
Comput Optim Appl (2012) 51:1037–1063
DOI 10.1007/s10589-011-9399-x

A proximal point algorithm for the monotone
second-order cone complementarity problem

Jia Wu · Jein-Shan Chen

Received: 4 August 2010 / Published online: 1 March 2011
© Springer Science+Business Media, LLC 2011

Abstract This paper is devoted to the study of the proximal point algorithm for solv-
ing monotone second-order cone complementarity problems. The proximal point al-
gorithm is to generate a sequence by solving subproblems that are regularizations of
the original problem. After given an appropriate criterion for approximate solutions
of subproblems by adopting a merit function, the proximal point algorithm is verified
to have global and superlinear convergence properties. For the purpose of solving the
subproblems efficiently, we introduce a generalized Newton method and show that
only one Newton step is eventually needed to obtain a desired approximate solution
that approximately satisfies the appropriate criterion under mild conditions. Numer-
ical comparisons are also made with the derivative-free descent method used by Pan
and Chen (Optimization 59:1173–1197, 2010), which confirm the theoretical results
and the effectiveness of the algorithm.
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1 Introduction

The second-order cone complementarity problem (SOCCP) which is a natural exten-
sion of nonlinear complementarity problem (NCP), is to find x ∈ �n satisfying

SOCCP(F ) : 〈F(x), x〉 = 0, F (x) ∈ K, x ∈ K, (1.1)

where 〈·, ·〉 is the Euclidean inner product, F is a mapping from �n into �n, and K
is the Cartesian product of second-order cones (SOC), in other words,

K = Kn1 × · · · × Knq , (1.2)

where q,n1, . . . , nq ≥ 1, n1 + · · · + nq = n, and for each i ∈ {1, . . . , q}

Kni := {(x0, x̄) ∈ � × �ni−1|‖x̄‖ ≤ x0},
with ‖·‖ denoting the Euclidean norm and K1 denoting the set of nonnegative re-
als �+. If K = �n+, then (1.1) reduces to the nonlinear complementarity problem.
Throughout this paper, corresponding to the Cartesian structure of K, we write
F = (F1, . . . ,Fq) and x = (x1, . . . , xq) with Fi being mappings from �n to �ni and
xi ∈ �ni , for each i ∈ {1, . . . , q}. We also assume that the mapping F is continuously
differentiable and monotone.

Until now, a variety of methods for solving SOCCP have been proposed and in-
vestigated. They include interior-point methods [1, 2, 13, 18, 28, 31], the smoothing
Newton methods [6, 10], the merit function method [5] and the semismooth Newton
method [11], where the last three kinds of methods are all based on an SOC comple-
mentarity function or a merit function.

The proximal point algorithm (PPA) is known for its theoretically nice conver-
gence properties, which was first proposed by Martinet [16] and further studied by
Rockafellar [24]. PPA is a procedure for finding a vector z satisfying 0 ∈ T (z), where
T is a maximal monotone operator. Therefore, it can be applied to a broad class of
problems such as convex programming problems, monotone variational inequality
problems, and monotone complementarity problems.

In this paper, motivated by the work of Yamashita and Fukushima [29] for the
NCPs, we focus on introducing PPA for solving the SOC complementarity problems.
For SOCCP(F ), given the current point xk , PPA obtains the next point xk+1 by ap-
proximately solving the subproblem

SOCCP(F k) : 〈Fk(x), x〉 = 0, F k(x) ∈ K, x ∈ K, (1.3)

where Fk : �n → �n is defined by

Fk(x) := F(x) + ck(x − xk) (1.4)

with ck > 0. It is obvious that Fk is strongly monotone when F is monotone. Then,
by [8, Theorem 2.3.3], the subproblem SOCCP(F k), which is more tractable than
the original problem, always has a unique solution. Thus, PPA is well defined. It was
pointed out in [15, 24] that with appropriate criteria for approximate solutions of
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subproblems (1.3), PPA has global and superlinear convergence property under mild
conditions. However, those criteria are usually not easy to check. Inspired by [29],
we give a practical criterion based on a new merit function for SOCCP proposed by
Chen in [3]. Another implementation issue is how to solve subproblems efficiently
and obtain an approximate solution such that the approximation criterion for the sub-
problem is fulfilled. We use a generalized Newton method proposed by De Luca et
al. [14] which is used in [29] for the NCP case to solve subproblems. We also give
the conditions under which the approximation criterion is eventually approximately
fulfilled by a single Newton iteration of the generalized Newton method.

The following notations and terminologies are used throughout the paper. I repre-
sents an identity matrix of suitable dimension, �n denotes the space of n-dimensional
real column vectors, and �n1 × · · · × �nq is identified with �n1+···+nq . Thus,
(x1, . . . , xq) ∈ �n1 × · · · × �nq is viewed as a column vector in �n1+···+nq . For any
two vectors u and v, the Euclidean inner product is denoted by 〈u,v〉 := uT v and
for any vector w, the norm ‖w‖ is induced by the inner product which is called the
Euclidean vector norm. For a matrix M , the norm ‖M‖ is denoted to be the ma-
trix norm induced by the Euclidean vector norm, that is the spectral norm. Given a
differentiable mapping F : �n → �l , we denote by J F(x) the Jacobian of F at x

and ∇F(x) := J F(x)∗, the adjoint of J F(x). For a symmetric matrix M , we write
M � O (respectively, M 
 O) if M is positive definite (respectively, positive semi-
definite). Given a finite number of square matrices Q1, . . . ,Qq , we denote the block
diagonal matrix with these matrices as block diagonals by diag(Q1, . . . ,Qq ) or by
diag(Qi , i = 1, . . . , q). If I and B are index sets such that I, B ⊆ {1,2, . . . , q}, we
denote by PI B the block matrix consisting of the sub-matrices Pik ∈ �ni×nk of P

with i ∈ I , k ∈ B, and denote by xB a vector consisting of sub-vectors xi ∈ �ni with
i ∈ B.

The organization of this paper is as follows. In Sect. 2, we recall some notions and
background materials. Section 3 is devoted to developing proximal point method to
solve the monotone second-order cone complementarity problem with a practical ap-
proximation criterion based on a new merit function. In Sect. 4, a generalized Newton
method is introduced to solve the subproblems and we prove that the proximal point
algorithm in Sect. 3 has approximate genuine superlinear convergence under mild
conditions, which is the main result of this paper. In Sect. 5, we report the numerical
results for several test problems. Section 6 is to give conclusions.

2 Preliminaries

In this section, we review some background materials that will be used in the sequel.
We first recall some mathematical concepts and the Jordan algebra associated with
the SOC. Then we talk about the complementarity functions and three merit functions
for SOCCP. Finally, we briefly mention the proximal point algorithm.
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2.1 Mathematical concepts

Given a set � ∈ �n locally closed around x̄ ∈ �, define the regular normal cone to �

at x̄ by

̂N�(x̄) :=
{

v ∈ �n
∣

∣

∣ lim sup

x
�−→x̄

〈v, x − x̄〉
‖x − x̄‖ ≤ 0

}

.

The (limiting) normal cone to � at x̄ is defined by

N�(x̄) := lim sup

x
�−→x̄

̂N�(x),

where “limsup” is the Painlevé-Kuratowski outer limit of sets (see [25]).
We now recall definitions of monotonicity of a mapping which are needed for the

assumptions throughout this paper. We say that a mapping G : �n → �n is monotone
if

〈G(ζ) − G(ξ), ζ − ξ 〉 ≥ 0, ∀ζ, ξ ∈ �n.

Moreover, G is strongly monotone if there exists ρ > 0 such that

〈G(ζ) − G(ξ), ζ − ξ 〉 ≥ ρ‖ζ − ξ‖2, ∀ζ, ξ ∈ �n.

It is well known that, when G is continuously differentiable, G is monotone if and
only if ∇G(ζ) is positive semidefinite for all ζ ∈ �n while G is strongly monotone
if and only if ∇G(ζ) is positive definite for all ζ ∈ �n. For more details about
monotonicity, please refer to [8].

There is another kind of concepts called Cartesian P -properties which have close
relationship with monotonicity concept and are introduced by Chen and Qi [4] for a
linear transformation. Here we present the definitions of Cartesian P -properties for a
matrix M ∈ �n×n and the nonlinear generalization in the setting of K.

A matrix M ∈ �n×n is said to have the Cartesian P -property if for any 0 �= x =
(x1, . . . , xq) ∈ �n with xi ∈ �ni , there exists an index ν ∈ {1,2, . . . , q} such that
〈xν, (Mx)ν〉 > 0. And M is said to have the Cartesian P0-property if the above strict
inequality becomes 〈xν, (Mx)ν〉 ≥ 0 where the chosen index ν satisfies xν �= 0.

Given a mapping G = (G1, . . . ,Gq) with Gi : �n → �ni , G is said to have the
uniform Cartesian P -property if for any x = (x1, . . . , xq), y = (y1, . . . , yq) ∈ �n,
there is an index ν ∈ {1,2, . . . , q} and a positive constant ρ > 0 such that

〈xν − yν,Gν(x) − Gν(y)〉 ≥ ρ‖x − y‖2.

In addition, for a single-valued Lipschitz continuous mapping G : �n → �m, the
B-subdifferential of G at x denoted by ∂BG(x), is defined as

∂BG(x) :=
{

lim
k→∞ J G(xk)

∣

∣xk → x,G is differentiable at xk
}

.

The convex hull of ∂BG(x) is the Clarke’s generalized Jacobian of G at x, denoted
by ∂G(x), see [7]. We say that G is strongly BD-regular at x if every element of
∂BG(x) is nonsingular.
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There is another important concept named semismoothness which was first intro-
duced in [17] for functionals and was extended in [23] to vector-valued functions.
Let G : �n → �m be a locally Lipschitz continuous mapping. We say that G is semi-
smooth at a point x ∈ �n if G is directionally differentiable and for any �x ∈ �n and
V ∈ ∂G(x + �x) with �x → 0,

G(x + �x) − G(x) − V (�x) = o(‖�x‖).
Furthermore, G is said to be strongly semismooth at x if G is semismooth at x and
for any �x ∈ �n and V ∈ ∂G(x + �x) with �x → 0,

G(x + �x) − G(x) − V (�x) = O(‖�x‖2).

2.2 Jordan algebra associated with SOC

It is known that Kl is a closed convex self-dual cone with nonempty interior given by

int(Kl ) := {x = (x0, x̄) ∈ � × �l−1|x0 > ‖x̄‖}.
For any x = (x0, x̄) ∈ �l and y = (y0, ȳ) ∈ �l , we define their Jordan product as

x ◦ y = (xT y, y0x̄ + x0ȳ).

We write x2 to mean x ◦ x and write x + y to mean the usual component-
wise addition of vectors. Moreover, if x ∈ Kl , there exists a unique vector in Kl ,

which we denote by x
1
2 , such that (x

1
2 )2 = x

1
2 ◦ x

1
2 = x. And we recall that each

x = (x0, x̄) ∈ � × �l−1 admits a spectral factorization, associated with Kl , of the
form

x = λ1(x)u1
x + λ2(x)u2

x,

where λ1(x), λ2(x) and u1
x, u

2
x are the spectral values and the associated spectral

vectors of x, respectively, defined by

λi(x) = x0 + (−1)i‖x̄‖, ui
x = 1

2
(1, (−1)iω), i = 1,2

with ω = x̄/‖x̄‖ if x̄ �= 0 and otherwise ω being any vector in �l−1 satisfying
‖ω‖ = 1.

For each x = (x0, x̄) ∈ �l , define the matrix Lx by

Lx :=
[

x0 x̄T

x̄ x0I

]

, (2.1)

which can be viewed as a linear mapping from �l to �l .

Lemma 2.1 The mapping Lx defined by (2.1) has the following properties.

(a) Lxy = x ◦ y and Lx+y = Lx + Ly for any y ∈ �l .
(b) x ∈ Kl if and only if Lx 
 O . And x ∈ int Kl if and only if Lx � O .
(c) Lx is invertible whenever x ∈ int Kl .
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Proof Please see [5, 10]. �

2.3 Complementarity and merit functions associated with SOC

In this subsection, we discuss three reformulations of SOCCP that will play an im-
portant role in the sequel of this paper. We deal with the problem SOCCP(F̂ ), where
F̂ : �n → �n is a certain mapping that has the same structure with F in Sect. 1, that
is, F̂ = (F̂1, . . . , F̂q) with F̂i : �n → �ni .

A mapping φ : �l × �l → �l is called an SOC complementarity function associ-
ated with the cone Kl if

φ(x, y) = 0 ⇔ x ∈ Kl , y ∈ Kl , 〈x, y〉 = 0. (2.2)

A popular choice of φ is the vector-valued Fischer-Brumeister (FB) function, defined
by

φFB(x, y) := (x2 + y2)
1
2 − x − y, ∀x, y ∈ �l . (2.3)

The function was shown in [10] to satisfy the equivalence (2.2), and therefore its
squared norm

ψFB(x, y) := 1

2
‖φFB(x, y)‖2 (2.4)

is a merit function. The functions φFB and ψFB were studied in the literature [5, 26],
in which φFB was shown semismooth in [26] whereas ψFB was proved smooth every-
where in [5]. Due to these favorable properties, the SOCCP(F̂ ) can be reformulated
as the following nonsmooth system of equations


FB(x) :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

φFB(x1, F̂1(x))
...

φFB(xi, F̂i(x))
...

φFB(xq, F̂q(x))

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 0, (2.5)

where φFB is defined as in (2.3) with a suitable dimension l. Moreover, its squared
norm induces a smooth merit function, given by

fFB(x) := 1

2
‖
FB(x)‖2 =

q
∑

i=1

ψFB(xi, F̂i(x)). (2.6)

Lemma 2.2 The mappings 
FB and fFB defined in (2.5) and (2.6) have the following
properties.

(a) If F̂ is continuously differentiable, then 
FB is semismooth.
(b) If ∇F̂ is locally Lipschitz continuous, then 
FB is strongly semismooth.
(c) If F̂ is continuously differentiable, then fFB is continuously differentiable every-

where.
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(d) If F̂ is continuously differentiable and ∇F̂ (x) at any x ∈ �n has the Cartesian
P0-property, then every stationary point of fFB is a solution to the SOCCP(F̂ ).

(e) If F̂ is strongly monotone and x∗ is a nondegenerate solution of SOCCP(F̂ ), i.e.,
F̂i(x

∗) + x∗
i ∈ int Kni for all i ∈ {1, . . . , q}. Then 
FB is strongly BD-regular

at x∗.

Proof Items (a) and (b) come from [26, Corollary 3.3] and the fact that the composite
of (strongly) semismooth functions is (strongly) semismooth by [9, Theorem 19].
Item (c) was shown by Chen and Tseng, which is an immediate consequences of [5,
Proposition 2]. Item (d) is due to [19, Proposition 5.1].

For item (e), since ∇F̂ (x∗) has Cartesian P -property and is positive definite,
which can be obtained from the strongly monotonicity of F̂ , it follows from [20,
Proposition 2.1] that the conditions in [19, Theorem 4.1] are satisfied and hence (e)
is proved. �

Since the complementarity function 
FB and its induced merit function fFB have
many useful properties described as in Lemma 2.2, especially when F̂ is strongly
monotone, they play a crucial role in solving subproblems by using a generalized
Newton method in Sect. 4. On the other hand, in [3], Chen extended a new merit
function for the NCP to the SOCCP and studied conditions under which the new merit
function provides a global error bound and has property of bounded level sets, which
play an important role in convergence analysis. In contrast, the merit function fFB
lacks these properties. For this reason, we utilize this new merit function to describe
the approximation criterion.

Let ψ0 : �l × �l → �+ be defined by

ψ0(x, y) := 1

2
‖�Kl (x ◦ y)‖2,

where the mapping �Kl (·) denotes the orthogonal projection onto the set Kl . After
taking the fixed parameter as in [3], a new merit function is defined as ψ(x, y) :=
ψ0(x, y) + ψFB(x, y), where ψFB is given by (2.4). Via the new merit function, it
was shown that the SOCCP(F̂ ) is equivalent to the following global minimization:

min
x∈�n

f (x) where f (x) :=
q

∑

i=1

ψ(xi, F̂i(x)). (2.7)

Here ψ is defined with a suitable dimension l.
The properties about the function f including the error bound property and the

boundedness of level sets which are given in [3] are summarized in the following
three lemmas.

Lemma 2.3 Let f be defined as in (2.7).

(a) If F̂ is smooth, then f is smooth and f
1
2 is uniformly locally Lipschitz continuous

on any compact set.
(b) f (ζ ) ≥ 0 for all ζ ∈ �n and f (ζ ) = 0 if and only if ζ solves the SOCCP(F̂ ).
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(c) Suppose that the SOCCP(F̂ ) has at least one solution, then ζ is a global mini-
mization of f if and only if ζ solves the SOCCP(F̂ ).

Proof From [3, Proposition 3.2], we only need to prove that f
1
2 is Lipschitz contin-

uous on the set {y|f (y) = 0}. It follows from [3, Proposition 3.1] that if f (y) = 0,
then yi ◦ F̂i(y) = 0 for all i = 1,2, . . . , q . Thus, for any y ∈ {y|f (y) = 0}, we have

∣

∣

∣f (x)
1
2 − f (y)

1
2

∣

∣

∣

= f (x)
1
2

≤ 1√
2

q
∑

i=1

(

‖�Kni (xi ◦ F̂i(x))‖ + ‖φFB(xi, F̂i(x))‖
)

= 1√
2

q
∑

i=1

(

‖�Kni (xi ◦ F̂i(x)) − �Kni (yi ◦ F̂i(y))‖

+‖φFB(xi, F̂i(x)) − φFB(yi, F̂i(y))‖
)

.

Noting that the functions xi ◦ F̂i(x) and φFB(xi, F̂i(x)) are Lipschitz continuous pro-
vided that F̂ is smooth. Then from the Lipschitz continuity of φFB and the nonex-

pansivity of projective mapping onto a convex set, we obtain that f
1
2 is Lipschitz

continuous at y. �

Lemma 2.4 [3, Proposition 4.1] Suppose that F̂ is strongly monotone with the mod-
ulus ρ > 0 and ζ ∗ is the unique solution of SOCCP(F̂ ). Then there exists a scalar
τ > 0 such that

τ‖ζ − ζ ∗‖2 ≤ 3
√

2f (ζ )
1
2 , ∀ζ ∈ �n, (2.8)

where f is given by (2.7) and τ can be chosen as

τ := ρ

max{√2,‖F̂ (ζ ∗)‖,‖ζ ∗‖} .

Lemma 2.5 [3, Proposition 4.2] Suppose that F̂ is monotone and that SOCCP(F̂ ) is
strictly feasible, i.e., there exists ζ̂ ∈ �n such that F̂ (ζ̂ ), ζ̂ ∈ int K. Then the level set

L(r) := {ζ ∈ �n|f (ζ ) ≤ r}
is bounded for all r ≥ 0, where f is given by (2.7).

Another SOC complementarity function which we usually call it the natural resid-
ual mapping is defined by

φNR(x, y) := x − �Kl (x − y), ∀x, y ∈ �l ,
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based on which we define the mapping 
NR : �n → �n as


NR(x) :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

φNR(x1, F̂1(x))
...

φNR(xi, F̂i(x))
...

φNR(xq, F̂q(x))

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (2.9)

Then it is straightforward to see that SOCCP(F̂ ) is equivalent to the system of equa-
tions 
NR(x) = 0.

Lemma 2.6 The mapping 
NR defined as in (2.9) has the following properties.

(a) If F̂ is continuously differentiable, then 
NR is semismooth.
(b) If ∇F̂ is locally Lipschitz continuous, then 
NR is strongly semismooth.
(c) If ∇F̂ (x) is positive definite, then every V ∈ ∂B
NR(x) is nonsingular, i.e., 
NR

is strongly BD-regular at x.

Proof Items (a) and (b) are obvious after combining [6, Proposition 4.3] and [9, The-
orem 19]. Note that these two items are also proved in [12] in a different approach.
The proof of item (c) is similar to that in [27] and [30] for a more general setting, and
we omit it. �

From Lemma 2.6(c) we know that the natural residual mapping 
NR is strongly
BD-regular under weaker conditions than 
FB. In view of this, we will use 
NR to
explore the condition of superlinear convergence of PPA in Sect. 3.

2.4 Proximal point algorithm

Let T : �n ⇒ �n be a set-valued mapping defined by

T (x) := F(x) + NK(x). (2.10)

Then T is a maximal monotone mapping and SOCCP(F ) defined by (1.1) is equiva-
lent to the problem of finding a point x such that

0 ∈ T (x).

The proximal point algorithm generates, for any starting point x0, a sequence {xk} by
the approximate rule:

xk+1 ≈ Pk(x
k),

where Pk := (I + 1
ck

T )−1 is a single-valued mapping from �n to �n, {ck} is some

sequence of positive real numbers, and xk+1 ≈ Pk(x
k) means that xk+1 is an approx-

imation to Pk(x
k). Accordingly, for SOCCP(F ), Pk(x

k) is given by

Pk(x
k) =

(

I + 1

ck

(F + NK)

)−1

(xk),
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from which we have

Pk(x
k) ∈ SOL(SOCCP(F k)),

where Fk is defined by (1.4) and SOL(SOCCP(F k)) is the solution set of
SOCCP(F k). Therefore, xk+1 is given by an approximate solution of SOCCP(F k).
Two general criteria for the approximate calculation of Pk(x

k) proposed by Rock-
afellar [24] are as follows:

Criterion 2.1

‖xk+1 − Pk(x
k)‖ ≤ εk,

∞
∑

k=0

εk < ∞.

Criterion 2.2

‖xk+1 − Pk(x
k)‖ ≤ ηk‖xk+1 − xk‖,

∞
∑

k=0

ηk < ∞.

Results on the convergence of the proximal point algorithm have already been
studied in [15, 24] from which we know that Criterion 2.1 guarantees global con-
vergence while Criterion 2.2, which is rather restrictive, ensures superlinear conver-
gence.

Theorem 2.1 Let {xk} be any sequence generated by the PPA under Criterion 2.1
with {ck} bounded. Suppose SOCCP(F ) has at least one solution. Then {xk} con-
verges to a solution x∗ of SOCCP(F ).

Proof This can be proved by similar arguments as in [24, Theorem 1]. �

Theorem 2.2 Suppose the solution set X̄ of SOCCP(F ) is nonempty, and let {xk} be
any sequence generated by PPA with Criterions 2.1 and 2.2 and ck → 0. Let us also
assume that

∃δ > 0, ∃C > 0,

s.t. dist(x, X̄) ≤ C‖w‖ whenever x ∈ T −1(ω) and ‖ω‖ ≤ δ.
(2.11)

Then the sequence {dist(xk, X̄)} converges to 0 superlinearly.

Proof This can be also verified by similar arguments as in [15, Theorem 2.1]. �

3 A proximal point algorithm for solving SOCCP

Based on the previous discussion, in this section we describe PPA for solving
SOCCP(F ) as defined in (1.1) where F is smooth and monotone. We first illustrate
the related mappings that will be used in the remainder of this paper.
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The mappings 
NR, 
FB, fFB are defined by (2.9), (2.5) and (2.6), respectively,
where the mapping F̂ is substituted by F . And the functions f k , f k

FB and 
k
FB are

defined by (2.7), (2.6) and (2.5), respectively, where the mapping F̂ is replaced by
Fk which is given by (1.4), i.e.,


NR(x) :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

φNR(x1,F1(x))
...

φNR(xi,Fi(x))
...

φNR(xq,Fq(x))

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, 
k
FB(x) :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

φFB(x1,F
k
1 (x))

...

φFB(xi,F
k
i (x))

...

φFB(xq,F k
q (x))

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,


FB(x) :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

φFB(x1,F1(x))
...

φFB(xi,Fi(x))
...

φFB(xq,Fq(x))

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

f k(x) :=
q

∑

i=1

ψ(xi,F
k
i (x)), fFB(x) := 1

2
‖
FB(x)‖2,

f k
FB(x) := 1

2
‖
k

FB(x)‖2.

Now we are in a position to describe the proximal point algorithm for solving Prob-
lem (1.1).

Algorithm 3.1

Step 0. Choose parameters α ∈ (0,1), c0 ∈ (0,1) and an initial point x0 ∈ �n. Set
k := 0.

Step 1. If xk satisfies fFB(xk) = 0, then stop.
Step 2. Let Fk(x) = F(x) + ck(x − xk). Get an approximation solution xk+1 of

SOCCP(F k) that satisfies the condition

f k(xk+1) ≤ c6
k min{1,‖xk+1 − xk‖4}

18 max{√2,‖Fk(Pk(xk))‖,‖Pk(xk)‖}2
. (3.1)

Step 3. Set ck+1 = αck and k := k + 1. Go to Step 1.

Theorem 3.1 Let X̄ be the solution set of SOCCP(F ). If X̄ �= ∅, then the sequence
{xk} generated by Algorithm 3.1 converges to a solution x∗ of SOCCP(F ).

Proof From Theorem 2.1, it suffices to prove that such {xk} satisfies Criterion 2.1.
Since Fk is strongly monotone with modulus ck > 0 and Pk(x

k) is the unique solution
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of SOCCP(F k), it follows from Lemma 2.4 that

‖xk+1 − Pk(x
k)‖2 ≤ 3

√
2

ck

max{√2,‖Fk(Pk(x
k))‖,‖Pk(x

k)‖}f k(xk+1)
1
2 , (3.2)

which together with (3.1) implies

‖xk+1 − Pk(x
k)‖ ≤ ck. (3.3)

�

To obtain superlinear convergence properties, we need to give the following as-
sumption which will be connected to the condition (2.11) in Theorem 2.2.

Assumption 3.1 ‖x −�K(x −F(x))‖ provides a local error bound for SOCCP(F ),
that is, there exist positive constants δ̄ and C̄ such that

dist(x, X̄) ≤ C̄‖x − �K(x − F(x))‖,
for all x with ‖x − �K(x − F(x))‖ ≤ δ̄, (3.4)

where X̄ denotes the solution set of SOCCP(F ).

The following lemma can help us to understand Assumption 3.1 as it implies con-
ditions under which Assumption 3.1 holds.

Lemma 3.1 [22, Proposition 3] If a Lipschitz continuous mapping H is strongly BD-
regular at x∗, then there is a neighborhood N of x∗ and a positive constant α, such
that ∀x ∈ N and V ∈ ∂BH(x), V is nonsingular and ‖V −1‖ ≤ α. If, furthermore, H

is semismooth at x∗ and H(x∗) = 0, then there exists a neighborhood N ′ of x∗ and
a positive constant β such that ∀x ∈ N ′, ‖x − x∗‖ ≤ β‖H(x)‖.

Note that when ∇F(x) is positive definite at one solution x of SOCCP(F ), As-
sumption 3.1 holds by Lemmas 2.6 and 3.1.

Theorem 3.2 Let T be defined by (2.10). If X̄ �= ∅, then Assumption 3.1 implies
condition (2.11), that is, there exist δ > 0 and C > 0 such that

dist(x, X̄) ≤ C‖ω‖,
whenever x ∈ T −1(ω) and ‖ω‖ ≤ δ.

Proof For all x ∈ T −1(ω) we have

w ∈ T (x) = F(x) + NK(x).

Therefore there exists v ∈ NK(x) such that w = F(x) + v. Because K is a convex
set, it is easy to obtain that

�K(x + v) = x. (3.5)
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Noting that the projective mapping onto a convex set is nonexpansive, we have from
(3.5) that

‖x − �K(x − F(x))‖ = ‖�K(x + v) − �K(x − F(x))‖ ≤ ‖v + F(x)‖ = ‖ω‖.
From Assumption 3.1 and letting C = C̄, δ = δ̄ yield the desired condition (2.11). �

The following theorem gives the superlinear convergence of Algorithm 3.1, whose
proof is based on Theorem 3.2 and can be obtained in the same way as Theorem 3.1.
We omit the proof here.

Theorem 3.3 Suppose that Assumption 3.1 holds. Let {xk} be generated by Algo-
rithm 3.1. Then the sequence {dist(xk, X̄)} converges to 0 superlinearly.

Although we have obtained the global and superlinear convergence properties of
Algorithm 3.1 under mild conditions, this does not mean that Algorithm 3.1 is practi-
cally efficient, as it says nothing about how to obtain an approximation solution of the
strongly monotone second-order cone complementarity problem in Step 2 satisfying
(3.1) and what is the cost. We will give the answer in the next section.

4 Generalized Newton method

In this section, we introduce the generalized Newton method proposed by De Luca,
Facchinei, and Kanzow [14] for solving the subproblems in Step 2 of Algorithm 3.1.
As mentioned earlier, for each fixed k, Problem (1.3) is equivalent to the following
nonsmooth equation


k
FB(x) = 0. (4.1)

Now we describe as below the generalized Newton method for solving the nonsmooth
system (4.1), which is employed from what was introduced in [29] for solving NCP.

Algorithm 4.1 (Generalized Newton method for SOCCP(F k))

Step 0. Choose β ∈ (0, 1
2 ) and an initial point x0 ∈ �n. Set j := 0.

Step 1. If ‖
k
FB(xj )‖ = 0, then stop.

Step 2. Select an element V j ∈ ∂B
k
FB(xj ). Find the solution dj of the system

V jd = −
k
FB(xj ). (4.2)

Step 3. Find the smallest nonnegative integer ij such that

f k
FB(xj + 2−ij dj ) ≤ (1 − β21−ij )f k

FB(xj ).

Step 4. Set xj+1 := xj + 2−ij dj and j := j + 1. Go to Step 1.

To guarantee the descent sequence of f k
FB must have an accumulation point, Pan

and Chen [19] give the following condition under which the coerciveness of f k
FB for

SOCCP(F k) can be established.
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Condition 4.1 For any sequence {xj } ⊆ �n satisfying ‖xj‖ → +∞, if there exists
an index i ∈ {1,2, . . . , q} such that {λ1(x

j
i )} and {λ1(Fi(x

j ))} are bounded below,

and λ2(x
j
i ), λ2(Fi(x

j )) → +∞, then

lim sup
j→∞

〈

x
j
i

‖xj
i ‖

,
Fi(x

j )

‖Fi(xj )‖
〉

> 0.

As Fk is strongly monotone, it then has the uniform Cartesian P -property. From [19],
we have the following theorem.

Theorem 4.1 [19, Proposition 5.2] For SOCCP(F k), if Condition 4.1 holds, then the
merit function f k

FB is coercive.

To obtain the quadratic convergence of Algorithm 4.1, we need the following two
Assumptions which are also essential in the follow-up work.

Assumption 4.1 F is continuously differentiable function with a local Lipschitz Ja-
cobian.

Assumption 4.2 The limit point x∗ of the sequence {xk} generated by Algorithm 3.1
is nondegenerate, i.e., x∗

i + Fi(x
∗) ∈ int Kni holds for all i ∈ {1, . . . , q}.

Note that when k is large enough, the unique solution Pk(x
k) of SOCCP(F k) is

nondegenerate, that is, (Pk(x
k))i + Fk

i (Pk(x
k)) ∈ int Kni holds for all i ∈ {1, . . . , q}.

Because Fk is strongly monotone, we immediately have the following convergence
theorem from Lemma 2.2 and [14, Theorem 3.1].

Theorem 4.2 If the sequence {xj } generated by Algorithm 4.1 has an accumulation
point and Assumptions 4.1 and 4.2 hold. Then {xj } globally converges to the unique
solution Pk(x

k) and the rate is quadratic.

Noting that the condition (3.1) in Algorithm 3.1 is equivalent to the following two
criteria:

Criterion 4.1

f k(xk+1) ≤ c6
k

18 max{√2,‖Fk(Pk(xk))‖,‖Pk(xk)‖}2
.

Criterion 4.2

f k(xk+1) ≤ c6
k‖xk+1 − xk‖4

18 max{√2,‖Fk(Pk(xk))‖,‖Pk(xk)‖}2
.

It follows from Sect. 3 that Criterion 4.1 guarantees global convergence, while
Criterion 4.2, which is rather restrictive, ensures superlinear convergence of PPA.
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Next, we give conditions under which a single Newton step of generalized Newton
method can generate a point eventually that satisfies the following two criteria for
any given r ∈ (0,1), i.e., Criterion 4.1 and the following criterion:

Criterion 4.2(r)

f k(xk+1) ≤ c6
k‖xk+1 − xk‖4(1−r)

18 max{√2,‖Fk(Pk(xk))‖,‖Pk(xk)‖}2
.

Thereby the PPA can be practically efficient, which we call that Algorithm 3.1
has approximate genuine superlinear convergence. Firstly, we have the following two
lemmas, which indicate the relationship between ‖xk − Pk(x

k)‖ and dist(xk, X̄).

Lemma 4.1 If SOCCP(F ) is strictly feasible. Then, for sufficiently large k, there
exists a constant B1 ≥ 2 such that

2 ≤ max
{√

2,‖Fk(Pk(x
k))‖,‖Pk(x

k)‖
}2 ≤ B1. (4.3)

Proof From Lemma 2.5, we obtain that the solution set X̄ of SOCCP(F ) is bounded,
which implies the boundedness of F(X̄). Let m1 > 0 be such that

max
{

sup
x∈X̄

‖x‖, sup
x∈X̄

‖F(x)‖
}

≤ m1.

Since ck → 0, it follows from Theorem 3.1 that the two sequences {xk} and {Pk(x
k)}

have the same limit point x∗ ∈ X̄. Then there exists a positive constant m2 such that

‖Pk(x
k) − x∗‖ ≤ m2,

and

‖F(Pk(x
k)) − F(x∗)‖ ≤ m2,

when k is large enough. Thus, the following two inequalities

‖Fk(Pk(x
k))‖ = ‖F(Pk(x

k)) + ck(Pk(x
k) − xk)‖

≤ ‖F(Pk(x
k))‖ + ck‖Pk(x

k) − xk‖
≤ ‖F(x∗)‖ + 2m2

and

‖Pk(x
k)‖ ≤ ‖x∗‖ + m2

hold for sufficiently large k. Let B1 = max{2, (m1 + 2m2)
2}, we complete the

proof. �
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Lemma 4.2 If SOCCP(F ) is strictly feasible, then for sufficiently large k, there exists
a constant B2 > 0 such that

‖xk − Pk(x
k)‖ ≤ B2√

ck

dist(xk, X̄)
1
2 .

Proof Let x̄k be the nearest point in X̄ from xk . From [8, Theorem 2.3.5] we know
that X̄ is convex, and hence the mapping �X̄(·) is nonexpansive. Therefore,

‖x̄k − x∗‖ = ‖�X̄(xk) − �X̄(x∗)‖ ≤ ‖xk − x∗‖.

Since {xk} is bounded, so is {x̄k}. Let X̂ be a bounded set containing {xk} and {x̄k}.
From Lemma 2.3, we know that f

1
2 is uniformly Lipschitz continuous on X̂. Then

there exists L1 > 0 such that

(

f (xk)
) 1

2 =
(

f (xk)
) 1

2 −
(

f (x̄k)
) 1

2 ≤ L2
1‖xk − x̄k‖ = L2

1 dist(xk, X̄),

which implies that

(

f (xk)
) 1

4 ≤ L1 dist(xk, X̄)
1
2 .

It follows from Lemma 2.4 that

‖xk − Pk(x
k)‖2 ≤ 3

√
2

τk

f k(xk)
1
2 ,

where

τk = ck

max{√2,‖Fk(Pk(xk))‖,‖Pk(xk)‖} ,

which together with Lemma 4.1 yields

√
2

ck

≤ 1

τk

≤
√

B1

ck

.

Hence, we have

‖xk − Pk(x
k)‖ ≤

(

3
√

2B1

ck

)
1
2 (

f k(xk)
) 1

4
.

On the other hand, since Fk(xk) = F(xk), we know f k(xk) = f (xk) and hence

‖xk − Pk(x
k)‖ ≤

(

3
√

2B1

ck

)
1
2 (

f (xk)
) 1

4 ≤
(

3
√

2B1

ck

)
1
2

L1 dist(xk, X̄)
1
2 .

Then, letting B2 = (3
√

2B1)
1
2 L1 leads to the desired inequality. �
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The next three lemmas give the relationship between ‖xk
N − Pk(x

k)‖ and ‖xk −
Pk(x

k)‖ which is the key to the main result in this section. One attention we should
pay to is that we will not be able to obtain the inequality in Lemma 4.3 without twice
continuously differentiability. The reason is as explained in [29, Remark 4.1]. To this
end, we make the following assumption.

Assumption 4.3 F is twice continuously differentiable.

Lemma 4.3 Suppose that Assumptions 4.2 and 4.3 hold. Then 
k
FB is twice continu-

ously differentiable in a neighborhood of xk for sufficiently large k, and there exists
a positive constant B3 such that

‖J 
k
FB(xk)(xk − Pk(x

k)) − 
k
FB(xk) + 
k

FB(Pk(x
k))‖ ≤ B3‖xk − Pk(x

k)‖2.

Proof It is obvious that when F is twice continuously differentiable and Assump-
tion 4.2 holds, 
k

FB is twice continuously differentiable near xk and Pk(x
k) when

k is large enough. Then from the second order Taylor expansion and the Lipschitz
continuity of ∇
k

FB near xk , there exist positive constants m3,m4 such that when k

is sufficiently large,

‖
k
FB(xk) − 
k

FB(Pk(x
k)) − J 
k

FB(Pk(x
k))(xk − Pk(x

k))‖ ≤ m3‖xk − Pk(x
k)‖2,

‖J 
k
FB(xk)(xk − Pk(x

k)) − J 
k
FB(Pk(x

k))(xk − Pk(x
k))‖ ≤ m4‖xk − Pk(x

k)‖2.

Let B3 = m3 + m4, we have for sufficiently large k

‖J 
k
FB(xk)(xk − Pk(x

k)) − 
k
FB(xk) + 
k

FB(Pk(x
k))‖ ≤ B3‖xk − Pk(x

k)‖2. �

Now let us denote

xk
N := xk − V −1

k 
k
FB(xk), Vk ∈ ∂B
k

FB(xk). (4.4)

Then xk
N is a point produced by a single Newton iteration of Algorithm 4.1 with the

initial point xk .

Lemma 4.4 Suppose that Assumption 4.2 holds, then 
k
FB is differentiable at xk and

the Jacobian J 
k
FB(xk) is nonsingular for sufficiently large k.

Proof Let

zi(x) = (x2
i + (F k

i (x))2)
1
2 , (4.5)

for each i ∈ {1, . . . , q}. From Assumption 4.2 and [19, Lemma 4.2], we have that for
every i ∈ {1, . . . , q},

xk
i + Fk

i (xk) ∈ int Kni ,

and

(xk
i )2 + (F k

i (xk))2 ∈ int Kni ,
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when k is large enough. Thus, 
k
FB is differentiable at xk by [19, Proposition 4.2]

when k is large enough, and

J 
k
FB(xk)T = ∇Fk(xk)(A(xk) − I ) + (B(xk) − I ), (4.6)

where A(xk) = diag(Ai(x
k), i = 1, . . . , q) and B(xk) = diag(Bi(x

k), i = 1, . . . , q)

with Ai(x
k) = LFk

i (xk)L
−1
zi (x

k)
and Bi(x

k) = Lxk
i
L−1

zi (x
k)

. For any fixed k, the index
sets

I k := {i ∈ {1, . . . , q}|Fk
i (xk) = 0, xk

i ∈ int Kni }, (4.7)

J k := {i ∈ {1, . . . , q}|xk
i = 0,F k

i (xk) ∈ int Kni }, (4.8)

Bk := {1, . . . , q} \ {I k ∪ J k} (4.9)

form a partition of {1, . . . , q}. After rearranging the matrices appropriately, ∇Fk(xk)

can be rewritten as

∇Fk(xk) =
⎛

⎜

⎝

∇Fk
I I ∇Fk

I B ∇Fk
I J

∇Fk
B I ∇Fk

B B ∇Fk
B J

∇Fk
J I ∇Fk

J B ∇Fk
J J

⎞

⎟

⎠ .

For simplicity, we omit the notation xk in the functions and we substitute B for Bk

here, and also in the sequel of the proof. Thus, the nonsingularity of J 
k
FB(xk) is

equivalent to showing the nonsingularity of the following partitioned form

C =
⎛

⎜

⎝

−∇Fk
I I ∇Fk

I B(AB − IB) 0I J
−∇Fk

B I ∇Fk
B B(AB − IB) + (BB − IB) 0B J

−∇Fk
J I ∇Fk

J B(AB − IB) −IJ

⎞

⎟

⎠ ,

where IB = diag(Ii, i ∈ B) with Ii being an ni × ni identity matrix, AB =
diag(Ai, i ∈ B) and BB = diag(Bi, i ∈ B). It is not hard to see that C is nonsingular
if and only if

Ĉ =
(

−∇Fk
I I ∇Fk

I B(AB − IB)

−∇Fk
B I ∇Fk

B B(AB − IB) + (BB − IB)

)

is nonsingular. Suppose that the vector y satisfies the system

Ĉy = Ĉ

(

yI
yB

)

= 0. (4.10)

We only need to argue that y is the zero vector. System (4.10) can be rewritten as the
following two equations

∇Fk
I I yI + ∇Fk

I B(IB − AB)yB = 0,

∇Fk
B I yI + ∇Fk

B B(IB − AB)yB = −(IB − BB)yB.
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Since ∇Fk(xk) is positive definite, we have that ∇Fk
I I is nonsingular. Then we ob-

tain that

yI = −(∇Fk
I I )−1∇Fk

I B(IB − AB)yB, (4.11)

(∇Fk
B B − ∇Fk

B I (∇Fk
I I )−1∇Fk

I B)(IB − AB)yB = −(IB − BB)yB. (4.12)

Suppose that yB �= 0, then there exists i ∈ B such that yi �= 0. If (IB − AB)yB = 0,
then

(Ii − Ai)yi = 0, (Ii − Bi)yi = 0.

This means that

(2Ii − Ai − Bi)yi = 0.

Since for each i, we have

2Ii − Ai − Bi = 2Ii − LFk
i (xk)L

−1
zi (x

k)
− Lxk

i
L−1

zi (x
k)

= [2Lzi(x
k) − LFk

i (xk) − Lxk
i
]L−1

zi (x
k)

= L2zi (x
k)−Fk

i (xk)−xk
i
L−1

zi (x
k)

(4.13)

and

4z2
i (x

k) − (F k
i (xk) + xk

i )2 = 2z2
i (x

k) + (F k
i (xk) − xk

i )2 ∈ int Kni (4.14)

for sufficiently large k, using [10, Proposition 3.4] yields 2zi(x
k) − Fk

i (xk) − xk
i ∈

int Kni and we have that

L2zi (x
k)−Fk

i (xk)−xk
i
� O

from Lemma 2.1. Therefore, 2Ii − Ai − Bi is nonsingular for each i ∈ {1, . . . , q}.
This implies that (IB − AB)yB �= 0. On the other hand, it follows from Lemma 4.1
in [19] that for each i ∈ B,

〈[(IB − AB)yB]i , [(IB − BB)yB]i〉 ≥ 0,

which together with (4.12) means that

〈[(IB − AB)yB]i , [(∇Fk
B B − ∇Fk

B I (∇Fk
I I )−1∇Fk

I B)(IB − AB)yB]i〉 ≤ 0. (4.15)

Note that Fk is strongly monotone, hence Fk has the uniform Cartesian P -property,
which implies that for every x ∈ �n, ∇Fk(x) has Cartesian P -property. Since
(∇Fk

B B − ∇Fk
B I (∇Fk

I I )−1∇Fk
I B) is exactly the Schur-complement of ∇Fk

I I in the
matrix

(

∇Fk
I I ∇Fk

I B
∇Fk

B I ∇Fk
B B

)

,
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from [20, Proposition 2.1] and the nonsingularity of ∇Fk
I I , together with the fact that

every principal block matrix of a matrix with Cartesian P -property must have the
Cartesian P -property, we obtain that the matrix (∇Fk

B B − ∇Fk
B I (∇Fk

I I )−1∇Fk
I B)

has Cartesian P -property. This leads to a contradiction with (4.15). Thus, we have
y = 0 and the proof is complete. �

Assumption 4.4 For every sequence {xk} that converges to x∗, we have that either
Bk = ∅ or

(A(xk)T − I )∇Fk(xk)T (B(xk) − I ) 
 O,

when k is large enough, where Bk , A(xk), B(xk) are defined in the proof of
Lemma 4.4.

Note that when SOCCP(F k) defined as in (1.3) reduces to NCP, Assumption 4.4
holds automatically because Bk = ∅ for sufficiently large k when the limit point x∗
is nondegenerate.

Lemma 4.5 Suppose that Assumptions 4.2–4.4 hold. Then there exists B4 > 0 such
that

‖xk
N − Pk(x

k)‖ ≤ B4‖xk − Pk(x
k)‖2

ck

,

for sufficiently large k.

Proof From the definition of Fk , we have that ∇Fk(xk)T is positive definite and

〈v,∇Fk(xk)T v〉 ≥ ck‖v‖2,

for all v ∈ �n. Let v be an arbitrary vector in �n such that ‖v‖ = 1. Then since

〈v,∇Fk(xk)T v〉 ≥ ck,

there exists an index i0 ∈ {1, . . . , q} such that

vT
i0
[∇Fk(xk)T v]i0 ≥ ck

q
. (4.16)

Since

vT
i0
[∇Fk(xk)T v]i0 ≤ ‖vi0‖‖[∇Fk(xk)T v]i0‖ ≤ ‖vi0‖‖∇Fk(xk)T v‖

≤ ‖vi0‖‖∇Fk(xk)T ‖,
and

vT
i0
[∇Fk(xk)T v]i0 ≤ ‖vi0‖‖[∇Fk(xk)T v]i0‖ ≤ ‖[∇Fk(xk)T v]i0‖,

it follows from (4.16) that

‖vi0‖ ≥ ck

q‖∇Fk(xk)T ‖ , ‖[∇Fk(xk)T v]i0‖ ≥ ck

q
. (4.17)
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For any fixed k that is large enough, let the three index sets be defined as (4.7)–(4.9).
We consider the following two cases.

Case 1. Bk = ∅. This means that either i0 ∈ I k or i0 ∈ J k . For every i ∈ {1, . . . , q},
we have

‖[J 
k
FB(xk)v]i‖ = ‖(L−1

zi (x
k)

LFk
i (xk) − Ii)[∇Fk(xk)T v]i

+ (L−1
zi (x

k)
Lxk

i
− Ii)vi‖,

where zi(x
k) is defined in (4.5). If i0 ∈ I k , then

‖[J 
k
FB(xk)v]i0‖ = ‖[∇Fk(xk)T v]i0‖ ≥ ck

q
.

And if i0 ∈ J k , then

‖[J 
k
FB(xk)v]i0‖ = ‖vi0‖ ≥ ck

q‖∇Fk(xk)T ‖ .

Since the spectral norm is self-adjoint, we have in this case, that

‖J 
k
FB(xk)v‖ ≥ ck

q max{1,‖∇Fk(xk)‖} ,

which implies

‖J 
k
FB(xk)−1‖ = 1

inf‖v‖=1 ‖J 
k
FB(xk)v‖ ≤ q max{1,‖∇Fk(xk)‖}

ck

.

Case 2. Bk �= ∅.

‖J 
k
FB(xk)T v‖2 = vT J 
k

FB(xk)J 
k
FB(xk)T v

= vT [(A(xk)T − I )∇Fk(xk)T + (B(xk)T − I )]
× [∇Fk(xk)(A(xk) − I ) + (B(xk) − I )]v

= vT [(A(xk)T − I )∇Fk(xk)T ∇Fk(xk)(A(xk) − I )]v
+ vT [(B(xk)T − I )(B(xk) − I )]v
+ 2vT [(A(xk)T − I )∇Fk(xk)T (B(xk) − I )]v

≥ vT [(A(xk)T − I )∇Fk(xk)T ∇Fk(xk)(A(xk) − I )]v
+ vT [(B(xk)T − I )(B(xk) − I )]v

≥ [vT (A(xk)T − I )∇Fk(xk)T (A(xk) − I )v]2

‖(A(xk) − I )v‖2

+ ‖(B(xk) − I )v‖2

≥ c2
k‖(A(xk) − I )v‖2 + ‖(B(xk) − I )v‖2
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≥ c2
k(‖(A(xk) − I )v‖2 + ‖(B(xk) − I )v‖2)

≥ c2
k

2
(‖(A(xk) − I )v‖ + ‖(B(xk) − I )v‖)2

≥ c2
k

2
‖[2I − A(xk) − B(xk)]v‖2, (4.18)

where the first inequality is from Assumption 4.4.

Suppose that x∗ is the limit point of the sequence {xk}, and hence by Criterion 4.1,
it is the limit point of the sequence {Pk(x

k)}. Next we prove that 2I − A(x∗) −
B(x∗) is nonsingular. Since 2I − A(x∗) − B(x∗) = diag(2Ii − Ai(x

∗) − Bi(x
∗), i ∈

{1, . . . , q}) and for each i ∈ {1, . . . , q}, 2Ii − Ai(x
∗) − Bi(x

∗) is nonsingular for the
same reason as that in the proof of Lemma 4.4, then we obtain the nonsingularity of
2I − A(x∗) − B(x∗), which, together with the Von Neumann Lemma, implies that
2I − A(xk) − B(xk) is nonsingular and

‖[2I − A(xk) − B(xk)]−1‖ ≤ √
2‖[2I − A(x∗) − B(x∗)]−1‖ (4.19)

for sufficiently large k. Combining (4.18) and (4.19) yields

‖[J 
k
FB(xk)T ]−1‖ = 1

inf‖v‖=1 ‖J 
k(xk)T v‖

≤
√

2

ck inf‖v‖=1 ‖[2I − A(xk) − B(xk)]v‖

=
√

2‖[2I − A(xk) − B(xk)]−1‖
ck

.

From all the above discussion, we obtain that

‖J 
k
FB(xk)−1‖ ≤ max{q, q‖∇Fk(xk)‖,√2‖[2I − A(xk) − B(xk)]−1‖}

ck

.

It follows from Assumption 4.3 and (4.19) that there exists a positive number m5 such
that

‖J 
k
FB(xk)−1‖ ≤ m5

ck

when k is large enough. Now, from Lemma 4.3, we have

‖xk
N − Pk(x

k)‖ = ‖xk − Pk(x
k) − J 
k

FB(xk)
−1

(
k
FB(xk) − 
k

FB(Pk(x
k)))‖

≤ ‖J 
k
FB(xk)

−1‖
× ‖J 
k

FB(xk)(xk − Pk(x
k)) − 
k

FB(xk) + 
k
FB(Pk(x

k))‖

≤ m5B3‖xk − Pk(x
k)‖2

ck

.

Then, letting B4 = m5B3 gives desired result. �
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Now we are in a position to give the main result of this section which shows
that only a single Newton step of generalized Newton method can generate the point
satisfying condition (3.1) in Algorithm 3.1.

Theorem 4.3 Suppose that Assumptions 3.1, 4.2–4.4 hold and SOCCP(F ) is strictly
feasible. Let xk

N be given by (4.4). Then, for any r ∈ (0,1), when k is large enough,
one has that xk

N satisfies Criterion 4.1 and Criterion 4.2(r), that is,

f k(xk
N) ≤ c6

k min{1,‖xk
N − xk‖4(1−r)}

18 max{√2,‖Fk(Pk(xk))‖,‖Pk(xk)‖}2
.

Proof From Lemma 4.1, it is sufficient to argue that

[f k(xk
N)] 1

4 ≤
√

c3
k‖xk

N − xk‖(1−r)

(18B1)
1
4

,

when k is large enough. Let τ > 0 be arbitrary. Since {dist(xk, X̄)} converges to 0
superlinearly by Theorem 3.3, we have that

dist(xk, X̄)2r ≤ τc6
k

for sufficiently large k. It follows from Lemmas 4.2 and 4.5 that

‖xk
N − Pk(x

k)‖ ≤ B4‖xk − Pk(x
k)‖2

ck

≤ B2B4 dist(xk, X̄)‖xk − Pk(x
k)‖

√

c3
k

≤ τB2B4c
2
k‖xk − Pk(x

k)‖.
Moreover,

‖xk − Pk(x
k)‖ ≤ ‖xk

N − Pk(x
k)‖ + ‖xk − xk

N‖,
which says

(1 − τB2B4c
2
k)‖xk − Pk(x

k)‖ ≤ ‖xk − xk
N‖.

Also, when τ is chosen sufficiently small, we have

‖xk
N − Pk(x

k)‖ ≤ B4‖xk − Pk(x
k)‖2

ck

≤ B2B4 dist(xk, X̄)2r‖xk − Pk(x
k)‖2(1−r)

√

c3
k

≤ τB2B4c
4
k‖xk − Pk(x

k)‖2(1−r)
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≤ τB2B4c
4
k

(1 − τB2B4c
2
k)

2(1−r)
‖xk − xk

N‖2(1−r)

≤ c4
k‖xk − xk

N‖2(1−r).

On the other hand, the function [f k(x)] 1
2 is uniformly locally Lipschitz continuous

from Lemma 2.3. Then there exists L2 > 0 such that

[f k(xk
N)] 1

2 ≤ L2
2‖xk

N − Pk(x
k)‖.

Hence

[f k(xk
N)] 1

4 ≤ L2‖xk
N − Pk(x

k)‖ 1
2 ≤ L2c

2
k‖xk − xk

N‖(1−r) ≤
√

c3
k‖xk

N − xk‖(1−r)

(18B1)
1
4

.

Then, the proof is complete. �

We point it out that this theorem together with Theorem 3.3 implies that the prox-
imal point algorithm in Sect. 3 has approximate genuine superlinear convergence.

5 Numerical experiments

In this section, we report numerical results of Algorithm 3.1 for solving SOCCP(F )

defined by (1.1) and compare the performance with that of the derivative-free de-
scent method used by [21]. To construct SOCs of various types, we chose ni and q
such that n1 = n2 = · · · = nq . Our numerical experiments are carried out in Matlab
(version 7.8) running on a PC Intel core 2 Q8200 of 2.33 GHz CPU and 2.00 GB
Memory.

We consider the case where F(x) = Mx+b with the matrix M ∈ �n×n and b ∈ �n

generated randomly, whose generating procedure was described as in [21]. In our nu-
merical experiments, the stopping criterions for both Algorithms 3.1 and 4.1 for solv-
ing subproblems are Tol. = 10−8. In Algorithm 3.1, we set the parameters as α = 0.5,
c0 = 0.5 and the initial point is chosen as x0 = (x0

1 , . . . , x0
q), where x0

i = (10,
ωi‖ωi‖ )

for i = 1,2, . . . , q with ωi ∈ �ni−1 being generated randomly by Matlab’s rand.m.
In Algorithm 4.1, we set the parameter β = 10−4 and the initial point for Newton’s
method is selected as the current iteration point in the main algorithm, i.e., Algo-
rithm 3.1. In additional, the main task of Algorithm 4.1 for solving the Subproblem,
at each iterate, is solve the linear system (4.2). In numerical implementation, we apply
the preconditioner conjugate gradient square method for solving system (4.2).

We first used Algorithm 3.1 to solve a test problem with n = 1000 and q = 100.
The Fig. 1 below plot the corresponding convergence of {fFB(xk)} versus the iteration
number of PPA and Table 1 reported its corresponding iteration performance, where
k denotes the kth iteration (k = 0 stands for the initial iteration) of Algorithm 3.1,
fFB(xk) indicates the current value of the merit function at the kth iteration, Gap
reports the value of (xk)T F (xk) at the kth iteration and Num means the number of
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Fig. 1 Convergence behavior of
{fFB(xk)}

Table 1 Iteration performance of affine monotone SOCCP

k fFB(xk) Gap Num k fFB(xk) Gap Num

0 3.24e+4 1.21e+3 – 1 3.49e+1 1.18e+1 5

2 6.40e−1 9.69e−1 3 3 3.62e−2 8.51e−1 2

4 3.51e−3 3.11e−1 2 5 6.65e−4 8.19e−2 2

6 2.36e−4 3.19e−2 1 7 8.01e−5 1.96e−2 1

8 1.74e−5 5.67e−3 1 9 2.65e−6 2.51e−3 1

10 3.61e−7 2.11e−3 1 11 3.24e−8 5.48e−4 1

12 1.65e−9 4.80e−5 1

Newton steps needed in Algorithm 4.1 at the kth iteration. From Table 1, we see that
only a single Newton step of generalized Newton method can generate the point with
the desired accuracy, which coincides with the analysis in Sect. 4.

To further test how the performance of Algorithm 3.1 varies with the structure of
K and the total dimension, we used Algorithm 3.1 to solve several test problems with
different n and q . Also, we compared the numerical performance of the group of test
problems when n = 1000 and q = 100 with that of the derivative-free descent method
used by [21]. The numerical results were reported in Tables 2 and 3, where fFB(x∗),
Gap, NF, Time, stand for, respectively, the merit function value at the final iteration,
the value of |(x∗)T F (x∗)| at the final iteration, the number of function evaluations
of fFB, the total CPU time in second. From Tables 2 and 3, we see that when n

is fixed, Algorithm 3.1 requires less function evaluations and CUP time for those
problems with larger q . Moreover, Algorithm 3.1 is superior to the derivative-free
descent method in terms of the number of function evaluations and CPU time for the
test problems with n = 1000 and q = 100.
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Table 2 Numerical results for
affine monotone SOCCPs n q fFB(x∗) Gap NF Time

1000 100 4.89e−10 8.64e−5 65 21.1

1000 20 5.29e−9 2.69e−4 97 46.5

1000 10 1.59e−9 5.52e−4 124 89.5

2000 100 8.98e−9 2.68e−4 73 166.2

2000 50 6.67e−9 2.77e−4 101 338.4

2000 20 6.41e−9 8.37e−4 160 809.1

3000 100 1.24e−9 3.53e−4 87 702.8

Table 3 Numerical comparisons for affine monotone SOCCPs with 100 SOCs

Problem Algorithm 4.1 Derivative-free method

fFB(x∗) Gap NF Time fFB(x∗) Gap NF Time

1 4.68e−9 1.73e−4 60 8.5 9.99e−9 2.49e−4 19972 109.4

2 1.53e−9 4.08e−4 59 8.7 9.99e−9 1.16e−3 29626 156.6

3 4.80e−10 1.54e−4 69 21.1 9.99e−9 5.82e−4 62084 323.8

4 1.76e−9 3.96e−5 67 18.4 9.99e−9 1.62e−4 70949 361.9

5 3.34e−9 2.20e−4 68 18.4 9.99e−9 3.29e−4 79244 420.4

6 Conclusions

The proximal point algorithm has nice theoretical convergence results under appro-
priate criteria for approximate solutions of subproblems. However, it is usually not
easy to check those criteria. In this paper, we introduce PPA for solving monotone
SOCCP and construct a practical approximation criterion. Moreover, we adopt the
generalized Newton method to solve subproblems and show that only one Newton
step is eventually needed to obtain an approximation solution of the subproblem
that approximately satisfies the criterion. Our work, though is motivated by that of
Yamashita and Fukushima for solving NCP, is not a direct extension from NCP to
SOCCP as many results that are easy to achieve for NCP are no longer hold for
SOCCP. For example, it is easy to derive a global error bound for NCP from Fischer-
Burmeister function, but this is not true for SOCCP. Besides, the nonsingularity of
complementarity function and the boundedness of its inverse are much more difficult
to be verified in SOCCP case than in NCP case.

Acknowledgements The authors thank the referees for their careful reading of the paper and helpful
suggestions.
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