
Journal of Computational and Applied Mathematics 220 (2008) 464–479
www.elsevier.com/locate/cam

A regularization semismooth Newton method based on the
generalized Fischer–Burmeister function for P0-NCPs

Jein-Shan Chena,∗,1, Shaohua Panb

aDepartment of Mathematics, National Taiwan Normal University, Taipei 11677, Taiwan
bSchool of Mathematical Sciences, South China University of Technology, Guangzhou 510641, China

Received 1 June 2007; received in revised form 29 August 2007

Abstract

We consider a regularization method for nonlinear complementarity problems with F being a P0-function which replaces the
original problem with a sequence of the regularized complementarity problems. In this paper, this sequence of regularized comple-
mentarity problems are solved approximately by applying the generalized Newton method for an equivalent augmented system of
equations, constructed by the generalized Fischer–Burmeister (FB) NCP-functions �p with p > 1. We test the performance of the
regularization semismooth Newton method based on the family of NCP-functions through solving all test problems from MCPLIB.
Numerical experiments indicate that the method associated with a smaller p, for example p ∈ [1.1, 2], usually has better numerical
performance, and the generalized FB functions �p with p ∈ [1.1, 2) can be used as the substitutions for the FB function �2.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The nonlinear complementarity problem (NCP) is to find a point x ∈ Rn such that

x�0, F (x)�0, 〈x, F (x)〉 = 0, (1)

where 〈·, ·〉 is the Euclidean inner product and F = (F1, F2, . . . , Fn)
T is a map from Rn to Rn. We assume that F is

continuously differentiable throughout this paper. The NCP has attracted much attention due to its various applications
in operations research, economics, and engineering [12,17,24]. There have been many methods proposed for solving the
NCP, including merit function approaches [16,21,23,33], nonsmooth Newton methods [11,22,34], smoothing methods
[5,18,27,32] and regularization methods [9,19,29,30]. All the aforementioned methods usually exploit so-called NCP-
functions defined as below.

Definition 1.1. A function � : R2 → R is called an NCP-function (or C-function standing for Complementarity
function, see [10]) if it satisfies

�(a, b) = 0 ⇐⇒ a�0, b�0, ab = 0. (2)

∗ Corresponding author.
E-mail addresses: jschen@math.ntnu.edu.tw (J. Chen), shhpan@scut.edu.cn (S. Pan).

1 Member of Mathematics Division, National Center for Theoretical Sciences, Taipei Office.

0377-0427/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2007.08.020

http://www.elsevier.com/locate/cam
mailto:jschen@math.ntnu.edu.tw
mailto:shhpan@scut.edu.cn


J. Chen, S. Pan / Journal of Computational and Applied Mathematics 220 (2008) 464–479 465

Over the past two decades, a variety of NCP-functions has been studied; see [15,31] and references therein. Among
which, a popular NCP-function intensively studied is the well-known Fischer–Burmeister (FB) NCP-function [13,14]
defined as

�FB(a, b) =
√

a2 + b2 − (a + b). (3)

Since �FB satisfies (2), the NCP is equivalent to a system of nonsmooth equations

�FB(x) :=

⎛
⎜⎜⎜⎝

�FB(x1, F1(x))

·
·
·

�FB(xn, Fn(x))

⎞
⎟⎟⎟⎠= 0. (4)

Then we have the merit function �FB : Rn → R+ for the NCP, defined by

�FB(x) := 1

2
‖�FB(x)‖2 = 1

2

n∑
i=1

�FB(xi, Fi(x))2. (5)

Recently, a family of new NCP-functions based on the FB function (3) were studied in [2,6]. In particular, they define
�p : R2 → R by

�p(a, b) := ‖(a, b)‖p − (a + b), (6)

where p is any fixed real number in the interval (1, +∞) and ‖(a, b)‖p denotes the p-norm of (a, b), namely, ‖(a, b)‖p=
p√|a|p + |b|p. In other words, in the function �p, we replace the Euclidean norm of (a, b) in the FB function (3) by a
more general p-norm with p ∈ (1, +∞). Similarly, the NCP is equivalent to the nonsmooth system

�p(x) :=

⎛
⎜⎜⎜⎝

�p(x1, F1(x))

·
·
·

�p(xn, Fn(x))

⎞
⎟⎟⎟⎠= 0, (7)

which induces a family of merit functions �p : Rn → R for the NCP as below

�p(x) := 1

2
‖�p(x)‖2 = 1

2

n∑
i=1

�p(xi, Fi(x))2. (8)

As seen in [6], the merit function �p for any given p > 1 enjoys all favorable properties as the FB merit function �FB
holds. Moreover, numerical experiments there indicate that the descent method based on the merit function �p has
better performance when p decreases in (1, +∞). However, it is still unknown whether such phenomenon occurs in
other approaches for the NCP. The main purpose of this paper is to investigate how the generalized FB NCP-functions
�p with p ∈ (1, +∞) behave in a regularization semismooth Newton method for solving the NCP.

It is well known that the regularization approach is designed to handle ill-posed problems which substitutes the
solution of original problem with the solution of a sequence of well-posed problems whose solutions converging to the
solution of the original problem; see [4,3,9,19,30] and references therein. In the context of complementarity problems,
if we consider the so-called Tikhonov regularization, this scheme consists of solving a sequence of complementarity
problems NCP(Fε):

x�0, Fε(x)�0, 〈x, Fε(x)〉 = 0, (9)

where ε > 0 is a parameter tending to zero and Fε is given by

Fε(x) := F(x) + εx. (10)
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Let Fε,i(x) denote the ith component of Fε(x) and define the map �p,ε : Rn → Rn by

�p,ε(x) :=

⎛
⎜⎜⎜⎝

�p(x1, Fε,1(x))

·
·
·

�p(xn, Fε,n(x))

⎞
⎟⎟⎟⎠ . (11)

Then the regularized problem NCP(Fε) for any given ε > 0 can be reformulated as

�p,ε(x) = 0,

which leads to a merit function �p,ε : Rn → R+ for the NCP(Fε):

�p,ε(x) := 1

2
‖�p,ε(x)‖2 = 1

2

n∑
i=1

�p(xi, Fε,i(x))2. (12)

Therefore, the original NCP is actually equivalent to solving a sequence of nonsmooth systems of equations �p,ε(x)=0
with ε approaching to 0. From this, we see that the parameter ε plays the same role as the smoothing parameter in
smoothing methods for the NCP, except that ε is imposed on the mapping F instead of the NCP-function �p.

In this paper, the sequence of subproblems �p,ε(x)=0 with ε tending to 0 will be solved approximately by applying
the generalized Newton method for an augmented system of equations equivalent to the NCP. Specifically, we let
z := (ε, x) ∈ R+ × Rn by viewing ε as a variable, and define the mapping Hp : R+ × Rn → Rn+1 by

Hp(z) :=

⎡
⎢⎢⎣

ε

�p(x1, Fε,1(x))

...

�p(xn, Fε,n(x))

⎤
⎥⎥⎦ . (13)

Notice that if the function �p,ε(x) defined by (11) is viewed as a function of ε and x, then we may denote it as
�p(z) : =�p(ε, x) = �p,ε(x). Hence, (13) is the same as

Hp(z) =
[

ε

�p(z)

]
.

It is easily verified that the NCP is equivalent to the augmented system of equations

Hp(z) = Hp(ε, x) = 0, (14)

which naturally induces a merit function Gp : Rn+1 → R+ given by

Gp(z) = 1

2
‖Hp(z)‖2 = 1

2
(ε2 + ‖�p,ε(x)‖2) = 1

2
ε2 + �p(z). (15)

The function Hp is locally Lipschitz continuous since �p is locally Lipschitz continuous (see [6]). Furthermore, as
shown in Section 3, Hp is semismooth. By this, we apply the generalized Newton method developed by [26,28] for
(14), and establish a regularized semismooth Newton-type algorithm which in each step solves a regularized problem
NCP(Fε) approximately. Compared with the semismooth Newton method based on (7), the method has a remarkable
advantage in handling the P0-NCPs (see Section 4) since the merit function �p,ε(x) has bounded level sets for such
NCPs. We examine the numerical performance of the algorithm by applying it for all test problems from MCPLIB with
three specific NCP-functions �1.1, �2 and �5. Numerical results indicate that the method associated with a smaller
p, for example p ∈ [1.1, 2], usually has better numerical performance, and the generalized FB functions �p with
p ∈ [1.1, 2) can be used as the substitutions for the FB function �2.

Throughout this paper, R+ and R++ denote the set of nonnegative real numbers and the set of positive real numbers,
respectively; Rn represents the space of n-dimensional real column vectors; and T is the transpose notation. For
any differentiable function f : Rn → R, ∇f (x) denotes the gradient of f at x. For any differentiable mapping
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F = (F1, . . . , Fm)T : Rn → Rm, F ′(x) means the Jacobian matrix of F at x while ∇F(x) = [∇F1(x) . . . ∇Fm(x)]
denotes the transpose Jacobian of F at x. If W is an n × n matrix with entries Wjk, j, k = 1, 2, . . . , n, and J and
K are index sets such that J,K ⊆ {1, 2, . . . , n}, we denote by WJK the |J| × |K| submatrix of W consisting of
entries Wjk, j ∈ J, k ∈ K. We denote by ‖x‖p the p-norm of x and by ‖x‖ the Euclidean norm of x. In addition,
unless otherwise stated, we always assume that p is any fixed real number in (1, +∞) and denote S∗ by the solution
set of the NCP if it is nonempty.

2. Preliminaries

In this section, we recall some background concepts and materials which will be used in the subsequent analysis.
We start with the definition of P -matrix and P0-matrix.

Definition 2.1. Given a matrix M ∈ Rn×n, then M is a

(a) P0-matrix if each of its principal minors is nonnegative;
(b) P -matrix if each of its principal minors is positive.

Clearly, a positive semidefinite matrix is a P0-matrix, a positive definite matrix is a P -matrix, and every P -matrix
is also a P0-matrix. For more properties about P -matrix and P0-matrix, please refer to [8]. The two concepts can be
extended to nonlinear mappings.

Definition 2.2. Given a mapping F : Rn → Rn, then F is a

(a) monotone function if 〈x − y, F (x) − F(y)〉�0 for all x, y ∈ Rn;
(b) P0-function if max 1� i �n

xi �=yi

(xi − yi)(Fi(x) − Fi(y))�0 for all x, y ∈ Rn and x �= y;

(c) P -function if max1� i �n(xi − yi)(Fi(x) − Fi(y)) > 0 for all x, y ∈ Rn and x �= y;
(d) uniform P -function with modulus � > 0 if max1� i �n(xi − yi)(Fi(x) − Fi(y))��‖x − y‖2 for all x, y ∈ Rn.

From the above definitions, it is obvious that F is a P0-function if F is monotone, and the Jacobian matrix of every
continuously differentiable P0-function is a P0-matrix. The following lemma states that the mapping Fε is a P -function
if F is a P0-function.

Lemma 2.1 (Facchinei and Kanzow [9, Lemma 3.2]). For any ε > 0, let Fε : Rn → Rn be given by (10). If F is
a P0-function, then the Jacobian matrices F ′

ε(x) for all x ∈ Rn are P -matrices. In particular, the function Fε is a
P -function.

Next, we review some favorable properties of �p where the proofs of Property 2.1 can be found in [2, Proposition
3.1] and [25, Lemmas 2.1 and 2.2] whereas the proof of Property 2.2 is given by [25, Lemma 3.1].

Property 2.1. Let �p : R2 → R be defined as in (6). Then, the following results hold.

(a) �p is an NCP-function.

(b) �p is Lipschitz continuous with the Lipschitz constant L given by L = √
2 + 2(1/p−1/2) when 1 < p < 2 and

L = 1 + √
2 when p�2.

(c) �p is strongly semismooth.

(d) Given any point (a, b) ∈ R2, each element in the generalized gradient ��p(a, b) has the representation
(� − 1, � − 1), where

� = sgn(a) · |a|p−1

‖(a, b)‖p−1
p

and � = sgn(b) · |b|p−1

‖(a, b)‖p−1
p

if (a, b) �= (0, 0)

and otherwise (�, �) ∈ R2 denotes an arbitrary vector satisfying |�|p/(p−1) + |�|p/(p−1) �1.
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(e) If {(ak, bk)} ⊆ R2 with ak → −∞, or bk → −∞, or ak → +∞ and bk → +∞, then we have |�p(ak, bk)| →
+∞ for k → +∞.

Property 2.2. Let �p : R2 → R be defined as in (6). Then, there exists two positive constants c1 > 0 and c2 > 0 such
that c1| min{a, b}|� |�p(a, b)|�c2| min{a, b}|.

The semismooth property is very important from computational point of view. In particular, it plays a fundamental
role in the superlinear convergence analysis of generalized Newton methods [26,28]. If the mapping G : Rn → Rm is
locally Lipschitz continuous, then G is almost everywhere differentiable by Rademacher’s Theorem (see [7]). In this
case, the generalized Jacobian �G(x) of G at x (in the Clarke sense) can be defined as the convex hull of the generalized
Jacobian �BG(x), where

�BG(x) := {V ∈ Rm×n|∃{xk} ⊆ DG : {xk} → x and G′(xk) → V }
with DG denoting the set of differentiable points of G. Assume that G : Rn → Rm is locally Lipschitz continuous. G

is called semismooth at x if G is directionally differentiable at x and for any V ∈ �G(x + h) and h → 0,

G(x + h) − G(x) − V h = o(‖h‖);
G is called strongly semismooth at x if G is semismooth at x and for any V ∈ �G(x + h) and h → 0,

G(x + h) − G(x) − V h = O(‖h‖2); (16)

G is called a (strongly) semismooth function if it is (strongly) semismooth everywhere.

3. Properties of Hp(z) and Gp(z)

In this section, we will study the semismoothness of the mapping Hp and characterize its generalized Jacobian matrix
at any point z. In particular, we also give a sufficient condition for the nonsingularity of all generalized Jacobians at a
solution of (14). Then, we investigate some favorable properties of the merit function Gp(z) which are crucial to the
convergence analysis of the regularized semismooth Newton algorithm described as in the next section.

Proposition 3.1. The mapping Hp : R+ × Rn → Rn defined as in (13) is semismooth. Moreover, it is strongly
semismooth if F ′ is locally Lipschitz continuous.

Proof. Since a function is (strongly) semismooth if and only if its component functions are (strongly) semismooth, to
prove that Hp is (strongly) semismooth we only need to prove that Hp,i, i =1, 2, . . . , n+1 are (strongly) semismooth.
Apparently, Hp,1 is strongly semismooth by formula (16) since Hp,1(z) = ε. For Hp,i, i = 2, 3, . . . , n + 1, since �p

is strongly semismooth by Property 2.1 (c) and the composite of two (strongly) semismooth functions is (strongly)
semismooth by [14, Theorem 19], we conclude that Hp,i, i =2, 3, . . . , n+1 are semismooth. If F ′ is locally Lipschitz
continuous, then Fε is strongly semismooth, and consequently, Hp,i, i =2, 3, . . . , n+1 are strongly semismooth. �

We next give the estimation of the generalized Jacobian of Hp by Property 2.1 (d).

Proposition 3.2. For any z = (ε, x) ∈ R+ × Rn, we have

(�Hp(z))T ⊆
(

1 xTB(z)

0 (A(z) − I ) + (∇F(x) + εI)(B(z) − I )

)
, (17)

where A(z) and B(z) are possibly multi-valued n × n diagonal matrices with ith diagonal elements Aii(z) and Bii(z)

given by

Aii(z) = sgn(xi) · |xi |p−1

‖(xi, Fε,i(x))‖p−1
p

, Bii(z) = sgn(Fε,i(x)) · |Fε,i(x)|p−1

‖(xi, Fε,i(x))‖p−1
p
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if (xi, Fε,i(x)) �= (0, 0); and otherwise given by

Aii(z) = �i , Bii(z) = �i for any (�i , �i ) such that |�i |p/(p−1) + |�i |p/(p−1) �1.

Proof. By the known rules on the evaluation of the generalized Jacobian (see [7, Proposition 2.6.2(e)]), we have

�Hp(z)T ⊆ �Hp,1(z) × �Hp,2(z) × · · · × �Hp,n+1(z),

where the right-hand side denotes a set of matrices whose ith column belongs to �Hp,i(z), and Hp,i is the ith component
function of Hp. Clearly,

�Hp,1(z) =
(

1
0

)
∈ Rn+1.

For j = 2, 3, . . . , n + 1, letting i = j − 1 and applying Property 2.1 (d) yield

�Hp,j (z) =
(

sgn(xi) · |xi |p−1

‖(xi, Fε,i(x))‖p−1
p

− 1

)(
0
ei

)

+
(

xi

∇Fi(x) + εei

)(
sgn(Fε,i(x)) · |Fε,i(x)|p−1

‖(xi, Fε,i(x))‖p−1
p

− 1

)

if (xi, Fε,i(x)) �= (0, 0); and otherwise

�Hp,j (z) = (�i − 1)

(
0
ei

)
+
(

xi

∇Fi(x) + εei

)
(�i − 1)

with |�i |p/(p−1) +|�i |p/(p−1) �1, where ei denotes the vector whose ith element is zero and other elements are 1. From
these equalities, the conclusion easily follows. �

Now, exploiting the estimation of �Hp(z) given by (17), we may present a sufficient condition to guarantee the
nonsingularity of all generalized Jacobians of Hp at a solution z∗ of (14). This result is important for the superlinear
(or quadratic) convergence of the semismooth Newton method (see [11]). Let z∗ = (ε∗, x∗) ∈ R+ × Rn be a solution
of (14). Clearly, ε∗ = 0 and x∗ is a solution of the NCP. For the sake of notation, let

I := {i ∈ {1, 2, . . . , n} | x∗
i > 0, Fi(x

∗) = 0},
J := {i ∈ {1, 2, . . . , n} | x∗

i = 0, Fi(x
∗) = 0},

K := {i ∈ {1, 2, . . . , n} | x∗
i = 0, Fi(x

∗) > 0}.
By rearrangement we assume that ∇F(x∗) can be written as

∇F(x∗) =
( ∇FII(x∗) ∇FIJ(x∗) ∇FIK(x∗)

∇FJI(x∗) ∇FJJ(x∗) ∇FJK(x∗)
∇FKI(x∗) ∇FKJ(x∗) ∇FKK(x∗)

)
. (18)

The NCP is called R-regular at x∗ if ∇FII(x∗) is nonsingular and its Schur-complement in the matrix(∇FII(x∗)
∇FJI(x∗)

∇FIJ(x∗)
∇FJJ(x∗)

)
is a P -matrix.

Proposition 3.3. Suppose that z∗ = (ε∗, x∗) ∈ R+ × Rn be a solution of (14) and the NCP is R-regular at x∗, then
all V ∈ �Hp(z∗) are nonsingular.

Proof. From Proposition 3.2, it is easy to see that for any V ∈ �Hp(z∗)T, there exists a vector u(z∗) ∈ Rn and a matrix
W(z∗) ∈ Rn×n such that

V =
(

1 u(z∗)T

0 W(z∗)

)
,
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where

W(z∗) = (A(z∗) − I ) + (∇F(x∗) + ε∗I )(B(z∗) − I )

with A(z∗) and B(z∗) characterized as in Proposition 3.2. Therefore, proving that V is nonsingular is equivalent to
arguing that W(z∗) is nonsingular. Using the expression of ∇F(x∗) in (18) and noting that ε∗ = 0, we can rewrite
W(z∗) in the partitioned form

W(z∗) =
(−∇FII ∇FIJ(BJJ − IJJ) 0IK

−∇FJI ∇FIJ(BJJ − IJJ) + (AJJ − IJJ) 0JK

−∇FKI ∇FKJ(BJJ − IJJ) −IKK

)
,

where for convenience we dispense with the notations z∗ and x∗. The rest of the proof is identical to that of [11,
Proposition 3.2]. �

In what follows, we concentrate on the properties of Gp. First, applying [6, Propositon 3.2 (c)] and Theorem 2.6.6
of [7], we immediately obtain the following conclusion.

Proposition 3.4. For any ε�0, the function �p,ε defined by (12) is continuously differentiable everywhere, and
consequently, Gp defined as in (15) is continuously differentiable everywhere and ∇Gp(z) = V THp(z) for any V ∈
�Hp(z).

Proposition 3.5. Suppose that F is a P0-function and ε̂, ε̃ are two given positive numbers such that ε̂ < ε̃. Then, the
merit function Gp defined as in (15) has the property:

lim
k→+∞ Gp(zk) = +∞

for any sequence {zk = (εk, xk)} such that εk ∈ [ε̂, ε̃] and ‖xk‖ → +∞.

Proof. We prove this by contradiction which is a standard and common technique. Suppose limk→+∞Gp(zk) �= +∞.
Then from (15) and (12) it follows that there exists an unbounded sequence {xk} such that {�p,εk (xk)} is bounded. Let

J := {i ∈ {1, 2, . . . , n}|{xk
i } is unbounded}.

Since {xk} is unbounded, we have J �= ∅. Without loss of generality, we assume that {|xk
j |} → ∞ for any j ∈ J . Now,

we define a bounded sequence by

yk
i :=

{
0 if i ∈ J,

xk
i if i /∈ J.

From the definition of {yk} and F being a P0-function, we have

0� max
1� i �n

xk
i �=yk

i

(xk
i − yk

i )(Fi(x
k) − Fi(y

k))

= max
i∈J

xk
i · (Fi(x

k) − Fi(y
k))

= xk
j0

· (Fj0(x
k) − Fj0(y

k)), (19)

where j0 is one of the indices for which the max is attained. Since j0 ∈ J , we have that {|xk
j0

|} → +∞ as k → +∞. If

xk
j0

→ −∞ as k → +∞, using Property 2.1(e) immediately yields that �p(xk
j0

, Fεk,j0
(xk)) → +∞. If xk

j0
→ +∞ as

k → +∞, noting that Fj0(y
k) is bounded by the continuity of Fj0 , we have from (19) that Fj0(x

k) does not tend to −∞,
which in turn implies that {Fj0(x

k)+εkxk
j0

} → +∞. From Property 2.1(e) where {xk
j0

} → +∞ and {Fj0(x
k)+εkxk

j0
} →

+∞,we also obtain that �p(xk
j0

, Fεk,j0
(xk)) → +∞. Thus, both cases yield �p(xk

j0
, Fεk,j0

(xk)) → +∞ which is a

contradiction to the boundedness of {�p,εk (xk)}. Consequently, we prove that limk→+∞Gp(zk) = +∞. �
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Remark 3.1. Proposition 3.5 implies that �p,ε has bounded level sets under the assumption of F being a P0-function.
However, from [6, Proposition 3.5], we know that a stronger condition (i.e., F being a uniform P -function) is needed
to guarantee the level sets of �p to be bounded.

To close this section, we present two results which will be used to analyze the global convergence of the algorithm
in the next section. The first result is extracted from Theorem 5.4 of [9], while the second result can be obtained by
using Property 2.2 and following the same arguments as in [30, Proposition 2.2].

Proposition 3.6. Suppose that F is a P0-function and the solution set S∗ of the NCP is nonempty and bounded. Suppose
that {εk} and {xk} are two infinite sequences such that for each k�0, εk > 0, �k �0 satisfying limk→+∞εk = 0,
limk→+∞�k = 0. For each k�0, let xk ∈ Rn satisfy ‖�p(εk, xk)‖��k . Then {xk} remains bounded and every
accumulation point of {xk} is a solution of the NCP.

Proposition 3.7. Suppose that F is a monotone function and the solution set S∗ of the NCP is nonempty. Suppose that
{εk} and{xk} are two infinite sequences such that for each k�0, εk > 0, �k �0, �k �Cεk and limk→+∞εk = 0, where
C > 0 is a constant. For each k�0, let xk ∈ Rn satisfy ‖�p(εk, xk)‖��k . Suppose that x∗ = arg minx∈S∗‖x‖ and F

is Lipschitz continuous. Then {xk} remains bounded and every accumulation point of {xk} is a solution of the NCP.

4. Regularization semismooth Newton method

From the discussions of last section, we see that Hp(z) and Gp(z) for all p > 1 enjoy the same desirable properties.
Sun [30] used H2(z) and G2(z) to develop a regularization semismooth Newton method for the NCP. In this section,
we will develop a regularization semismooth Newton algorithm by any Hp(z) and Gp(z) with p > 1. This algorithm
is guaranteed to solve P0-complementarity problems due to Proposition 3.5.

Now we are ready to describe this specific algorithm. We adopt almost the same notations used in [30]. Choose
ε̄ ∈ (0, +∞) and 	 ∈ (0, 1) such that 	ε̄ < 1. Let t ∈ [1/2, 1] and z̄ := (ε̄, 0) ∈ R++ ×Rn. Define 
 : R+ ×Rn → R+
by


(z) := 	 min{1, Gp(z)t }. (20)

We also denote

� := {z = (ε, x) ∈ R+ × Rn|ε�
(z)ε̄}. (21)

Note that 
(z)�	 for any z ∈ R+ × Rn by (20). Hence, (ε̄, x) ∈ � for any x ∈ Rn. In addition, by the definition of

(z), it is easily shown the following relation holds.

Proposition 4.1. Let Hp and 
 be defined as in (13) and (20), respectively. Then,

Hp(z) = 0 ⇐⇒ 
(z) = 0 ⇐⇒ Hp(z) = 
(z)z̄.

Algorithm 4.1 (The Regularization Newton Algorithm).

(Step 0) Given any p > 1 and choose constants � ∈ (0, 1), t ∈ [1/2, 1] and  ∈ (1, 1/2). Let ε0 := ε̄ and x0 ∈ Rn be
an arbitrary point. Set k := 0.

(Step 1) If Hp(zk) = 0, then stop. Otherwise, let


k := 
(zk) = 	 min{1, Gp(zk)t }.
(Step 2) Choose Vk ∈ �Hp(zk) and compute �zk = (�εk, �xk) ∈ R × Rn by

Hp(zk) + Vk�zk = 
kz̄. (22)

(Step 2) Let lk be the smallest nonnegative integer l such that

Gp(zk + �l�zk)�[1 − 2(1 − 	ε̄)�l]Gp(zk). (23)
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(Step 2) Set zk+1 := zk + �lk�zk .
(Step 4) Set k := k + 1 and go to Step 1.

From Proposition 3.2, we know that for any V ∈ �Hp(z) with z=(ε, x) ∈ R++×Rn, there exists a W=(u(z) W(z)) ∈
��p(z) with u(z) ∈ Rn and W(z) ∈ Rn×n such that

V =
(

1 0
u(z) W(z)

)
. (24)

Suppose that F is a P0-function. Then by Lemma 2.1 F ′
ε(x) is a P -matrix. Hence, for any x ∈ Rn and ε > 0, W(z) is

nonsingular by the proof of Proposition 2 of [20]. It thus follows that all V ∈ �Hp(z) with z = (ε, x) ∈ R++ × Rn

are nonsingular. Therefore, the Newton step in (22) is well-defined, and moreover, from (22), for any k�0 and εk > 0,
there exists a Wk ∈ ��p(zk) such that

(∇�p(zk))T�zk = �p(zk)TWk�zk = −�p(zk)T�p(zk) = −2�p(zk). (25)

Using the equality and Proposition 4.1, we next show that Algorithm 4.1 is well-defined.

Proposition 4.2. Suppose that F is a P0-function and zk = (εk, xk) ∈ R++ × Rn for k�0. Then zk+1 ∈ R++ × Rn

and Algorithm 4.1 is well-defined.

Proof. Since εk > 0, from the definition of 
(z) it follows that 
k =
(zk) > 0. From the first component in the relation
(22) in Algorithm 4.1, we have

εk + �εk = 
kε̄ �⇒ �εk = −εk + 
kε̄. (26)

Then, for any � ∈ [0, 1], there has

εk + ��εk = (1 − �)εk + �
kε̄ > 0. (27)

Thus, combining the fact that 
(z)�	Gp(z)1/2 with (22) and (27) yields that

(εk + ��εk)2 = [(1 − �)εk + �
kε̄]2

= (1 − �)2(εk)2 + 2(1 − �)�
kε
kε̄ + �2
2

kε̄
2

�(1 − �)2(εk)2 + 2�
kε
kε̄ + O(�2)

�(1 − �)2(εk)2 + 2�	Gp(zk)1/2‖Hp(zk)‖ε̄ + O(�2)

= (1 − 2�)(εk)2 + 2
√

2�	ε̄Gp(zk) + O(�2). (28)

Now, we define

�(�) := �p(zk + ��zk) − �p(zk) − �(∇�p(zk))T�zk .

Since �p is continuously differentiable at any zk ∈ R++ × Rn by Proposition 3.4, we obtain �(�)= o(�). On the other
hand, from (22) and (25) it follows that

1
2‖�p(zk + ��zk)‖2 = �p(zk + ��zk)

= �p(zk) + �(∇�p(zk))T�zk + �(�)

= �p(zk) − 2��p(zk) + o(�)

= (1 − 2�)�p(zk) + o(�) (29)



J. Chen, S. Pan / Journal of Computational and Applied Mathematics 220 (2008) 464–479 473

for any � ∈ [0, 1]. Therefore, using Eqs. (28) and (29), we obtain

Gp(zk + ��zk) = 1
2‖Hp(zk + ��zk)‖2

= 1
2 (εk + ��εk)2 + 1

2‖�p(zk + ��zk)‖2

� 1
2 (1 − 2�)(εk)2 + √

2�	ε̄Gp(zk) + (1 − 2�)�p(zk) + o(�)

�(1 − 2�)Gp(zk) + 2�	ε̄Gp(zk) + o(�)

= [1 − 2(1 − 	ε̄)�]Gp(zk) + o(�) (30)

for any � ∈ [0, 1]. The inequality (30) implies that there exists �̄ ∈ (0, 1] such that

Gp(zk + ��zk)�[1 − 2(1 − 	ε̄)�]Gp(zk) ∀� ∈ [0, �̄],
which indicates that Algorithm 4.1 is well-defined. �

Proposition 4.3. Suppose that F is a P0-function. For each k�0, if εk > 0 and zk ∈ �, then for any � ∈ [0, 1] such
that

Gp(zk + ��zk)�[1 − 2(1 − 	ε̄)�]Gp(zk), (31)

there holds that zk + ��zk ∈ �.

Proof. We prove this proposition by considering the following two cases:
Case (i): Gp(zk) > 1. Then 
k = 	. From zk ∈ � and 
(z) = 	 min{1, Gp(z)t }�	 for any z ∈ R+ × Rn, it follows

that for any � ∈ [0, 1],
(εk + ��εk) − 
(zk + ��zk)ε̄�(1 − �)εk + �
kε̄ − 	ε̄

�(1 − �)
kε̄ + �
kε̄ − 	ε̄

= 0. (32)

Case (ii): Gp(zk)�1. Then, for any � ∈ [0, 1] satisfying (31), we have

Gp(zk + ��zk)�[1 − 2(1 − 	ε̄)�]Gp(zk)�1. (33)

Therefore, for any � ∈ [0, 1] satisfying (31),


(zk + ��zk) = 	Gp(zk + ��zk)t .

Using the fact that zk ∈ � and the first inequality in (33), we then obtain that for any � ∈ [0, 1] satisfying (31),

(εk + ��εk) − 
(zk + ��zk)ε̄�(1 − �)εk + �
kε̄ − 	Gp(zk + ��zk)t ε̄

�(1 − �)
kε̄ + �
kε̄ − 	[1 − 2(1 − 	ε̄)�]tGp(zk)t ε̄

= 
kε̄ − 	[1 − 2(1 − 	ε̄)�]tGp(zk)t ε̄

= 	Gp(zk)t ε̄ − 	[1 − 2(1 − 	ε̄)�]tGp(zk)t ε̄

= 	{1 − [1 − 2(1 − 	ε̄)�]t }Gp(zk)t ε̄

�0. (34)

Combining (32) and (34) immediately yields the desired result. �

Proposition 4.4. Suppose that F is a P0-function. Then Algorithm 4.1 generates an infinite sequence {zk} with zk ∈ �
for all k and

0 < εk+1 �εk � ε̄ for all k. (35)
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Proof. Since z0 = (ε̄, x0) ∈ �, the first part of the conclusions follows by repeatedly resorting to Propositions 4.2 and
4.3. We next concentrate on the proof of (35). First, ε0 = ε̄ > 0. From the design of Algorithm 4.1 and the fact that

(z) = 	 min{1, Gp(z)t }�	 for any z ∈ R+ × Rn, it then follows that

ε1 = (1 − �l0)ε0 + �l0
(z0)ε̄�(1 − �l0)ε̄ + �l0	ε̄� ε̄.

Hence (35) holds for k = 0. Suppose that (35) holds for k = i − 1. We next prove that (35) holds for k = i. From the
design of Algorithm 4.1, we have

εi+1 = (1 − �li )εi + �li 
(zi)ε̄.

Noting that εi �
(zi)ε̄ since zi ∈ �, we then obtain

εi+1 �(1 − �li )εi + �li εi = εi

and

εi+1 �(1 − �li )
(zi)ε̄ + �li 
(zi)ε̄ = 
(zi)ε̄ > 0.

Therefore, (35) holds for k = i. We complete the proof. �

Now, using Propositions 3.5–3.7 and Proposition 4.4 and following the same arguments as in [30], we obtain the
following global convergence results of Algorithm 4.1.

Theorem 4.1. Suppose that F is a P0-function and the solution set S∗ of the NCP is nonempty and bounded. Then
the infinite sequence {zk} generated by Algorithm 4.1 is bounded and any accumulation point of {zk} is a solution of
H(z) = 0.

Theorem 4.2. Suppose that F is a monotone function and in Algorithm 4.1 the parameter t = 1
2 . Then if the iteration

sequence {zk} is bounded, then the solution set S∗ of the NCP is nonempty. Conversely, if the solution set S∗ of the
NCP is nonempty and F is Lipschitz continuous, then the infinite sequence {zk} generated by Algorithm 4.1 is bounded
and any accumulation point of {zk} is a solution of H(z) = 0.

In addition, using Proposition 3.1 and similar proof as for [30, Theorem 5.1], we obtain the following local superlinear
(quadratic) convergence results of Algorithm 4.1.

Theorem 4.3. Suppose that F is a P0-function and the solution set S∗ of the NCP is nonempty and bounded. Suppose
that z∗ := (ε∗, x∗) ∈ R × Rn is an accumulation point of the infinite sequence {zk} generated by Algorithm 4.1 and
all V ∈ �Hp(z∗) are nonsingular. Then the whole sequence {zk} converges to z∗ with

‖zk+1 − z∗‖ = o(‖zk − z∗‖), εk+1 = o(εk).

Furthermore, if F ′ is locally Lipschitz continuous around x∗, then

‖zk+1 − z∗‖ = O(‖zk − z∗‖2), εk+1 = O(εk)2.

Moreover, from Proposition 3.3, all the conclusions of Theorem 4.3 hold if the assumption that all V ∈ �Hp(z∗) are
nonsingular is replaced by that the NCP is R-regular at x∗.

5. Numerical experiments

We implemented Algorithm 4.1 by our codes in MATLAB 6.5 for almost all test problems except the unavailable
“pvg105” and “scarfbnum” with the starting points in MCPLIB [1]. All numerical experiments were done at a PC with
CPU of 2.8 GHz and RAM of 512 MB. Throughout the experiments, unless otherwise stated, we adopted the following
parameters for Algorithm 4.1:

� = 0.5, t = 1/2,  = 10−4, 	 = 0.5, ε̄ = 0.1.
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Fig. 1. The number of iterations vs. value of p for Example “bertsekas(3)”.

We terminated the iteration if one of the following conditions was satisfied:

(1) ‖Hp(zk)‖��1 and ‖ min{xk, F (xk)}‖��2;
(2) the step length �k = �lk is less than �min.
(3) the number of iteration exceeds kmax.

Among others, in our implementation the termination parameters were chosen as follows:

�1 = 10−10, �2 = 10−6, �min = 10−25 and kmax = 1000.

During the experiments, we incorporated some strategies to improve the numerical behavior of Algorithm 4.1 to some
extent. These strategies are well-accepted and used in basically all suitable implementations of complementarity solvers.
The first modification is in the line search step. We replaced the standard (monotone) Armijo-rule by nonmonotone line
search described in [35] to seek a suitable steplength, i.e., we computed the smallest nonnegative integer l such that

Gp(zk + �ldk)�Wk − 2(1 − 	ε̄)�lGp(zk)

for all k�0, where Wk is given by

Wk = (�k−1Qk−1Wk−1 + Gp(zk))/Qk

with

Qk = �k−1Qk−1 + 1.

In our implementation, we used W−1 = Gp(z0), Q−1 = 1, �−1 = 0.85 and �k ≡ 0.85.
The second modification is necessary since the mapping F is often not defined outside the positive orthant whereas

our algorithm assumes that F can be evaluated on the whole space Rn. Hence, in order to avoid possible domain
violations, we employed a simple backtracking strategy: Given an iterate zk = (εk, xk) ∈ R++ × Rn and a search
direction dk ∈ Rn+1, we first compute the exponent jk := min{0, 1, 2, . . . , } such that

F(xk + 
jk dk(2 : n + 1))
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Fig. 2. The number of iterations vs. value of p for Example “freebert(5)”.

Table 1
Numerical comparisons among �1.1,�2 and �5 for MCPLIB problems

Problem �1.1 �2 �5

Iter NF Gp(zf ) CPU Iter NF Gp(zf ) CPU Iter NF Gp(zf ) CPU

bertsekas (1) 60 171 9.83e-23 0.21 90 219 7.66e-24 0.26 91 231 3.14e-23 0.28
bertsekas (2) 49 157 4.65e-21 0.17 92 214 2.24e-23 0.28 104 257 1.10e-21 0.31
bertsekas (3) 144 344 2.74e-21 0.43 170 356 1.73e-23 0.48 162 386 9.05e-24 0.60
billups – – – – 234 2443 1.54e-21 0.67 357 8661 2.96e-23 2.23
colvdual (1) 29 67 2.39e-23 0.12 74 88 4.41e-21 0.23 151 219 3.45e-21 0.46
colvdual (2) 120 199 7.10e-24 0.40 279 283 4.90e-21 0.84 556 559 4.59e-21 1.60
colvnlp (1) 25 26 1.51e-21 0.06 67 70 8.61e-23 0.15 62 72 3.27e-22 0.15
colvnlp (2) 21 22 3.37e-21 0.06 38 40 1.65e-22 0.09 36 42 4.98e-21 0.09
cycle 9 11 2.81e-21 0.01 12 15 1.19e-23 0.01 12 14 1.84e-22 0.03
explcp 23 27 1.99e-21 0.07 24 25 6.51e-24 0.07 23 24 8.78e-22 0.04
freebert (1) 71 240 8.60e-23 0.26 82 193 6.79e-23 0.26 86 231 6.98e-22 0.28
freebert (2) 188 402 4.29e-21 0.56 202 365 2.63 e-23 0.54 203 410 3.37e-21 0.57
freebert (3) 78 222 1.70e-23 0.26 93 254 2.56e-22 0.31 96 258 2.57e-21 0.32
freebert (4) 60 171 9.83e-23 0.20 90 219 7.66e-24 0.26 91 231 3.14e-23 0.29
freebert (5) 188 399 8.38e-22 0.56 203 389 5.99e-23 0.56 206 429 9.90e-24 0.59
freebert (6) 69 206 2.41e-21 0.25 98 238 5.70e-22 0.28 101 269 1.82e-22 0.34
hanskoop (1) 207 208 4.92 e-21 0.64 222 229 4.48e-21 0.67 226 238 4.54e-21 0.78
hanskoop (2) 215 216 4.33e-21 0.65 233 235 4.67e-21 0.65 238 241 4.34e-21 0.79
hanskoop (3) 45 78 4.97e-21 0.15 33 35 4.11e-21 0.12 34 36 2.54e-21 0.12

exists and then take 
jk dk as the new search direction dk , where dk(2 : n + 1) denotes the vector composed of the last
n components of dk .

We first took the problems bertsekas (3) and freebert (5) for examples to test the performance of Algorithm 4.1
on different p. Figs. 1 and 2 depict how the number of iteration varies with the values of p. From the two figures, it
seems that the number of iteration will tend to having an increase when p becomes large. In addition, by our numerical
experiences, the algorithm will have worse robustness when p tends to 1. In view of these facts, we then compared
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Table 2
Numerical comparisons among �1.1,�2 and �5 for MCPLIB problems

Problem �1.1 �2 �5

Iter NF Gp(zf ) CPU Iter NF Gp(zf ) CPU Iter NF Gp(zf ) CPU

hanskoop (4) 89 90 4.08e-21 0.40 101 102 3.86e-21 0.31 114 133 4.55e-21 0.35
hanskoop (5) 14 15 1.27e-23 0.03 25 33 1.14e-23 0.07 16 17 5.61e-22 0.04
josephy (1) 11 12 2.96e-22 0.01 21 32 7.99e-22 0.03 11 14 3.59e-22 0.01
josephy (2) 11 14 2.98e-22 0.01 11 15 1.68e-22 0.03 11 17 1.83e-22 0.03
josephy (3) 15 16 4.37e-22 0.03 51 55 4.21e-22 0.04 40 43 4.56e-22 0.06
josephy (4) 9 10 3.12e-22 0.01 9 10 3.05e-21 0.01 9 10 4.99e-22 0.03
josephy (5) 9 10 1.54e-23 0.01 9 10 8.44e-24 0.01 8 9 9.19e-22 0.01
josephy (6) 11 14 1.62e-22 0.01 11 13 1.48e-23 0.01 10 12 7.00e-22 0.01
kojshin(1) 14 15 5.02e-22 0.01 14 17 1.17e-21 0.01 12 15 4.67e-22 0.01
kojshin(2) 12 15 1.30e-22 0.01 12 18 3.49e-21 0.01 10 15 2.88e-21 0.01
kojshin(3) 16 17 6.19e-23 0.02 17 18 3.49e-22 0.02 35 38 1.58e-22 0.04
kojshin(4) 9 10 1.49e-23 0.01 9 10 2.88e-22 0.01 9 10 1.47e-21 0.01
mathinum(1) 9 10 1.21e-21 0.01 9 10 1.83e-23 0.01 9 11 1.08e-21 0.01
mathinum(2) 11 13 1.14e-22 0.01 11 12 9.53e-24 0.01 10 11 1.29e-23 0.01
mathinum(3) 12 13 5.65e-23 0.01 12 15 1.61e-22 0.03 11 13 1.28e-23 0.01
mathinum(4) 12 14 1.69e-23 0.01 12 13 1.09e-22 0.01 11 12 3.66e-22 0.01
mathisum(1) 13 14 6.60e-24 0.02 11 12 5.33e-22 0.01 17 21 3.23e-22 0.03
mathisum(2) 11 12 3.91e-22 0.01 12 13 2.67e-21 0.01 12 13 6.64e-22 0.01
mathisum(3) 10 12 1.82e-21 0.01 10 11 1.77e-23 0.01 9 10 2.23e-21 0.01
mathisum(4) 12 13 3.52e-21 0.01 13 14 2.01e-23 0.02 12 13 8.49e-22 0.01

Table 3
Numerical comparisons among �1.1,�2 and �5 for MCPLIB problems

Problem �1.1 �2 �5

Iter NF Gp(zf ) CPU Iter NF Gp(zf ) CPU Iter NF Gp(zf ) CPU

nash(1) 13 14 9.68e-24 0.03 13 14 1.55e-23 0.03 12 13 4.90e-21 0.03
nash(2) 14 20 8.15e-24 0.03 15 26 2.62e-22 0.04 16 30 3.21e-22 0.04
pgvon106(1) 38 76 3.43e-21 1.06 109 152 3.86e-21 3.17 27 47 4.77e-21 0.73
pgvon106(2) 307 337 1.34e-21 9.06 248 278 2.39e-21 6.78 156 171 8.95e-23 3.98
pgvon106(3) 42 107 4.26e-21 1.25 172 235 5.39e-23 4.46 26 63 1.76e-22 0.76
powell(1) 10 11 3.75e-22 0.03 10 11 7.62e-22 0.03 10 11 4.38e-22 0.03
powell(2) 12 13 4.29e-21 0.04 13 14 1.10e-23 0.06 12 13 2.85e-21 0.05
powell(3) 14 15 3.85e-21 0.04 15 16 9.37e-23 0.04 15 16 4.17e-23 0.04
powell(4) 13 14 2.13e-21 0.04 14 15 3.61e-23 0.04 14 15 1.32e-23 0.04
scarfasum (1) 20 51 2.15e-21 0.09 21 53 1.31e-22 0.12 21 53 4.97e-23 0.09
scarfasum (2) 21 51 3.19e-21 0.11 20 51 3.85e-22 0.07 21 52 4.97e-23 0.07
scarfasum (3) 18 58 1.89e-23 0.14 20 23 1.30e-22 0.06 33 197 1.44e-21 0.35
scarfbsum (1) 17 22 1.09e-22 0.34 34 55 2.82e-23 0.35 13 15 3.21e-21 0.14
scarfbsum (2) 414 971 4.02e-21 3.36 624 2306 2.31e-21 5.58 788 2827 1.54e-21 7.01
sppe (1) 14 15 1.58e-21 0.06 14 15 7.13e-23 0.06 19 20 1.49e-21 0.07
sppe (2) 12 13 1.33e-22 0.04 13 14 3.12e-23 0.04 18 19 4.73e-22 0.06
tobin (1) 13 15 9.90e-23 0.07 18 20 3.46e-22 0.11 14 17 7.01e-24 0.12
tobin (2) 14 15 8.95e-23 0.11 13 15 3.79e-23 0.11 16 18 2.28e-23 0.12

the performance of Algorithm 4.1 on three specific p, i.e., p = 1.1, p = 2, and p = 5, for almost all test problems
from MCPLIB [1]. By doing this, we intend to examine from these numerical results whether the conclusion implied
by bertsekas (3) and freebert (5) holds true for other test problems. On the other hand, we wish to examine if the FB
NCP-function �2 is the best.

Computational results are summarized in Tables 1–3. In these tables, the first column lists the name of the problems
and the number of the starting point in MCPLIB, NF indicates the number of function evaluations of Gp for solving
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each problem, Iter denotes the number of iteration, Gp(zf ) represents the function value of Gp at the final iterate zf ,
and CPU records the CPU time in second for solving each problem.

The results listed in Tables 1–3 indicate that the regularization semismooth Newton algorithms based on the gen-
eralized FB functions �1.1, �2 and �5 work well and are able to solve almost all complementarity problems from
MCPLIB. More specifically, two problems (scarfanum and billups) fail for �1.1 and one problem (scarfanum) fails
for �2 and �5. Among others, when solving billups by the algorithm associated with �2, we used ε̄ = 0.5, and when
solving (scarfasum (1)) and (scarfasum (2)) by the algorithm associated with �1.1, and solving (scarfasum (3)) by the
algorithm with �5, we used ε̄ = 0.3. From Tables 1–3, it is not hard to see that the semismooth Newton algorithm
associated with p = 1.1 requires less iteration and function evaluation than the ones with p = 2 and p = 5 for almost all
test problems, whereas the algorithm associated with p = 2 requires less iteration and function evaluation than the one
with p = 5 for most of test problems. This implies that the regularization semismooth Newton algorithm associated
with a smaller p, for example p ∈ [1.1, 2], has better numerical behavior, and the generalized FB NCP-functions �p

with p ∈ [1.1, 2) can be used as the substitutions for the FB NCP function �2. Notice that the value of p can not be
too small since the semismooth Newton algorithm will have worse robustness for those p.

6. Conclusions

In this paper, we have considered a regularization semismooth Newton method based on the generalized FB NCP-
functions �p with p > 1 for the P0 nonlinear complementarity problems. The global convergence and local superlinear
(quadratic) convergence results are established by easy extensions of existing arguments in the regularization method
[30]. Our main concern is on the numerical side. The numerical results show that the algorithm associated with a smaller
p usually has better numerical behavior in terms of the number of iteration and function evaluations. Of course, the
value of p cannot be too small since the algorithm will have worse robustness when p approaches to 1. In addition,
the numerical results with the algorithm based on the three specific NCP-functions �1.1, �2 and �5 indicate that the
algorithm associated with �1.1 requires less iteration and function evaluation for almost all test problems, especially
for those difficult problems such as bertsekas, colvdual, pgvon106, and the generalized FB NCP-functions �p with
p ∈ [1.1, 2) can be used as the substitutions of the FB NCP-function �2.
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