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Abstract We introduce an entropy-like proximal algorithm for the problem of min-
imizing a closed proper convex function subject to symmetric cone constraints. The
algorithm is based on a distance-like function that is an extension of the Kullback-
Leiber relative entropy to the setting of symmetric cones. Like the proximal algo-
rithms for convex programming with nonnegative orthant cone constraints, we show
that, under some mild assumptions, the sequence generated by the proposed algo-
rithm is bounded and every accumulation point is a solution of the considered prob-
lem. In addition, we also present a dual application of the proposed algorithm to the
symmetric cone linear program, leading to a multiplier method which is shown to
possess similar properties as the exponential multiplier method (Tseng and Bertsekas
in Math. Program. 60:1–19, 1993) holds.

Keywords Symmetric cone optimization · Proximal-like method · Entropy-like
distance · Exponential multiplier method

1 Introduction

Symmetric cone programming provides a unified framework for linear programming,
second-order cone programming and semidefinite programming, which arise from a
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wide range of applications in engineering, economics, management science, optimal
control, combinatorial optimization, and other fields; see [1, 16, 28] and references
therein. Recently, symmetric cone programming, especially symmetric cone linear
programming (SCLP), has attracted the attention of some researchers with a focus on
the development of interior point methods similar to those for linear programming;
see [9, 10, 23]. Although interior point methods were successfully applied for SCLPs,
it is worthwhile to explore other solution methods for general convex symmetric cone
optimization problems.

Let A = (V,◦, 〈·, ·〉) be a Euclidean Jordan algebra, where (V, 〈·, ·〉) is a finite
dimensional inner product space over the real field R and “◦” denotes the Jordan
product which will be defined in the next section. Let K be the symmetric cone in
V. In this paper, we consider the following convex symmetric cone programming
(CSCP):

min f (x)

s.t. x �K 0,
(1)

where f : V → (−∞,∞] is a closed proper convex function, and x �K 0 means
x ∈ K. In general, for any x, y ∈ V, we write x �K y if x − y ∈ K and write x 	K y

if x −y ∈ int(K). A function is closed if and only if it is lower semi-continuous, and a
function is proper if f (x) < ∞ for at least one x ∈ V and f (x) > −∞ for all x ∈ V.

Notice that the CSCP is a special class of convex programs, and hence in princi-
ple it can be solved via general convex programming methods. One such method is
the proximal point algorithm for minimizing a convex function f (x) on R

n which
generates a sequence {xk}k∈N via the following iterative scheme:

xk = argmin
x∈Rn

{
f (x) + 1

μk

‖x − xk−1‖2
2

}
, (2)

where μk > 0 and ‖ · ‖2 denotes the Euclidean norm in R
n. This method was first

introduced by Martinet [17], based on the Moreau proximal approximation of f (see
[18]), and further developed and studied by Rockafellar [20, 21]. Later, several gen-
eralizations of the proximal point algorithm have been considered where the usual
quadratic proximal term in (2) is replaced by a nonquadratic distance-like function;
see, for example, [5, 7, 8, 14, 25]. Among others, the algorithms using an entropy-like
distance [13, 14, 25, 26] for minimizing a convex function f (x) subject to x ∈ R

n+,
generate the iterates by

{
x0 ∈ R

n++
xk = argminx∈R

n+
{
f (x) + 1

μk
dϕ(x, xk−1)

}
,

(3)

where dϕ(·, ·) : R
n++ × R

n++ → R
n+ is the entropy-like distance defined by

dϕ(x, y) =
n∑

i=1

yiϕ(xi/yi) (4)
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with ϕ satisfying certain conditions; see [13, 14, 25, 26]. An important choice of ϕ is
the function ϕ(t) = t ln t − t + 1, for which the corresponding dϕ given by

dϕ(x, y) =
n∑

i=1

[
xi lnxi − xi lnyi + yi − xi

]
(5)

is the popular Kullback-Leibler entropy from statistics and that is the “entropy” ter-
minology stems from. One key feature of entropic proximal methods is that they
generate a sequence staying in the interior of R

n+ automatically, and thus eliminates
the combinatorial nature of the problem. One of the main applications of such proxi-
mal methods is to the dual of smooth convex programs, yielding twice continuously
differentiable nonquadratic augmented Lagrangians and thereby allowing the usage
of Newton’s methods.

The main purpose of this paper is to propose an interior proximal-like method and
the corresponding dual augmented Lagrangian method for the CSCP (1). Specifically,
by using the Euclidean Jordan algebraic techniques, we extend the entropy-like prox-
imal algorithm defined by (3)–(4) with ϕ(t) = t ln t − t + 1 to the solution of (1). For
the proposed algorithm, we establish a global convergence estimate in terms of the
objective value, and moreover present a dual application to the standard SCLP, which
leads to an exponential multiplier method shown to possess properties analogous to
the method proposed by [3, 27] for convex programming over nonnegative orthant
cone R

n+.
The paper is organized as follows. Section 2 reviews some basic concepts and

materials on Euclidean Jordan algebras which are needed in the analysis of the al-
gorithm. In Sect. 3, we introduce a distance-like function H to measure how close
between two points in the symmetric cone K and investigate some related proper-
ties. Furthermore, we outline a basic proximal-like algorithm with the measure func-
tion H . The convergence analysis of the algorithm is the main content of Sect. 4. In
Sect. 5, we consider a dual application of the algorithm to the SCLP and establish
the convergence results for the corresponding multiplier method. We close this paper
with some remarks in Sect. 6.

2 Preliminaries on Euclidean Jordan algebra

This section recalls some concepts and results on Euclidean Jordan algebras that will
be used in the subsequent sections. More detailed expositions of Euclidean Jordan al-
gebras can be found in Koecher’s lecture notes [15] and Faraut and Korányi’s mono-
graph [11].

Let V be a finite dimensional inner space endowed with a bilinear mapping
(x, y) �→ x ◦ y : V × V → V. For a given x ∈ V, let L(x) be the linear operator
of V defined by

L(x)y := x ◦ y for every y ∈ V.

The pair (V,◦) is called a Jordan algebra if, for all x, y ∈ V,

(i) x ◦ y = y ◦ x,
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(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y), where x2 := x ◦ x.

In a Jordan algebra (V,◦), x ◦ y is said to be the Jordan product of x and y. Note
that a Jordan algebra is not associative, i.e., x ◦ (y ◦ z) = (x ◦ y) ◦ z may not hold in
general. If for some element e ∈ V, x ◦ e = e ◦ x = x for all x ∈ V, then e is called
a unit element of the Jordan algebra (V,◦). The unit element, if exists, is unique.
A Jordan algebra does not necessarily have a unit element. For x ∈ V, let ζ(x) be the
degree of the minimal polynomial of x, which can be equivalently defined as

ζ(x) := min
{
k : {e, x, x2, · · · , xk} are linearly dependent

}
.

Then the rank of (V,◦) is well defined by r := max{ζ(x) : x ∈ V}.
A Jordan algebra (V,◦), with a unit element e ∈ V, defined over the real field R is

called a Euclidean Jordan algebra or formally real Jordan algebra, if there exists a
positive definite symmetric bilinear form on V which is associative; in other words,
there exists on V an inner product denoted by 〈·, ·〉V such that for all x, y, z ∈ V:

(iii) 〈x ◦ y, z〉V = 〈y, x ◦ z〉V.

In a Euclidean Jordan algebra A = (V,◦, 〈·, ·〉V), we define the set of squares as

K :=
{
x2 : x ∈ V

}
.

By [11, Theorem III. 2.1], K is a symmetric cone. This means that K is a self-dual
closed convex cone with nonempty interior and for any two elements x, y ∈ int(K),
there exists an invertible linear transformation T : V → V such that T (K) = K and
T (x) = y.

Here are two popular examples of Euclidean Jordan algebras. Let S
n be the space

of n×n real symmetric matrices with the inner product given by 〈X,Y 〉Sn := Tr(XY),
where XY is the matrix multiplication of X and Y and Tr(XY) is the trace of XY .
Then, (Sn,◦, 〈·, ·〉Sn) is a Euclidean Jordan algebra with the Jordan product defined
by

X ◦ Y := (XY + YX)/2, X,Y ∈ S
n.

In this case, the unit element is the identity matrix I in S
n and the cone of squares K

is the set of all positive semidefinite matrices in S
n. Let R

n be the Euclidean space of
dimension n with the usual inner product 〈x, y〉Rn = xT y. For any x = (x1, x2), y =
(y1, y2) ∈ R × R

n−1, define x ◦ y := (xT y, x1y2 + y1x2)
T . Then (Rn,◦, 〈·, ·〉Rn) is

a Euclidean Jordan algebra, also called the quadratic forms algebra. In this algebra,
the unit element e = (1,0, . . . ,0)T and K = {x = (x1, x2) ∈ R × R

n−1 : x1 ≥ ‖x2‖2}.
Recall that an element c ∈ V is said to be idempotent if c2 = c. Two idempotents

c and q are said to be orthogonal if c ◦ q = 0. One says that {c1, c2, . . . , ck} is a
complete system of orthogonal idempotents if

c2
j = cj , cj ◦ ci = 0 if j 
= i for all j, i = 1,2, . . . , k, and

k∑
j=1

cj = e.
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An idempotent is said to be primitive if it is nonzero and cannot be written as the sum
of two other nonzero idempotents. We call a complete system of orthogonal primitive
idempotents a Jordan frame. Then we have the following spectral decomposition
theorem.

Theorem 2.1 [11, Theorem III. 1.2] Suppose that A = (V,◦, 〈·, ·〉V) is a Euclidean
Jordan algebra and the rank of A is r . Then for any x ∈ V, there exists a Jordan frame
{c1, c2, . . . , cr} and real numbers λ1(x), λ2(x), . . . , λr (x), arranged in the decreas-
ing order λ1(x) ≥ λ2(x) ≥ · · · ≥ λr(x), such that x = ∑r

j=1 λj (x)cj . The numbers
λj (x) (counting multiplicities), which are uniquely determined by x, are called the
eigenvalues,

∑r
j=1 λj (x)cj the spectral decomposition of x, and tr(x) = ∑r

j=1 λj (x)

the trace of x.

From [11, Proposition III.1.5], a Jordan algebra (V,◦) with a unit element e ∈ V

is Euclidean if and only if the symmetric bilinear form tr(x ◦ y) is positive definite.
Therefore, we may define another inner product on V by

〈x, y〉 := tr(x ◦ y) ∀x, y ∈ V.

By the associativity of tr(·) [11, Proposition II. 4.3], the inner product 〈·, ·〉 is associa-
tive, i.e., for all x, y, z ∈ V, there holds that 〈x, y ◦ z〉 = 〈y, x ◦ z〉. Thus, the operator
L(x) for each x ∈ V is symmetric with respect to the inner product 〈·, ·〉 in the sense
that

〈L(x)y, z〉 = 〈y, L(x)z〉 ∀y, z ∈ V.

In the sequel, we let ‖ · ‖ be the norm on V induced by the inner product 〈·, ·〉, i.e.,

‖x‖ := √〈x, x〉 =
(

r∑
j=1

λ2
j (x)

)1/2

∀x ∈ V,

and denote by λmin(·) and λmax(·) the smallest and the largest eigenvalue of x, re-
spectively. Then, by Lemma 13 and the proof of Lemma 14 in [23], we can prove the
following lemma.

Lemma 2.1 Let x, y ∈ V, then we can bound the minimum eigenvalue of x + y as
follows:

λmin(x) + λmin(y) ≤ λmin(x + y) ≤ λmin(x) + λmax(y).

Let g : R → R be a scalar-valued function. Then, it is natural to define a vector-
valued function associated with the Euclidean Jordan algebra (V,◦, 〈·, ·〉V) by

gsc(x) := g(λ1(x))c1 + g(λ2(x))c2 + · · · + g(λr(x))cr , (6)

where x ∈ V has the spectral decomposition x = ∑r
j=1 λj (x)cj . This function is

called the Löwner operator in [24] and was shown to have the following important
property.
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Lemma 2.2 [24, Theorem 13] For any x = ∑r
j=1 λj (x)cj , let gsc be defined by (6).

Then gsc is (continuously) differentiable at x if and only if g is (continuously) differ-
entiable at all λj (x). Furthermore, the derivative of gsc at x, for any h ∈ V, is given
by

(gsc)′(x)h =
r∑

j=1

g′(λj (x))〈cj , h〉cj +
∑

1≤j<l≤r

4[λi(x), λj (x)]gcj ◦ (cl ◦ h)

with

[λi(x), λj (x)]g := g(λi(x)) − g(λj (x))

λi(x) − λj (x)
∀ i, j = 1,2, . . . , r and i 
= j.

In fact, the Jacobian (gsc)′(·) is a linear and symmetric operator, and can be written
as

(gsc)′(x) =
r∑

j=1

g′(λj (x))Q(cj ) + 2
r∑

i,j=1,i 
=j

[λi(x), λj (x)]g L(cj )L(ci), (7)

where Q(x) := 2L2(x) − L(x2) for any x ∈ V is called the quadratic representation
of V.

Finally, we recall the spectral function generated by a symmetric function. Let P

denote the set of all permutations of r-dimensional vectors. A subset of R
r is said

to be symmetric if it remains unchanged under every permutation of P. Let S be a
symmetric set in R

r . A real-valued function f : S → R is said to be symmetric if
for every permutation P ∈ P and each s ∈ S, there holds that f (P s) = f (s). For
any x ∈ V with the spectral decomposition x = ∑r

j=1 λj (x)cj , define K := {x ∈
V | λ(x) ∈ S} with λ(x) = (λ1(x), . . . , λr (x))T being the spectral vector of x. Then
F : K → R defined by

F(x) := f (λ(x)) (8)

is called the spectral function generated by f . From Theorem 41 of [2], F is (strictly)
convex if f is (strictly) convex.

Unless otherwise stated, in the rest of this paper, the notation A = (V,◦, 〈·, ·〉)
represents a Euclidean Jordan algebra of rank r and dim(V) = n. For a closed proper
convex function f : V → (−∞,+∞], we denote by domf := {x ∈ V | f (x) < +∞}
the domain of f . The subdifferential of f at x0 ∈ V is the convex set

∂f (x0) = {ξ ∈ V | f (x) ≥ f (x0) + 〈ξ, x − x0〉 ∀ x ∈ V} . (9)

Since 〈x, y〉 = tr(x ◦ y) for any x, y ∈ V, the above subdifferential set is equivalent to

∂f (x0) = {
ξ ∈ V | f (x) ≥ f (x0) + tr

(
ξ ◦ (x − x0)

)
, x ∈ V

}
. (10)

For a sequence {xk}k∈N , the notation N denotes the set of natural numbers.
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3 Entropy-like proximal algorithm

To solve the CSCP (1), we suggest the following proximal-like minimization algo-
rithm: {

x0 	K 0

xk = argminx�K 0

{
f (x) + 1

μk
H(x, xk−1)

}
,

(11)

where μk > 0 and H : V × V → (−∞,+∞] is defined by

H(x,y) :=
{

tr(x ◦ lnx − x ◦ lny + y − x) ∀ x ∈ int(K), y ∈ int(K),

+∞ otherwise.
(12)

This algorithm is indeed a proximal-type one except that the classical quadratic term
‖x − xk−1‖2

2 is replaced by the distance-like function H to guarantee that {xk}k∈N ⊂
int(K), thus leading to an interior proximal-like method (see Proposition 4.1).

By the definition of Löwner operator, clearly, the function H(x,y) is well-defined
for all x, y ∈ int(K). Moreover, the domain of x ∈ int(K) can be extended to x ∈ K
by adopting the convention 0 ln 0 ≡ 0. The function H is a natural extension of the
distance-like entropy function in (5), and is used to measure the “distance” between
two points in K. In fact, H will become the entropy function dϕ in (5) if the Euclid-
ean Jordan algebra A is specified as (Rn,◦, 〈·, ·〉Rn) with “◦” denoting the compo-
nentwise product of two vectors in R

n and 〈·, ·〉Rn the usual Euclidean inner product.
As shown by Proposition 3.1 below, most of the important properties, but not all, of
dϕ also hold for H .

The following two technical lemmas will be used to investigate the favorable
properties of the distance measure H . Lemma 3.1 states an extension of Von Neu-
mann inequality to Euclidean Jordan algebras, and Lemma 3.2 gives the properties of
tr(x ◦ lnx).

Lemma 3.1 [2] For any x, y ∈ V, we have tr(x ◦ y) ≤ ∑r
j=1 λj (x)λj (y) =

λ(x)T λ(y), where λ(x) and λ(y) are the spectral vectors of x and y, respectively.

Lemma 3.2 For any x ∈ K, let �(x) := tr(x ◦ lnx). Then, we have the following
results.

(a) �(x) is the spectral function generated by the symmetric entropy function

φ(u) = ∑r
j=1 uj lnuj ∀u ∈ R

r+. (13)

(b) �(x) is continuously differentiable on int(K) with ∇�(x) = lnx + e.
(c) The function �(x) is strictly convex over K.

Proof (a) Suppose that x has the spectral decomposition x = ∑r
j=1 λj (x)cj . Let

g(t) = t ln t ∀ t ∈ R.
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From Sect. 2, it follows that the vector-valued function x ◦ lnx is the Löwner function
gsc(x), i.e., gsc(x) = x ◦ lnx. Clearly, gsc is well-defined for any x ∈ K and

gsc(x) = x ◦ lnx =
r∑

j=1

λj (x) ln(λj (x))cj .

Therefore,

�(x) = tr(x ◦ lnx) = tr(gsc(x)) =
r∑

j=1

λj (x) ln(λj (x)) = φ(λ(x))

with φ : R
r+ → R given by (13). Since the function φ is symmetric, �(x) is the

spectral function generated by the symmetric function φ in view of (8).
(b) From Lemma 2.2, gsc(x) = x ◦ lnx is continuously differentiable on int(K).

Thus, �(x) is also continuously differentiable on int(K) because � is the compo-
sition of the trace function (clearly continuously differentiable) and gsc. Now, it re-
mains to find its gradient formula. From the fact that tr(x ◦ y) = 〈x, y〉, we have

�(x) = tr(x ◦ lnx) = 〈x, lnx〉.
Applying the chain rule for inner product of two functions, we then obtain

∇�(x) = lnx + (∇ lnx)x = lnx + (lnx)′x. (14)

On the other hand, from formula (7) it follows that for any h ∈ V,

(lnx)′h =
r∑

j=1

1

λj (x)
〈cj , h〉cj +

∑
1≤j<l≤r

ln(λj (x)) − ln(λl(x))

λj (x) − λl(x)
cj ◦ (cl ◦ h).

By this and the spectral decomposition of x, it is easy to compute that

(lnx)′x =
r∑

j=1

1

λj (x)
〈cj , x〉cj +

∑
1≤j<l≤r

ln(λj (x)) − ln(λl(x))

λj (x) − λl(x)
cj ◦ (cl ◦ x)

=
r∑

j=1

1

λj (x)
λj (x)cj +

∑
1≤j<l≤r

ln(λj (x)) − ln(λl(x))

λj (x) − λl(x)
λl(x)cj ◦ cl

= e.

Combining with (14), we readily obtain the desired result.
(c) Note that the function φ in (13) is strictly convex over R

n+. Therefore, the
conclusion immediately follows from part (a) and Theorem 41 of [2]. �

Next we study the favorable properties of the distance-like function H . These
properties play a crucial role in the convergence analysis of the algorithm defined by
(11)–(12).
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Proposition 3.1 Let H(x,y) be defined by (12). Then the following results hold.

(a) H(x,y) is continuous on K × int(K) and H(·, y) is strictly convex for any y ∈
int(K).

(b) For any fixed y ∈ int(K), H(·, y) is continuously differentiable on int(K) with

∇xH(x, y) = lnx − lny.

(c) H(x,y) ≥ 0 for any x ∈ K and y ∈ int(K), and H(x,y) = 0 if and only if x = y.
(d) H(x,y) ≥ d(λ(x), λ(y)) ≥ 0 for any x ∈ K, y ∈ int(K), where d(·, ·) is defined

by

d(u, v) =
n∑

i=1

[
ui lnui − ui lnvi + vi − ui

]
∀ u ∈ R

r+, v ∈ R
r++. (15)

(e) For fixed y ∈ int(K), the level sets LH (x, γ ) := {x ∈ K | H(x,y) ≤ γ } are
bounded for all γ ≥ 0, and for fixed x ∈ K, the level sets LH (y, γ ) := {y ∈
int(K) | H(x,y) ≤ γ } are bounded for all γ ≥ 0.

Proof (a) Since x ◦ lnx, x ◦ lny are continuous in x ∈ K and y ∈ int(K), and the trace
function is also continuous, the function H is continuous over K × int(K). Notice that

H(x,y) = �(x) − tr(x ◦ lny) + tr(y) − tr(x), (16)

�(x) is strictly convex over K by Lemma 3.2(c), and the other terms on the right
hand side of (16) are clearly convex for any fixed y ∈ int(K). Therefore, H(·, y) is
strictly convex for any fixed y ∈ int(K).

(b) From the expression of H(x,y) given by (16) and Lemma 3.2(b), obviously,
the function H(·, y) is continuously differentiable in int(K). Moreover,

∇xH(x, y) = ∇x�(x) − lny − e = lnx − lny.

(c) From the definition of �(x) and its gradient formula shown as in Lemma 3.2(b),

�(x) − �(y) − 〈�′(y), x − y〉
= tr(x ◦ lnx) − tr(y ◦ lny) − 〈lny + e, x − y〉
= tr(x ◦ lnx) − tr(x ◦ lny) − tr(x) + tr(y)

= H(x,y) (17)

for any x ∈ K and y ∈ int(K). In addition, the strict convexity of � implies that

�(x) − �(y) − 〈�′(y), x − y〉 ≥ 0

and the equality holds if and only if x = y. The two sides readily give the desired
result.
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(d) Using the definition of H and Lemma 3.1, we have for all x ∈ K and y ∈
int(K),

H(x,y) = tr(x ◦ lnx + y − x) − tr(x ◦ lny)

≥ tr(x ◦ lnx + y − x) −
r∑

j=1

λj (x) ln(λj (y))

=
r∑

j=1

[
λj (x) ln(λj (x)) + λj (y) − λj (x)

]
−

r∑
j=1

λj (x) ln(λj (y))

=
r∑

j=1

[
λj (x) ln(λj (x)) − λj (x) ln(λj (y)) + λj (y) − λj (x)

]

= d(λ(x), λ(y)).

The nonnegativity of d(λ(x), λ(y)) is direct by the definition of d(·, ·) in (15).
(e) For fixed y ∈ int(K), from part (d) we have LH (x, γ ) ⊆ {x ∈ K | d(λ(x),

λ(y)) ≤ γ } for all γ ≥ 0. Since the sets {u ∈ R
r+ | d(u, v) ≤ γ } are bounded for all

γ ≥ 0 by [26, Lemma 2.3], we have from the continuity of λ(·) that the sets LH (x, γ )

are bounded for all γ ≥ 0. Similarly, for fixed x ∈ Kn, using Lemma 2.1(i) of [26]
the sets LH (y, γ ) are bounded for all γ ≥ 0. �

Proposition 3.2 Let H(x,y) be defined by (12). Suppose {xk}k∈N ⊆ K and
{yk}k∈N ⊂ int(K) are bounded sequences such that H(xk, yk) → 0. Then, as k → ∞,
we have

(a) λj (x
k) − λj (y

k) → 0 for all j = 1,2, . . . , r .
(b) tr(xk − yk) → 0.

Proof (a) From Proposition 3.1(d), H(xk , yk) ≥ d(λ(xk), λ(yk)) ≥ 0. Hence,
H(xk, yk) → 0 implies d(λ(xk), λ(yk)) → 0. By the definition of d(·, ·) given
by (15),

d(λ(xk), λ(yk)) =
r∑

j=1

λj (y
k)ϕ

(
λj (x

k)/λj (y
k)

)

with ϕ(t) = t ln t − t +1 (t ≥ 0). Since ϕ(t) ≥ 0 for any t ≥ 0, each term of the above
sum is nonnegative, and consequently, d(λ(xk), λ(yk)) → 0 implies

λj (y
k)ϕ

(
λj (x

k)/λj (y
k)

)
→ 0, j = 1,2, . . . , r.

This is equivalent to saying that

λj (x
k) ln(λj (x

k)) − λj (x
k) ln(λj (y

k)) + λj (y
k) − λj (x

k) → 0, j = 1,2, . . . , r.

Since {λj (x
k)} and {λj (y

k)} are bounded, using Lemma A.1 of [6] then yields that

λj (x
k) − λj (y

k) → 0 for all j = 1,2, . . . , r.
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(b) Since tr(xk −yk) = ∑r
j=1(λj (x

k)−λj (y
k)), the result follows from part (a). �

To close this section, we present two useful relations for the function H , which
can be easily verified by using the definition of H and recalling the nonnegativity
of H .

Proposition 3.3 Let H(x,y) be defined by (12). For all x, y ∈ int(K) and z ∈ K, we
have

(a) H(z, x) − H(z, y) = tr(z ◦ lny − z ◦ lnx + x − y).
(b) tr((z − y) ◦ (lny − lnx)) = H(z, x) − H(z, y) − H(y,x) ≤ H(z, x) − H(z, y).

4 Convergence analysis of the algorithm

The convergence analysis of the entropy-like proximal algorithm defined by (11)–
(12) is similar to that of the proximal point method [12] for convex minimization
problems and the proximal-like algorithm [4] using Bregman functions. In this sec-
tion, we will present a global convergence rate estimate for the algorithm in terms of
function values. For this purpose, we need to make the following assumptions for the
CSCP (1):

(A) inf{f (x) | x �K 0} := f∗ > −∞ and domf ∩ int(K) 
= ∅.

In addition, we denote by X ∗ := {x ∈ K | f (x) = f∗} the solution set of (1).
First, we show that the algorithm in (11)–(12) is well defined, i.e., it generates a

sequence {xk}k∈N ⊂ int(K). This is a direct consequence of Proposition 4.1 below.
For the proof of Proposition 4.1, we need the following technical lemma.

Lemma 4.1 For any x �K 0, y 	K 0 and tr(x ◦ y) = 0, we always have x = 0.

Proof From the self-duality of K and [11, Proposition I. 1.4], we have that

u ∈ int(K) ⇐⇒ 〈u,v〉 > 0, ∀ 0 
= v ∈ K,

which together with tr(x ◦ y) = 〈x, y〉 immediately implies x = 0. �

Proposition 4.1 For any fixed y ∈ int(K) and μ > 0, let Fμ(·, y) := f (·) +
μ−1H(·, y). Then, under assumption (A), we have the following results.

(a) The function Fμ(·, y) has bounded level sets.
(b) There exists a unique x(y,μ) ∈ int(K) such that

x(y,μ) := argmin
x �K 0

Fμ(x, y)

and

μ−1(lny − lnx(y,μ)) ∈ ∂f (x(y,μ)). (18)
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Proof (a) Since Fμ(·, y) is convex, to show that Fμ(·, y) has bounded level sets, it
suffices to show that for any ν ≥ f∗ > −∞, the level set L(ν) := { x | Fμ(x, y) ≤ ν}
is bounded. Let ν′ := (ν − f∗)μ. Clearly, we have L(ν) ⊂ LH (x, ν′). Moreover, by
Proposition 3.1 (e), LH (x, ν′) is bounded. Therefore, L(ν) is bounded.

(b) From part (a), Fμ(·, y) has bounded level sets, which in turn implies the
existence of the minimum point x(y,μ). Also, the strict convexity of Fμ(x, y)

by Proposition 3.1(a) guarantees the uniqueness. Under assumption (A), using
Proposition 3.1(b) and the optimality condition for the minimization problem
argminx �K 0 Fμ(x, y) gives that

0 ∈ ∂f (x(y,μ)) + μ−1
(

lnx(y,μ) − lny
)

+ ∂δ(x(y,μ)|K), (19)

where δ(z|K) = 0 if z �K 0 and +∞ otherwise. We will show that ∂δ(x(y,μ)|K) =
{0} and hence the desired result follows. Notice that for any xk ∈ int(K) with xk →
x ∈ bd(K),

‖ lnxk‖ =
(

r∑
j=1

[ln(λj (x
k))]2

)1/2

→ +∞,

where the second relation is due to the continuity of λj (·) and ln t . Consequently,

‖∇xH(xk, y)‖ = ‖ lnxk − lny‖ ≥ ‖ lnxk‖ − ‖ lny‖ → +∞.

This by [19, pp. 251] means that H(·, y) is essentially smooth, and then ∂xH(x, y) =
∅ for all x ∈ bd(K) by [19, Theorem 26.1]. Together with (19), we must have
x(y,μ) ∈ int(K). Furthermore, from [19, pp. 226], it follows that

∂δ(z|K) = {v ∈ V | v �K 0, tr(v ◦ z) = 0}.

Using Lemma 4.1 then yields ∂δ(x(y,μ)|K) = {0}. Thus, the proof is completed. �

Next we establish several important properties for the algorithm defined by (11)–
(12), from which our convergence result will follow.

Proposition 4.2 Let {xk}k∈N be the sequence generated by the algorithm defined by
(11)–(12), and let σm := ∑m

k=1 μk . Then, the following results hold.

(a) The sequence {f (xk)}k∈N is nonincreasing.
(b) μk(f (xk) − f (x)) ≤ H(x,xk−1) − H(x,xk) for all x ∈ K.
(c) σm(f (xm) − f (x)) ≤ H(x,x0) − H(x,xm) for all x ∈ K.
(d) {H(x,xk)}k∈N is nonincreasing for any x ∈ X ∗, if the optimal set X ∗ 
= ∅.
(e) H(xk, xk−1) → 0 and tr(xk − xk−1) → 0, if the optimal set X ∗ 
= ∅.

Proof (a) From the definition of xk in (11), it follows that

f (xk) + μ−1
k H(xk, xk−1) ≤ f (xk−1) + μ−1

k H(xk−1, xk−1).
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Since H(xk, xk−1) ≥ 0 and H(xk−1, xk−1) = 0 (see Proposition 3.1(c)), we obtain

f (xk) ≤ f (xk−1) ∀ k ∈ N,

and therefore the sequence {f (xk)}k∈N is nonincreasing.
(b) From (18), −μ−1

k (lnxk − lnxk−1) ∈ ∂f (xk). Plugging this into the formula of
∂f (xk) given by (10), we have

f (x) ≥ f (xk) − μ−1
k tr

[
(x − xk) ◦ (lnxk − lnxk−1)

]
∀ x ∈ V.

Consequently, for any x ∈ K,

μk · (f (xk) − f (x)) ≤ tr
[
(x − xk) ◦ (lnxk − lnxk−1)

]

= H(x,xk−1) − H(x,xk) − H(xk, xk−1)

≤ H(x,xk−1) − H(x,xk), (20)

where the equality holds due to Proposition 3.3(b), and the last inequality follows
from the nonnegativity of H(x,y).

(c) First, summing up the inequalities in part (b) over k = 1,2,3, . . . ,m yields that

m∑
k=1

μkf (xk) − σmf (x) ≤ H(x,x0) − H(x,xm) ∀ x ∈ K. (21)

On the other hand, since f (xm) ≤ f (xk) by part (a), multiplying this inequality by
μk and summing up the inequalities over k = 1,2,3, . . . ,m then gives that

m∑
k=1

μkf (xk) ≥
m∑

k=1

μkf (xm) = σmf (xm). (22)

Now, combining (22) with (22), we readily obtain the desired result.
(d) Since f (xk) − f (x) ≥ 0 for all x ∈ X ∗, the result immediately follows from

part (b).
(e) From part (d), the sequence {H(x,xk)}k∈N is nonincreasing for any x ∈ X ∗.

This together with H(x,xk) ≥ 0 implies that {H(x,xk)}k∈N is convergent. Thus,

H(x,xk−1) − H(x,xk) → 0 ∀ x ∈ X ∗. (23)

On the other hand, from (20) and part (d), we have

0 ≤ μk(f (xk) − f (x)) ≤ H(x,xk−1) − H(x,xk) − H(xk, xk−1), ∀ x ∈ X ∗,

which in turn implies

H(xk, xk−1) ≤ H(x,xk−1) − H(x,xk).

Using (23) and the nonnegativity of H(xk, xk−1), the first result is then obtained.
Since {xk}k∈N ⊂ {y ∈ int(K) | H(x,y) ≤ H(x,x0)} with x ∈ X ∗, the sequence
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{xk}k∈N is bounded. Thus, the second result follows by the first result and Propo-
sition 3.2(b). �

By now, we have proved that the algorithm in (11)–(12) is well-defined and sat-
isfies some favorable properties. With these properties, we are ready to establish the
convergence results of the algorithm which is one of the main purposes of this paper.

Proposition 4.3 Let {xk}k∈N be the sequence generated by the algorithm in (11)–
(12), and let σm := ∑m

k=1 μk . Then, under assumptions (A), the following results
hold.

(a) f (xm) − f (x) ≤ σ−1
m H(x, x0) for all x ∈ K.

(b) If σm → +∞, then limm→+∞ f (xm) = f∗.
(c) If the optimal set X ∗ 
= ∅, then the sequence {xk}k∈N is bounded, and if, in addi-

tion, σm → +∞, every accumulation point is a solution of the CSCP (1).

Proof (a) This result follows by Proposition 4.2(c) and the nonnegativity of
H(x,xm).

(b) Since σm → +∞, passing the limit to the inequality in part (a), we have

lim sup
m→+∞

f (xm) ≤ f (x) ∀ x ∈ K,

which particularly implies

lim sup
m→+∞

f (xm) ≤ inf{f (x) : x ∈ K}.

This together with the fact that f (xm) ≥ f∗ = inf{f (x) : x ∈ K} yields the result.
(c) From Proposition 3.1(d), H(x, ·) has bounded level sets for every x ∈ K. Also,

from Proposition 4.2(d), {H(x,xk)}k∈N is nonincreasing for all x ∈ X ∗ if X ∗ 
= ∅.
Thus, the sequence {xk}k∈N is bounded and therefore has an accumulation point. Let
x̂ ∈ K be an accumulation point of {xk}k∈N . Then {xkj } → x̂ for some kj → +∞.
Since f is lower semi-continuous, we have f (x̂) = lim infkj →+∞ f (xkj ) (see [22,
p. 8]). On the other hand, we also have f (xkj ) → f∗, hence f (x̂) = f∗ which says
that x̂ is a solution of (1). �

Proposition 4.3(a) indicates an estimate for global rate of convergence which is
similar to the one obtained for the proximal-like algorithms of convex minimization
over nonnegative orthant cone. Analogously, as remarked in [6, Remark 4.1], global
convergence of {xk} itself to a solution of (1) can be achieved under the assumption
that {xk} ⊂ int(K) has a limit point in int(K). Nonetheless, this assumption is rather
stringent.

5 Exponential multiplier method for SCLP

In this section, we give a dual application of the entropy-like proximal algorithm in
(11)–(12), leading to an exponential multiplier method for the symmetric cone linear
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program

(SCLP) min

{
−bT y : c −

m∑
i=1

yiai �K 0, y ∈ R
m

}
,

where c ∈ V, ai ∈ V and b ∈ R
m. For the sake of notation, we denote the feasible set

of (SCLP) by F := {y ∈ R
m : A(y) �K 0}, where A : R

m → V is a linear operator
defined by

A(y) := c −
m∑

i=1

yiai ∀y ∈ R
m. (24)

In addition, we make the following assumptions for the problem (SCLP):

(A1) The optimal solution set of (SCLP) is nonempty and bounded;
(A2) Slater’s condition holds, i.e., there exists a ŷ ∈ R

m such that A(ŷ) 	K 0.

Notice that the Lagrangian function associated with (SCLP) is defined as follows:

L(y, x) =
{−bT y − tr[x ◦ A(y)] if x ∈ K,

+∞ otherwise.

Therefore, the dual problem corresponding to the SCLP is given by

(DSCLP) max
x�K 0

inf
y∈Rm

L(y, x),

which can be explicitly written as

(DSCLP)

⎧⎪⎨
⎪⎩

max −tr(c ◦ x)

s.t. tr(ai ◦ x) = bi,

x �K 0.

i = 1,2, . . . ,m,

From the standard convex analysis arguments in [19], it follows that under assump-
tion (A2) there is no duality gap between (SCLP) and (DSCLP), and furthermore, the
solution set of (DSCLP) is nonempty and compact.

To solve the problem (SCLP), we introduce the following multiplier-type al-
gorithm: given x0 ∈ int(K), generate the sequence {yk}k∈N ⊆ R

m and {xk}k∈N ⊂
int(K) by

yk = argmin
y∈Rm

{
−bT y + μ−1

k tr
[
exp

(
−μkA(y) + lnxk−1

)]}
, (25)

xk = exp
(
−μkA(yk) + lnxk−1

)
, (26)

where the parameters μk satisfy μk > μ̄ > 0 for all k ∈ N . The algorithm can be
viewed as a natural extension of the exponential multiplier method used in convex
programs over nonnegative orthant cones (see, e.g., [3, 27]) to symmetric cones. In
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the rest of this section, we will show that the algorithm defined by (25)–(26) possesses
similar properties.

We first present two technical lemmas, where Lemma 5.1 collects some properties
of the Löwner operator exp(z) and Lemma 5.2 characterizes the recession cone of F .

Lemma 5.1

(a) For any z ∈ V, there always holds that exp(z) ∈ int(K).
(b) The function exp(z) is continuously differentiable everywhere with

(exp(z))′e = ∇z(exp(z))e = exp(z) ∀ z ∈ V.

(b) The function tr[exp(
∑m

i=1 yiai)] is continuously differentiable everywhere with

∇y tr

[
exp

(
m∑

i=1

yiai

)]
= AT

(
exp

(
m∑

i=1

yiai

))
,

where y ∈ R
m and ai ∈ V for all i = 1,2, . . . ,m, and AT : V → R

m be a linear
transformation defined by AT (x) = (〈a1, x〉, . . . , 〈am,x〉)T for any x ∈ V.

Proof (a) The result is clear since for any z ∈ V with z = ∑r
j=1 λj (z)cj , all eigen-

values of exp(z), given by exp(λj (z)) for j = 1,2, . . . , r , are positive.
(b) By Lemma 2.2, clearly, exp(z) is continuously differentiable everywhere and

(exp(z))′h =
r∑

j=1

exp(λj (z))〈cj , h〉cj

+
∑

1≤j<l≤r

4
exp(λj (z)) − exp(λl(z))

λj (z) − λl(z)
cj ◦ (cl ◦ h)

for any h ∈ V. From this formula, we particularly have

(exp(z))′e =
r∑

j=1

exp(λj (z))〈cj , e〉cj

+
∑

1≤j<l≤r

4
exp(λj (z)) − exp(λl(z))

λj (z) − λl(z)
cj ◦ (cl ◦ e)

=
r∑

j=1

exp(λj (z))cj = exp(z).

(c) The first part is direct by the continuous differentiability of trace function and
part (b), and the second part follows from the differential chain rule. �

Lemma 5.2 Let F∞ denote the recession cone of the feasible set F . Then,

F∞ = {
d ∈ R

m : A(d) − c �K 0
}
.
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Proof Assume that d ∈ R
m such that A(d) − c �K 0. If d = 0, clearly, d ∈ F∞. If

d 
= 0, we take any y ∈ F . From the definition of the linear operator A, for any τ > 0,

A(y + τd) = c −
m∑

i=1

(yi + τdi)ai = A(y) + τ(A(d) − c) �K 0.

This, by the definition of recession direction [19, pp. 61], shows that d ∈ F∞. Thus,
we prove that {d ∈ R

m : A(d) − c �K 0} ⊆ F∞.
Now take any d ∈ F∞ and y ∈ F . Then A(y + τd) �K 0 for any τ > 0, and

therefore, λmin[A(y + τd)] ≥ 0. This must imply λmin(A(d) − c) ≥ 0. If not, using
the fact that

λmin[A(y + τd)] = λmin[A(y) + τ(A(d) − c)]
≤ λmin(τ (A(d) − c)) + λmax(A(y))

= τλmin(A(d) − c) + λmax(A(y))

where the inequality is due to Lemma 2.1, and letting τ → +∞, we then have

λmin[A(y + τd)] → −∞,

contradicting the fact that λmin[A(y + τd)] ≥ 0. Consequently, A(d) − c �K 0. To-
gether with the above discussions, we show that F∞ = {d ∈ R

m | A(d) − c �K 0}. �

Next we establish the convergence of the algorithm in (25)–(26). We first prove
that the sequence generated is well-defined, which is implied by the following lemma.

Lemma 5.3 For any y ∈ R
m and μ > 0, let F : R

m → R be defined by

F(y) := −bT y + μ−1tr
[
exp(−μA(y) + lnxk−1)

]
. (27)

Then under assumption (A1) the minimum set of F is nonempty and bounded.

Proof We prove that F is coercive by contradiction. Suppose not, i.e., some level set
of F is not bounded. Then, there exists a sequence {yk} ⊆ R

m such that

‖yk‖ → +∞, lim
k→+∞

yk

‖yk‖ = d 
= 0 and F(yk) ≤ δ (28)

for some δ ∈ R. Since exp(−μA(y) + lnxk−1) ∈ int(K) for any y ∈ R
m by

Lemma 5.1(a),

tr
[
exp

(
− μA(y) + lnxk−1

)]
=

r∑
j=1

exp
[
λj

(
− μA(y) + lnxk−1

)]
> 0.
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Therefore, F(yk) ≤ δ implies that the following two inequalities hold

−bT yk < δ, (29)
r∑

j=1

exp
[
λj

(
− μA(yk) + lnxk−1

)]
≤ μ(δ + bT yk). (30)

Due to the nonnegativity of the exponential function, (30) is equivalent to saying that

exp
[
λj

(
− μA(yk) + lnxk−1

)]
≤ μ(δ + bT yk) ∀ j = 1,2, . . . , r. (31)

Dividing by ‖yk‖ on the both sides and using the monotonicity of ln t (t > 0) then
gives

λj

(
−μA(yk) + lnxk−1

)
− ln(‖yk‖)

≤ ln
[
μ(δ + bT yk)/‖yk‖

]

≤ μ(δ + bT yk)

‖yk‖ − 1 ∀ j = 1,2, . . . , r.

where the last inequality is due to ln t ≤ t − 1 (t > 0). Now dividing ‖yk‖ on the both
sides again and using the homogeneity of the function λj (·) yields

λj

(
−μA(yk)

‖yk‖ + lnxk−1

‖yk‖
)

− ln(‖yk‖)
‖yk‖ ≤ μ(δ + bT yk)

‖yk‖2
− 1

‖yk‖ ∀ j = 1,2, . . . , r.

Passing to the limit k → +∞ on the both sides and noting that ‖yk‖ → +∞, we get

λj

(
μ

m∑
i=1

diai

)
≤ 0 ∀ j = 1,2, . . . , r,

which, by the homogeneity of λj (·) again, implies

μλj (A(d) − c) = μλj

(
−

m∑
i=1

diai

)
≥ 0 ∀ j = 1,2, . . . , r.

Consequently, A(d) − c �K 0. From Lemma 5.2, F∞ = {d ∈ R
m : A(d) − c �K 0}.

This together with −bT d ≤ 0 shows that there exists a nonzero d ∈ R
m such that

d ∈ F∞ but −bT d ≤ 0, obviously contradicting assumption (A1). Thus, we complete
the proof. �

To analyze the convergence of the algorithm defined by (25)–(26), we also need
the following lemma which states that the sequence {xk}k∈N generated by (25)–(26)
is exactly the one given by the algorithm in (11)–(12) when applied to the dual prob-
lem (DSCLP).
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Lemma 5.4 The sequence {xk}k∈N generated by the multiplier method (25)–(26) can
be obtained via the following iterate scheme

xk = argmax
x�K 0

{
D(x) − μ−1

k H(x, xk−1)
}

, (32)

where D(x) := infy∈Rm L(y, x) is the dual objective function of (DSCLP).

Proof First, we prove that −A(yk) ∈ ∂D(xk). Using Lemma 5.1(c) and the optimal-
ity condition of (25), we obtain that

0 = −bi +
〈
ai, exp(−μkA(yk) + ln(xk−1))

〉

= −bi +
〈
ai, x

k
〉

= −bi + tr(ai ◦ xk), i = 1,2, . . . ,m,

where the second equality is due to (26). This implies that yk is also minimizing the
Lagrangian L(y, xk), and consequently D(xk) = L(yk, xk). Now, we have that

D(x) = inf
y∈Rm

{
−bT y − tr[x ◦ A(y)]

}

≤ −bT yk − tr[x ◦ A(yk)]
= −bT yk − tr[xk ◦ A(yk)] − tr[(x − xk) ◦ A(yk)]
= D(xk) + 〈x − xk, −A(yk)〉. (33)

In view of the concavity of D(x), the inequality (33) means that −A(yk) ∈ ∂D(xk).
Using formula (26), we then have μ−1

k (lnxk − lnxk−1) ∈ ∂D(xk). From Proposi-
tion 3.1, this is precisely the optimality condition of the maximum problem in (32). �

Now we are in a position to present the convergence results of the algorithm de-
fined by (25)–(26). Their proofs are similar to those of [6, Theorem 5.1], and we here
include them for completeness.

Proposition 5.1 Let {yk}k∈N and {xk}k∈N be the sequences generated by (25)–(26).
Then, under assumptions (A1) and (A2), the following results hold.

(a) The sequence {xk}k∈N ⊂ int(K) is bounded and each limit point is a dual solu-
tion.

(b) tr[xk ◦ A(yk)] → 0 when k → +∞.
(c) Let ỹk = ∑k

l=1 ηly
l with ηl := μl/νk > 0 and νk := ∑k

l=1 μl . Then

lim inf
k→+∞λmin(A(ỹk)) ≥ 0.

(d) Let D∗ be the optimal value of (DSCLP). Then −bT yk → D∗ and −bT ỹk → D∗.
(e) {ỹk} is bounded and its every limit point is a solution of (SCLP).



496 J.-S. Chen, S. Pan

(f) limk→+∞ −bT yk = limk→+∞ D(xk) = −bT y∗, where y∗ is a solution of
(SCLP).

Proof (a) From Lemma 5.4, {xk}k∈N is the sequence generated by applying the
entropy-like proximal algorithm (11)–(12) to (DSCLP). Since under assumption (A2)
the solution set of (DSCLP) is nonempty and compact, the result follows from Propo-
sition 4.3 directly.

(b) Using the definition of H and noting that −μkA(yk) = lnxk − lnxk−1, we
have

H(xk, xk−1) = tr[xk ◦ (lnxk − lnxk−1) + xk−1 − xk]
= −μktr[xk ◦ A(yk)] + tr(xk−1 − xk).

From Proposition 4.2(e), we know that H(xk, xk−1) → 0 and tr(xk−1 − xk) → 0.
Thus, by noting that μk > μ̄ > 0, the last equality implies tr[xk ◦ A(yk)] → 0.

(c) From the linearity of A(y) and the definition of ỹk , we have that

A(ỹk) =
k∑

l=1

ηlA(yl) =
k∑

l=1

ηl

μl

[
lnxl−1 − lnxl

]

= ν−1
k

k∑
l=1

[
lnxl−1 − lnxl

]

= ν−1
k (lnx0 − lnxk),

where the second equality is due to (26). From Lemma 2.1, it then follows that

λmin(A(ỹk)) = λmin

(
lnx0 − lnxk

νk

)
≥ λmin(lnx0)

νk

+ λmin(− lnxk)

νk

.

Since, as νk → +∞, the first term of the right hand side tends to zero, it remains to
prove that lim infk→+∞ λmin(− lnxk)/νk ≥ 0. Notice that

lim inf
k→+∞ν−1

k λmin(− lnxk) = − lim sup
k→+∞

ν−1
k λmax(lnxk)

= − lim sup
k→+∞

ν−1
k ln(λmax(x

k)). (34)

In addition, since {xk}k∈N ⊂ int(K) is bounded, we have λmax(x
k) ≤ λ̄ for some

λ̄ > 0. This implies that

− lim sup
k→+∞

ν−1
k ln(λmax(x

k)) ≥ − lim sup
k→+∞

ν−1
k ln λ̄ ≥ 0.

Combining with (34) then yields the desired result.
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(d) Since {xk}k∈N is a feasible sequence of (DSCLP), there holds that

tr[xk ◦ A(yk)] = tr

[
xk ◦ c −

m∑
i=1

yk
i xk ◦ ai

]

= tr[xk ◦ c] − bT yk

= −bT yk − D(xk).

Noting that tr[xk ◦ A(yk)] → 0 and D(xk) → h∗ by Proposition 4.3(b), we readily
obtain the result from the last equation.

(e) Suppose that {ỹk} is unbounded. Let ŷ∗ be the element with the maximum
norm from the solution set of (SCLP). The existence of ŷ∗ is guaranteed by the
boundedness of the solution set of (SCLP). Define

αk = 1 − 4‖ŷ∗‖
‖ỹk − ŷ∗‖ .

Since ‖ỹk‖ → +∞, there must exist an k0 such that 0 < αk < 1 for all k ≥ k0 . Let
zk = αkŷ

∗ + (1 − αk)ỹ
k . It is easy to verify that

3‖ŷ∗‖ ≤ ‖zk‖ ≤ 9‖ŷ∗‖.
This means that the sequence {zk} is bounded. We next prove that each limit point
of {zk} is an optimal solution to (SCLP), which together with the last inequality
contradicts the fact that ŷ∗ is an element of the maximum norm in the solution
set of (SCLP). Let z∗ be a limit point of {zk}. Without loss of generality, we as-
sume that zk → z∗. Noting that A(zk) = αkA(ŷ∗) + (1 − αk)A(ỹk), αk → 1 and
lim infk→+∞ λmin(A(ỹk)) ≥ 0, we have A(z∗) �K 0, i.e., z∗ is a feasible point of
(SCLP), which in turn means that bT ŷ∗ ≥ bT z∗. On the other hand, since −bT ỹk →
D∗ ≤ −bT ŷ∗ by part (d) and the weak duality, we get

bT z∗ = lim
k→+∞bT zk = lim

k→+∞[αkb
T ŷ∗ + (1 − αk)b

T ỹk] ≥ bT ŷ∗.

Thus, we have bT z∗ = bT ŷ∗, and consequently z∗ is an optimal solution of (SCLP).
Let ỹ∗ be a limit point of {ỹk}. Since lim infk→+∞ λmin(A(ỹk)) ≥ 0 by part (d), ỹ∗

be a feasible solution of (SCLP). Therefore, −bT ỹ∗ ≥ −bT y∗, where y∗ be a solution
of (SCLP) (its existence is guaranteed by assumption (A1)). On the other hand, from
part (d) and the weak duality, it follows that −bT ỹ∗ = D∗ ≤ −bT y∗. The two sides
show that

−bT ỹ∗ = −bT y∗ = D∗. (35)

Consequently, ỹ∗ is an optimal solution of (SCLP).
(f) The first equality is due to part (d) and the second follows from (35). �

Observe that the above convergence properties of the algorithm (25)–(26) are sim-
ilar to the ones obtained by [27] for convex programs over nonnegative orthant cones,
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except that the global convergence of the dual sequence to an optimal dual solution is
not guaranteed. The main reason is that under the setting of symmetric cones, when
int(K) ⊃ {xk} → x̄∗ ∈ K, H(xk, x̄∗) → 0 does not hold. (A counterexample can be
found for the semidefinite program in [6].) However, one still has convergence in
terms of function values, and moreover, by applying Proposition 4.3(a) with x = x∗,
where x∗ is a solution of (DSCLP), one has the global convergence rate estimate:

tr(c ◦ (x∗ − xk)) ≤
(

k∑
l=1

μl

)−1

H(x∗, x0).

6 Conclusions

We have developed an entropy-like proximal algorithm for the CSCP (1). The algo-
rithm is based on the distance-like function H(·, ·) defined on the symmetric cone
K of the Euclidean Jordan algebra. We showed that the proposed algorithm is well-
defined and established its convergence properties. Also, we presented a dual appli-
cation of the algorithm to the symmetric cone linear programming problem (SCLP),
leading to a multiplier method for this class of symmetric cone optimization prob-
lems. The multiplier method was shown to share many similar properties with the
exponential multiplier method developed by [27] for convex minimization with non-
negative orthant cone constraints.
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