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A NOTE ON CONVEXITY OF TWO SIGNOMIAL FUNCTIONS

JEIN-SHAN CHEN AND CHIA-HUI HUANG

Abstract. In this note, we provide correct proofs for showing the convexity of
two signomial functions which are frequently used in some recent papers [4, 6, 7,
8, 9] by Tsai et al.. Their arguments contain repeated flaws that motivate our
work of this note.

1. Motivation and basic concepts

In this note, we consider two signomial functions whose convexity play impor-
tant roles in some recent papers [4, 6, 7, 8, 9] dealing with geometric programming
problems. However, the verifications therein contain some certain flaws and those
incorrect arguments are repeatedly appeared and cited. From point of scientific
research’s view, we hereby provide correct proofs for them.

First, we recall what signomial function is. A function f : IRn
++ → IR defined as

f(x) = cxα1
1 xα2

2 · · ·xαn
n ,

where c > 0 and αi ∈ IR for all i, is called a monomial function or simply a monomial,
see [2]. Note that the exponents αi of a monomial can be any real numbers, but
the coefficient c must be nonnegative. A sum of monomials, namely, a function of
the form

f(x) =
N∑

k=1

ckx
α1k
1 xα2k

2 · · ·xαnk
n ,

where ck > 0 and cik ∈ IR, is called a posynomial function with N terms or simply a
posynomial. A signomial is a linear combination of monomials of some positive vari-
ables x1, . . . , xn. Generally speaking, signomials are more general than posynomials.

Next, we review some basic concepts and properties of symmetric matrices which
will be used in subsequent analysis. These materials can be found in regular text-
books regarding matrix analysis and convex functions, e.g., [1, 3]. Let f be defined
on an open convex set D ⊆ IRn and be twice differentiable, it is known that (i) f is
convex on D if and only if the Hessian matrix ∇2f(x) is positive semidefinite (p.s.d.
for short) at each x ∈ D; (ii) if ∇2f(x) is positive definite (p.d. for short) at each
x ∈ D, then f is strictly convex. The converse of (ii) is false, see the counterexam-
ple f(x) = x4. Another important criterion for positive definiteness of a symmetric
matrix A is via its leading principal minors as below. For convenience, we denote
4k as the leading principal minors of A.
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Lemma 1.1. Let A be an n× n nonzero symmetric matrix.
(a): If A is positive semidefinite, then all its leading principal minors are

nonnegative with not all of them being zero, i.e., 4k ≥ 0, k = 1, 2, . . . , n
and not all 4k = 0.

(b): A is positive definite if and only if all its leading principal minors are
positive, i.e., 4k > 0, for all k = 1, 2, . . . , n.

The positive definiteness of a symmetric matrix can be described not only by its
leading principal minors, but also by all principal minors. More specifically, the
positivity of any nested sequence of n principal minors of A (not just the leading
principal minors) is necessary and sufficient for A to be positive definite (see [3,
Theorem 7.2.5]). On the other hand, if all principal minors of A are nonnegative,
then A is positive semidefinite (see [3, page 405]).

The converse of Lemma 1.1(a) is false. For example, let A =




1 0 0
0 0 0
0 0 −1


,

we have 〈x,Ax〉 = x2
1 − x2

3 which is not always nonnegative for all x ∈ IR3. But
41 = 1 ≥ 0, 42 = 0 ≥ 0, 43 = 0 ≥ 0. In fact, the converse of Lemma 1.1(a) is true
only for n = 2, see [1, page 112]. From the aforementioned discussion, we know that
we can not tell the positive semidefiniteness of a symmetric matrix by its leading
principal minors whereas we can do it for positive definiteness. Nonetheless, we still
can reach the conclusion of the positive semidefiniteness of a symmetric matrix by
the nonnegativeness of its eigenvalues. This can be seen as below.

Lemma 1.2. Let A be an n × n nonzero symmetric matrix. Then, the followings
hold.

(a): A is p.s.d. if and only if all of its eigenvalues are nonnegative with at
least one eigenvalue being zero.

(b): A is p.d. if and only if all of its eigenvalues are positive.

To close this section, we state another important relation between ln f(x) and
f(x) on their convexity that will be needed for proving our main results, i.e., suppose
f is defined on a convex set D ⊆ IRn and f(x) > 0 for all x ∈ D, then the convexity
of ln f(x) implies f(x) being convex. Note that the converse is false, for instance,
f(x) = x2 is convex but ln f(x) = 2 ln |x| is not convex.

2. Main results

Now we are ready to present our main results which show that the following two
signomial functions are convex functions. As mentioned earlier, signomial functions
play an important role in geometric programming. In particular, the convexity
of such functions will help in designing solution methods for it which is the main
motivation for this note.

Proposition 2.1. Let f1 : IRn
++ → IR be defined as f1(x) = c1

n∏

i=1

xαi
i , where c1 > 0

and αi ≤ 0 for all i = 1, 2, . . . , n. Then f1 is a convex function.
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Proof. Since c1 > 0, it is enough to show that f̃1(x) =
n∏

i=1

xαi
i is convex.

Let g(x)=ln f̃1(x)=
n∑

i=1

lnxαi
i =

n∑

i=1

αi lnxi. Then, we have

∇g(x) =
[
α1

x1

α2

x2
· · · αn

xn

]T

and ∇2g(x) =




−α1

x2
1

0 · · · 0

0
−α2

x2
2

· · · 0

...
...

. . .
...

0 0 · · · −αn

x2
n




Due to αi ≤ 0 for all i = 1, 2, . . . , n, we know that all eigenvalues of ∇2g(x) are

nonnegative which implies (by Lemma 1.2(a)) that ∇2g(x) is positive semidefinite.
Thus, g(x)=ln f̃(x) is a convex function which yields f̃1(x) being a convex function.

¤

Proposition 2.2. Let f2 : IRn
++ → IR be defined as f2(x) = c2

n∏

i=1

xαi
i , where c2 < 0

and αi > 0 for all i = 1, 2, . . . , n with 1−
n∑

i=1

αi ≥ 0. Then f2 is a convex function.

Proof. It is not hard to compute that [∇f2(x)]i = c2αix
αi−1
i

n∏

j=1,j 6=i

x
αj

j . In other

words,

∇f2(x) =




c2α1x
α1−1
1 xα2

2 · · ·xαn
n

c2α2x
α1
1 xα2−1

2 · · ·xαn
n

...
c2αnxα1

1 xα2
2 · · ·xαn−1

n


 .

In addition, it can be verified that

[∇2f2(x)
]
ij

=
∂2f2(x)
∂xi∂xj

=





αiαj

xixj
f2(x), if i 6= j,

αi(αi − 1)
x2

i

f2(x), if i = j,

namely,

∇2f2(x)
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=




c2α1(α1 − 1)x−2
1

n∏

i=1

xαi
i c2α1α2x

−1
1 x−1

2

n∏

i=1

xαi
i · · · c2α1αnx−1

1 x−1
n

n∏

i=1

xαi
i

c2α2α1x
−1
2 x−1

1

n∏

i=1

xαi
i c2α2(α2 − 1)x−2

2

n∏

i=1

xαi
i · · · c2α2αnx−1

2 x−1
n

n∏

i=1

xαi
i

...
...

. . .
...

c2αnα1x
−1
n x−1

1

n∏

i=1

xαi
i c2αnα2x

−1
n x−1

2

n∏

i=1

xαi
i · · · c2αn(αn − 1)x−2

n

n∏

i=1

xαi
i




Moreover, the determinant of ∇2f2(x) can be computed and be shown by induction
as

(2.1) det
[∇2f2(x)

]
= (−c2)n

(
n∏

i=1

αix
nαi−2
i

)(
1−

n∑

i=1

αi

)
.

Now, we will complete the proof by discussing the following two cases.

Case (i): If 1 −
n∑

i=1

αi = 0, we will show that yT∇2f2(x) y ≥ 0 for any y ∈ IRn

which says ∇2f2(x) is a positive semidefinite matrix by definition, and hence f2(x)
is a convex function under this case. To see this, we first write out the expression
of yT∇2f2(x) y as below

yT∇2f2(x) y

= c2

n∏

i=1

xαi
i





α1(α1 − 1)x−2
1 y2

1 + α1α2x
−1
1 x−1

2 y1y2 + · · ·+ α1αnx−1
1 x−1

n y1yn

+ α2α1x
−1
2 x−1

1 y1y2 + α2(α2 − 1)x−2
2 y2

2 + · · ·+ α2αnx−1
2 x−1

n y2yn

+
...

...
...

+ αnα1x
−1
n x−1

1 y1yn + αnα2x
−1
n x−1

2 y2yn + · · ·+ αn(αn − 1)x−2
n y2

n





= c2

n∏

i=1

xαi
i





α1x
−1
1 y1

[
(α1 − 1)x−1

1 y1 + α2x
−1
2 y2 + · · ·+ αnx−1

n yn

]
+ α2x

−1
2 y2

[
α1x

−1
1 y1 + (α2 − 1)x−1

2 y2 + · · ·+ αnx−1
n yn

]

+
...

...
...

+ αnx−1
n yn

[
α1x

−1
1 y1 + α2x

−1
2 y2 + · · ·+ (αn − 1)x−1

n yn

]





= c2

n∏

i=1

xαi
i





α1x
−1
1 y1

[
α1x

−1
1 y1 + α2x

−1
2 y2 + · · ·+ αnx−1

n yn − x−1
1 y1

]
+ α2x

−1
2 y2

[
α1x

−1
1 y1 + α2x

−1
2 y2 + · · ·+ αnx−1

n yn − x−1
2 y2

]

+
...

...
...

+ αnx−1
n yn

[
α1x

−1
1 y1 + α2x

−1
2 y2 + · · ·+ αnx−1

n yn − x−1
n yn

]





= c2

n∏

i=1

xαi
i

{ (
α1x

−1
1 y1 + α2x

−1
2 y2 + · · ·+ αnx−1

n yn

)2

− (
α1x

−2
1 y2

1 + α2x
−2
2 y2

2 + · · ·+ αnx−2
n y2

n

)
}

.

(2.2)

Next, we will argue that the whole thing inside the big parenthesis of (2.2) is non-
positive by applying Cauchy-Schwarz inequality. In order to apply Cauchy-Schwarz
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inequality, we make the following arrangement:[(√
α1x

−1
1 y1

)2 +
(√

α2x
−1
2 y2

)2 + · · ·+ (√
αnx−1

n yn

)2
]

[
(
√

α1)
2 + (

√
α2)

2 + · · ·+ (
√

αn)2
]

≥ [
α1x

−1
1 y1 + α2x

−1
2 y2 + · · ·+ αnx−1

n yn

]2
.(2.3)

Since
[(√

α1

)2 +
(√

α2

)2 + · · ·+ (√
αn

)2
]

= 1, inequality (2.3) is equivalent to
(
α1x

−1
1 y1 + α2x

−1
2 y2 + · · ·+ αnx−1

n yn

)2−(
α1x

−2
1 y2

1 + α2x
−2
2 y2

2 + · · ·+ αnx−2
n y2

n

) ≤ 0.

This together with c2 < 0 implies that yT∇2f2(x) y ≥ 0 for any y ∈ IRn. Thus, we
complete the proof of case (i).

Case(ii): If 1−
n∑

i=1

αi > 0, then we know from (2.1) that

(2.4) 4i = (−c2)i




i∏

j=1

αj x
iαj−2
j





1−

i∑

j=1

αj


 ,

where 4i denotes the i-th leading principal minor of the Hessian matrix of f2(x).

Note that c2 < 0, αi > 0 for all i = 1, 2, · · · , n, and 1−
n∑

i=1

αi > 0. Therefore, it can

be seen that 4i > 0 for all i = 1, 2, · · · , n, which implies (by Lemma 1.1(b)) that
∇2f2(x) is a positive definite matrix. This says that f2(x) is strictly convex under
this case. ¤

For Proposition 2.1, Tsai et al. claimed that (e.g. [4, Prop. 5(i)], [6, Prop. 1]
and [9, Prop. 2]) all principal minors 4k ≥ 0 and concluded directly that f1 is a
convex function. As mentioned earlier, this property holds only for n = 2 and is not
satisfied for general n ≥ 3. For Proposition 2.2, Tsai et al. made the same mistakes
again and did not notice that the case 1−∑n

i=1 αi = 0 will cause the error therein
(e.g. [4, Prop. 5(ii)], [6, Prop. 2] and [9, Prop. 3]).

We want to point out that our results also provide an alternative proof for the
main result (Theorem 7) of [5]. Indeed, Maranas and Floudas in [5, Theorem 7]
further discuss another condition as below

(2.5) ∃j such that αj ≥ 1−
n∑

i6=j

αi, and αi ≤ 0, ∀i 6= j, i = 1, 2, · · ·n.

to guarantee that f1 defined as in Prop. 2.1 is a convex function. Our approach
can be also employed to verify this fact. To see this, we arrange all powers αi in
decreasing order. In other words, without loss of generality, we assume

(2.6) α1 > α2 ≥ · · · ≥ αn.

Notice that condition (2.5) implies that α1 is positive and all the other α2, · · · , αn

are nonpositive with α1 ≥ 1 −∑n
i=2 αi. As mentioned in Prop. 2.1, we only need
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to show that the function f̃1(x) =
n∏

i=1

xαi
i is convex. By similar arguments as in the

proof of Prop. 2.2, we know that

4̂i = (−1)i




i∏

j=1

αj x
iαj−2
j





1−

i∑

j=1

αj


 ,

where 4̂i denotes the i-th leading principal minor of the Hessian matrix of f̃1(x).

From conditions (2.5) and (2.6), it is easily verified that


1−

i∑

j=1

αj


 < 0 for each

i. It is also not hard to observe that
i∏

j=1

αj is positive if i is odd, and is negative if

i is even. In other words, for each i there holds

(−1)i




i∏

j=1

αj x
iαj−2
j


 < 0.

In addition, we observe that 4̂n = 0 when α1 = 1 −∑n
i=2 αi. Thus, from all the

above, we have either

(2.7) 4̂1 > 0, · · · , 4̂n−1 > 0, 4̂n > 0 if α1 > 1−
n∑

i=2

αi

or

(2.8) 4̂1 > 0, · · · , 4̂n−1 > 0, 4̂n = 0 if α1 = 1−
n∑

i=2

αi.

Then, Lemma 1.1(b) says that ∇2f̃1(x) is positive definite for case (2.7) whereas
following the similar arguments as in Prop. 2.2 implies that ∇2f̃1(x) is positive
semidefinite for case (2.8). Thus, we conclude that f̃1 is also a convex function
under condition (2.5).
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