonal projection onto the second-order cone Kn. The third
function is ψLT : R

n × R
n → R defined by

ψLT(x, y) := ψ0(〈x, y〉) + ψ̃(x, y), (12)

where ψ̃ : R
n × R

n → R+ satisfies

ψ̃(x, y) = 0, 〈x, y〉 ≤ 0 ⇐⇒ x ∈Kn, y ∈ Kn, 〈x, y〉 = 0. (13)

The function ψ0 is the same as the above (namely, it satisfies (10)) and examples of
ψ̃ are

ψ̃1(x, y) := 1

2

(‖(−x)+‖2 + ‖(−y)+‖2) and ψ̃2(x, y) := 1

2
‖φFB(x, y)+‖2 (14)
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which were recently investigated in [14]. The function ψLT was proposed by Luo and
Tseng for NCP case in [19] and was extended to the SDCP case by Tseng in [20].
The last function ̂ψLT : R

n × R
n → R, a slight variant of ψLT, is defined by

̂ψLT(x, y) := 1

2
‖(x ◦ y)+‖2 + ψ̃(x, y), (15)

where ψ̃ is given as in (13).
Each of the above functions naturally induces a merit function as follows:

fYF(ζ ) := ψYF(F (ζ ), ζ ),

̂fYF(ζ ) := ̂ψYF(F (ζ ), ζ ),

fLT(ζ ) := ψLT(F (ζ ), ζ ),

̂fLT(ζ ) := ̂ψLT(F (ζ ), ζ ). (16)

It was shown that fYF provides error bound [15, Prop. 5] if F is strongly monotone
and fYF has bounded level set [15, Prop. 6] if F is monotone as well as SOCCP is
strictly feasible. The same results hold for ̂fYF [13, Prop. 4.1 and Prop. 4.2], for fLT
[14, Prop. 4.1 and Prop. 4.3], and for ̂fLT [14, Prop. 4.2 and Prop. 4.4]. The main
purpose of this paper is to weaken the condition of strong monotonicity to so-called
uniform P ∗-property (will be introduced in Sect. 2) which is a new concept recently
developed for linear and nonlinear transformations on Euclidean Jordan Algebra [21,
22]. Moreover, we replace the monotonicity and strict feasibility by the so-called R01
(or R02)-functions (will be introduced in Sect. 2) to ensure that the level sets for
fYF, ̂fYF, fLT,̂fLT are still bounded.

2 Preliminaries

In this section, we review some definitions and preliminary materials that will be
used in the subsequent analysis. First, we recall from [11] that each x = (x1, x2) ∈
R × R

n−1 admits a spectral factorization, associated with Kn, of the form

x = λ1(x) · u(1)
x + λ2(x) · u(2)

x , (17)

where λ1(x), λ2(x) and u
(1)
x , u

(2)
x are the spectral values and the associated spectral

vectors of x given by

λi(x) = x1 + (−1)i‖x2‖,

u(i)
x =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

2

(

1, (−1)i
x2

‖x2‖
)

, if x2 �= 0;

1

2

(

1, (−1)iw2
)

, if x2 = 0,
(18)

for i = 1,2, with w2 being any vector in R
n−1 satisfying ‖w2‖ = 1. If x2 �= 0, the

factorization is unique. The set {u(1)
x , u

(2)
x } is called a Jordan frame and possesses the

following properties.
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Property 2.1 For any x = (x1, x2) ∈ R × R
n−1 with the spectral values λ1(x), λ2(x)

and spectral vectors u
(1)
x , u

(2)
x given as in (18), we have

(a) u
(1)
x and u

(2)
x are orthogonal under Jordan product and have length 1/

√
2 , i.e.,

u(1)
x ◦ u(2)

x = 0, ‖u(1)
x ‖ = ‖u(2)

x ‖ = 1√
2
.

(b) u
(1)
x and u

(2)
x are idempotent under Jordan product, i.e.,

u(i)
x ◦ u(i)

x = u(i)
x , i = 1,2.

The above spectral factorization of x, as well as x2 and x1/2 have various in-
teresting properties; see [11]. For instances, for any x = (x1, x2) ∈ R × R

n−1, with
spectral values λ1(x), λ2(x) and spectral vectors u

(1)
x , u

(2)
x , the following results hold:

(1) x2 = λ1(x)2 u
(1)
x + λ2(x)2 u

(2)
x ∈ Kn. (2) If x ∈ Kn, then 0 ≤ λ1(x) ≤ λ2(x) and

x1/2 = √
λ1(x) u

(1)
x + √

λ2(x) u
(2)
x . It is also well-known that for any x = (x1, x2) ∈

R × R
n−1, we have x ∈ Kn if and only if

Lx :=
[

x1 xT
2

x2 x1I

]

is positive semi-definite (see [11, p. 437] and [23]). If x ∈ int(Kn), then 0 < λ1(x) ≤
λ2(x), and Lx is invertible with

L−1
x = 1

x2
1 − ‖x2‖2

[

x1 −xT
2

−x2
x2

1−‖x2‖2

x1
I + 1

x1
x2x

T
2

]

.

In general, we have x ◦y = Lxy for all y ∈ R
n, and Lx � 0 if and only if x ∈ int(Kn).

We say that x, y operator commute if Lx and Ly commute, i.e., LxLy = LyLx . From
[1, Lemma X.2.2], we know that x and y operator commute if and only if x and y

share a common Jordan frame in their spectral factorizations.
We now recall definitions of various monotonicities and P -properties of a contin-

uous mapping which are needed for the assumptions of our main results later. To this
end, we denote

x � y := x − (x − y)+, x � y := y + (x − y)+, (19)

which will be used in the definitions of P -properties. As below, we state the def-
initions of various P -properties associated with SOC. Indeed, such definitions are
borrowed from [21, 22, 24], and are generalization of the familiar P -properties for
matrices. Some of them may look slightly different from the original ones given in
[21, 22, 24]; this is because ours are in SOCCP style.

Definition 2.1 Let x �Kn y denote y − x ∈ Kn for any x, y ∈ R
n. Then, for a con-

tinuous mapping F : R
n → R

n,
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(a) F is monotone if

〈F(ζ ) − F(ξ), ζ − ξ 〉 ≥ 0 ∀ζ, ξ ∈ R
n;

(b) F is strictly monotone if

〈F(ζ ) − F(ξ), ζ − ξ 〉 > 0 ∀ζ �= ξ ∈ R
n;

(c) F is strongly monotone if there exists ρ > 0 such that

〈F(ζ ) − F(ξ), ζ − ξ 〉 ≥ ρ‖ζ − ξ‖2 ∀ζ, ξ ∈ R
n;

(d) F has Order P -property if

(ζ − ξ) � (F (ζ ) − F(ξ)) �Kn 0 �Kn (ζ − ξ) � (F (ζ ) − F(ξ)) �⇒ ζ = ξ ;
(e) F has Jordan P -property if

(ζ − ξ) ◦ (F (ζ ) − F(ξ)) �Kn 0 �⇒ ζ = ξ,

or equivalently,

ζ �= ξ �⇒ λ2 [(ζ − ξ) ◦ (F (ζ ) − F(ξ))] > 0;
(f) F has P -property if

ζ − ξ and F(ζ ) − F(ξ) operator commute
(ζ − ξ) ◦ (F (ζ ) − F(ξ)) �Kn 0

}

�⇒ ζ = ξ ;

(g) F has uniform P ∗-property if there exists ρ > 0 such that

max
i=1,2

〈(ζ − ξ) ◦ (F (ζ ) − F(ξ)) , u
(i)
ξ 〉 ≥ ρ‖ζ − ξ‖2 ∀ζ, ξ ∈ R

n,

where u
(i)
ξ , i = 1,2, are the spectral vectors of ξ ;

(h) F has uniform Jordan P -property if there exists ρ > 0 such that

λ2[(ζ − ξ) ◦ (F (ζ ) − F(ξ))] ≥ ρ‖ζ − ξ‖2 ∀ζ, ξ ∈ R
n;

(i) F has uniform P -property if there exists ρ > 0 such that for any ζ, ξ ∈ R
n with

ζ − ξ operator commuting with F(ζ ) − F(ξ), we have

λ2[(ζ − ξ) ◦ (F (ζ ) − F(ξ))] ≥ ρ‖ζ − ξ‖2;
(j) F has P0-property if F(ζ ) + εζ has the P -property for all ε > 0.

As remarked in [22, Remark 3.1], when F is linear, strong monotonicity and strict
monotonicity coincide; and uniform (Jordan) P -property and (Jordan) P -property
also coincide. In addition, there have been established some inter-connections be-
tween the above concepts, for instances, the following implications hold (see [22,
24]). For more details about P -properties, please refer to [21, 22] and [25].
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Property 2.2 For a continuous mapping F : R
n → R

n,

(a) strong monotonicity ⇒ strict monotonicity ⇒ Order P -property ⇒ Jordan P -
property ⇒ P -property ⇒ P0-property;

(b) strong monotonicity ⇒ uniform P ∗-property ⇒ uniform Jordan P -property ⇒
uniform P -property ⇒ P -property;

(c) monotonicity ⇒ P0-property.

It is also worthy to point out that, when F is linear and self-adjoint, there have
strongly monotonicity = Order P -property = Jordan P -property = P -property (see
[21, Theorem 21]). Therefore, from Property 2.2(a) and (b), strongly monotonicity,
strictly monotonicity, Order P -property, uniform P ∗-property, Jordan P -property,
uniform Jordan P -property, uniform P -property, and P -property all coincide when F

is linear and self-adjoint. This gives a rough direction to construct a counterexample
that F has uniform P ∗-property but is not strongly monotone function.

To close this section, we want to introduce some other concepts which will be used
in analysis of boundedness of level sets. In fact, they are extensions of R0-property
for NCP case. It is known that R0-property is used to prove the existence of solutions
for P0-NCP. Such properties were recently studied for the following complementarity
problems (see [22, Sects. 2, 3]): find x ∈ V such that

x ∈ K, F(x) + q ∈ K, and 〈x,F (x) + q〉 = 0,

where V is a Euclidean Jordan algebra with the associated cone K and q ∈ V .
We employ their definitions to prove the properties of bounded level sets for
fYF, ̂fYF, fLT,̂fLT.

Definition 2.2 For a mapping F : R
n → R

n, it is called

(a) R01-function if, for any sequence {ζ k} such that

‖ζ k‖ → ∞,
(−ζ k)+
‖ζ k‖ → 0,

(−F(ζ k))+
‖ζ k‖ → 0, (20)

we have

lim inf
k→∞

〈ζ k,F (ζ k)〉
‖ζ k‖2

> 0; (21)

(b) R02-function if, for any sequence {ζ k} such that (20) hold, we have

lim inf
k→∞

λ2(ζ
k ◦ F(ζ k))

‖ζ k‖2
> 0. (22)

The above concepts are taken from [24] and are extensions of the ones defined
for NCP and SDCP settings. In particular, R02-property is equivalent to R0-property
defined in Definition 3.2 of [22]; and hence is equivalent to R0-matrix when F is
linear (note counterexample of R0-matrix but not monotone matrix can be found
in Chap. 3 of [26]). It is easy to see that every R01-function is R02-function [24,
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Lemma 4]. Also, from Lemma 5 of [24] or Proposition 3.2 of [22], if F has the
uniform Jordan P -property then F is R02-function (see [24, Lemma 5]). Where are
R01-function and R02-function located in Property 2.2(a) and (b)? There is no answer
yet, to the author’s best knowledge. However, when F is linear, a chart describes the
relation between P -properties and R0-property is given in [27].

3 Conditions for Error Bounds

The error bound is an important concept that indicates how close an arbitrary point is
to the solution set of SOCCP. Thus, an error bound may be used to provide stopping
criterion for an iterative method. In this section, we study conditions under which the
merit functions ̂fYF,̂fLT defined as in(16) provide error bounds for SOCCP. In fact,
there have existing results: Proposition 5 of [15], Proposition 4.1 of [13], Proposi-
tion 4.1 of [14], and Proposition 4.2 of [14], which indicate that fYF, ̂fYF, fLT,̂fLT
provide error bounds for SOCCP, respectively, when F is strongly monotone. Our
main work is to substitute the condition of strong monotonicity by a weaker con-
dition, uniform P ∗-property. We notice that this replacement can be done only for
̂fYF,̂fLT, and it is not clear yet whether it is true for fYF, fLT or not. The reasons
for it will be explained in the section of final remarks (Sect. 5). We begin with the
following technical lemmas to reach our claims.

Lemma 3.1 For any ζ ∈ R
n and ξ ∈ Kn, we have 〈ζ, ξ 〉 ≤ 〈(ζ )+, ξ 〉.

Proof For any ζ ∈ R
n, we can write ζ = (ζ )+ + (ζ )− where (·)+, (·)− represent the

projection onto Kn and −Kn, respectively. Since ξ ∈ Kn and (ζ )− ∈ −Kn, we have
〈(ζ )−, ξ 〉 ≤ 0. Thus, 〈ζ, ξ 〉 = 〈(ζ )+, ξ 〉 + 〈(ζ )−, ξ 〉 ≤ 〈(ζ )+, ξ 〉. In fact, the result is
true for any closed convex cone. �

Lemma 3.2 ([15, Lemma 5.2]) Let ψFB, φFB be given by (6) and (7), respectively.
Then, for any (x, y) ∈ R

n × R
n, we have

4ψFB(x, y) ≥ 2
∥

∥φFB(x, y)+
∥

∥

2 ≥ ∥

∥(−x)+
∥

∥

2 + ∥

∥(−y)+
∥

∥

2
.

Lemma 3.3 Let ψ̃i , i = 1,2, be given as in (14). Then, ψ̃i satisfies the following
inequality:

ψ̃i(x, y) ≥ α
(‖(−x)+‖2 + ‖(−y)+‖2) ∀(x, y) ∈ R

n × R
n, (23)

for some positive constant α and i = 1,2.

Proof For ψ̃1, it is clear by definition (14) where α = 1
2 . For ψ2, the inequality is still

true, where α = 1
4 , due to Lemma 3.2. �

Proposition 3.1 Let ̂fLT be given as in (15) and (16) with ψ̃ satisfying (23). Suppose
that F has uniform P ∗-property and SOCCP has a solution ζ ∗. Then, there exists a
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scalar τ > 0 such that

τ‖ζ − ζ ∗‖2 ≤ ‖(F (ζ ) ◦ ζ )+‖ + ‖(−F(ζ ))+‖ + ‖(−ζ )+‖, ∀ζ ∈ R
n. (24)

Moreover,

τ‖ζ − ζ ∗‖2 ≤
(√

2 +
√

2√
α

)

̂fLT(ζ )1/2, ∀ζ ∈ R
n, (25)

where α is a positive constant.

Proof From the assumption of uniform P ∗-property, there exists ρ > 0 such that

ρ‖ζ − ζ ∗‖2 ≤ max
i=1,2

〈

(ζ − ζ ∗) ◦ (F (ζ ) − F(ζ ∗)), u(i)
ζ ∗

〉

, (26)

where u
(i)
ζ ∗ , i = 1,2, are the spectral vectors of ζ ∗. On the other hand, since ζ ∗ is a

solution of SOCCP, we have ζ ∗ ∈ Kn,F (ζ ∗) ∈Kn, ζ ∗ ◦ F(ζ ∗) = 0. Thus,

(ζ − ζ ∗) ◦ (F (ζ ) − F(ζ ∗))

= ζ ◦ F(ζ ) − ζ ∗ ◦ F(ζ ) − ζ ◦ F(ζ ∗) + ζ ∗ ◦ F(ζ ∗)

= ζ ◦ F(ζ ) − ζ ∗ ◦ F(ζ ) − ζ ◦ F(ζ ∗).

Now, we express the spectral factorizations of ζ and F(ζ ) as below:

ζ = λ1(ζ ) · u(1)
ζ + λ2(ζ ) · u(2)

ζ ,

F (ζ ) = λ1(F (ζ )) · u(1)
F (ζ ) + λ2(F (ζ )) · u(2)

F (ζ ).

We notice that ζ ∗ and F(ζ ∗) operator commute due to ζ ∗ ◦ F(ζ ∗) = F(ζ ∗) ◦ ζ ∗ = 0,
ζ ∗ ∈ Kn, and F(ζ ∗) ∈ Kn. Hence, they share the same Jordan frame; indeed, we can
express them as

ζ ∗ = λ1(ζ
∗) · u(1)

ζ ∗ + λ2(ζ
∗) · u(2)

ζ ∗ =
2

∑

j=1

λj (ζ
∗) · u(i)

ζ ∗ ,

F (ζ ∗) = λ2(F (ζ ∗)) · u(1)
ζ ∗ + λ1(F (ζ ∗)) · u(2)

ζ ∗ =
2

∑

j=1

λj∗(F (ζ ∗)) · u(i)
ζ ∗ ,

where j∗ denotes j∗ = 2 for j = 1 and j∗ = 1 for j = 2. It needs to point out that,
when x and y share the same Jordan frame, it does not necessarily hold u

(i)
x = u

(i)
y

for i = 1,2. In general, it holds that u
(1)
x = u

(2)
y and u

(2)
x = u

(1)
y . Then, for i = 1,2.

we have

〈

(ζ − ζ ∗) ◦ (F (ζ ) − F(ζ ∗)), u(i)
ζ ∗

〉

= 〈

ζ ◦ F(ζ ) − ζ ∗ ◦ F(ζ ) − ζ ◦ F(ζ ∗), u(i)
ζ ∗

〉
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= 〈

ζ ◦ F(ζ ),u
(i)
ζ ∗

〉 + 〈−ζ ∗ ◦ F(ζ ),u
(i)
ζ ∗

〉 + 〈−ζ ◦ F(ζ ∗), u(i)
ζ ∗

〉

= 〈

ζ ◦ F(ζ ),u
(i)
ζ ∗

〉 + 〈−F(ζ ), ζ ∗ ◦ u
(i)
ζ ∗

〉 + 〈−ζ,F (ζ ∗) ◦ u
(i)
ζ ∗

〉

= 〈

ζ ◦ F(ζ ),u
(i)
ζ ∗

〉 +
〈

−F(ζ ),

2
∑

j=1

λj (ζ
∗)u(j)

ζ ∗ ◦ u
(i)
ζ ∗

〉

+
〈

−ζ,

2
∑

j=1

λj∗(F (ζ ∗))u(j)
ζ ∗ ◦ u

(i)
ζ ∗

〉

= 〈

(ζ ◦ F(ζ )), u
(i)
ζ ∗

〉 + λi(ζ
∗)

〈−F(ζ ),u
(i)
ζ ∗

〉 + λi∗(F (ζ ∗))
〈−ζ,u

(i)
ζ ∗

〉

≤ 〈

(ζ ◦ F(ζ ))+, u
(i)
ζ ∗

〉 + λi(ζ
∗)

〈

(−F(ζ ))+, u
(i)
ζ ∗

〉 + λi∗(F (ζ ∗))
〈

(−ζ )+, u
(i)
ζ ∗

〉

≤ ‖(ζ ◦ F(ζ ))+‖ · ∥∥u
(i)
ζ ∗

∥

∥ + λi(ζ
∗)‖(−F(ζ ))+‖

×∥

∥u
(i)
ζ ∗

∥

∥ + λi∗(F (ζ ∗))‖(−ζ )+‖ · ∥∥u
(i)
ζ ∗

∥

∥

= 1√
2

[‖(ζ ◦ F(ζ ))+‖ + λi(ζ
∗)‖(−F(ζ ))+‖ + λi∗(F (ζ ∗))‖(−ζ )+‖]

≤ max

{

1√
2
,
λi(ζ

∗)√
2

,
λi∗(F (ζ ∗))√

2

}

× [‖(ζ ◦ F(ζ ))+‖ + ‖(−F(ζ ))+‖ + ‖(−ζ )+‖]

≤ max

{

1√
2
,
λ2(ζ

∗)√
2

,
λ2(F (ζ ∗))√

2

}

× [‖(ζ ◦ F(ζ ))+‖ + ‖(−F(ζ ))+‖ + ‖(−ζ )+‖],
where the last equality uses Property 2.1, the first inequality is from Lemma 3.1,
and the second inequality uses the fact that λi(ζ

∗) ≥ 0, λi∗(F (ζ ∗)) ≥ 0 since ζ ∗ ∈
Kn,F (ζ ∗) ∈ Kn. Also, note that i∗ denotes i∗ = 2 for i = 1 and i∗ = 1 for i = 2.
Now, let

τ := ρ

max{ 1√
2
,

λ2(ζ
∗)√

2
,

λ2(F (ζ ∗))√
2

} > 0;

then the above and (26) give

τ‖ζ − ζ ∗‖2 ≤ ‖(F (ζ ) ◦ ζ )+‖ + ‖(−F(ζ ))+‖ + ‖(−ζ )+‖, ∀ζ ∈ R
n.

Next, we come to the second part of the proposition. By ̂fLT(ζ ) =
1
2‖(F (ζ ) ◦ ζ )+‖2 + ψ̃(F (ζ ), ζ ), we have

‖(F (ζ ) ◦ ζ )+‖ ≤ √
2̂fLT(ζ )1/2.

In addition, we know that

‖(−F(ζ ))+‖ + ‖(−ζ )+‖ ≤ √
2(‖(−F(ζ ))+‖2 + ‖(−ζ )+‖2)1/2
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≤
√

2√
α

ψ̃(F (ζ ), ζ )1/2

≤
√

2√
α

̂fLT(ζ )1/2,

where the second inequality is true by Lemma 3.3. Thus,

‖(F (ζ ) ◦ ζ )+‖ + ‖(−F(ζ ))+‖ + ‖(−ζ )+‖ ≤
(√

2 +
√

2√
α

)

̂fLT(ζ )1/2.

This together with (24) yields (25). �

Proposition 3.2 Let ̂fYF be given as in (11) and (16). Suppose that F has uniform
P ∗-property and SOCCP has a solution ζ ∗. Then, there exists a scalar τ > 0 such
that

τ‖ζ − ζ ∗‖2 ≤ ‖(F (ζ ) ◦ ζ )+‖ + ‖(−F(ζ ))+‖ + ‖(−ζ )+‖, ∀ζ ∈ R
n. (27)

Moreover,

τ‖ζ − ζ ∗‖2 ≤ 3
√

2̂fYF(ζ )1/2, ∀ζ ∈ R
n. (28)

Proof It follows totally the same arguments as in the proof for Proposition 3.1 to ob-
tain (27). It remains to show the second part. Since by ̂fYF(ζ ) = 1

2‖(F (ζ ) ◦ ζ )+‖2 +
ψFB(F (ζ ), ζ ), we have

‖(F (ζ ) ◦ ζ )+‖ ≤ √
2̂fYF(ζ )1/2.

In addition, we know that

‖(−F(ζ ))+‖ + ‖(−ζ )+‖ ≤ √
2
(‖(−F(ζ ))+‖2 + ‖(−ζ )+‖2)1/2

≤ 2
√

2ψFB(F (ζ ), ζ )1/2

≤ 2
√

2̂fYF(ζ )1/2,

where the second inequality is true by Lemma 3.2. Thus,

‖(F (ζ ) ◦ ζ )+‖ + ‖(−F(ζ ))+‖ + ‖(−ζ )+‖ ≤ 3
√

2̂fYF(ζ )1/2.

This together with (27) yield (28). �

4 Conditions for Bounded Level Sets

The boundedness of level sets of a merit function is also important since it ensures
that the sequences generated by a descent method has at least one accumulation point.
In particular, there have existing results of bounded level sets for fYF, ̂fYF, fLT,̂fLT,
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respectively, for instances, Proposition 6 of [15], Proposition 4.2 of [13], Proposi-
tion 4.3 of [14] and Proposition 4.4 of [14], which require that F is monotone and
SOCCP is strict feasible. We note that the strict feasibility is necessary. For exam-
ple, when F(ζ ) ≡ 0 every ζ ∈ Kn is a solution of SOCCP and hence the solution
set is unbounded. In this section, we study another condition to replace this kind of
“strict” condition by F being R01-function for cases of fYF, fLT, while by F being
R02-functions for cases of ̂fLT, ̂fYF.

We want to point it out that for fLT and ̂fLT to possess property of bounded level
sets, an additional condition is required (see Lemma 4.1). In fact, the examples of ψ̃1
and ψ̃2 given in (14) both satisfy this additional condition (Lemma 4.1). It was also
proved in Lemma 9 of [15] that this additional condition is satisfied with ψFB as well.

Lemma 4.1 ([14, Lemma 4.4]) For any {(xk, yk)}∞k=1 ⊆ R
n × R

n, let λ1(x)k ≤
λ2(x)k and μ1(y)k ≤ μ2(y)k denote the spectral values of xk and yk , respectively.
Then, if λ1(x)k → −∞ or μ1(y)k → −∞, we have ψ̃i(x

k, yk) → ∞, for i = 1,2.

Now, we come to another main work of this paper that is to claim the monotonicity
of F plus the strict feasibility of SOCCP can be replaced by R01 (or R02)-functions
to ensure property of bounded level sets.

Proposition 4.1 (a) Let fYF be given as in (9) and (16). Suppose that F is a R01-
function. Then, the level set

L(γ ) := {ζ ∈ R
n | fYF(ζ ) ≤ γ }

is bounded for all γ ≥ 0.
(b) Let fLT be given as in (12) and (16) with ψ̃ satisfying Lemma 4.1. Suppose

that F is a R01-function. Then, the level set

L(γ ) := {ζ ∈ R
n | fLT(ζ ) ≤ γ }

is bounded for all γ ≥ 0.

Proof (a) We will prove this result by contradiction. Suppose there exists an un-
bounded sequence {ζ k} ⊂ L(γ ) for some γ ≥ 0. It can be seen that the sequence of
the smaller spectral values of {ζ k} and {F(ζ k)} are bounded below. In fact, if not, it
follows from Lemma 4.1 (note ψFB also satisfies this lemma, see Lemma 9 of [15])
that fYF(ζ k) → ∞, which contradicts {ζ k} ⊂ L(γ ).

Therefore, {(−ζ k)+} and {(−F(ζ k))+} are bounded above, which says condition
(20) is held. Then, by the assumption of R01-function, we have

lim inf
k→∞

〈ζ k,F (ζ k)〉
‖ζ k‖2

> 0.

This yields 〈ζ k,F (ζ k)〉 → ∞, and hence fYF(ζ k) → ∞ by definition of fYF given
as in (9) and (10). Thus, it is a contradiction to {ζ k} ⊂ L(γ ).

(b) Same arguments as part (a). �
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Proposition 4.2 (a) Let ̂fLT be given as in (15) and (16) with ψ̃ satisfying Lemma 4.1.
Suppose that F is a R02-function. Then, the level set

L(γ ) := {ζ ∈ R
n | ̂fLT(ζ ) ≤ γ }

is bounded for all γ ≥ 0.
(b) Let ̂fYF be given as in (11) and (16). Suppose that F is a R02-function. Then,

the level set

L(γ ) := {ζ ∈ R
n | ̂fYF(ζ ) ≤ γ }

is bounded for all γ ≥ 0.

Proof (a) Again, we will prove this result by contradiction. Suppose there exists an
unbounded sequence {ζ k} ⊂ L(γ ) for some γ ≥ 0. It can be seen that the sequence of
the smaller spectral values of {ζ k} and {F(ζ k)} are bounded below. In fact, if not, it
follows from Lemma 4.1 (note we assume ψ̃ satisfies this lemma) that ̂fLT(ζ k) → ∞,
which contradicts {ζ k} ⊂ L(γ ).

Thus, {(−ζ k)+} and {(−F(ζ k))+} are bounded above, which says condition (20)
is held. Then, by the assumption of R02-function, we have

lim inf
k→∞

λ2(ζ
k ◦ F(ζ k))

‖ζ k‖2
> 0.

This yields λ2(ζ
k ◦ F(ζ k)) → ∞, and hence ‖(ζ k ◦ F(ζ k))+‖ → ∞. This together

with definition of ̂fLT given as in (15) and (10) imply ̂fLT(ζ k) → ∞. But, this con-
tradicts {ζ k} ⊂ L(γ ). Therefore, we complete the proof.

(b) Same arguments as part (a). �

5 Final Remarks

In this paper, we have studied conditions for error bounds and bounded level sets of
some merit functions, fYF, ̂fYF, fLT,̂fLT given as in (16) for SOCCP. For property
of bounded level sets, we propose a new condition, F being R01-function, to replace
the traditional condition of monotonicity of F and strict feasibility of SOCCP in
the cases of fYF, fLT. In the contrast, we propose another condition, F being R02-
function, to replace the traditional condition of monotonicity of F and strict feasibil-
ity of SOCCP in the cases of ̂fLT, ̂fYF. We notice that the condition of R02-function
is even weaker than R01-function, which means we need a bit stronger condition in
cases of fYF, fLT to obtain property of bounded level sets than in cases of ̂fLT, ̂fYF to
do. This observation seems true for property of error bounds. More specifically, we
have established the new condition of uniform P ∗-property to ensure that ̂fLT, ̂fYF
provide error bounds (see Propositions 3.1 and 3.2). Thus, due to this observation,
we suspect that there needs a condition between strongly monotonicity and uniform
P ∗-property (see the implications in Property 2.2(b)) to ensure fYF, fLT to provide
error bounds for SOCCP. However, we still don’t know whether there is a condition
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between strongly monotonicity and uniform P ∗-property (see Property 2.2(b)). That
is the reason we don’t have similar results of error bounds for fYF, fLT yet.

We can elaborate more to explain the above reason from the other aspect. In fact,
the existing results of error bounds in Proposition 5 of [15] and Proposition 4.1 of
[14] (for fYF and fLT, respectively) say that there exists a scalar τ > 0 such that

τ‖ζ − ζ ∗‖2 ≤ max{0, 〈F(ζ ), ζ 〉} + ‖(−F(ζ ))+‖ + ‖(−ζ )+‖, ∀ζ ∈ R
n. (29)

Now, by the fact from Lemma 4.1 of [13],

〈x, y〉 ≤ √
2‖(x ◦ y)+‖, ∀x, y ∈ R

n,

we can see that

max{0, 〈F(ζ ), ζ 〉} ≤ √
2‖(F (ζ ) ◦ ζ )+‖.

In other words, if (29) is true then (24) is also held. But the converse is not guaranteed.
If we follow the same arguments as in Propositions 3.1 and 3.2, we can obtain (24).
Nonetheless, (24) does not imply (29) as explained above. Thus, the uniform P ∗-
property does not guarantee the property of error bounds for fYF, fLT. Therefore, it
is still worth of watching up on the issue of finding a weaker condition than strong
monotonicity for fYF, fLT to provide error bounds for SOCCP.

Acknowledgements The author thanks the two referees for careful reading of the paper and helpful sug-
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