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Abstract

We consider the Tikhonov regularization method for the second-order cone complementarity problem (SOCCP) with the
Cartesian P0-property. We show that many results of the regularization method for the P0-nonlinear complementarity problem
still hold for this important class of nonmonotone SOCCP. For example, under the more general setting, every regularized problem
has the unique solution, and the solution trajectory generated is bounded if the original SOCCP has a nonempty and bounded
solution set. We also propose an inexact regularization algorithm by solving the sequence of regularized problems approximately
with the merit function approach based on Fischer–Burmeister merit function, and establish the convergence result of the algorithm.
Preliminary numerical results are also reported, which verify the favorable theoretical properties of the proposed method.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

We consider the second-order cone complementarity problem (SOCCP) which is to find a point x ∈ Rn such that

x ∈ K, F(x) ∈ K, 〈x, F(x)〉 = 0, (1)

where 〈·, ·〉 represents the Euclidean inner product, F : Rn
→ Rn is a mapping assumed to be continuously

differentiable throughout this paper, and K is the Cartesian product of second-order cones (SOCs), also called Lorentz
cones [9]. In other words,

K = Kn1 ×Kn2 × · · · ×Knm , (2)

where m, n1, . . . , nm ≥ 1, n1 + n2 + · · · + nm = n, and

Kni :=

{
x = (x1, x2) ∈ R× Rni−1

| x1 ≥ ‖x2‖

}
∗ Corresponding author. Tel.: +86 02087110153; fax: +86 224556567.

E-mail addresses: shhpan@scut.edu.cn (S. Pan), jschen@math.ntnu.edu.tw (J.-S. Chen).
1 Member of Mathematics Division, National Center for Theoretical Sciences, Taipei Office.

0362-546X/$ - see front matter c© 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.na.2008.02.028

http://www.elsevier.com/locate/na
mailto:shhpan@scut.edu.cn
mailto:jschen@math.ntnu.edu.tw
http://dx.doi.org/10.1016/j.na.2008.02.028


1476 S. Pan, J.-S. Chen / Nonlinear Analysis 70 (2009) 1475–1491

with ‖ · ‖ denoting the Euclidean norm and K1 denoting the set of nonnegative reals R+. In what follows, we refer
(1) and (2) to the SOCCP(F). An important special case of (2) is K = Rn

+, the nonnegative orthant in Rn , which
corresponds to n1 = · · · = nm = 1 and m = n, and the SOCCP(F) reduces to the nonlinear complementarity
problem (NCP).

There exist various methods for solving the SOCCP(F). They include the smoothing Newton method [1,12], the
smoothing-regularization method [14], the merit function approaches [2,3], and the semismooth Newton method [17].
Most of these methods are proposed for the monotone SOCCP. In this paper, we will consider a particular method,
i.e. the Tikhonov regularization method, for a class of nonmonotone SOCCP.

It is well known that the Tikhonov regularization method is designed to deal with the ill-posed problems which
substitute the solution of the original problem with the solution of a sequence of well-posed problems whose solutions
converge to a solution of the original problem; see [11,20] and the references therein. In the context of SOCCPs, the
regularization scheme consists in solving a sequence of SOCCP(Fε):

x ∈ K, Fε(x) ∈ K, 〈x, Fε(x)〉 = 0, (3)

where ε is a positive parameter tending to zero and Fε : Rn
→ Rn is given by

Fε(x) := F(x)+ εx . (4)

The regularization scheme was considered by [14], where it was used only to guarantee that the proposed smoothing
algorithm could handle the monotone SOCCP. In this paper, we apply the regularization scheme for the SOCCP with
the Cartesian P0-property.

Specifically, paralleling to the classical results of regularization methods for convex optimization problems [6], we
try to generalize as much as possible the following results to the large class of SOCCP with F having the Cartesian
P0-property:

(a) The regularized problem SOCCP(Fε) has a unique solution x(ε) for every ε > 0.
(b) The trajectory x(ε) is continuous for ε > 0.
(c) For ε → 0, the trajectory x(ε) converges to the least l2-norm solution of SOCCP(F) if the SOCCP(F) has a

nonempty solution set, and otherwise it diverges.

In Section 3, we generalize the result (a) to the more general setting, and concentrate on the partial extension of
the results (b) and (c) in Section 4. Then, we propose an inexact regularization algorithm for the SOCCP(F) in
Section 5, and establish the corresponding convergence results. In Section 6, we report our numerical experience
with the algorithm for solving some linear SOCPs from the DIMACS library and some SOCCPs generated randomly
with the Cartesian P0-property, and make comparisons with the merit function approach [2] to verify the favorable
theoretical properties of the proposed method. Finally, we conclude this paper with several open questions.

Throughout this paper, Rn denotes the space of n-dimensional real column vectors, and Rn1×· · ·×Rnm is identified
with Rn1+···+nm . Thus, (x1, . . . , xm) ∈ Rn1×· · ·×Rnm is viewed as a column vector in Rn1+···+nm . For a differentiable
mapping F : Rn

→ Rn , F ′(x) ∈ Rn×n denotes the Jacobian matrix of F at x while ∇F(x) ∈ Rn×n denotes the
transpose Jacobian of F at x . If J and B are index sets such that J ,B ⊆ {1, 2, . . . ,m}, we denote MJ B by the
block matrix consisting of the submatrices M jk ∈ Rn j×nk of M with j ∈ J , k ∈ B, and xB by a vector consisting
of subvectors xi ∈ Rni with i ∈ B. Given x ∈ Rn , [x]+ and [x]− denote the minimum distance projection of x onto
K and −K, respectively. For a set S, the notation int(S) denotes the interior of S. We write F = (F1, . . . , Fm) with
Fi : Rn

→ Rni and Fε = (Fε,1, . . . , Fε,m) with Fε,i : Rn
→ Rni .

2. Preliminaries

We first review some basic concepts and properties related to the SOC Kl (l > 1), and then introduce the concepts
of Cartesian P-properties and P-properties for a matrix M ∈ Rn×n and a nonlinear transformation F : Rn

→ Rn ,
respectively.

For any x = (x1, x2), y = (y1, y2) ∈ R× Rl−1, define their Jordan product as

x ◦ y := (〈x, y〉, x1 y2 + y1x2) . (5)
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Write x + y to mean the usual componentwise addition of vectors and x2 to mean x ◦ x . Then ◦, + and e =
(1, 0, . . . , 0)T ∈ Rl have the following basic properties [9,12]: (1) e ◦ x = x for all x ∈ Rl . (2) x ◦ y = y ◦ x
for all x, y ∈ Rl . (3) x ◦ (x2

◦ y) = x2
◦ (x ◦ y) for all x, y ∈ Rl . (4) (x + y) ◦ z = x ◦ z + y ◦ z for all x, y, z ∈ Rl .

Notice that the Jordan product is not associative, but it is power associated, i.e.,x ◦ (x ◦ x) = (x ◦ x) ◦ x for all x ∈ Rl .
We stipulate x0

= e. Besides, Kl is not closed under Jordan product.
From [9,12], any vector x = (x1, x2) ∈ R× Rl−1 has the spectral factorization:

x = λ1(x) · u
(1)
x + λ2(x) · u

(2)
x , (6)

where λi (x) and u(i)x for i = 1, 2 are the spectral values and the associated spectral vectors given by

λi (x) = x1 + (−1)i‖x2‖, u(i)x =
1
2

(
1, (−1)i x̄2

)
, (7)

with x̄2 =
x2
‖x2‖

if x2 6= 0 and otherwise x̄2 being any vector in Rl−1 such that ‖x̄2‖ = 1. If x2 6= 0, the factorization

is unique. The spectral factorizations of x, x2 and x1/2 have various interesting properties; see [9,12]. Here we list
some that will be used later.

Property 2.1. For any x = (x1, x2) ∈ R × Rl−1, let λ1(x), λ2(x) and u(1)x , u(2)x be the spectral values and the
associated spectral vectors. Then, the following results hold:

(a) For any x ∈ Rl , x2
= [λ1(x)]2 u(1)x + [λ2(x)]2 u(2)x ∈ Kl .

(b) x ∈ Kl
⇐⇒ 0 ≤ λ1(x) ≤ λ2(x) and x ∈ int(Kl)⇐⇒ 0 < λ1(x) ≤ λ2(x).

(c) For any x ∈ Kl , x1/2
=
√
λ1(x) u(1)x +

√
λ2(x) u(2)x ∈ Kl .

(d) x ∈ Kl if and only if the symmetric matrix Lx :=

[
x1 xT

2
x2 x1 I

]
is positive semidefinite, and x ∈ int(Kl) if and only if

Lx is positive definite.

Next we present the definitions of Cartesian P-properties for a matrix M ∈ Rn×n , which are special cases of those
introduced by Chen and Qi [5] for a linear transformation.

Definition 2.1. A matrix M ∈ Rn×n is said to have

(a) the Cartesian P-property if for every nonzero z = (z1, . . . , zm) ∈ Rn with zi ∈ Rni , there exists an index
ν ∈ {1, 2, . . . ,m} such that 〈zν, (Mz)ν〉 > 0;

(b) the Cartesian P0-property if for every nonzero z = (z1, . . . , zm) ∈ Rn with zi ∈ Rni , there exists a ν ∈
{1, 2, . . . ,m} such that zν 6= 0 and 〈zν, (Mz)ν〉 ≥ 0.

Clearly, when m = n and n1 = · · · = nm = 1, M having the Cartesian P-property (or the Cartesian P0-property)
coincides with M being a P-matrix (or P0-matrix) introduced in [4]. Let M be an n × n matrix with elements mi j .
Then, M can be denoted by

M =


M11 M12 · · · M1m
M21 M22 · · · M2m
· · · · · · · · · · · ·

Mm1 Mm2 · · · Mmm

 , (8)

where Mνl for each ν = 1, . . . ,m and l = 1, . . . ,m is an nν × nl matrix consisting of those elements mk j with
k = nν−1 + 1, . . . , nν, j = n j−1 + 1, . . . , n j and n0 = 0. Let S be a proper subset of {1, 2, . . . ,m} and denote by
M(S) the matrix resulting from deleting the block matrix Mνl with ν and l complementary to those indicated by S
from M given as in (8). We call M(S) a principal block matrix of M . By Definition 2.1, it is not hard to verify that
every principal block matrix M(S) must have the Cartesian P-property if the matrix M has the Cartesian P-property.
When m = n and n1 = · · · = nm = 1, this reduces to the well-known fact that every principal submatrix of a
P-matrix is again a P-matrix. Particularly, assume that the matrix M , by rearrangement, is written as

M =

[
MJ J MJ B
MB J MB B

]
, (9)
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where J and B are index sets such that J ∪ B = {1, 2, . . . ,m} and J ∩ B = ∅. Then, when M has the Cartesian
P-property and MJ J is nonsingular, we have the following result, which can be regarded as an extension of the fact
that any Schur-complement of a P-matrix is also a P-matrix.

Proposition 2.1. Suppose that M defined as in (9) has the Cartesian P-property and the matrix MJ J is nonsingular.
Then its Schur-complement in the matrix M, i.e.

M̂J J = MB B − MB J (MJ J )
−1 MJ B

also has the Cartesian P-property.

Proof. Let yB be an arbitrary nonzero vector with the dimension same as MB B . Let xJ be a vector with the dimension
same as MJ J such that

MJ J xJ + MJ B yB = 0, (10)

or equivalently,

xJ = −(MJ J )
−1 MJ B yB. (11)

Let z = (xJ , yB) ∈ Rn . Then, z 6= 0. From Definition 2.1(a) and the given assumption that M has the Cartesian
P-property, there exists an index i ∈ {1, 2, . . . ,m} such that

〈zi , (Mz)i 〉 > 0. (12)

Notice that the index i must belong to the set B. If not, i.e. i ∈ J , then from the definition of M we learn that
inequality (12) is equivalent to

〈xi , [MJ J xJ + MJ B yB]i 〉 > 0,

which obviously contradicts equality (10). Now (12) is equivalent to

〈yi , [MB J xJ + MB B yB]i 〉 > 0.

Using the inequality and Eq. (11), we immediately have that

〈yi , [M̂J J yB]i 〉 = 〈yi , [MB B yB − MB J (MJ J )
−1 MJ B yB]i 〉

= 〈yi , [MB B yB + MB J xJ ]i 〉 > 0.

Thus, by Definition 2.1(a), the matrix M̂J J has the Cartesian P-property. �

Definition 2.2 ([13]). A matrix M ∈ Rn×n is said to have

(a) the Jordan P-property (or the P1-property) if x ◦ (Mx) ∈ −K ⇒ x = 0;
(b) the P-property if the condition that Lxi L(Mx)i = L(Mx)i Lxi , i = 1, 2, . . . ,m and x ◦ (Mx) ∈ −K necessarily

implies x = 0;
(c) the P0-property if M + ε I for any ε > 0 has the P-property.

Proposition 2.2. (a) If a matrix M ∈ Rn×n has the Cartesian P-property, then it also has the Jordan P-property and
the P-property.

(b) If a matrix M ∈ Rn×n has the Cartesian P0-property, then it has the P0-property.

Proof. (a) From Definition 2.2(a) and (b), it is not hard to see that the Jordan P-property implies the P-property.
Therefore, we only need to prove that the Cartesian P-property implies the Jordan P-property. Let x =
(x1, . . . , xm) ∈ Rn with xi ∈ Rni be any vector such that x ◦ (Mx) ∈ −K. From the Cartesian structure of
K, we have

xi ◦ (Mx)i ∈ −Kni for i = 1, 2, . . . ,m,

which, by the definition of Jordan product given by (5), means that

〈xi , (Mx)i 〉 ≤ 0 for all i = 1, 2, . . . ,m. (13)
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Now, suppose that x 6= 0. Then, from Definition 2.1(a), it follows that there exists an index ν ∈ {1, 2, . . . ,m} such
that 〈xν, (Mx)ν〉 > 0, which clearly contradicts (13). Hence, M has the Jordan P-property.

(b) Observe that for any ε > 0, M + ε I has the Cartesian P-property. By part (a) and Definition 2.2(c), M has the
P0-property. �

The Cartesian P0-property may not imply the P-property. For example, let m = 2 and n1 = n2 = 2, and consider

M =


1 1 0 0
1 1 0 0
0 0 2 2
0 0 2 2

 and x =


−2
2
−1
1

 .
It is easy to verify that M has the Cartesian P0-property, x ◦ (Mx) = (0, 0, 0, 0) ∈ −K = −(K2

× K2) and
Lx L Mx = L Mx Lx = 0, but x 6= 0, i.e., M has no P-property. Now, we are not clear whether the P-property implies
the Cartesian P0-property.

Next we introduce definitions of Cartesian P-properties for a nonlinear mapping F : Rn
→ Rn in the setting of

SOCs. The concepts of P-properties on Cartesian products in Rn were first established by Facchinei and Pang [10].
Recently, Chen and Qi [5] and Kong et al. [15] extended the concepts of Cartesian P-properties to the setting of
positive semidefinite cones and the general Euclidean Jordan algebra, respectively.

Definition 2.3. A nonlinear mapping F = (F1, . . . , Fm) with Fi : Rn
→ Rni is said to

(a) have the uniform Cartesian P-property if there exists a constant ρ > 0 such that, for any x, y ∈ Rn , there is an
index ν ∈ {1, 2, . . . ,m} such that

〈xν − yν, Fν(x)− Fν(y)〉 ≥ ρ‖x − y‖2;

(b) have the Cartesian P-property if for any x, y ∈ Rn with x 6= y, there exists an index ν ∈ {1, 2, . . . ,m} such that

〈xν − yν, Fν(x)− Fν(y)〉 > 0;

(c) have the Cartesian P0-property if for any x, y ∈ Rn with x 6= y, there exists an index ν ∈ {1, 2, . . . ,m} such that

xν 6= yν and 〈xν − yν, Fν(x)− Fν(y)〉 ≥ 0.

(d) have the Cartesian R02-property if for any sequence {xk
} satisfying the condition that

‖xk
‖ → +∞,

[−xk
]+

‖xk‖
→ 0,

[−F(xk)]+

‖xk‖
→ 0, (14)

there exists an index ν ∈ {1, 2, . . . ,m} such that

lim inf
k→+∞

λ2
[
Fν(xk) ◦ xk

ν

]
‖xk
ν‖

2 > 0.

By Definition 2.3, it is not difficult to verify the following one-way implications:
Uniform Cartesian P-property⇒ Cartesian P-property⇒ Cartesian P0-property,

Uniform CartesianP-property ⇒ Cartesian R02-property.

Moreover, we see that, when m = 1, the Cartesian P-property (or the Cartesian P0-property) of F becomes the strict
monotonicity (or monotonicity) of F . If the continuously differentiable mapping F has the Cartesian P-property (or
P0-property), then its transposed Jacobian matrix ∇F(x) at any x ∈ Rn has the corresponding Cartesian P-properties.
When F degenerates into the affine function Mx + q , F having the uniform Cartesian P-property coincides with M
having the Cartesian P-property. In addition, by Definition 2.3(b)–(c), we readily have the following result.

Proposition 2.3. For any ε > 0, let Fε : Rn
→ Rn be given as in (4). If F has the Cartesian P0-property, then Fε

will have the Cartesian P-property.
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It should be pointed out that, when F has the Cartesian P-property, Fε must not have the uniform Cartesian P-
property. A counterexample is given by [11] for the case m = 1.

Finally, paralleling to Definition 2.2, we have the concepts of P-properties for a nonlinear mapping in the setting
of SOCs, which are special cases of those given by [23].

Definition 2.4. A nonlinear mapping F = (F1, . . . , Fm) : Rn
→ Rn is said to have

(a) the Jordan P-property if (x − y) ◦ (F(x)− F(y)) ∈ −K ⇒ x = y;
(b) the P-property if the condition that Lxi−yi L Fi (x)−Fi (y) = L Fi (x)−Fi (y)Lxi−yi , i = 1, 2, . . . ,m and (x − y) ◦

(F(x)− F(y)) ∈ −K implies x = y;
(c) the P0-property if F(x)+ εx has the P-property for all ε > 0.

Proposition 2.4. (a) If a mapping F : Rn
→ Rn has the Cartesian P-property, then it must have the Jordan P-

property and the P-property.
(b) If a mapping F : Rn

→ Rn has the Cartesian P0-property, then it must have the P0-property.

Proof. The proof is similar to that of Proposition 2.2, and we omit it. �

3. Existence of regularized solutions

In this section, we show that the regularized problem SOCCP(Fε) has a unique solution x(ε) for every ε > 0 under
the Cartesian P0-property of F and the following condition:

Condition A. For any sequence {xk
} ⊆ Rn , when there exists i ∈ {1, 2, . . . ,m} such that λ2(xk

i )→ +∞, {Fε,i (xk)}

is bounded below, and
{
‖Fi (xk )‖

‖xk
i ‖

}
is unbounded, there holds that

lim sup
k→+∞

〈
xk

i

‖xk
i ‖
,

Fi (xk)

‖Fi (xk)‖

〉
> 0.

The main tool to prove this result is the Fischer–Burmeister (FB) SOC complementarity function. The FB function
was first introduced by Fischer [7,8], which plays a crucial role in the design of several nonsmooth Newton methods
and merit function methods for the solution of NCPs. Recently, the function was extended to the setting of semidefinite
complementarity problems [21,22] and SOCCPs [2], respectively.

Definition 3.1. A mapping φ : Rl
× Rl

→ Rl is called an SOC complementarity function associated with the SOC
Kl if for any x, y ∈ Rl ,

φ(x, y) = 0⇐⇒ x ∈ Kl , y ∈ Kl , 〈x, y〉 = 0. (15)

The FB SOC complementarity function associated with Kl is defined as follows:

φFB(x, y) := (x2
+ y2)1/2 − (x + y), ∀ (x, y) ∈ Rl

× Rl . (16)

By Property 2.1(a)–(c), clearly, the function φFB is well defined in Rl
× Rl . Moreover, it was shown in [12] that φFB

satisfies the characterization (15). With the vector-valued function, Chen and Tseng [2] proposed a merit function
approach for the SOCCP, and we recently developed a semismooth Newton method in [17]. In this section, we mainly
employ the function as a theoretical tool. Define the operator ΦFB : Rn

→ Rn by

ΦFB(x) :=

 φFB(x1, F1(x))
...

φFB(xm, Fm(x))

 , (17)

which induces a natural merit function ΨFB : Rn
→ R+ given by

ΨFB(x) :=
1
2
‖ΦFB(x)‖

2
=

1
2

m∑
i=1

‖φFB(xi , Fi (x))‖
2 . (18)
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The following proposition summarizes some important properties of ΨFB. Since their proofs are direct or can be found
in [2,17], here we omit them.

Proposition 3.1. Let ΨFB : Rn
→ R+ be given as in (18). Then, the following results hold.

(a) x∗ is a solution of the SOCCP(F) if and only if x∗ solves the system ΦFB(x) = 0.
(b) ΨFB is continuously differentiable everywhere on Rn .
(c) If F has the Cartesian P0-property, then every stationary point of ΨFB is a solution of the SOCCP(F).

Analogously, for the SOCCP(Fε), we define the operator Φε : Rn
→ Rn by

Φε(x) :=

 φFB(x1, Fε,1(x))
...

φFB(xm, Fε,m(x))

 , (19)

where Fε,i : Rn
→ Rni denotes the i th subvector of Fε. The natural merit function Ψε : Rn

→ R+ corresponding to
Φε is then given by

Ψε(x) :=
1
2
‖Φε(x)‖2 =

1
2

m∑
i=1

∥∥φFB(xi , Fε,i (x))
∥∥2
. (20)

The following lemma plays a crucial role in proving the main result of this section. Since the proof can be found
in Lemma 5.2 of [17], here we omit it.

Lemma 3.1. Let φFB be defined as in (16). For any sequence {(xk, yk)} ⊆ Rl
× Rl , let λk

1 ≤ λ
k
2 and µk

1 ≤ µ
k
2 denote

the spectral values of xk and yk , respectively.

(a) If λk
1 →−∞ or µk

1 →−∞, then ‖φFB(xk, yk)‖ → +∞.

(b) If {λk
1} and {µk

1} are bounded below, but λk
2 → +∞, µk

2 → +∞, and xk

‖xk‖
◦

yk

‖yk‖
9 0, then ‖φFB(xk, yk)‖ →

+∞.

Proposition 3.2. Suppose that F : Rn
→ Rn has the Cartesian P0-property and satisfies Condition A. Then the

function Ψε given by (20) for any ε > 0 is coercive, i.e.,

lim
‖xk‖→∞

Ψε(x
k) = +∞.

Proof. Suppose by contradiction that the conclusion does not hold. Then we can find an unbounded sequence
{xk
} ⊆ Rn with xk

= (xk
1 , . . . , xk

m) and xk
i ∈ Rni such that the sequence {Ψε(xk)} is bounded. Define the index

set

J :=
{

i ∈ {1, 2, . . . ,m} | {‖xk
i ‖} is unbounded

}
.

Since {xk
} is unbounded, J 6= ∅. Subsequencing if necessary, we assume without loss of generality that {‖xk

i ‖} →

+∞ for all i ∈ J . For each i ∈ J , we define

Ji :=

{
ν ∈ {1, 2, . . . , ni } | {|x

k
iν |} is unbounded

}
.

Let {yk
} be a bounded sequence with yk

= (yk
1 , . . . , yk

m) and yk
i ∈ Rni defined as follows:

yk
iν =

{
0 if i ∈ J and ν ∈ Ji ;

xk
iν otherwise.

From the definition of {yk
} and the Cartesian P0-property of F , it follows that

0 ≤ max
1≤l≤m

〈
xk

l − yk
l , Fl(x

k)− Fl(y
k)
〉

=

〈
xk

i − yk
i , Fi (x

k)− Fi (y
k)
〉
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≤ ni max
ν∈Ji

xk
iν

[
Fiν(x

k)− Fiν(y
k)
]

= ni xk
i j

[
Fi j (x

k)− Fi j (y
k)
]
, (21)

where i is an index from J for which the first maximum is attained, and j is an index from Ji for which the second
maximum is attained. Without loss of generality, we assume that i and j are independent of k. Since i ∈ J and j ∈ Ji ,

|xk
i j | → +∞. (22)

We now consider the two cases where xk
i j →+∞ and xk

i j →−∞, respectively.

Case (1): xk
i j → +∞. In this case, since Fi j (yk) is bounded by the continuity of Fi j (y), inequality (21) implies that

Fi j (xk) does not tend to −∞. This in turn implies that{
Fi j (x

k)+ εxk
i j

}
→ +∞. (23)

Case (2): xk
i j → −∞. Now, using inequality (21) and the boundedness of Fi j (yk) immediately yields that Fi j (xk)

does not tend to +∞. This in turn implies that{
Fi j (x

k)+ εxk
i j

}
→ −∞. (24)

From Eq. (22)–(24) and the definition of Fε,i (x), we thus obtain that

‖xk
i ‖ → +∞, ‖Fε,i (x

k)‖ → +∞. (25)

If λ1(xk
i ) → −∞ or λ1[Fε,i (xk)] → −∞, then from Lemma 3.1(a) we readily obtain that ‖φFB(xk

i , Fε,i (xk))‖ →

+∞. Otherwise, Eq. (25) implies that {xk
i } and {Fε,i (xk)} are bounded below, but λ2(xk

i )→+∞ and λ2[Fε,i (xk)] →

+∞. We next prove that

lim
k→+∞

xk
i

‖xk
i ‖
◦

Fε,i (xk)

‖Fε,i (xk)‖
9 0, (26)

and consequently from Lemma 3.1(b) it follows that ‖φFB(xk
i , Fε,i (xk))‖ → +∞. From the first two equations of

(21) and the boundedness of {yk
} and {Fi (yk)}, it is not hard to verify that 〈

xk
i
‖xk

i ‖
,

Fi (xk )

‖Fε,i (xk )‖
〉 ≥ 0 for all sufficiently

large k. Notice that〈
xk

i

‖xk
i ‖
,

Fε,i (xk)

‖Fε,i (xk)‖

〉
=

〈
xk

i

‖xk
i ‖
,

Fi (xk)

‖Fε,i (xk)‖

〉
+

ε‖xk
i ‖

‖Fε,i (xk)‖
, ∀ k. (27)

Therefore, if the sequence
{
‖Fi (xk )‖

‖xk
i ‖

}
is bounded, then equality (27) implies that

lim sup
k→+∞

〈
xk

i

‖xk
i ‖
,

Fε,i (xk)

‖Fε,i (xk)‖

〉
> 0. (28)

If the sequence
{
‖Fi (xk )‖

‖xk
i ‖

}
is unbounded, then using Condition A and equality (27), it is easy to verify that (28) also

holds. Clearly, Eq. (28) implies (26), and we thus get ‖φFB(xk
i , Fε,i (xk))‖ → +∞. This contradicts the boundedness

of {Ψε(xk)}. �

Proposition 3.2 states that under Condition A and the Cartesian P0-property of F the level set

Lγ (x) := {x ∈ Rn
| Ψε(x) ≤ γ } (29)

is bounded for every γ ≥ 0. Now we are in a position to prove the following main result. Notice that, when
m = n and n1 = · · · = nm = 1, the Cartesian P0-property of F is equivalent to requiring that F is P0-function;
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whereas Condition A automatically holds since the assumption that λ2(xk
i )→+∞, {Fε,i (xk)} is bounded below, and{

‖Fi (xk )‖

‖xk
i ‖

}
is unbounded implies that there exists a subsequence {xk

i }k∈K satisfying xk
i → +∞ and Fi (xk) → +∞

for k ∈ K , and consequently lim supk→∞

〈
xk

i
‖xk

i ‖
,

Fi (xk )

‖Fi (xk )‖

〉
> 0. Thus, the assertion of Proposition 3.2 reduces to that

of [11, Proposition 3.4].

Theorem 3.1. Assume that the mapping F : Rn
→ Rn has the Cartesian P0-property and satisfies Condition A. Then

for every ε > 0 the problem SOCCP(Fε) has a unique bounded solution x(ε).

Proof. Let ε > 0. Then the mapping Fε has the Cartesian P-property by Proposition 2.3. This means that the
regularized problem SOCCP(Fε) has at most one solution. In fact, suppose that x(ε) and x̂(ε) are two different
solutions of the SOCCP(Fε). From the Cartesian P-property of Fε, it then follows that there exists an index
i ∈ {1, 2, . . . ,m} such that

0 < 〈xi (ε)− x̂i (ε), Fε,i (x(ε))− Fε,i (x̂(ε))〉

= 〈xi (ε), Fε,i (x(ε))〉 − 〈xi (ε), Fε,i (x̂(ε))〉

− 〈x̂i (ε), Fε,i (x(ε))〉 + 〈x̂i (ε), Fε,i (x̂(ε))〉

= −〈xi (ε), Fε,i (x̂(ε))〉 − 〈x̂i (ε), Fε,i (x(ε))〉, (30)

where the last equality is due to 〈xi (ε), Fε,i (x(ε))〉 = 0 and 〈x̂i (ε), Fε,i (x̂(ε))〉 = 0. Note that the two terms on the
right-hand side of (30) are nonpositive since xi (ε), x̂i (ε) ∈ Kni and Fε,i (x(ε)), Fε,i (x̂(ε)) ∈ Kni . Thus, we obtain a
contradiction with inequality (30).

To prove the existence of a solution, let x0
∈ Rn be an arbitrary point and define γ := Ψε(x0). By Proposition 3.2,

the corresponding level set Lγ (x) is nonempty and compact. Therefore, the continuous function Ψε(x) attains a
global minimum x(ε) on Lγ (x) which, by the definition of level sets, is also a global minimum of Ψε(x) on
Rn . Therefore, x(ε) is a stationary point of Ψε(x). Since the mapping Fε has the Cartesian P-property, we have
from Proposition 3.1(c) that x(ε) is a solution of the regularized problem SOCCP(Fε). Furthermore, this solution is
bounded. Combining with the discussions above, we complete the proof. �

4. Behaviour of the solution path

From Theorem 3.1, we learn that the regularized problem SOCCP(Fε) for every ε > 0 has a unique solution x(ε)
when the mapping F has the Cartesian P0-property and satisfies Condition A. Thus, as the parameter ε tends to 0, the
solution of the regularized problem SOCCP(Fε) generates a solution path P := {x(ε) | ε > 0}. The aim of this section
is to study the properties of the trajectory P . Specifically, we prove that, if F has the uniform Cartesian P-property,
the path P is bounded as ε → 0 and the bound is dependent on the constant ρ involved in the uniform Cartesian
P-property. We also illustrate that in this case the path P is not locally Lipschitz continuous as ε → 0. Then, for the
case that F has the Cartesian P0-property and satisfies Condition A, we provide the condition to guarantee that x(ε)
remains bounded as ε → 0. The reason why we are interested in the boundedness of x(ε) is due to the following
evident result.

Theorem 4.1. Let {εk} be a sequence of positive values converging to 0. If {x(εk)} converges to a point x̄ , then x̄
solves the SOCCP(F).

The following proposition states that the solution x(ε) of SOCCP(Fε) is bounded for any ε ≥ 0 if F has the uniform
Cartesian P-property, but the bound is dependent on the constant ρ involved in the uniform Cartesian P-property.

Proposition 4.1. Suppose that F has the uniform Cartesian P-property. Then, for any ε ≥ 0, we have

‖x(ε)‖ ≤ ρ−1
‖[−F(0)]+‖, (31)

where ρ > 0 is the constant involved in the uniform Cartesian P-property.
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Proof. Since the uniform Cartesian P-property implies the Cartesian R02-property and the P-property, from
[23, Theorem 3.1] and the proof of Proposition 4.3(b) below, it follows that x(ε) exists for any ε ≥ 0. If x(ε) ≡ 0
for any ε ≥ 0, then inequality (31) is direct. Suppose that x(ε) 6= 0 for some ε ≥ 0. Since x(ε) is the solution of the
SOCCP(Fε), it follows that

xi (ε) ∈ Kni , Fε,i (x(ε)) ∈ Kni and
〈
xi (ε), Fε,i (x(ε))

〉
= 0, i = 1, 2, . . . ,m.

By this and the uniform Cartesian P-property of F , we have that

ρ‖x(ε)‖2 ≤ max
1≤i≤m

〈xi (ε), Fi (x(ε))− Fi (0)〉

= max
1≤i≤m

〈xi (ε), − εxi (ε)− Fi (0)〉

≤ max
1≤i≤m

〈xi (ε),−Fi (0)〉

≤ max
1≤i≤m

〈xi (ε), [−Fi (0)]+〉

≤ ‖x(ε)‖‖[−Fi (0)]+‖,

where the third inequality is since xi (ε) ∈ Kni , −Fi (0) = [−Fi (0)]+ + [−Fi (0)]− and [−Fi (0)]− ∈ −Kni . This
leads to the desired result. �

Remark 4.1. (a) From Proposition 4.1, when F has the uniform Cartesian P-property, the SOCCP(F) has a unique
bounded solution. Furthermore, if F(0) ∈ K, the regularized problem SOCCP(Fε) for every ε ≥ 0 has the unique
solution x(ε) = 0.

(b) When F is an affine function Mx+q with M ∈ Rn×n and q ∈ Rn , the assumption of Proposition 4.1 is equivalent
to requiring that M has the Cartesian P-property.

Proposition 4.2. Suppose that F has the uniform Cartesian P-property. Then, for any ε1, ε2 ≥ 0, there holds that

‖x(ε1)− x(ε2)‖ ≤ ρ
−1
‖ε1x(ε1)− ε2x(ε2)‖, (32)

where ρ > 0 is the constant same as Proposition 4.1.

Proof. Without loss of generality, we assume that ε1 6= ε2. Let

y(ε1) := Fε1(x(ε1)), y(ε2) := Fε2(x(ε2)).

Since x(ε1) and x(ε2) are the solutions of the problem SOCCP(Fε1 ) and SOCCP(Fε2 ), respectively, we have
xi (ε1), yi (ε1) ∈ Kni with 〈xi (ε1), yi (ε1)〉 = 0 and xi (ε2), yi (ε2) ∈ Kni with 〈xi (ε2), yi (ε2)〉 = 0 for all
i = 1, 2, . . . ,m. From this, it then follows that

〈xi (ε1)− xi (ε2), Fi (x(ε1))− Fi (x(ε2))〉 = 〈xi (ε1)− xi (ε2), yi (ε1)− ε1xi (ε1)− yi (ε2)+ ε2xi (ε2)〉

= −〈xi (ε1), yi (ε2)〉 − 〈xi (ε2), yi (ε1)〉 + 〈xi (ε1)− xi (ε2), ε2xi (ε2)− ε1xi (ε1)〉

≤ 〈xi (ε1)− xi (ε2), ε2xi (ε2)− ε1xi (ε1)〉,

where the inequality holds since −〈xi (ε1), yi (ε2)〉 ≤ 0 and −〈xi (ε2), yi (ε1)〉 ≤ 0. Using the last inequality and the
uniform Cartesian P-property of F , we have that

ρ‖x(ε1)− x(ε2)‖
2
≤ max

1≤i≤m
〈xi (ε1)− xi (ε2), Fi (x(ε1))− Fi (x(ε2))〉

≤ max
1≤i≤m

〈xi (ε1)− xi (ε2), ε2xi (ε2)− ε1xi (ε1)〉 ,

≤ max
1≤i≤m

‖xi (ε1)− xi (ε2)‖ ‖ε2xi (ε2)− ε1xi (ε1)‖

≤ ‖x(ε1)− x(ε2)‖ ‖ε2x(ε2)− ε1x(ε1)‖ ,

which immediately implies the desired result. Thus, we complete the proof. �

Propositions 4.1 and 4.2 characterize some properties of the path P as ε → 0 under the uniform Cartesian P-
property of F . However, these results cannot imply the locally Lipschitz continuity of P as ε → 0. The following
counterexample illustrates the fact.
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Example 4.1. Let m = 2 and n1 = n2 = 2. Let F be given by F(x) = Mx + q, where

M =


1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2

 , q =


−

1+ ε
ε

0
0
0

 for any given ε > 0.

Since the matrix M has the Cartesian P-property, the mapping F has the uniform Cartesian P-property. For the
SOCCP(Fε), i.e., to find x such that

x ∈ K2
×K2, Fε(x) ∈ K2

×K2, 〈x, Fε(x)〉 = 0,

we can verify that x(ε) = (1/ε, 0, 0, 0)T is the unique solution. Obviously, x(ε) is not locally Lipschitz continuous as
ε→ 0, and furthermore, x(ε) even has no bound.

Next, we concentrate on the case where F has the Cartesian P0-property and satisfies Condition A. Under this
case, we cannot prove the continuity of the mapping ε → x(ε) at any ε > 0 like the NCP case. The main reason is
that we cannot obtain the result corresponding to Theorem 3.1 of [16] under the Cartesian P-property of F , although
when ∇F(x) has the Cartesian P-property, its every principal block matrix has the Cartesian P-property, and the
Schur-complement of a matrix with the Cartesian P-property also has the Cartesian P-property by Proposition 2.1.
For this case, we can state the following result, whose proof will be postponed until the next section.

Theorem 4.2. Suppose that F has the Cartesian P0-property and satisfies Condition A. If the solution set S∗ of the
SOCCP(F) is nonempty and bounded, then the path Pε̄ = {x(ε) | ε ∈ (0, ε̄ ]} is bounded for any ε̄ > 0 and

lim
ε↓0

dist
(
x(ε) | S∗

)
= 0.

As an immediate consequence of Theorem 4.2, we have the following conclusion.

Corollary 4.1. Suppose that F has the Cartesian P0-property and satisfies Condition A. If the SOCCP(F) has a
unique solution x̄ , then limε↓0 x(ε) = x̄ .

As illustrated by Example 4.6 of [11], it is impossible to remove the boundedness assumption of S∗ without
destroying the boundedness of the path Pε̄. To this end, we next provide some conditions to guarantee the
nonemptyness and boundedness of S∗.

Proposition 4.3. The SOCCP(F) has a nonempty and bounded solution set S∗ under one of the following conditions:

(a) F is monotone, and the SOCCP(F) is strictly feasible, i.e. there is x̄ ∈ Rn satisfying x̄, F(x̄) ∈ int(K).
(b) The mapping F has the P0-property and the Cartesian R02-property.

Proof. (a) Since F(x) is monotone and ∇F(x) is positive semidefinite, the result is direct by Proposition 6 of [2].
(b) We prove that in this case a stronger result holds, that is, the following SOCCP(F, q)

x ∈ K, F(x)+ q ∈ K, 〈x, F(x)+ q〉 = 0 (33)

has a nonempty and bounded solution set for all q ∈ Rn . By Theorem 3.1 of [23], we only need to prove that for
any 4 > 0, the following set

{x : x solves (33) with ‖q‖ ≤ 4} (34)

is bounded. Suppose that the set is not bounded. Then there exists a sequence {qk
} with ‖qk

‖ ≤ 4 and a sequence
{xk
} with ‖xk

‖ → +∞ such that for any k,

xk
∈ K, yk

= F(xk)+ qk
∈ K and xk

◦ yk
= 0. (35)

Without loss of generality, we assume that ‖xk
i ‖ → +∞. This is equivalent to saying that for any k,

1
2

m∑
i=1

‖φFB(x
k
i , yk

i )‖
2
= 0. (36)
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Using Lemma 8 of [2] and the boundedness of qk , we then obtain that

‖xk
‖ → +∞, lim

k→+∞

[−xk
]+

‖xk‖
→ 0, lim

k→+∞

[−yk
]+

‖xk‖
→ 0, and lim

k→+∞

‖[qk
]+‖

‖xk‖
→ 0. (37)

Noting that

‖[qk
]+‖ = ‖[y

k
− F(xk)]+‖ ≥ ‖[−F(xk)]+‖,

where the inequality is due to [2, Lemma 7 (c)], we have from the last term in (37) that

lim
k→+∞

‖[−F(xk)]+‖

‖xk‖
→ 0.

This, together with the first two terms in (37), shows that {xk
} satisfies condition (14). By the Cartesian R02-

property of F , there exists ν ∈ {1, 2, . . . ,m} such that

lim inf
k→+∞

λ2[xk
ν ◦ Fν(xk)]

‖xk‖2
> 0.

However, from Eq. (35) and the boundedness of qk , we have

λ2[xk
ν ◦ Fν(xk)]

‖xk‖2
=
λ2[−xk

ν ◦ qk
ν ]

‖xk‖2
→ 0.

This leads to a contradiction. Consequently, the set defined by (34) is bounded. �

Notice that the Cartesian R02-property is implied by the R0-property in [23]. Hence, Proposition 4.3(b) provides a
weaker condition for S∗ being nonempty and bounded. By Theorem 3.1 and Propositions 4.3(b) and 2.4(b), we have
the following result.

Corollary 4.2. Suppose that F has the Cartesian P0-property and the Cartesian R02-property and satisfies
Condition A. Then the path Pε̄ = {x(ε) | ε ∈ (0, ε̄ ]} is bounded for any ε̄ > 0 and limε↓0 dist (x(ε) | S∗) = 0.

5. Inexact regularization method

The discussions from the last two sections show that the original SOCCP(F) can be solved by calculating the exact
solutions of a sequence of regularized problems SOCCP(Fε). However, in practice, it is usually not possible to solve
the SOCCP(Fε) exactly for each ε > 0. In this section, we propose an inexact regularization algorithm which only
requires inexact solutions of these subproblems, but preserves all convergence properties of its exact counterpart. First,
let us describe the specific algorithm.

Algorithm 5.1 (Inexact Regularization Method).

(S.0) Choose ε0 > 0 and τ0 > 0, and set k := 0.
(S.1) Compute an approximate solution xk of SOCCP (Fε) such that

Ψε(x
k) ≤ τk . (38)

(S.2) Terminate the iteration if a suitable criterion is satisfied.
(S.3) Choose εk+1 > 0 and τk+1 > 0, set k := k + 1, and go to (S.1).

Clearly, if we take τk = 0 at each iteration, then xk
= x(εk). In addition, the point xk can be easily obtained by

applying any effective gradient-type unconstrained optimization algorithm to the minimization problem

min
x∈Rn

Ψε(x), (39)

because Ψε(x) is continuously differentiable everywhere and has bounded level sets for those SOCCPs with F having
the Cartesian P0-property and satisfying Condition A. In our numerical experiments, we adopt the BFGS algorithm
to compute xk .

The following well-known Mountain Pass Theorem [18] will be used in the convergence analysis of Algorithm 5.1.
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Lemma 5.1. Suppose that f : Rn
→ R is smooth and coercive. Let C ⊆ Rn be a nonempty compact set and denote

c̄ by the least value of f on the boundary of C, i.e. c̄ := minx∈∂C f (x). If there are two points a ∈ C and b 6∈ C such
that f (a) < c̄ and f (b) < c̄, then there exists a point z ∈ Rn such that ∇ f (z) = 0 and f (z) ≥ c̄.

Now we establish the convergence results of Algorithm 5.1. To this end, assume that Algorithm 5.1 generates an
infinite sequence so that the termination criterion in (S.2) is never active. The analysis technique adopted is similar to
that of [11].

Theorem 5.1. Let F be the mapping having the Cartesian P0-property and satisfying Condition A. Assume that the
solution set S∗ of the SOCCP(F) is nonempty and bounded. If εk → 0 and τk → 0, then the sequence {xk

} generated
by Algorithm 5.1 remains bounded, and every accumulation point of {xk

} is a solution of the SOCCP(F).

Proof. Suppose that the sequence {xk
} is unbounded. Then, passing to a subsequence if necessary, we assume that

{‖xk
‖} → +∞. This, together with the boundedness of S∗, means that there exists a compact set C ⊆ Rn with

S∗ ⊂ intC and xk
6∈ C for sufficiently large k. Let x∗ ∈ S∗ be a solution of the SOCCP(F). Then we have

ΨFB(x
∗) = 0 and c̄ := min

x∈∂C
ΨFB(x) > 0. (40)

Let δ := c̄/4. Notice that Ψε(x) viewed as the function of x and ε is continuous on the compact set C × [0, ε̃], and so
is uniformly continuous on C × [0, ε̃]. Hence, there exists an ε̃ > 0 such that for all x ∈ C and ε ∈ [0, ε̃]

|Ψε(x)−ΨFB(x)| ≤ δ. (41)

Combining (41) with (40), we have that for all sufficiently large k,

Ψεk (x
∗) ≤

1
4

c̄ (42)

and

c := min
x∈∂C

Ψεk (x) ≥
3
4

c̄. (43)

On the other hand, Ψεk (x
k) ≤ τk by Algorithm 5.1 and τk → 0, which means that

Ψεk (x
k) ≤

1
4

c̄ (44)

for all k large enough. Now using (42)–(44) and setting a = x∗ and b = xk in Lemma 5.1, there exists a vector x̂ ∈ Rn

such that

∇Ψεk (x̂) = 0 and Ψεk (x̂) ≥ c ≥
3
4

c̄ > 0.

This says that x̂ is a stationary point of Ψεk (x), but not a solution of the SOCCP(Fεk ). However, by Proposition 3.1(c),
we know that any stationary point of Ψεk (x) is a solution of the SOCCP(Fεk ). Thus, we obtain a contradiction. �

Obviously, Theorem 4.2 follows from Theorem 5.1 by setting τk = 0 for all k. Also Corollaries 4.1 and 4.2 can be
easily extended to the inexact framework.

Corollary 5.1. Suppose that F has the Cartesian P0-property and satisfies Condition A. Let {xk
} be the sequence

generated by Algorithm 5.1. If εk → 0 and τk → 0, and the SOCCP(F) has a unique solution x̄ , then limεk→0 xk
= x̄ .

Corollary 5.2. Suppose that F has the Cartesian P0-property and the Cartesian R02-property and satisfies
Condition A. Let {xk

} be the sequence generated by Algorithm 5.1. If εk → 0 and τk → 0, then {xk
} is bounded and

its every accumulation point is a solution of the SOCCP(F).

In addition, by Proposition 4.3(a), we also have the following corollary.

Corollary 5.3. Suppose that F is monotone and satisfies Condition A and the SOCCP(F) is strictly feasible. Let {xk
}

be the sequence generated by Algorithm 5.1. If εk → 0 and τk → 0, then {xk
} is bounded and every accumulation

point is a solution of the SOCCP(F).
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Finally, we stress that, as far as we know, the inexact regularization Algorithm 5.1 studied in this section is currently
the only algorithm to guarantee the SOCCP(F) with the Cartesian P0-property and a nonempty bounded solution set
can actually be solved.

6. Numerical experiments

In this section, we report our preliminary numerical experience with the inexact regularization method for solving
some SOCPs and SOCCPs, and make numerical comparisons with the merit function approach [2] which reformulates
the SOCCP(F) as:

min
x∈Rn

ΨFB(x). (45)

All experiments were done at a PC with 2.8GHz CPU and 512MB memory. The computer codes were all written
in Matlab 6.5. The subproblem (39) in Algorithm 5.1 and the minimization problem (45) were both solved by the
limited-memory BFGS method with 5 limited-memory vector-updates. To improve the numerical performance of the
BFGS method, we replaced the monotone Armijo line search by a nonmonotone line search as described by Zhang
and Hager [24]. In other words, in the BFGS method, we computed the smallest nonnegative integer m such that

f (xk
+ βmdk) ≤ Wk + σβ

m
∇ f (xk)Tdk

where f (x) = Ψε(x) or ΨFB(x), dk was the direction of the kth iterate, and

Wk := (ηk−1 Qk−1 Wk−1 + f (xk))/Qk with Qk = ηk−1 Qk−1 + 1.

Throughout the experiments, we adopted β = 0.5, σ = 10−4, W0 = f (x0), Q0 = 1 and ηk ≡ 0.85 for all k. In
addition, we updated εk and τk in Algorithm 5.1 by the formula:

εk = 0.1εk−1 and τk = εk for all k,

where the initial regularization parameter ε0 was given in the corresponding examples. We terminated Algorithm 5.1
and the merit function approach [2] whenever one of the following conditions was satisfied: (1) ΨFB(xk) ≤ 10−6 and
|〈xk, F(xk)〉| ≤ 10−5; (2) the steplength was less than 10−10.

To verify the efficiency of the regularization method, we first applied the inexact regularization method for solving
a class of monotone SOCCPs, which correspond to the KKT optimality conditions of the linear SOCPs from the
DIMACS Implementation Challenge library [19]. The standard linear SOCPs can be described as follows:

min cTx
s.t. Ax = b, x ∈ K, (46)

where A ∈ Rm×n has full row rank, b ∈ Rm and c ∈ Rn . From [2], we know that the KKT conditions of (46) are
equivalent to finding a point ζ ∈ Rn such that

F(ζ ) ∈ K, G(ζ ) ∈ K, 〈F(ζ ),G(ζ )〉 = 0 (47)

with

F(ζ ) := d + (I − AT(AAT)−1 A)ζ, G(ζ ) := c − AT(AAT)−1 Aζ,

where d satisfies Ax = b. Hence, the corresponding regularized SOCCP problem is

Fε(ζ ) ∈ K, Gε(ζ ) ∈ K, 〈Fε(ζ ),Gε(ζ )〉 = 0 (48)

with

Fε(ζ ) := d + (I − AT(AAT)−1 A)ζ + εζ, Gε(ζ ) := c − AT(AAT)−1 Aζ + εζ,

and the merit functions Ψε and ΨFB are specialized as

Ψε(ζ ) =
1
2

m∑
i=1

‖φFB(Fε(ζ ),Gε(ζ ))‖
2 and ΨFB(ζ ) =

1
2

m∑
i=1

‖φFB(F(ζ ),G(ζ ))‖2.



S. Pan, J.-S. Chen / Nonlinear Analysis 70 (2009) 1475–1491 1489

Table 1
Numerical results on the four DIMACS SOCPs

Problem Regularization method Merit function approach

ε0 Ψε(z f ) NF Iter Optval ΨFB(z
f ) NF Iter Optval

nb 1 9.85e−7 1752 1320 −0.05076515 8.28e−7 2329 1660 −0.05080010
nb L2 0.1 6.04e−9 405 259 −1.62899997 1.10e−9 576 391 −1.62898021
nb L2 bessel 0.1 7.69e−9 163 133 −0.10254482 3.24e−7 150 136 −0.10265116

In the experiment, the vector d in F(ζ ) was computed as the solution of mind ‖Ad − b‖ by Matlab’s least square
solver, and F and G were evaluated via the Cholesky factorization of AAT. We started Algorithm 5.1 and the merit
function approach with the starting point ζ 0

= 0. The numerical results were reported in Table 1, in which ε0 lists the
initial regularization parameter used by every test problem, NF represents the number of the merit function evaluations
required by the methods for solving each problem, Iter records the modification number of the Hessian matrix in the
BFGS method, and Optval denotes the objective function value of the SOCP (46) at the final iteration.

From Table 1, we see that for the class of monotone SOCCPs, the inexact regularization method can generate the
solutions with favorable tolerance by requiring less function evaluations and Hessian matrix modifications. For the
difficult problem “nb”, the efficiency of the regularization method is more remarkable.

We also applied the inexact regularization method for solving some SOCCPs with F having the Cartesian P0-
property. Since the corresponding test examples cannot be found in the literature, we considered the case where
F = Mx+q with the matrix M ∈ Rn×n and q = (q1, . . . , qm) generated randomly such that M has the Cartesian P0-
property. In the experiment, the matrix M was generated by the following procedure: chose the positive semidefinite
matrices Mi ∈ Rni×ni for i = 1, 2, . . . ,m, and then let M be the block diagonal matrix with M1, . . . ,Mm as block
diagonals, i.e.,

M = diag(M1, . . . ,Mm).

The positive semidefinite matrices Mi , i = 1, 2, . . . ,m were set to be

Mi = Ni N T
i ,

where Ni ∈ Rni×ni was a square matrix whose nonzero elements were chosen randomly from a normal distribution
with mean −1, variance 4. We can verify that the matrix M generated by such a way has the Cartesian P0-property,
and furthermore, it cannot have the Cartesian P-property by controlling the nonzero density of Ni such that every
block matrix Mi has at least zero eigenvalues. In the experiment, the nonzero density of Ni for i = 1, 2, . . . ,m was
chosen as 0.5%. The elements of every subvector qi were chosen randomly from the interval [−1, 1], and then the first
element qi1 of qi is set to be ‖qi2‖, where qi2 is a vector composed of the rest ni − 1 components of qi . In this way,
the affine SOCCP can be guaranteed to have a solution. In addition, to construct SOCs of various types, we chose ni
and m such that n1 = n2 = · · · = nm and n1 + · · · + nm = 1000.

We have tested the SOCCPs with the Cartesian P0-property for two classes of SOCs: m = 20 and m = 50. For
each type of K, we solved 10 test problems by Algorithm 5.1 and the merit function approach [2] from the starting
point ζ 0

= (ζ ni , . . . , ζ nm ), where ζ̄ ni = (10, ωi/‖ωi‖) for i = 1, 2, . . . ,m with ωi ∈ Rni−1 generated randomly by
Matlab’s rand.m. The numerical results were reported in Tables 2 and 3, where NF and Iter have the same meanings
as those in Table 1, and Gap denotes the value of the function |〈x, F(x)〉| at the final iteration. For the case where
m = 20, we see from Table 2 that both Algorithm 5.1 and the merit function approach [2] can solve all 10 test
problems, but Algorithm 5.1 required less function evaluations and Hessian matrix modifications. For the case where
m = 50, Table 3 shows that Algorithm 5.1 generated the favorable solutions for all test problems, whereas the merit
function approach [2] failed for all test problems due to too small steplength. Observe that in the case where m = 50,
the positive semidefinite matrices Mi , i = 1, 2, . . . ,m have more zero eigenvalues than those in the case where
m = 20. Hence, the numerical results in Table 3 indicate that the regularization method proposed is superior to the
merit function approach [2] in dealing with the ill-posed problems.
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Table 2
Numerical results for the affine Cartesian P0-problems with m = 20

Problem Regularization method Merit function approach

ε0 Ψε(z f ) NF Iter Gap ΨFB(z
f ) NF Iter Gap

1 1 5.20e−9 266 173 4.43e−6 7.49e−8 563 418 1.56e−6
2 1 8.35e−8 655 402 2.39e−6 1.13e−8 2593 2226 1.85e−6
3 1 2.85e−10 642 371 3.28e−6 3.76e−9 1522 1191 4.96e−6
4 1 8.64e−10 570 409 6.42e−6 1.79e−8 2000 1757 7.97e−6
5 1 4.87e−8 445 271 3.28e−6 5.88e−9 1367 1056 3.01e−6
6 1 2.72e−7 420 247 9.72e−7 5.05e−9 2124 1700 6.22e−7
7 1 1.94e−8 391 242 7.67e−6 4.53e−8 1143 844 3.98e−6
8 1 1.19e−7 530 327 8.31e−6 8.21e−8 1758 1470 6.56e−6
9 1 1.15e−9 510 305 3.31−6 1.47e−9 1265 922 1.99e−6

10 1 9.25e−8 641 369 1.44−6 1.15e−8 1368 982 8.24e−6

Table 3
Numerical results for the affine Cartesian P0-problems with m = 50

Problem Regularization method Merit function approach

ε0 Ψε(z f ) NF Iter Gap ΨFB(z
f ) NF Iter Gap

1 10 2.60e−8 270 143 2.87e−6 3.53e−6 10456 7707 2.49e−2
2 10 6.30e−8 680 418 6.71e−6 2.00e−4 12500 9640 1.58e−1
3 10 2.22e−9 534 317 6.31e−6 1.39e−5 14552 12041 3.68e−2
4 10 3.91e−8 648 296 9.96e−6 3.65e−5 13327 8817 7.75e−2
5 10 3.10e−7 617 331 4.26e−6 5.64e−5 19788 16514 6.93e−2
6 10 2.62e−7 248 130 2.20e−6 1.20e−5 8222 6535 5.19e−2
7 10 1.12e−8 548 258 3.81e−6 3.34e−4 10971 8803 1.57e−1
8 10 1.00e−7 747 400 8.66e−6 1.84e−5 12328 9642 4.03e−2
9 10 5.22e−8 490 263 5.06−6 3.76e−4 6128 4795 2.77e−1

10 10 6.89e−7 86 40 8.86−7 6.52e−7 9593 6480 7.80e−3

7. Conclusions

In this paper, we considered the Tikhonov regularization method for the SOCCP(F) with the Cartesian P0-property.
We showed that the solution path generated by the regularized subproblems possesses the favorable properties in
Theorem 4.2 if the mapping F also satisfies Condition A and the SOCCP(F) has a nonempty and bounded solution
set. When F has the uniform Cartesian P-property, the solution path is bounded, but the bound is related to the constant
involved in the uniform Cartesian P-property. Furthermore, in this case a counterexample was given to illustrate that
the solution path may not be locally Lipschitz continuous. Preliminary numerical results were reported, which verified
the desirable theoretical properties of the regularization method.

There are several open questions worth investigating in our future work. The first one is, for the monotone SOCCPs,
to provide appropriate conditions to guarantee the continuity of the solution path x(ε), and study whether the solution
trajectory x(ε) converges the least l2-norm solution of the SOCCP(F) if the SOCCP(F) has a nonempty and bounded
solution set. The second one is, for SOCCPs with Cartesian P0-property, to present appropriate conditions to guarantee
the continuity of the solution path x(ε), and study whether the solution trajectory x(ε) converges when it is bounded.
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