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EXAMPLES OF »-CONVEX FUNCTIONS AND
CHARACTERIZATIONS OF r-CONVEX FUNCTIONS
ASSOCIATED WITH SECOND-ORDER CONE

CHIEN-HAO HUANG, HONG-LIN HUANG, AND JEIN-SHAN CHEN*

ABSTRACT. In this paper, we revisit the concept of r-convex functions which
were studied in 1970s. We present several novel examples of r-convex functions
that are new to the existing literature. In particular, for any given r, we show
examples which are r-convex functions. In addition, we extend the concepts of
r-convexity and quasi-convexity to the setting associated with second-order cone.
Characterizations about such new functions are established. These generaliza-
tions will be useful in dealing with optimization problems involved in second-order
cones.

1. INTRODUCTION

It is known that the concept of convexity plays a central role in many appli-
cations including mathematical economics, engineering, management science, and
optimization theory. Moreover, much attention has been paid to its generaliza-
tion, to the associated generalization of the results previously developed for the
classical convexity, and to the discovery of necessary and/or sufficient conditions
for a function to have generalized convexities. Some of the known extensions are
quasiconvex functions, r-convex functions [1,24], and so-called SOC-convex func-
tions [7,8]. Other further extensions can be found in [19,23]. For a single variable
continuous, the midpoint-convex function on R is also a convex function. This result
was generalized in [22] by relaxing continuity to lower-semicontinuity and replacing
the number % with an arbitrary parameter o € (0,1). An analogous consequence

was obtained in [18,23] for quasiconvex functions.

To understand the main idea behind r-convex function, we recall some concepts
that were independently defined by Martos [17] and Avriel [2], and has been studied
by the latter author. Indeed, this concept relies on the classical definition of convex
functions and some well-known results from analysis dealing with weighted means
of positive numbers. Let w = (w1,...,wy) € R™, ¢ = (q1,...,9m) € R™ be vectors
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whose components are positive and nonnegative numbers, respectively, such that
>t g = 1. Given the vector of weights ¢, the weighted r-mean of the numbers
Wi, ..., W is defined as below (see [13]):

m 1/r
(Z Qi(wi)r> if r+#£0,
(1.1) M, (w;q) = My(wi,...,wy;q) = =1

[[(w)® — if r=0.
=1

It is well-known from [13] that for s > r, there holds
(1.2) Ms(wi, ..., wm;q) > My (wr,...,0n;q)

for all ¢1,...,¢m > 0 with >, ¢; = 1. The r-convexity is built based on the
aforementioned weighted r-mean. For a convex set S C R", a real-valued function
f: S CR" — R is said to be r-convez if, for any =,y € S, A € [0,1], g2 = A,
¢1=1—q2, ¢=(q1,q2), there has

Flaiw + gy) < n { M (@), e/ ;)
From (1.1), it can be verified that the above inequality is equivalent to

In[(1 — A)e /@) 4 Xer /WY if £ 0,
(1= N/ (@) + M () it =0,

Similarly, f is said to be r-concave on S if the inequality (1.3) is reversed. It is clear
from the above definition that a real-valued function is convex (concave) if and only
if it is 0-convex (0-concave). Besides, for » < 0 (r > 0), an r-convex (r-concave)
function is called superconvez (superconcave); while for r > 0 (r < 0), it is called
subconvez (subconcave). In addition, it can be verified that the r-convexity of f on
C with r > 0 (r < 0) is equivalent to the convexity (concavity) of "/ on S.

(1.3) (ﬂu—xm+st{

A function f: S C R™ — R is said to be quasiconver on S if, for all x,y € S,
Sz + (1= Ny) <max{f(z), f(y)}, 0<A<L

Analogously, f is said to be quasiconcave on S if, for all z,y € S,

[z + (1 =Ay) = min{f(z), f(y)}, 0<A<L
From [13], we know that

lim M, (w1,...,wn;q) = Mo(wi,...,wy) =max{w,...,wny},
r—-+00
lm M, (w1, wWm;q) = M_oo(wi, ..., wy) = min{w, -, wpy}.
r——00
Then, it follows from (1.2) that M (wi,...,wp) > My (wi,...,wm;q) >
M_o(wy, ..., wy) for every real number r. Thus, if f is r-convex on S, it is also

(+00)-convex, that is, f(Az + (1 — N)y) < max{f(z), f(y)} for every z,y € S
and A € [0,1]. Similarly, if f is r-concave on S, it is also (—oo)-concave, i.e.,

fAz+ (1= A)y) = min{f(z), f(y)}.
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The following review some basic properties regarding r-convex function from [1]
that will be used in the subsequent analysis.

Property 1.1. Let f: S CR"™ — R. Then, the followings hold.

(a) If f is r-convex (r-concave) on S, then f is also s-convex (s-concave) on S
for s>r (s <r).

(b) Suppose that f is twice continuously differentiable on S. For any (z,r) €
S x R, we define

$z,r) = V2 f(2) +rV f(2)V f(z)".

Then, f is r-convex on S if and only if ¢ is positive semidefinite for all x € S.

(c) Every r-convex (r-concave) function on a convex set S is also quasiconvex
(quasiconcave) on S.

(d) f is r-convex if and only if (—f) is (—r)-concave.

(e) Let f be r-convex (r-concave), « € R and k£ > 0. Then f + « is r-convex
(r-concave) and k - f is ()-convex ((f)-concave).

(f) Let ¢,¢ : S C R" — R be r-convex (r-concave) and «ay, s > 0. Then, the
function 6 defined by

a10(x) + agp(z) it r=0,

is also r-convex (r-concave).
(g) Let ¢ : S CR™ — R be r-convex (r-concave) such that » < 0 (r > 0) and let
the real valued function 1) be nondecreasing s-convex (s-concave) on R with
s € R. Then, the composite function § = 1) o ¢ is also s-convex (s-concave).
(h) ¢ : § CR"™ — R is r-convex (r-concave) if and only if, for every x,y € S,
the function v given by

P(A) = o ((1 =Nz +Xy)

is an r-convex (r-concave) function of A for 0 < A < 1.
(i) Let ¢ be a twice continuously differentiable real quasiconvex function on an
open convex set S C R™. If there exists a real number r* satisfying

—2IV2¢(z)z
SUD o g
wes, |zl=1 121 Vo(z)]
whenever 27 V¢(z) # 0, then ¢ is r-convex for every r > r*. We obtain the

r-concave analog of the above theorem by replacing supremum in (1.4) by
infimum.

(e = { In [01€7@ + ape?@]MT iy £ 0,

(1.4) rt =

In this paper, we will present new examples of r-convex functions in Section 2.
Meanwhile, we extend the r-convexity and quasi-convexity concepts to the setting
associated with second-order cone in Section 4 and Section 5. Applications of r-
convexity to optimization theory can be found in [2,12,15]. In general, r-convex
functions can be viewed as the functions between convex functions and quasi-convex
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functions. We believe that the aforementioned extensions will be beneficial for deal-
ing optimization problems involved second-order constraints. We point out that
extending the concepts of r-convex and quasi-convex functions to the setting asso-
ciated with second-order cone, which belongs to symmetric cones, is not easy and
obvious since any two vectors in the Euclidean Jordan algebra cannot be compared
under the partial order <jcn, see [8]. Nonetheless, using the projection onto second-
order cone pave a way to do such extensions, more details will be seen in Sections
4 and 5.

To close this section, we recall some background materials regarding second-order
cone. The second-order cone (SOC for short) in R", also called the Lorentz cone,
is defined by

K" ={z=(z1,22) € RxR" | ||2a| < a1}

For n =1, K™ denotes the set of nonnegative real number R,. For any z,y in R”,
we write x =xn y if x —y € K™ and write z > y if z—y € int(K™). In other words,
we have x >yn 0 if and only if z € K™ and = >x» 0 if and only if x € int(K").
The relation >=yn is a partial ordering but not a linear ordering in K", i.e., there
exist x,y € K" such that neither  =xn y nor y >xn x. To see this, for n = 2, let
x=(1,1) and y = (1,0), we have x —y = (0,1) ¢ K", y —xz = (0,—1) ¢ K™

For dealing with second-order cone programs (SOCP) and second-order cone com-
plementarity problems (SOCCP), we need spectral decomposition associated with
SOC [9]. More specifically, for any = = (x1,22) € R x R""! the vector = can be
decomposed as

= Mull) + Au?,
(1),

where A1, Ao and uy ', uy ~ are the spectral values and the associated spectral vectors
of x, respectively, given by

Xi = @1+ (=1)"|a2]),
%(1,(—1)?@—3”) if 29 #0,
3(1, (—1)'w) it x9=0.

for i = 1,2 with w being any vector in R"~! satisfying ||w| = 1. If 2o # 0, the
decomposition is unique.

) =

For any function f : R — R, the following vector-valued function associated with
K" (n > 1) was considered in [7,8]:
(1.5) Foa) = fFOul) + FOo)ul, Vo = (21,22) € R x R
If f is defined only on a subset of R, then f°¢ is defined on the corresponding subset
of R™. The definition (1.5) is unambiguous whether xs # 0 or 9 = 0. The cases of
f5°¢(z) = 22, 22, exp(z) are discussed in [10]. In fact, the above definition (1.5)
is analogous to the one associated with positive semidefinite cone S7 [20,21].
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Throughout this paper, R™ denotes the space of n-dimensional real column vec-
tors, C' denotes a convex subset of R, S denotes a convex subset of R", and (- ,-)
means the Euclidean inner product, whereas || - || is the Euclidean norm. The nota-
tion “:=” means “define”. For any f : R" — R, Vf(x) denotes the gradient of f at
x. C(J) denotes the family of functions which are defined on J C R™ to R and
have the i-th continuous derivative, while 7 means transpose.

2. EXAMPLES OF r-FUNCTIONS

In this section, we try to discover some new r-convex functions which is verified
by applying Property 1.1. With these examples, we have a more complete picture
about characterizations of r-convex functions. Moreover, for any given r, we also
provide examples which are r-convex functions.

Example 2.1. For any real number p, let f: (0,00) — R be defined by f(t) = tP.
(a) If p > 0, then f is convex for p > 1, and (+o0)-convex for 0 < p < 1.
(b) If p <0, then f is convex.

To see this, we first note that f/(t) = ptP~1, f”(t) = p(p — 1)t*~2 and

—s- f'(t)-s p(l—p)tp_{oo if 0<p<l,

sup ———— =3su .
s f1 (120, s|=1 5 - f'(t)] p£0 P 0 if p>1lorp<0.

Then, applying Property 1.1 yields the desired result.

Example 2.2. Suppose that f is defined on (-7, 7).

(a) The function f(t)
(b) The function f(t)
(¢) The function f(t)
(d) The function f(t) =

sint is co-convex.

tant is 1-convex.

In(sect) is (—1)-convex.
In[sect 4 tant| is 1-convex.

To see (a), we note that f'(t) = cost, f”(t) = —sint, and

—s- f"(t)-s sint
sup 2" = sup — 5
—I<t<Z |s|=1 [s- f'()]? P cos?t

Hence f(t) = sint is oo-convex.
To see (b), we note that f/(t) = sec?t, f"(t) = 2sec®t - tant, and
—f"(t) —2sec?t - tant

sup 5 = sup ——————— = sup (—sin2t) =1.
—za<z (/O —zqez sectt _nci<n

This says that f(¢) = tant is 1-convex.
To see (c), we note that f/(t) = tant, f”(t) = sec®t, and
—f"(t) —ksec?t

sup = sup ——— = sup (—csc?t)=—1.

—I<t<t [f'(#)]? —I<t<Z tan?t —I<t<t

Then, it is clear to see that f(¢) = In(sect) is (—1)-convex.
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To see (d), we note that f/(t) =sect, f”(t) = sect - tant, and

— —sect - tan .
1) t-tant

sup O = sup S = sup W(— sint) = 1.
—T<T —T<T —T<T

Thus, f(t) = In|sect + tant| is 1-convex.

1-conve:

f(#) =1In(sec )

F(0) = tant

FIGURE 1. Graphs of r-convex functions with various values of r.

In light of Example 2.2(b)-(c) and Property 1.1(e), the next example indicates
that for any given r € R (no matter positive or negative), we can always construct
an r-convex function accordingly. The graphs of various r-convex functions are
depicted in Figure 1.

Example 2.3. For any r # 0, let f be defined on (-3, 7).

tant
(a) The function f(t) = M0 i |r|-convex.
1 t
(b) The function f(t) = In(sect) is (—7)-convex.
r
2t 2sec?t - tant
(a) First, we compute that f’(t) = 2o () = M, and
r r
”(t)
sup = sup (—rsin2t)=|r|.
—raer /OP —rcicn
tant
This says that f(t) = M s |r|-convex.
tant 2t
(b) Similarly, from f/(t) = a—n, 1) = pee , and
T
_f// t
sup [f’(tg]; = sup W(—r csc’t) = —r.
—I<t< It
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In(sect)

Then, it is easy to see that f(¢) =
,

is (—r)-convex.

Example 2.4. The function f(z) = % In(||z||? + 1) defined on R? is 1-convex.

For = = (s,t) € R?, and any real number 7 # 0, we consider the function

o(z,r) = V3f(z)+rVf(z)Vf(z)"

_ 1 2 —s2+1 —2st T s? st
— (||)|2 + 1)2 —2st s2—t2+ 1] " (|z)|2+1)2 [st ¢
B 1 (r—1s2+t2+1 (r—2)st

(lz])> 4+ 1)2 (r—2)st 2+ (r—12+1|"

Applying Property 1.1(b), we know that f is r-convex if and only if ¢ is positive
semidefinite, which is equivalent to

(2.1) (r—1s*+t*+1>0
(r—1s2+t2+1 (r—2)st
(22) (r —2)st s+ (r— 1)t + 1' 2 0.

It is easy to verify the inequality (2.1) holds for all x € R? if and only if r > 1.
Moreover, we note that

(r—1)s*+t2+1 (r—2)st

(r—2)st 24+ (r—1)t2+1
= PSP A1+ (- 122 (= D) (st St ) — (= 2)%5% 2 > 0
= St 1+ (2r —2)2 P+ (r = 1)(sP 2t 1) >0,

E

and hence the inequality (2.2) holds for all 2 € R? whenever » > 1. Thus, we
conclude by Property 1.1(b) that f is 1-convex on R2.

FIGURE 2. Graphs of 1-convex functions f(z) = 3 In(||z|* + 1).
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3. PROPERTIES OF SOC-FUNCTIONS

As mentioned in Section 1, another contribution of this paper is extending the
concept of r-convexity to the setting associated with second-order cone. To this
end, we recall what SOC-convex function means. For any z = (71, 29) € R x R"~!
and y = (y1,y2) € R x R*™!, we define their Jordan product as

zoy=(zTy, yiza + z190).

We write 22 to mean z o x and write  + y to mean the usual componentwise
addition of vectors. Then, o,+, together with ¢/ = (1,0,...,0)7 € R" and for
any z,y,z € R" the following basic properties [10,11] hold: (1) €' oz = =, (2)
roy=vyoux, (3) xo(z?oy) =2%0(zoy), (4) (x+y)oz =mzoz+yoz Notice that
the Jordan product is not associative in general. However, it is power associative,
ie,zo(zxox)= (xox)ox for all z € R™. Thus, we may, without loss of ambiguity,
write 2™ for the product of m copies of x and z™*"
integers m and n. Here, we set 2 = ¢/. Besides, K" is not closed under Jordan
product.

= z' o z" for all positive

For any = € K", it is known that there exists a unique vector in K™ denoted by
2/2 such that (2/2)2 = 22 0 21/2 = z. Indeed,

1/2 L2 1
/2 = (s, ?S> , where s = \/2 <x1 + 90% - ||1U2H2>-

In the above formula, the term x5/s is defined to be the zero vector if 9 = 0 and
s =0, ie., x =0. For any € R"”, we always have 22 € K", i.e., 22 =xn» 0. Hence,
there exists a unique vector (2)'/2 € K" denoted by |z|. It is easy to verify that
|z| =xn 0 and 2?2 = |z|? for any x € R™. It is also known that |z| =)~ 2. For any
x € R™, we define [z]; to be the nearest point projection of z onto K", which is
the same definition as in R’}. In other words, [x]; is the optimal solution of the
parametric SOCP: [z]; = argmin{|lz — y|| |y € K"}. In addition, it can be verified
that [x]4+ = ( + |z|)/2; see [10,11].

Property 3.1 ([11, Proposition 3.3]). For any = = (21,72) € R x R""!, we have
(a) o] = ()12 = Al + [douf?.

(0) [+ = Mlrut” + Dolpul” = Lo + Ja)).

Next, we review the concepts of SOC-monotone and SOC-convex functions which
are introduced in [7].
Definition 3.2. For a real valued function f: R — R,

(a) f is said to be SOC-monotone of order n if its corresponding vector-valued
function f%°¢ defined as in (1.5) satisfies

T zgny = ) Zen [(y)

The function f is said to be SOC-monotone if f is SOC-monotone of all
order n.
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(b) f is said to be SOC-convex of order n if its corresponding vector-valued
function f%°¢ defined as in (1.5) satisfies

(3.1) A =Nz + Ay) Zien (1= A)f7(2) + Af*(y)

for all z,y € R™ and 0 < A < 1. Similarly, f is said to be SOC-concave of
order n on C' if the inequality (3.1) is reversed. The function f is said to be
SOC-convex (respectively, SOC-concave) if f is SOC-convex of all order n
(respectively, SOC-concave of all order n).

The concepts of SOC-monotone and SOC-convex functions are analogous to ma-
trix monotone and matrix convex functions [5,14], and are special cases of operator
monotone and operator convex functions [3,6,16]. Examples of SOC-monotone and
SOC-convex functions are given in [7]. It is clear that the set of SOC-monotone
functions and the set of SOC-convex functions are both closed under linear combi-
nations and under pointwise limits.

Property 3.3 ([8, Theorem 3.1]). Let f € C(V(J) with .J being an open interval
and dom(f*°¢) C R™. Then, the following hold.

(a) f is SOC-monotone of order 2 if and only if f/(7) > 0 for any 7 € J;
(b) f is SOC-monotone of order n > 3 if and only if the 2 x 2 matrix

f(t2) — f(t1)

f(l)(tl) P
ft) = ft) s | EO foralltnb e andt £
ty—t ft)

Property 3.4 ([8, Theorem 4.1]). Let f € C(®(J) with J being an open interval
in R and dom(f#°¢) C R"™. Then, the following hold.

(a) fis SOC-convex of order 2 if and only if f is convex;
(b) f is SOC-convex of order n > 3 if and only if f is convex and the inequality

— f(t)— fO - - _ ) _

holds for any tg,t € J and tg # t.

Property 3.5 ([4, Theorem 3.3.7]). Let f : S — R where S is a nonempty open
convex set in R™. Suppose f € C?(S). Then, f is convex if and only if V2f(z) = O,
for all z € S.
Property 3.6 ([7, Proposition 4.1]). Let f : [0,00] — [0, 00] be continuous. If f is
SOC-concave, then f is SOC-monotone.
Property 3.7 ([11, Proposition 3.2]). Suppose that f(t) = €' and g(t) = Int.
Then, the corresponding SOC-functions of e’ and Int are given as below.

(a) For any @ = (z1,72) € R x R*~L,

proc(gy — e — { @ (cosh(llea]),simh(lzal) 27) if 22 # 0,
(e™1,0) if x9=0,

where cosh(a) = (e® + e7%)/2 and sinh(a) = (e* — e™*)/2 for a € R.
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(b) For any = = (x1,x2) € int(K"), Inz is well-defined and

1 1+ x .
o) = e = 3 (=) (SH}) 227) i @ 0,
(1n21,0) £ o0

With these, we have the following technical lemmas that will be used in the
subsequent analysis.

Lemma 3.8. Let f : R — R be f(t) = € and v = (v1,73) € R x R*! oy =
(y1,y2) € R x R"™L. Then, the following hold.

(a) f is SOC-monotone of order 2 on R.

(b) f is not SOC-monotone of order n > 3 on R.

(¢) If &1 —y1 > ||z2|| + |ly2l|, then € =xn €Y. In particular, if x € K", then
e = kcn e(0,0

Proof. (a) By applying Property 3.3(a), it is clear that f is SOC-monotone of order
2 since f'(1) = €7 > 0 for all 7 € R.

(b) Take x = (2,1.2,—1.6), y = (—1,0,—4), then we have z —y = (3,1.2,2.4) >xn 0.
But, we compute that

e = ¢ (cosh(Q),sinh(Q)(l'2’2_1'6)> —e! (cosh(4),sinh(4) (0,4—4)>

[(e* +1,.6(e" —1),—.8(e* — 1)) — (¢’ +e7°,0,—€* + e7)]
17.7529,16.0794, —11.3999) #xcn 0.

| =

—~

The last inequality is because ||(16.0794, —11.3999)|| = 19.7105 > 17.7529.
We also present an alternative argument for part(b) here. First, we observe that

fO0) ) e e
(33) det Flt2)—F(tr) ﬁ) ttl = elitt2 _ ﬁ >0
= F(t2) 2

elta—t1)/2 _ o(ti—t2)/2
t2 — 11
inequality holds if and only if 1 > (sinh(s)/s)?. In light of Taylor Theorem, we

know sinh(s)/s = 1+ s2/6+s%/120+--- > 1 for s # 0. Hence, (3.3) does not hold.
Then, applying Property 3.3(b) says f is not SOC-monotone of order n > 3 on R.

if and only if 1 > < . Denote s := (to —t1)/2, then the above
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(¢) The desired result follows by the following implication:
e’ =xn e’

<= e" cosh(||z2]]) — €¥" cosh([[y2])

. T2 . Y2
> ||le*! sinh(||z2]|) —=— — €¥! sinh LA
<= [e" cosh(||z2||) — e¥* cosh(|yl])]®
2
. ) . Y2
— ||e®* sinh(]||z2||) —= — e¥! sinh 2
— 62x1 +€2y1
. . 2, Y2
—gerity [cosh<||xzr> cosh([ya1l) — sinh(za|l) sinh ) 22820
|z2ll[y2]l
>0
2T 4 21 _ 9et1 Y cosh(||z2|| + [|y2]) >0
211 211 z1—Y1 Yy1—T1
et +e [ +e
cosh(||lz2fl + |lyzl]) < = = cosh(z, — 1)

2er1+y1 2
x1 —y1 > |22 + [ly2]|-

B

Lemma 3.9. Let f(t) = e be defined on R, then f is SOC-convex of order 2.
However, f is not SOC-convez of order n > 3.

Proof. (a) By applying Property 3.4 (a), it is clear that f is SOC-convex since
exponential function is a convex function on R.

(b) As below, it is a counterexample which shows f(t) = e
order n > 3. To see this, we compute that

o1(20,-1)+(6,~4,-3)]/2

t is not SOC-convex of

— 422
= ¢ (cosh(2v2), sinh(2v2) - (-2,-2)/(2V2))
= (463.48, —325.45, —325.45)

and

% (e(z,o,—l) i e(6,—4,—3)>

= % [e?(cosh(1),0, —sinh(1)) + e®(cosh(5), sinh(5) - (—4,—3)/5)]
— (14975, —11974, —8985).

We see that 14975 — 463.48 = 14511.52, but
1(~11974, —8985) — (—325.4493, —325.4493)|| = 14515 > 14511.52

which is a contradiction. O
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Lemma 3.10 ([8, Proposition 5.1]). The function g(t) = Int is SOC-monotone of
order n > 2 on (0,00).

In general, to verify the SOC-convexity of e! (as shown in Proposition 3.1), we
observe that the following fact

rfEec(Ax+(1-N)y)

0 <xn e Sinw = %M+ (1-Ny) <k» In(w)

is important and often needed. Note for x5 # 0, we also have some observations as
below.

(a) €* =xn 0 <= cosh(||zz]|) > |sinh(||zz]))] <= e l#2l > 0.

(b) 0 <icr In(z) <= In(2? — ||22)2) > ‘m (%)‘ = In(z — |aa]) >

0 < x1 — ||z2]| > 1. Hence (1,0) <xn» = implies 0 <xn In(x).
(c) In(1,0) = (0,0) and e = (1,0).

4. SOC-r-CONVEX FUNCTIONS

In this section, we define the so-called SOC-r-convex functions which is viewed
as the natural extension of r-convex functions to the setting associated with second-
order cone.

Definition 4.1. Suppose that » € R and f : C C R — R where C' is a convex
subset of R. Let f%°¢: S C R™ — R" be its corresponding SOC-function defined as
in (1.5). The function f is said to be SOC-r-convex of order n on C' if, for z,y € S
and A € [0, 1], there holds

LIn (A @) 4 (1 = N)e W) £ 0,

(4.1) fsoc()\JU + (1 — )\)y) =Kn {)\fsoc(l’) + (1 _ )\)fsoc(y) r=0.

Similarly, f is said to be SOC-r-concave of order n on C' if the inequality (4.1)
is reversed. We say f is SOC-r-convex (respectively, SOC-r-concave) on C' if f is
SOC-r-convex of all order n (respectively, SOC-r-concave of all order n) on C.

It is clear from the above definition that a real function is SOC-convex (SOC-
concave) if and only if it is SOC-0-convex (SOC-0-concave). In addition, a function
f is SOC-r-convex if and only if — f is SOC-(—r)-concave. From [1, Theorem 4.1], it
is shown that ¢ : R — R is r-convex with r # 0 if and only if " is convex whenever
r > 0 and concave whenever r < 0. However, we observe that the exponential
function e’ is not SOC-convex for n > 3 by Lemma 3.9. This is a hurdle to build
parallel result for general n in the setting of SOC case. As seen in Proposition 4.5,
the parallel result is true only for n = 2. Indeed, for n > 3, only one direction holds
which can be viewed as a weaker version of [1, Theorem 4.1].

Proposition 4.2. Let f : [0,00) — [0,00) be continuous. If f is SOC-r-concave
with r > 0, then f is SOC-monotone.
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Proof. For any 0 < A < 1, we can write Az = \y + ((11__’\)3))‘ (x —y). If r =0, then f
is SOC-concave and SOC-monotone by Property 3.6. If » > 0, then

5°0\)  =xn 1hrl ()\erfsoc(y) +(1- A)erfsoc(ﬁ(x_y)v

~Kn In (Aer(o,o) +(1— )\)er(o,o)>

I3 ==

In (A(1,0) + (1 = A)(1,0))
= 0,
where the second inequality is due to z — y >=x» 0 and Lemmas 3.8-3.10. Letting

A — 1, we obtain that f%°°(x) =xn f%°°(y), which says that f is SOC-monotone.
O

In fact, in light of Lemma 3.8-3.10, we have the following Lemma which is useful
for subsequent analysis.
Lemma 4.3. Let z € R” and w € int(K™). Then, the following hold.
(a) Form=2 andr >0, z <xn In(w)/r <= rz <xn In(w) <= €"* <kn w.
(b) Forn=2 andr >0, z <xn In(w)/r <= rz = In(w) <= €"% =xn w.
(¢c) Form >2, if e <xn w, then rz S In(w).
Proposition 4.4. Forn =2 and let f : R — R. Then, the following hold.
(a) The function f(t) =t is SOC-r-convex (SOC-r-concave) on R for r > 0
(r<0).
(b) If f is SOC-convex, then f is SOC-r-convex (SOC-r-concave) for r > 0
(r <0).

Proof. (a) For r > 0, z,y € R™ and A € [0, 1], we note that the corresponding
vector-valued SOC-function of f(t) = t is f*°°(x) = x. Therefore, to prove the
desired result, we need to verify that

0 + (1= N)y) <kn %ln ()\e’”fsoc(x) + (- )\)erfsoc(y)> .
To this end, we see that
Az 4 (1= Ny =<xn %m (A" 4 (1 — \)e™)
< Az + (1= XN)ry <g» In(Xe"™ + (1 — N)e"?)
s TN S AT (1 N,

where the first “<=" is true due to Lemma 4.3, whereas the second “<=" holds
because e! and Int are SOC-monotone of order 2 by Lemma 3.8 and Lemma 3.10.
Then, using the fact that e’ is SOC-convex of order 2 gives the desired result.

(b) For any z,y € R™ and 0 < A < 1, it can be verified that

U2+ (1 =ANy) Zen Af2) + (1= N ()
1 sOoC socC
A rf°¢(x) _ rf*(y)
=K . In ()\6 + (1= Xe ) ,
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where the second inequality holds according to the proof of (a). Thus, the desired
result follows. g

Proposition 4.5. Let f : R — R. Then f is SOC-r-convez if €'l is SOC-convex
(SOC-concave) forn > 2 and r >0 (r <0). For n =2, we can replace “if” by “if
and only if”.

Proof. Suppose that e"/ is SOC-convex. For any z,y € R” and 0 < X\ < 1, using
that fact that In¢ is SOC-monotone (Lemma 3.10) yields

P OSN3y AT I@) | (1 y)er W)
— 00+ (1= A)y) <o I (AW 4 (1 2l 0)

— fsoc()\CC + (1 _ )\)y) <jcn lln (}\erfsw(z) + (1 _ A)erfSOC(y)> .
r

When n = 2, e is SOC-monotone as well, which implies that the “=" can be
replaced by “«<=". Thus, the proof is complete. O

Combining with Property 3.4, we can characterize the SOC-r-convexity as follows.

Proposition 4.6. Let f € C?)(.J) with J being an open interval in R and dom(f*°°) C
R™. Then, for r > 0, the followings hold.

(a) f is SOC-r-convex of order 2 if and only if €' is convex;
(b) f is SOC-r-convex of ordern > 3 if e" is convex and satisfies the inequality
(3.2).

Next, we present several examples of SOC-r-convex and SOC-r-concave functions
of order 2. For examples of SOC-r-convex and SOC-r-concave functions (of order
n), we are still unable to discover them.

Example 4.7. For n = 2, the following hold.

(a) The function f(t) = t? is SOC-r-convex on R for r > 0.

(b) The function f(t) = t3 is SOC-r-convex on [0,00) for r > 0, while it is
SOC-r-concave on (—oo, 0] for r < 0.

(¢) The function f(t) = 1/t is SOC-r-convex on [—r/2,0) or (0,00) for r > 0,
while it is SOC-r-concave on (—o0,0) or (0, —r/2] for r < 0.

(d) The function f(t) = v/t is SOC-r-convex on [1/72,00) for 7 > 0, while it is
SOC-r-concave on [0, 00) for r < 0.

(e) The function f(t) = Int is SOC-r-convex (SOC-r-concave) on (0,00) for
r >0 (r<D0).

Proof. (a) First, we denote h(t) := e”". Then, we have h/(t) = 2rte™ and B”(t) =
(1+ 2rt2)2re”2. From Property 3.5, we know h is convex if and only if h”(¢) > 0.
Thus, the desired result holds by applying Property 3.4 and Proposition 4.5. The
arguments for other cases are similar and we omit them. O
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5. SOC-QUASICONVEX FUNCTIONS

In this section, we define the so-called SOC-quasiconvex functions which is a
natural extension of quasiconvex functions to the setting associated with second-
order cone.

Recall that a function f: S C R™ — R is said to be quasiconvex on S if, for any
x,y € S and 0 < X\ <1, there has

fAz 4+ (1= N)y) < max{f(z), f(y)}.

We point out that the relation >xn is not a linear ordering. Hence, it is not possible
to compare any two vectors (elements) via =xn. Nonetheless, we note that

1
max{a,b} =b+|a—bl;+ = =(a+b+|a—0b|), foranya,beR.
2

This motivates us to define SOC-quasiconvex functions in the setting of second-order
cone.

Definition 5.1. Let f : C C R — R and 0 < A < 1. The function f is said to be
SOC-quasiconvex of order n on C' if, for any z,y € R", there has
[+ (1= N)y) Zien f2y) + [(2) = 2],

where

Fy) + 1) = ()],
fSOC(w) if fSOC(a;.> i’Cn fSOC<y)7

— fSOC(y) if fSOC(x) '<]C”7« fSOC(y)’

3 (f6(@) + [ (y) + [ F°() — f(y)]) if o) — f*°y) € KU (=K™).
Similarly, f is said to be SOC-quasiconcave of order n if

S+ (L= N)y) =i [22) = [F279(2) = ()] -

The function f is called SOC-quasiconvex (SOC-quasiconcave) if it is SOC-quasiconvex
of all order n (SOC-quasiconcave of all order n).

Proposition 5.2. Let f : R — R be f(t) =t. Then, f is SOC-quasiconvex on R.

Proof. First, for any x = (x1,22) € R x R* 1 4y = (y1,12) € R x R*"! and
0 <A <1, we have
) =ken 2%(2) = (L= A) () =en (L= A)f*(2)
A + (L M) S ).
Recall that the corresponding SOC-function of f(t) =t is f%°°(x) = x. Thus, for all
x € R™, this implies f°(Az+(1—\)y) = Af*°°(z)+(1=X) f*°°(y) <icn f*°°(z) under
this case: f%°°(y) =i f5°¢(x). The argument is similar to the case of f5°¢(z) <xn

f%°°(y). Hence, it remains to consider the case of f%°¢(x) — f5°°(y) ¢ K" U (—K"),
i.e., it suffices to show that

AfP () + (1= N (y) Zken % (F() + 7 (y) + 1 17(@) = ()] -
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To this end, we note that
|fSOC(:E) _ fSOC(y)‘ i}cn fSOC(x) _ fSOC(y)

and
‘fSOC(:L,) _ fSOC(y)| t]Cn fSOC(y) . JC'SOC(:L,)7

which respectively implies
1, . , , .
(5.1) 5 () + 5) + 1 (@) = W) Zxen @,

1 SOC SOC SOC socC
(5:2) o () + 25) + 1 (@) = W)z
Then, adding up (5.1) xX and (5.2) x(1 — \) yields the desired result. [

Proposition 5.3. If f : C C R — R is SOC-convex on C, then f is also SOC-
quasiconvex on C.

Proof. For any z,y € R” and 0 < A < 1, it can be verified that

e+ (1=A)y) Zien Af*(@) + (1= A)f*(y) 2 [2) + (@) = )]y
where the second inequality holds according to the proof of Proposition 5.2. Thus,
the desired result follows. O

From Proposition 5.3, we can easily construct examples of SOC-quasiconvex func-
tions. More specifically, all the SOC-convex functions which were verified in [7] are
SOC-quasiconvex functions, for instances, t2 on R, and t3, %, t1/2 on (0, 00).

6. FINAL REMARKS

In this paper, we revisit the concept of r-convex functions and provide a way to
construct r-convex functions for any given r € R. We also extend such concept to
the setting associated with SOC which will be helpful in dealing with optimization
problems involved in second-order cones. In particular, we obtain some characteri-
zations for SOC-r-convexity and SOC-quasiconvexity.

Indeed, this is just the first step and there still have many things to clarify. For
example, in Section 4, we conclude that SOC-convexity implies SOC-r-convexity for
n = 2 only. The key role therein relies particularly on the SOC-convexity and SOC-
monotonicity of ef!. However, for n > 2, the expressions of e* and In(z) associated
with second-order cone are very complicated so that it is hard to compare any two
elements. In other words, when n = 2, the SOC-convexity and SOC-monotonicity of
e! make things much easier than the general case n > 3. To conquer this difficulty,
we believe that we have to derive more properties of €. In particular, “Does SOC-
r-convex function have similar results as shown in Property 1.17” is an important
future direction.
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