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Abstract. This paper is devoted to the study of the proximal point algorithm
for solving monotone and nonmonotone nonlinear complementarity problems.

The proximal point algorithm is to generate a sequence by solving subproblems

that are regularizations of the original problem. After given an appropriate cri-
terion for approximate solutions of subproblems by adopting a merit function,

the proximal point algorithm is verified to have global and superlinear con-

vergence properties. For the purpose of solving the subproblems efficiently,
we introduce a generalized Newton method and show that only one New-

ton step is eventually needed to obtain a desired approximate solution that

approximately satisfies the appropriate criterion under mild conditions. The
motivations of this paper are twofold. One is analyzing the proximal point al-

gorithm based on the generalized Fischer-Burmeister function which includes
the Fischer-Burmeister function as special case, another one is trying to see

if there are relativistic change on numerical performance when we adjust the

parameter in the generalized Fischer-Burmeister.

1. Introduction. In the last decades, people have put a lot of their energy and
attention on the complementarity problem due to its various applications in oper-
ation research, economics, and engineering, see [16, 18, 30] and references therein.
The nonlinear complementarity problem (NCP) is to find a point x ∈ IRn such that

NCP(F ) : 〈F (x), x〉 = 0, F (x) ∈ IRn
+, x ∈ IRn

+, (1)

where F : IRn → IRn is a continuously differentiable mapping with F := (F1, F2, . . . ,
Fn)T . Many solution methods have been developed to solve NCP(F) [3, 4, 18,
19, 20, 21, 22, 24, 30, 40, 41]. For more details, please refers to the excellent
monograph [14]. One of the most popular methods is to reformulate the NCP(F) as
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a unconstrained optimization problem and then to solve the reformulated problem
by the unconstrained optimization technique. This kind of methods is called the
merit function approach, where the merit functions are usually constructed via some
NCP-functions.

A function φ : IR2 → IR is called an NCP-function if it satisfies

φ(a, b) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0.

Furthermore, if φ(a, b) ≥ 0 for all (a, b) ∈ IR2 then the NCP-function φ is called
a nonnegative NCP-function. In addition, if a function Ψ : IRn → IR+ satisfying
Ψ(x) = 0 if and only if x solves the NCP, then Ψ is called a merit function for the
NCP. How to construct a merit function via an NCP-function? If φ is an NCP-
function, an easy way to construct a merit function is defining Ψ : IRn → IR+

by

Ψ(x) :=

n∑
i=1

1

2
φ2(xi, Fi(x)).

With this merit function, finding a solution of the NCP is equivalent to seeking a
global minimum of the unconstrained minimization problem

min
x∈IRn

Ψ(x)

with optimal value zero. In fact, many NCP-functions have been proposed in the
literature. Among them, the Fischer-Burmeister (FB) function is one of the most
popular NCP-functions, which is defined as

φFB(a, b) := a+ b−
√
a2 + b2, ∀(a, b) ∈ IR2.

One generalization of FB function was given by Kanzow and Kleinmichel in [23]:

φθ(a, b) := a+ b−
√

(a− b)2 + θab, θ ∈ (0, 4), ∀(a, b) ∈ IR2. (2)

Another generalization proposed by Chen [3, 4, 5] and called generalized Fischer-
Burmeister function is defined as

φp(a, b) := a+ b− p
√
|a|p + |b|p, p ∈ (1,∞), ∀(a, b) ∈ IR2. (3)

Among all various methods for solving the NCP, we focus on the proximal point
algorithm (PPA) in this paper. The PPA is known for its theoretically nice con-
vergence properties, which was first proposed by Martinet [27] and further studied
by Rockafellar [35], and was originally designed for finding a vector z satisfying
0 ∈ T (z) where T is a maximal monotone operator. Therefore, it can be applied to
a broad class of problems such as convex programming problems, monotone vari-
ational inequality problems, and monotone complementarity problems. In general,
PPA generates a sequence by solving subproblems that are regularizations of the
original problem. More specifically, for the case of monotone NCP(F ), given the
current point xk, PPA obtains the next point xk+1 by approximately solving the
subproblem

NCP(F k) : 〈F k(x), x〉 = 0, F k(x) ∈ IRn
+, x ∈ IRn

+, (4)

where F k : IRn → IRn is defined by

F k(x) := F (x) + ck(x− xk) with ck > 0. (5)

It is obvious that F k is strongly monotone when F is monotone. Then, by [14,
Theorem 2.3.3], the subproblem NCP(F k), which is more tractable than the orig-
inal problem, always has a unique solution. Thus, PPA is well-defined. It was
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pointed out in [26, 35] that with appropriate criteria for approximate solutions of
subproblems (4), PPA has global and superlinear convergence property under mild
conditions. Another implementation issue is how to solve subproblems efficiently
and obtain an approximate solution such that the approximation criterion for the
subproblem is fulfilled. A generalized Newton method proposed by De Luca et al.
[25] which is used to solve subproblems. The approximation criterion under given
conditions is eventually approximately fulfilled by a single Newton iteration of the
generalized Newton method. As for the case of nonmonotone NCP, similar idea was
also employed for solving P0-NCP in [43].

In this paper, we look into again the PPA for monotone NCP and P0-NCP
studied in [42] and [43], respectively. We consider the PPA based on different NCP-
functions, indeed based on the class of φp as in (3). Analogous theoretical analysis
for PPA based on φp can be established easily. However, this is not the main
purpose of doing such extension. In fact, there have been reported [3, 4, 6, 7] that
changing the value of p has various influence on numerical performance for different
types of algorithms. It is our intension to know whether such phenomenon occurs
when employing PPA method for solving NCPs. As will be seen in Section 5, such
phenomenon does not appear in PPA, more specifically, changing the parameter p
does change the numerical performance for the proposed PPA, however, such change
does not depend on p regularly. This together with earlier reports offer us a further
understanding about the generalized Fischer-Burmeister function.

2. Preliminaries. In this section, we review some background materials that will
be used in the sequel and briefly introduce the proximal point algorithm.

2.1. Mathematical concepts. Given a set Ω ∈ IRn locally closed around x̄ ∈ Ω,
the regular normal cone to Ω at x̄ is defined as

N̂Ω(x̄) :=
{
v ∈ IRn

∣∣ lim sup
Ω

x→x̄

〈v, x− x̄〉
||x− x̄||

≤ 0
}
.

The (limiting) normal cone to Ω at x̄ is set to be

NΩ(x̄) := lim sup
Ω

x→x̄

N̂Ω(x),

where “limsup” is the Painlevé-Kuratowski outer limit of sets, see [36]. If Ω is the
nonegative orthant IRn

+, the normal cone to Ω at x̄ is

NIRn
+

(x̄) =

{
{y ∈ IRn|〈x̄− z, y〉 ≥ 0,∀z ≥ 0} if x̄ ≥ 0,
∅ otherwise.

We now recall definitions of various monotonicity and P -properties of a mapping
which are needed for subsequent analysis.

Definition 2.1. Let F : IRn → IRn.

(a): F is said to be monotone if (x− y)T (F (x)− F (y)) ≥ 0 for all x, y ∈ IRn.
(b): F is said to be strongly monotone with modulus µ > 0 if (x− y)T (F (x)−
F (y)) ≥ µ‖x− y‖2 for all x, y ∈ IRn.

(c): F is said to be an P0-function if for all x, y ∈ IRn with x 6= y there is an
index i such that xi 6= yi and (xi − yi)[Fi(x)− Fi(y)] ≥ 0.

(d): F is said to be an P -function if for all x, y ∈ IRn with x 6= y there is an
index i such that (xi − yi)[Fi(x)− Fi(y)] > 0.
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It is well known that, when F is continuously differentiable, F is monotone if and
only if ∇F (ζ) is positive semidefinite for all ζ ∈ IRn while F is strongly monotone
if and only if ∇F (ζ) is positive definite for all ζ ∈ IRn. For more details about
monotonicity, please refer to [14]. In addition. it can be easily verified that if F
is P0-function, then the function F k defined by (5) is P -function and the Jacobian
matrices of F k are P -matrices. F is said to be uniformly Lipschitz continuous on a
set Ω with modulus κ > 0 if ‖F (x)− F (y)‖ ≤ κ‖x− y‖ for all x, y ∈ Ω.

Moreover, for a vector-valued Lipschitz continuous mapping F : IRn → IRm, the
B-subdifferential of F at x denoted by ∂BF (x) is defined as

∂BF (x) :=

{
lim
k→∞

JF (xk)
∣∣xk → x, F is differentiable atxk

}
.

The convex hull of ∂BF (x) is the Clarke’s generalized Jacobian of F at x denoted
by ∂F (x), see [10]. We say that F is strongly BD-regular at x if every element of
∂BF (x) is nonsingular.

We need another important concept named semismoothness which was first in-
troduced in [28] for functionals and was further extended in [33] to vector-valued
functions. Let F : IRn → IRm be a locally Lipschitz continuous mapping. We say
that F is semismooth at a point x ∈ IRn if F is directionally differentiable and for
any ∆x ∈ IRn and V ∈ ∂F (x+ ∆x) with ∆x→ 0, there has

F (x+ ∆x)− F (x)− V (∆x) = o(||∆x||).

Furthermore, F is said to be strongly semismooth at x if F is semismooth at x and
for any ∆x ∈ IRn and V ∈ ∂F (x+ ∆x) with ∆x→ 0, there holds

F (x+ ∆x)− F (x)− V (∆x) = O(||∆x||2).

To close this subsection, we introduce the R-regularity of a solution x̄ to NCP.
For a solution x̄ ∈ IRn to the NCP(F ), we define the following three index sets
which are associated with x̄:

α := { i | x̄i > 0, Fi(x̄) = 0},
β := { i | x̄i = Fi(x̄) = 0},
γ := { i | x̄i = 0, Fi(x̄) > 0}.

We say that the solution x̄ is R-regular [34] if ∇Fαα(x̄) is nonsingular and the Schur

complement of ∇Fαα(x̄) in

[
∇Fαα(x̄) ∇Fαβ(x̄)
∇Fβα(x̄) ∇Fββ(x̄)

]
is an P -matrix.

2.2. Complementarity and merit functions. Back to the generalized FB func-
tion φp, it has been proved in [3, 4, 5, 6] that the function φp given in (3) possess a
system of favorite properties, such as strong semismoothness, Lipschitz continuity,
and continuous differentiability except for the point (0, 0). Due to these favorable

properties, given a certain mapping F̂ : IRn → IRn, the NCP(F̂ ) can be reformu-
lated as the following nonsmooth system of equations:

Φp(x) :=



φp(x1, F̂1(x))
...

φp(xi, F̂i(x))
...

φp(xn, F̂n(x))

 = 0. (6)
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It was also shown that the squared norm φp which is given by

ψp(a, b) := |φp(a, b)|2 (7)

is continuously differentiable. Moreover, the merit functions Ψp induced from ψp

Ψp(x) := ‖Φp(x)‖2 =

n∑
i=1

|φp(x, F̂i(x))|2 =

n∑
i=1

ψp(xi, F̂i(x)) (8)

possess SC1 property (i.e., they are continuously differentiable and their gradients
are semismooth) and LC1 property (i.e., they are continuously differentiable and
their gradients are Lipschitz continuous) under suitable assumptions. Note that

Φp(x) is not differentiable at x when xi = F̂i(x) = 0 for some 1 ≤ i ≤ n. In
addition, in light of [8, Lemma 3.1], we know that an element V of ∂BΦp(x) can be
expressed as

V = Da +Db∇F̂ (x)T , (9)

where Da and Db are diagonal matrices given by

((Da)ii, (Db)ii) (10)

=

{ (
1− sgn(xi)|xi|p−1

‖(xi,F̂i(x))‖p−1
p

, 1− sgn(F̂i(x))|F̂i(x)|p−1

‖(xi,F̂i(x))‖p−1
p

)
if (xi, F̂i(x)) 6= (0, 0),

(1− η, 1− ξ) otherewise,

with ‖(xi, F̂i(x))‖p−1
p =

(
p

√
|xi|p + |F̂i(x)|p

)p−1

and (η, ξ) being a vector satisfying

|η|
p

p−1 + |ξ|
p

p−1 = 1.

Lemma 2.2. Let Da and Db be defined as in (10). Then, the following hold.

(a): The diagonal matrices Da and Db satisfy

(Da)ii + (Db)ii ≥ 2− p
√

2, ∀i = 1, 2, · · · , n.

(b): Suppose that F̂ is strongly monotone with modulus µ. Then,

‖(Da +Db∇F̂ (x)T )−1‖ ≤ 1

B1µ

where B1 = 2− p√2
n max{1, ‖∇F̂ (x)‖}.

Proof. (a) To proceed, we discuss two cases as below.

(i) If (xi, F̂i(x)) 6= (0, 0), then

(Da)ii = 1− sgn(xi)|xi|p−1

‖(xi, F̂i(x))‖p−1
p

(Da)ii = 1− sgn(F̂i(x))|F̂i(x)|p−1

‖(xi, F̂i(x))‖p−1
p

.

From the arguments of [7, Lemma 3.3], there proves an inequality

|a|p−1 + |b|p−1

‖(a, b)‖p−1
p

≤ 2
1
p for p > 1.

With this inequality, it is clear that (Da)ii + (Db)ii ≥ 2− p
√

2 under this case.
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(ii) If (xi, F̂i(x)) = (0, 0), then ((Da)ii, (Db)ii) = (1 − η, 1 − ξ) where (η, ξ) satisfy

|η|
p

p−1 + |ξ|
p

p−1 = 1. To prove the desired result, it is equivalent to showing η+ ξ ≤
p
√

2. This can be seen just by applying the Hölder inequality

η + ξ ≤ (1p + 1p)
1
p (|η|q + |ξ|q)

1
q

where 1
p + 1

q = 1 (note that q = p
p−1 ). Thus, the proof is complete.

(b) The arguments are similar to [42, Corollary 2.7] which can be obtained by
applying part(a) and [42, Proposition 2.6].

With the expression of ∂BΦp(x), it is now possible to provide sufficient conditions
for the strongly BD-regularity of Φp at a solution of the nonlinear complementarity

problem. Let x̄ be a solution to NCP(F̂ ). The following statements indicate under
what conditions Φp is strongly BD-regular at x̄. These results are important from
the algorithmic point of view.

Lemma 2.3. Let x̄ be a solution to NCP(F̂ ). Suppose that either x̄ is an R-regular

solution or ∇F̂ (x̄) is an P -matrix. Then every matrix in ∂BΦp(x̄) is nonsingular,
i.e., Φp is strongly BD-regular at x̄.

Proof. The proofs are similar to those in [15, Propositon 3.2] and [22, Corollary 22,
Corollary 23], we omit them here.

Next, we talk about another merit function Ψ : IRn → IR+ which is utilized in
the PPA method studied in [42] and provides a more favorable error bound than
Ψp:

Ψ(x) :=

n∑
i=1

{
|xiF̂i(x)|+ |φNR(xi, F̂i(x))|

}
,

where the natural residual function φNR : IR2 → IR is defined by

φNR(a, b) := min{a, b}.

It is clear that Ψ(x) ≥ 0, and Ψ(x) = 0 if and only if x is a solution of NCP(F̂ ).
The below lemma shows the error bound property for such function Ψ.

Lemma 2.4. [42, Lemma2.11] Suppose that F̂ is strongly monotone with modulus
µ. Then we have

‖x− x̂‖ ≤ 2 max{1, ‖x‖}

√
Ψ(x)

µ
for all x ∈

{
y ∈ IRn

+ | Ψ(y) ≤ µ

4

}
where x̂ is the unique solution of NCP(F̂ ).

Now, we here present some basic properties regarding generalized Fischer-Burmei-
ster function from [7] which we will be used later.

Lemma 2.5. [7, Lemma 3.1, Proposition 3.1] The functions ψp(a, b) and Ψp(x)
defined by (7) and (8) have the following favorable properties:

(a): ψp(a, b) is an NCP-function.
(b): ψp(a, b) is continuously differentiable everywhere.
(c): For p ≥ 2, the gradient of ψp(a, b) is Lipschitz continuous on any nonempty

bounded set.
(d): ∇aψp(a, b) · ∇bψp(a, b) ≥ 0 for any (a, b) ∈ IR2, and the equality holds if

and only if ψp(a, b) = 0.
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(e): ∇aψp(a, b) = 0⇐⇒ ∇bψp(a, b) = 0⇐⇒ ψp(a, b) = 0.

(f): (2− p
√

2)2ΨNR(x) ≤ Ψp(x) ≤ (2+ p
√

2)2ΨNR(x), where ΨNR(x) =
∑n
i=1 φ

2
NR

(xi,

F̂i(x)).

Consequently, analogous to [42, Lemma 2.8, Lemma 2.9] and [43, Proposition
2.2], the following results can be achieved immediately.

Lemma 2.6. The mappings Φp and Ψp defined in (6) and (8) have the following
properties.

(a): If F̂ is continuously differentiable, then Φp is semismooth.

(b): If ∇F̂ is locally Lipschitz continuous, then Φp is strongly semismooth.

(c): If F̂ is continuously differentiable, then Ψp is continuously differentiable
everywhere.

(d): If F̂ is monotone, then any stationary point of Ψp is a solution of NCP(F̂ ).

(e): If F̂ is an P0-function, then every stationary point of Ψp is a solution of

NCP(F̂ ).

(f): If F̂ is strongly monotone with modulus µ and Lischitz continuous with

constant L, then
√

Ψp(x) provides a global error bound for NCP(F̂ ), that is,

‖x− x̂‖ ≤ B2(L+ 1)

µ

√
Ψp(x), for all x ∈ IRn,

where x̂ is the unique solution of NCP(F̂ ) and B2 is a positive constant inde-

pendent of F̂ .
(g): Let S ⊂ IRn be a compact set. Suppose F̂ is strongly monotone with modulus

µ and Lischitz continuous with constant L on S. Then
√

Ψp(x) provides a
global error bound on S, that is, there exists a positive constant B2 such that

‖x− x̂‖ ≤ B2(L+ 1)

µ

√
Ψp(x), for all x ∈ S,

where x̂ is the unique solution of NCP(F̂ ).

Proof. Part(a) and (b) are clear since φp(a, b) is strongly semismooth. Part(c) is
implied by Lemma 2.5(b) while Lemma 2.5(d)-(e) yield part(d). Part(e) is from [5,
Proposition 3.4]. From Lemma 2.5(f), we have√

ΨNR(x) ≤ 1

2− p
√

2

√
Ψp(x).

This together with [29, Theorem 3.1] gives

‖x− x̂‖ ≤ (L+ 1)

µ

√
ΨNR(x) ≤ (L+ 1)

(2− p
√

2)µ

√
Ψp(x),

where Ψ
NR

(x) =
∑n
i=1 φ

2
NR

(xi, F̂i(x)). This completes part(f) and part(g).

2.3. Proximal point algorithm. Let T : IRn ⇒ IRn be a set-valued mapping
defined by

T (x) := F (x) +NK(x). (11)

It is known that T is a maximal monotone mapping and NCP(F ) is equivalent to
the problem of finding a point x such that 0 ∈ T (x). Then, for any starting point
x0, PPA generates a sequence {xk} by the approximate rule:

xk+1 ≈ Pk(xk),
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where Pk :=
(
I + 1

ck
T
)−1

is a vector-valued mapping from IRn to IRn, {ck} is

some sequence of positive real numbers, and xk+1 ≈ Pk(xk) means that xk+1 is an
approximation to Pk(xk). Accordingly, Pk(xk) is given by

Pk(xk) =

(
I +

1

ck
(F +NK)

)−1

(xk),

from which we have

Pk(xk) ∈ SOL(NCP(Fk)),

where F k is defined by (5) and SOL(NCP(F k)) denotes the solution set of NCP(F k).
Therefore, xk+1 is obtained by an approximate solution of NCP(F k). As remarked
in [42], when ck is small, the subproblem is close to the original one whereas when
ck is large, a solution of the subproblem is expected to lie near xk. Moreover,
to ensure convergence of PPA, xk+1 must be located sufficiently near the solution
Pk(xk). Among others, two general criteria for the approximate calculation of
Pk(xk) proposed by Rockafellar [35] are as follows:

Criterion 1.:
∥∥xk+1 − Pk(xk)

∥∥ ≤ εk, ∞∑
k=0

εk <∞.

Criterion 2.:
∥∥xk+1 − Pk(xk)

∥∥ ≤ ηk‖xk+1 − xk‖,
∞∑
k=0

ηk <∞.

As mentioned in [26, 35], there says the above Criterion 1 guarantees global
convergence while Criterion 2, which is rather stringent, ensures superlinear con-
vergence. The following two theorems elaborate this issue.

Theorem 2.7. [35, Theorem 1] Let {xk} be any sequence generated by the PPA
under Criterion 1 with {ck} bounded. Suppose NCP(F ) has at least one solution.
Then {xk} converges to a solution x∗ of NCP(F ).

Theorem 2.8. [26, Theorem 2.1] Suppose the solution set X̄ of NCP(F ) is nonemp-
ty, and let {xk} be any sequence generated by PPA with Criteria 1 and Criterion 2
and ck → 0. Let us also assume that

∃ δ > 0, ∃C > 0, s.t. dist(x, X̄) ≤ C‖ω‖ whenever x ∈ T −1(ω) and ‖ω‖ ≤ δ. (12)

Then the sequence {dist(xk, X̄)} converges to 0 superlinearly.

3. A proximal point algorithm for the monotone NCP.

3.1. A proximal point algorithm. Based on the previous discussion, in this
subsection we describe PPA for solving NCP(F ) where F is smooth and monotone.
We first illustrate the related mappings that will be used in the remainder of this
paper.

Here the mappings Φp and Ψp are the same as the ones defined by (6) and (8),

respectively, except the mapping F̂ is substituted by F , i.e.,

Φkp(x) :=



φp(x1, F
k
1 (x))

...
φp(xi, F

k
i (x))

...
φp(xn, F

k
n (x))

 , Φp(x) :=



φp(x1, F1(x))
...

φp(xi, Fi(x))
...

φp(xn, Fn(x))

 ,
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Ψk
p(x) := ‖Φkp(x)‖2, Ψp(x) := ‖Φp(x)‖2,

and Ψk(x) :=
∑n
i=1 ψ(xi, F

k
i (x)) with ψ(xi, F

k
i (x)) = |xiF ki (x)|+

∣∣φ
NR

(xi, F
k
i (x))

∣∣ .
Now we are in a position to describe the proximal point algorithm for solving
NCP(F ).

Algorithm 3.1.

Step 0.: Choose parameters α ∈ (0, 1), c0 ∈ (0, 1) and an initial point x0 ∈ IRn.
Set k := 0.

Step 1.: If xk satisfies Ψp(x
k) = 0, then stop.

Step 2.: Let F k(x) = F (x) + ck(x − xk). Get an approximation solution x̃k+1

of NCP(F k) that satisfies the conditions

Ψk
(
[x̃k+1]+

)
≤ c3k min{1, ‖xk − x̃k+1‖}

4 max{1, ‖[x̃k+1]+‖}2
. (13)

Step 3.: Set xk+1 := [x̃k+1]+, ck+1 = αck and k := k + 1. Go to Step 1.

The condition (13) is different from what was used in [42]. In fact, it can be
decomposed into two parts as below

Ψk
(
[x̃k+1]+

)
≤ c3k

4 max{1, ‖[x̃k+1]+‖}2
(14)

Ψk
(
[x̃k+1]+

)
≤ c3k‖xk − x̃k+1‖

4 max{1, ‖[x̃k+1]+‖}2
(15)

which corresponds to the aforementioned Criterion 1 and Criterion 2, respectively,
to ensure the global and superlinear convergence. However, as shown in the next
lemma, the condition (15) implies√

Ψk
p(x̃k+1) ≤ c3k‖xk − x̃k+1‖. (16)

Note that condition (14) and condition (16) are exactly what were used in [42]. In
view of this, our modified PPA is more neat and compact.

Lemma 3.1. Suppose that the following inequality holds

Ψk([x̃k+1]+) ≤ c3k‖xk − x̃k+1‖
4 max{1, ‖[x̃k+1]+‖}2

.

Then, we have √
Ψk
p(x̃k+1) ≤ c3k‖xk − x̃k+1‖.

Proof. First, applying Lemma 2.5(f) gives√
Ψk
p(x̃k+1) ≤ (2 +

p√
2)
√

ΨNR(x̃k+1)

≤ (2 +
p
√

2)

n∑
i=1

|φNR(x̃k+1
i , F ki (x̃k+1))|

≤ 4Ψk([x̃k+1]+).

On the other hand, from the assumption

Ψk([x̃k+1]+) ≤ c3k‖xk − x̃k+1‖
4 max{1, ‖[x̃k+1]+‖}2
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and max{1, ‖[x̃k+1]+‖}2 ≥ 1, we have

4Ψk([x̃k+1]+) ≤ c3k‖xk − x̃k+1‖.
Thus, the desired result follows.

Theorem 3.2. Let X̄ be the solution set of NCP(F). If X̄ 6= ∅, then the sequence
{xk} generated by Algorithm 3.1 converges to a solution x∗ of NCP(F).

Proof. Since F k is strongly monotone with modulus ck > 0, Pk(xk) is the unique
solution of NCP(F k). From (13), we know

Ψk(xk+1) ≤ c3k
4 max{1, ‖xk+1‖}2

≤ ck
4
.

Then, it follows from Lemma 2.4 that

‖xk+1 − Pk(xk)‖ ≤ 2 max{1, ‖xk+1‖}
√

Ψk(xx+1)

ck
, (17)

which together with (13) implies

‖xk+1 − Pk(xk)‖ ≤ ck. (18)

Thus, {xk} satisfies Criterion 1 and the global convergence is guaranteed in light of
Theorem 2.7.

In order to obtain superlinear convergence, we need the following assumption
which is connected to the condition adopted in Theorem 2.8 (see Theorem 3.4).

Assumption 3.1. ‖min{x, F (x)}‖ provides a local error bound for NCP(F ), i.e.,
there exist positive constants δ̄ and C̄ such that

dist(x, X̄) ≤ C̄‖min{x, F (x)}‖ for all x with ‖min{x, F (x)}‖ ≤ δ̄, (19)

where X̄ denotes the solution set of NCP(F ).

Lemma 3.3. [31, Proposition 3] If a Lipschitz continuous mapping H is strongly
BD-regular at x∗, then there is a neighborhood N of x∗ and a positive constant α
such that ∀x ∈ N and V ∈ ∂BH(x), V is nonsingular and ‖V −1‖ ≤ α. Furthermore,
if H is semismooth at x∗ and H(x∗) = 0, then there exists a neighborhood N′ of x∗

and a positive constant β such that ∀x ∈ N′, ‖x− x∗‖ ≤ β‖H(x)‖.

We note that when ∇F (x̄) is positive definite at one solution x̄ of NCP(F ), we
see that Assumption 3.1 is satisfied due to Lemma 2.3 and Lemma 3.3 in which we
view H(x) = Φp(x). Lemma 3.3 also indicates under what conditions Assumption
3.1 holds. Now, we show that Assumption 3.1 indeed implies the condition (12).

Theorem 3.4. Let T be defined by (11). If X̄ 6= ∅, then Assumption 3.1 implies
condition (12), that is, there exist δ > 0 and C > 0 such that

dist(x, X̄) ≤ C‖ω‖,
whenever x ∈ T −1(ω) and ‖ω‖ ≤ δ.

Proof. For all x ∈ T −1(ω) we have

ω ∈ T (x) = F (x) +NK(x).

Therefore there exists v ∈ NK(x) such that ω = F (x) + v. Because K is a convex
set, it is easy to obtain

ΠK(x+ v) = x. (20)
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Noting that the projective mapping onto a convex set is nonexpansive, it follows
from (20) that

‖x−ΠK(x− F (x))‖ = ‖ΠK(x+ v)−ΠK(x− F (x))‖ ≤ ‖v + F (x)‖ = ‖ω‖.
From Assumption 3.1 and letting C = C̄, δ = δ̄ yield the desired condition (12) in
Theorem 2.8.

The following theorem gives the superlinear convergence of Algorithm 3.1, whose
proof is based on Theorem 3.4 and can be obtained in the same way as done in
Theorem 3.2.

Theorem 3.5. Suppose that Assumption 3.1 holds. Let {xk} be generated by Al-
gorithm 3.1. Then the sequence {dist(xk, X̄)} converges to 0 superlinearly.

Proof. By Theorem 3.2, {xk} is bounded. Hence F k is uniformly Lipschitz continu-
ous with modulus L on a bounded set containing {xk}. By Lemma 2.4 and Lemma
3.1 we have

‖x̃k+1 − Pk(xk)‖ ≤ B2(L+ 1)

ck

√
Ψk
p(x̃k+1) ≤ B2(L+ 1)c2k‖xk − x̃k+1‖,

for some positive constant B2. Then the desired results follows by applying Theorem
2.8 and Theorem 3.4.

3.2. Generalized Newton method. Although we have obtained the global and
superlinear convergence properties of Algorithm 3.1 under mild conditions, we still
need to care about how to obtain an approximation solution of the strongly mono-
tone complementarity problem in its step 2 and what is the cost to ensure that
Algorithm 3.1 is practically efficient. We will discuss this issue in this subsection.
More specifically, we introduce the generalized Newton method proposed by De
Luca, Facchinei, and Kanzow [25] for solving the subproblems in Step 2 of Algo-
rithm 3.1. As mentioned earlier, for each fixed k, Problem (4) is equivalent to the
following nonsmooth equation

Φkp(x) = 0. (21)

We describe as below the generalized Newton method for solving the nonsmooth
system (21), which is employed from what was introduced in [42] for solving NCP.

Algorithm 3.2 (generalized Newton method for NCP(F k)).

Step 0.: Choose β ∈ (0, 1
2 ) and an initial point x0 ∈ IRn. Set j := 0.

Step 1.: If ‖Φkp(xj)‖ = 0, then stop.

Step 2.: Select an element V j ∈ ∂BΦkp(xj). Find the solution dj of the system

V jd = −Φkp(xj). (22)

Step 3.: Find the smallest nonnegative integer ij such that

Ψk
p(xj + 2−ijdj) ≤ (1− β21−ij )Ψk

p(xj).

Step 4.: Set xj+1 := xj + 2−ijdj and j := j + 1. Go to Step 1.

Mimicking [25, Theorem 3.1], the following theorem which guarantees the con-
vergence of the above algorithm can be obtained easily.

Theorem 3.6. Suppose that F is differentiable and strongly monotone and that ∇F
is Lipschitz continuous around the unique solution x̂ of NCP(F k). The Algorithm
3.2 globally converges to x̂ and the rate of convergence is quadratic.
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4. A proximal point algorithm for the P0-NCP. Most ideas in the PPA for
monotone NCP introduced in previous section can be adopted for the nonmonotone
NCP. The main concern is that the global and superlinear convergence relying on
the monotone properties cannot be carried over to nonomonotone case. Fortunately,
for the P0-NCP which is a special subclass of nonmonotone NCPs, it is possible to
execute PPA in such case with different conditions. This is what we will elaborate
in this section. Note that it is known that if F is an P0-function, then F k defined
by (5) is an P -function. Therefore, the subproblem NCP(F k) always has a unique
solution, so that PPA is well-defined. Here, the definitions of mappings Φp, Ψp, Φkp
and Ψk

p are the same as those defined in Section 3. The PPA for solving NCP(F )
with P0-function can be described as follows:

Algorithm 4.1.

Step 0.: Choose parameters c0 > 0, δ0 ∈ (0, 1) and an initial point x0 ∈ IRn.
Set k := 0.

Step 1.: If xk satisfies Ψp(x
k) = 0, then stop.

Step 2.: Let F k(x) = F (x) + ck(x − xk). Get an approximation solution x̃k+1

of NCP(F k) that satisfies the conditions

Ψk
p(x̃k+1) ≤ 2δ2

k min{1, ‖xk − x̃k+1‖2}. (23)

Step 3.: Set xk+1 := x̃k+1. Choose ck+1 ∈ (0, ck) and δk+1 ∈ (0, δk). Set
k := k + 1. Go to Step 1.

We point it out that the condition (23) is different from the condition (13) used
in Algorithm 3.1 because we are dealing with the nonmonotone NCP here. We first
summarize some useful properties and give some assumptions that will be used in
our convergence analysis.

Lemma 4.1. For any a, b and c, we have |φp(a, b+ c)− φp(a, b)| ≤ 2|c|. Moreover,∥∥Φkp(x)− Φp(x)
∥∥ ≤ 2ck‖x− xk‖.

Proof. The proof is direct and an extension of [43, Lemma 2.2], we omit it here.

Proposition 1. Suppose that F is an P0-function. Then, for each k, the merit
function Ψk

p is coercive, i.e.,

lim
‖x‖→∞

Ψk
p(x) = +∞.

Proof. Based on the property of φp given by [5, Lemma 3.1], the conclusion can be
drawn in a way similar to [13, Proposition 3.4].

The following two assumptions are needed for the nonmonotone NCP case.

Assumption 4.1. The sequence {ck} satisfies the following conditions:

(a): ck(xk+1 − xk)→ 0 if {xk} is bounded.
(b): ckx

k → 0 if {xk} is unbounded.

Assumption 4.2. The sequence {xk} converges to a solution x∗ of NCP(F ) that
is strongly BD-regular with Φp.

A few words about these two assumptions. As remarked in [43], we can use the
following update rules for parameters ck and δk in Algorithm 4.1 that satisfy both
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Assumption 4.1 and step 3 in Algorithm 4.1.

ck = min

{
1,

1

‖xk‖2

}
min

{
(γ)k,

1

2
Ψp(x

k)

}
, δk = (γ)k, (24)

where γ ∈ (0, 1) is a given constant. Since F is an P0-function, from [12, Theorem
3.2] and [32, Proposition 2.5], we know that Assumption 4.2 ensures that x∗ is the
unique solution of NCP(F ). In addition, sufficient conditions for Assumption 4.2
have already been given in Lemma 2.3.

Now we are in a position to present the global and superlinear convergence for
Algorithm 4.1 whose proofs actually can be shown in a way similar to [43, Theorem
1 and Theorem 3]. Thus, we omit them here.

Theorem 4.2. Suppose that F is an P0-function and the solution set of NCP(F)
is nonempty and bounded. Suppose also that Assumption 4.1 holds. If δk → 0, then
the sequence {xk} generated by Algorithm 4.1 is bounded and any accumulation
point of {xk} is a solution of NCP(F ).

Theorem 4.3. Suppose that Assumption 4.1 and Assumption 4.2 hold and the
solution set of NCP(F ) is bounded. Suppose also that δk → 0 and ck → 0. Then
the sequence {xk} generated by Algorithm 4.1 converges superlinearly to the solution
x∗ of NCP(F ).

Like the monotone case, for solving subproblem NCP(F k), we also adopt the
generalized Newton method, i.e., Algorithm 3.2 described in Section 3. Since F is
an P0-function, it can be easily verified from the definition of F k that the Jacobian
matrices of F k at any point x are P -matrices. Hence Φkp is strongly BD-regular at
x by Lemma 2.3. As a result, from [25, Theorem 11], we also have the following
convergence theorem for Algorithm 3.2.

Theorem 4.4. Suppose that F is continuously differentiable and is an P0-function.
Then Algorithm 3.2 globally converges to the unique solution of NCP(F k). Further-
more, if ∇F is locally Lipschitz continuous, then the convergence rate is quadratic.

5. Numerical experiments. In this section, we report numerical results of Al-
gorithm 3.1 and Algorithm 4.1 for solving NCP(F ) defined by (1). Our numerical
experiments are carried out in MATLAB (version 7.8) running on a PC Intel core 2
Q8200 of 2.33GHz CPU and 2.00GB Memory for the test problems with all available
starting points in MCPLIB [2].

In our numerical experiments, the stopping criteria for Algorithm 3.1 and Al-
gorithm 4.1 are Ψp(x

k) ≤ 1.0e − 8 and |(xk)T (F (xk))| ≤ 1.0e − 3. We also stop
programs when the total iteration is more than 50. In Algorithm 3.1, we set the
parameters as α = 0.5 and c0 = 0.5. In Algorithm 4.1, we adopt rules (24) to
update the parameters where γ = 0.5. In Algorithm 3.2, we set the parameter
β = 10−4 and the initial point for Newton’s method is selected as the current it-
eration point in the main algorithm. Notice that the main task of Algorithm 3.2
for solving the subproblem, at each iterate, is to solve the linear system (22). In
numerical implementation, we apply the preconditioner conjugate gradient square
method for solving system (22). Because there is no description about how to dis-
tinguish monotone NCP and non-monotone NCP from MCPLIB collection, we only
use the iteration point to test the non-monotonicity. In summary, among 82 test
problems in MCPLIB (different starting points are regarded as different test prob-
lems), 50 test problems are verified to be non-monotone. As a result, Algorithm 4.1
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is implemented on the whole 82 problems, while Algorithm 3.1 is only implemented
on 32 problems which may be monotone. A good news is that with a proper p, all
the test problems can be solved successfully, which shows that the proximal point
algorithms for solving complementarity problems are efficient.

To present an objective evaluation and comparison of the performance of Algo-
rithm 3.1 and Algorithm 4.1 with different p, we consider the performance profile
introduced in [11] as a means. In particular, we regard Algorithm 3.1 or Algorithm
4.1 corresponding to a p as a solver, and assume that there are ns solvers and nj test
problems from the MCPLIB collection J . We are interested in using the number
of function evaluations as performance measure for Algorithm 3.1 or Algorithm 4.1
with different p. For each problem j and solver s, let

fj,s := function evaluations required to solve problem j by solver s.

We compare the performance on problem j by solver s with the best performance
by any one of the ns solvers on this problem; that is, we adopt the performance
ratio

rj,s =
fj,s

min{fj,s : s ∈ S }
,

where S is the set of four solvers. An overall assessment of each solver is obtained
from

ρs(τ) =
1

nj
size{j ∈J : rj,s ≤ τ},

which is called the performance profile of the number of function evaluations for
solver s. Note that ρs(τ) approximates the probability for solver s that a perfor-
mance ratio rj,s is within a factor τ of the best possible ratio.
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Figure 1. Performance profile of function evaluations of Algo-
rithm 3.1 with four p.

Figure 1 shows the performance profile of function evaluations in Algorithm 3.1 in
the range of [0, 5] for four solvers on 32 test problems. The four solvers correspond to
Algorithm 3.1 with p = 1.1, p = 2, p = 5 and p = 50, respectively. From this figure,
we see that Algorithm 3.1 with p = 50 and p = 2 has the competitive wins (has the
highest probability of being the optimal solver) and that the probabilities that it is
the winner on a given monotone NCP are about 0.40 and 0.28, respectively. If we
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choose being within a factor of greater than 2 of the best solver as the scope of our
interest, then p = 2 and p = 1.1 would suffice, and the performance profile shows
that the probability that Algorithm 3.1 with this p can solve a given monotone NCP
in such range of the best solver is almost 100%. And Algorithm 3.1 with p = 5 has
a comparable performance with p = 2 and p = 1.1 if we choose being within a factor
of greater than 3 of the best solver as the scope of our interest. Although p = 50
has a competitive wins with p = 2, the probability that it can solve a given NCP
within any positive factor of the best solver is lower than p = 2. Actually, p = 50
has the lowest probability within a factor of greater than 2 of the best solver. To
sum up, Algorithm 3.1 with p = 2 have the best numerical performance than the
others.
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Figure 2. Performance profile of function evaluations of Algo-
rithm 4.1 with five p.

Figure 2 shows the performance profile of function evaluations in Algorithm 4.1 in
the range of [0, 20] for five solvers on 82 test problems. The five solvers correspond
to Algorithm 4.1 with p = 1.1, p = 2, p = 5, p = 10 and p = 50, respectively.
From this figure, we see that Algorithm 4.1 with p = 1.1 has the best numerical
performance (has the highest probability of being the optimal solver) and that the
probability that it is the winner on a given NCP is about 0.37. If we choose being
within a factor of 2 or 3 of the best solver, then p = 2 has a comparable performance
with p = 1.1. If we choose being within a factor of greater than 11 or 16 of the best
solver as the scope of our interest, the performance profile of p = 1.1 shows that the
probabilities that Algorithm 4.1 with this p can solve a given NCP in such range of
the best solver are 93% and 95%, respectively.

To sum up, although changing the parameter p does change the numerical perfor-
mance for the proposed PPA, however, such change does not depend on p regularly,
unlike mentioned in [3, 4, 6, 7] which are reported for other algorithms.
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