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Like the matrix-valued functions used in solutions methods for semidefinite programs (SDPs)
and semidefinite complementarity problems (SDCPs), the vector-valued functions associated
with second-order cones are defined analogously and also used in solutions methods for
second-order-cone programs (SOCPs) and second-order-cone complementarity problems
(SOCCPs). In this article, we study further about these vector-valued functions associated
with second-order cones (SOCs). In particular, we define the so-called SOC-convex and
SOC-monotone functions for any given function f: R — R. We discuss the SOC-convexity
and SOC-monotonicity for some simple functions, e.g., fAt) =, 3, 1/t, '/2, |¢], and [],.
Some characterizations of SOC-convex and SOC-monotone functions are studied, and some
conjectures about the relationship between SOC-convex and SOC-monotone functions are
proposed.
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1. Introduction

The second-order cone (SOC) in R", also called the Lorentz cone, is defined by
K'={(x1,x2) e Rx R"| xal| < 31}, (1)

where ||-|| denotes the Euclidean norm. If n=1, let K" denote the set of nonnegative

reals R,. For any x, y in R", we write x >y» y if x —y € K"; and write x >x» y if

x —y € int(K"). In other words, we have x >x» 0 if and only if x € K", and x >y~ 0
if and only if x € int(K"). The relation >y is a partial ordering but not a linear ordering
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in K", i.e., there exist x, y € K" such that neither x >y» y nor y >x» x. To see this, for
n=2,let x=(1,1), y=(1,0). Then, we have x —y = (0,1) ¢ K", y —x = (0, —1) ¢ K".

Recently, the SOC has received much attention in optimization, particularly in the
context of applications and solutions methods for the second-order-cone program
(SOCP) [14] and second-order-cone complementarity problem (SOCCP) [5-8].
For those solutions methods, spectral decomposition associated with SOC is required.
The basic concepts are as follows. For any x = (x;,x;) € RxR"! x can be
decomposed as

x = 2V + au?, )
where A, A, and ", u® are the spectral values and the associated spectral vectors of x
given by
i =x1+ (=1 x2l, 3)
1 i X2 .
. ~ la(_l) s 1fx27&0a
U = % [zl @)
E(l’ (—l)’w), if xo =0,

for i=1, 2 with w being any vector in R"! satisfying ||w|=1. If x, # 0, the
decomposition is unique.

For any function f/: R — R, the following vector-valued function associated with K"
(n>1) was considered [8,10]:

) = fo)u) + o), Vx = (x1,x) e Rx R (5)

If f'is defined only on a subset of R, then /°°° is defined on the corresponding subset
of R". The definition (5) is unambiguous whether x> # 0 or x,=0. The cases of
15°°(x) = x"2, x%, exp(x) are discussed in [9]. In fact, the equation (5) is analogous to one
associated with the semidefinite cone S [19,21].

In this article, we further define the so-called SOC-convex and SOC-monotone
functions (section 3), which are parallel to matrix-convex and matrix-monotone
functions [2,11]. We study the SOC-convexity and SOC-monotinicity for some simple
functions, e.g., ir)=1>, £, 1/t, 1'%, |1], and [7],.. Then, we explore the characterizations
of SOC-convex and SOC-monotone functions. In addition, we state some conjectures
about the relationship between SOC-convex and SOC-monotone functions. It is our
intention to extend the existing properties of matrix-convex and matrix-monotone
functions shown as in [2,11]. As will be seen in section 3, the vector-valued functions
associated with SOC are accompanied by the Jordan product (will be defined
in section 2). However, unlike matrix multiplication, the Jordan product associated with
SOC is not associative, which is the main source of difficulty when we do the extension.
Therefore, the ideas for proofs are usually quite different from those for matrix-valued
functions. The vector-valued functions associated with SOC are heavily used in the
solutions methods for SOCP and SOCCP. Therefore, further study on these functions
will be helpful for developing and analyzing more solutions methods. That is one of the
main motivations for this article.

In what follows and throughout the article, (-, -) denotes the Euclidean inner product
and ||-|] the Euclidean norm. The notation ‘“:=" means ‘“define”. For any
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f:R" — R, Vf(x), denotes the gradient of /' and x. For any differentiable mapping
F=(F,F,...,F,)T :R" > R", VF(x) = [VFi(x)---VF,(x)], is a nxm matrix
denotes the transposed Jacobian of F at x. For any symmetric matrices 4, B € R"™",
we write A4 > B (respectively, 4 > B) to mean A4 — B is positive semidefinite
(respectively, positive definite). We also use p.s.d. (respectively, p.d.) to represent
the abbreviation of positive semidefinite (respectively, positive definite).

2. Jordan product and related properties

For any x = (x,x;) € R x R~ and y=01,n)eRx R, we define their Jordan
product as

xoy=(x"y, yixa+x1)2). (6)

We write x* to mean x o x and write x + y to mean the usual componentwise addition
of vectors. Then o, +, together with e = (1,0,.. .,0)7 € R" have the following basic
properties [9,10]: (1) eox=ux, for all xeR", (2) xoy=youx, for all x,yeR",
B) xo(x*0y)=x%0(xo0y), forall x,y e R" and (4) (x+y)oz=x0z+ yoz, for all
x,y,z € R". The Jordan product is not associative. For example, for n=3, let
x=(,-1,1) and y=z=(1,0,1), then we have (xoyp)oz=(4, —1,4)+#
xo(yoz)=(4, =2,4). However, it is power associative, i.e., xo(xoXx)=(xox)ox
for all x € R". Thus, we may, without fear of ambiguity, write x" for the product of
m copies of x and x”*" = x" o x" for all positive integers m and n. We define x" =e.
Besides, K" is not closed under Jordan product. For example, x = (v/2,1,1) € K3,
y=w21, 1) e £, but xoy=(2,242,0) ¢ K>.

For each x = (x1,x2) € R x R""!, the determinant and the trace of x are defined by

det(x) = xf — %2, tr(x) = 2x;.

In general, det(x o y) % det(x)det(y) unless x> = y,. A vector x = (x1,x2) € R x R" ' is
said to be invertible if det(x) # 0. If x is invertible, then there exists a unique
y=(1,12) € R x R""! satisfying x o y = y o x = e. We call this y the inverse of x and
denote it by x~'. In fact, we have

B 1 1

=5 )=
xt = Il det(x)

(tr(x)e — x).

Therefore, x € int(K") if and only if x~! € int(K"). Moreover, if x € int(K"), then
x*=(x"%)7"is also well-defined. For any x € K", it is known that there exists a unique
vector in K" denoted by x'/? such that (x'/2)? = x'/2 o x'/2 = x. Indeed,

1
X2 = (s, ﬁ), where s = [= | x1 +/x] + [x2]* ).
2s 2

In the preceding formula, the term xj/s is defined to be the zero vector if x,=0
and s=0, i.e., x=0.

For any x € R", we always have x> € K" (i.e., x> >x» 0). Hence, there exist a unique
vector (xz)l/2 € K" denoted by |x|. It is easy to verify that |x| =, 0 and x* = |x|* for any
x € R". It is also known that |x| >x» x. For any x € R", we define [x] to be the nearest
point (in Euclidean norm, since Jordan product does not induce a norm) projection of x

2



366 J.-S. Chen

onto K", which is the same definition as in R,. In other words, [x]; is the optimal
solution of the parametric SOCP: [x], = argmin{||x — y|| [y € K"}. It is well-known that
[x]. = 1/2(x + |x[); see Property 2.2(f).

Next, for any x = (x1,x;) € R x R""!, we define a linear mapping from R” to R" as

L,:R'—R"

xi Xt
y— Ly = y.
Xy xi/

It can be easily verified that x o y = L.y, Vy € R", and L, is positive definite (and hence
invertible) if and only if x € int(K"). However, L;'y# x!1 oy, for some x € int(K")
and y e R", ice.,, L7V # L.

The spectral decomposition along with the Jordan algebra associated with SOC entail

some basic properties as listed in the following text. We omit the proofs since they
can be found in [9,10].

Property 2.1 For any x = (x1,x;) € R x R with the spectral values A, A, and
spectral vectors u'”, u® given as in equations (3)—(4), we have

(a) u'" and u® are orthogonal under Jordan product and have length 1/4/2, i.c.,

1
uou® =0, ) = 1) = .
(b) u" and «® are idempotent under Jordan product, i.e.,
u?ou® =49 i=1,2.
(¢) A1, Ay are nonnegative (positive) if and only if x € K" (x € int(K")), i.e.,

Ai>0,Vi=1,2<=x>x 0.
Ai>0,Vi=1,2=x>x 0.

(d) The determinant, the trace and the Euclidean norm of x can all be represented
in terms of A, Ao:

1
det(x) = ko, () =2 +a Il =5 (A +33).

Property 2.2 For any x = (x,x2) € R x R™" with the spectral values A;, A, and
spectral vectors u", u® given as in equations (3)~(4), we have

(@) x> = AJu) + 13u®.

(b) If x € K", then x'/2 = /A u® + /Au®.

© Ixl = Al + [Ao]u®.

(d) 6]y = [l + [alou®?, 6] = [alat) + [Aa]_ul?.
() Ix| =[xl + [—x]; = [x]y —[x]_.

(0 [x]y = 1/2(x + Ix]), [x]- = 1/2(x — |x]).

Property 2.3

(a) Any x € R” satisfies |x| >y x.

(b) For any x,y >x» 0, if x >, y, then x'/?

1/2
iK”y/-
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(c) For any x,y € R", if x* >, y?, then |x| >, [y].
(d) For any x e R", x =j» 0 & (x,p) >0, Vy >, 0.
(e) Forany x >x» 0 and y € R", x? >=» 3> = x > ).

In the following propositions, we study and explore more characterizations about
spectral values, determinant, and trace of x as well as the partial order >x». In fact,
Propositions 2.1-2.4 are parallel results analogous to those associated with positive
semidefinite cone [11]. Even though both K" and §" belong to self-dual cones and share
similar properties, as we will see, the ideas for proving these results are quite different.
One reason is that the Jordan product is not associative as mentioned earlier.

ProrosiTioN 2.1 For any x > 0 and y =y 0, the following results hold.

(@) If x =y y, then det(x) > det(y), tr(x) > tr(y).
(b) If x >=x» y, then A(x) > 1i(y), Vi=1,2.

Proof (a) From definition, we know that
det(x) = x7 — [lx2f*,  tr(x) = 2x1,
det(y) =7 — 2ll*, tr(y) = 21

Since x —y = (x1 —y1,X2 — y2) =x» 0, we have |[lx2 —y2ll <x; — 1. Thus, x>y,
and then tr(x) > tr(y). Besides, the assumption on x and y gives

x1 =y = X2 = 2l = [llxall = y2ll], (7)
which is equivalent to x; — || x2|| > y1 — |[y2ll > 0and x; + ||x2] = y1 + [ly2]l > 0. Hence,
det(x) = x7 — [lxall* = (v + [x2D(x1 = 1x20) = 01 + 12D = [1y2l) = det(y).

(b) From definition of spectral values, we know that

rx)=x1 —llxall, 22(x)=x1+[x2ll and Q) =y1— 32, 220) =31+l
Then, by the inequality (7) in the proof of part (a), the results follow immediately. W
ProposiTiON 2.2 For any x =y 0 and y =y 0, we have

(a) det(x + y) > det(x) + det(y).

(b) det(x o y) < det(x) - det(y).

(¢) det(ax + (1 — a)y) > e det(x) + (1 — @)* det(y), VO < < 1.
(d) (det(e + x)"? > 1+ det(x)"?, Vx =y 0.

(e) det(e +x + y) < det(e + x) - det(e + y).

Proof
(a) For any x >x» 0 and y >x» 0, we know | x,|| <x; and || y»|| <y, which implies
[{x2, y2) | < N2l - ly2ll < xip1.
Hence, we obtain
det(x +y) = (v +1)° = |x2 + 2
= (7 = 2l + 0F = 2l?) + 2001 = (x2,2))

> (7 — %0 + (F = 1201
= det(x) + det(y).
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(b) Applying the Cauchy inequality gives

det(x 0 y) = (x, ) = [x132 + y1x2|?
= (X131 + (X2, 1)) = (T2l + 2x131 (X2, 1) + ¥}Ixa %)
= X1y + (x2, 0207 = X2 = yilixal?
< 31y Il -l = iyl = yilxal?
= (x] = Ix2l1?) - 0 = 12 l1?)
= det(x) - det(y).

(¢c) Forany x >x» 0 and y >, 0, it is clear that ax >x» 0 and (1 — &)y >x» 0 for every
0 <a < 1. In addition, we observe that det(ax) = o*det(x), for all @ > 0. Hence,

det(ax + (1 — a)y) > det(ax) + det((1 — a)y) = a’det(x) + (1 — a)*det(y),

where the inequality is from part (a).

(d) For any x >y» 0, we know det(x) = A 1A, > 0, where A; are the spectral values of x.
Hence, det(e+x) = (1 + 1)1 + A1) = (1 + /A1 42)* = (1 +det(x)/?)>.  Then,
taking square root both sides yields the desired result.

(e) Again, For any x >y» 0 and y >y~ 0, we have

xp = lIx2ll = 0,

y1— 1yl =0, ®)
[(x2, y2)| < N2l - Iy2ll < x1p1.

Also, we know det(e+x+p)=(14+x +11) — x2+1|? detle+x) =
(14 x1)* = [lx2]1* and det(e + y) = (1 4 y1)* — [|y2]|>. Hence,
det(e + x) - det(e + y) — det(e + x + y)
= (14 x1) = %2 (A + 30 = 1320
— (x40 = %2+ »2l?)
= 2x131 + 2(x2,32) + 2x137 4+ 2x1p1 — 21 llall* — 2xly2 01
+xi01 = rillxall® = 32l + el - Iyl
= 2(x1y1 4 (x2.12) + 25107 — 120P) + 20 (7 — IIx21%)
+ (7 = Il = Iyl

>0,
where we multiply out all the expansions to obtain the second equality and the last
inequality holds by (8). [ |
ProrosITION 2.3 For any x,y € R", we have

(@) tr(x +y) = tr(x) + tr(y).
(0) 21(x)A2(y) + 21 (VA2(x) = tr(x 0 y) < M)A (Y) + A2(xX)A2().
(©) trlax+ (1 —a)y) =a-tr(x) + (1 — ) - tr(y), Vo € R.
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Proof Parts (a) and (c) are trival. Thus, it remains to verify (b). Using the fact that
tr(x o y) = 2(x, y), we obtain

M)A () + 1 ()A2(x) = (x1 = e+ 12l (e 4+ %2000 = [yl
= 2(x1y1 — lIx2lllly21)
< 2(x1y1 + (x2,02)
=2{x,y) = tr(xoy)
< 2(x11 + 221D
= (er = 2D = y21D + G+ x2DOn + 121D,

which completes the proof. ]

The following two lemmas are well-known results in matrix analysis and are key to
proving Proposition 2.4, which is an important extension about the function Indet(-)
from positive semidefinite cone to SOC.

LemMA 2.1 For any nonzero vector x € R", the matrix xx” is positive semidefinite
(p.s.d.) with only one nonzero eigenvalue llx]%.

Proof The proof is routine, hence we omit it. [ |

LEmMA 2.2 Suppose that a symmetric matrix is partitioned as

A B
BT C/

where A and C are square. Then this matrix is positive definite (p.d.) if and only if A is
positive definite and C = BTA™'B.

Proof See Theorem 7.7.6 in [11]. [ |
ProrosiTioN 2.4 For any x =i 0 and y >y 0, we have

(a) The real-valued function f(x) = In(det(x)) is concave on int(K").

(b) det(ax + (1 — )y) > (det(x))*(det(»))' ™, V0 <a < 1.

(c) The function real-valued f(x)=In(det(x~") is convex on int(K").

(d) The real-valued function f(x)=tr(x — 1) is convex on int(K").
Proof

(a) Since int(K") is a convex set, it is enough to show that V?f(x) is negative
semidefinite. From direct computation, we know

Vﬂx):( L )zle,

2 2
X7 = xall®” X = llx|
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and
—2x% — 2||xg||2 4x1x2T
O3 = Il (3 =l
4x1x7 —2(x% — ||x2||2)1— 4xzx2T
(x2 = lxal|?)? (2 = [lxal?)?
-2 [(x% + Il —2xxd }

(3 = Il | —2xix (3 = 12 I + 2x2xT

V2 fix) =

Let Vf(x) be denoted by the matrix

o]

given as in Lemma 2.2 (here A is a scalar). Then, we have
AC = B"B = (] + %2 (] = 102 + 2x2x7) — dxixax;
= (x} — IxalHI =25 = Ix2]1?)x2x]
= (7 = Il (6] + %2l = 2x2x7)
= (] = =l - M,

were we denote the whole matrix in the big parenthesis of the last second equality
by M. From Lemma 2.1, we know that x,x! is a p.s.d. with only one nonzero
eigenvalue ||x,|>. Hence, all the eigenvalues of the matrix M are
2+ [x20?) = 2lx20? = x} — |Ix2l* and x? + [|x2]* with multiplicity of n—2,
which are all positive. Thus, M is positive definite which implies that V?f{(x) is
negative definite and hence negative semidefinite.

(b) From part (a), for all 0 < o < I, we have

In(det(ax + (1 — @)y)) > aln(det(x)) + (1 — o) In(det(y))
= In(det(x))*+ In(det(y))' ™
= In(det(x))*(det(y))! .
Since natural logarithm is an increasing function, the desired result follows.
(c) We observe that det(x ")=1/det(x), for all xeint(K"). Therefore,
Indet(x~!) = — Indet(x) is a convex function by part (a).
(d) The idea for proving this is the same as the one for part (a). Since int(K") is a

convex set, it is enough to show that V?f is positive semidefinite. Note that
fx) = tr(x~") = 2x1/(x? — [|x2]*). Thus, from direct computations, we have

2 2x3 + 6x1 x|, —(6x7 + 2[|x2[1*)x]
Vfix) = )3 |: 1 : : :

(3 — 1% | =(6x7 + 2[1x201)x,  2x1 ((xF — [[x2 1) + 4x2xT)

Again, let V?f{x) be denoted by the matrix

o]
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given as in Lemma 2.2 (here A4 is a scalar). Then, we have

AC = BTB = 2, (2 + 631 1)) (7 = xalP)] + 4xx]) = (637 + 202 2) o]
= (4x} + 1263 100 12) (o — 12 l1?)7 = (205 — 2431 1 + Az |*) o]
= (4} + 1207 2 l1?) (6 = 2 1) = 4(5x7 = oeal®) (7 = [1x211%) 2]
= (7 = l2l?)[(4x] + 12571132 17) T = 4(5x7 = lx211P) %27 ]
= (x7 — Ixall?) - M,
where we denote the whole matrix in the big parenthesis of the last second equality
by M. From Lemma 2.1, we know that x,xI is a p.s.d. with only one nonzero
eigenvalue ||x,||>. Hence, all the eigenvalues of the matrix M are (4x? +
122631 x|1*> — 20x3{|x2 [|* + 4[|x2 1) and 4x} + 12x2||x2]|* with multiplicity of n—2,
which are all positive since
Axt + 1257 [x2)” = 20xi 12| + 4llxz||* = dxf = 8x7[lx2)1” + 412
= 4(x} — )
> 0.

Thus, by Lemma 2.2, we obtain that V?f(x) is positive definite and hence is
positive semidefinite. Therefore, fis convex on int(KX"). ]

3. SOC-convex function and SOC-monotone function

In this section, we define the SOC-convexity and SOC-monotonicity and the study some
examples of such functions.

Definition 3.1 Let f: R — R. Then

(a) f is said to be SOC-monotone of order n if the corresponding vector-valued
function f°°¢ satisfies the following:

X =iy = [NX) =i 0.

(b) fis said to be SOC-convex of order 7 if the corresponding vector-valued function
/%€ satisfies the following:

S = x4+ Ap)= e (1 = L) (x) + A (), ©)
forall x,ye R" and 0 <1 <1.

We say fis SOC-monotone (respectively, SOC-convex) if f is SOC-monotone of all
order n (respectively, SOC-convex of all order #). If f'is continuous, then the condition
in equation (9) can be replaced by the more special condition:

i 1
7o (3 2 3 (550 +500). (10)

It is clear that the set of SOC-monotone functions and the set of SOC-convex functions
are both closed under positive linear combinations and under pointwise limits.
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ProrosiTiON 3.1 Let f: R — R be f(t)=a+ Bt, then

(a) fis SOC-monotone on R for every a € R and > 0.
(b) fis SOC-convex on R for all o, B € R.

Proof The proof is straightforward by checking that Definition 3.1 is satisfied. W
ProrosiTiON 3.2

(@) Let f: R — R be f(1)=1°, then f is SOC-convex on R.
(b) Hence, the function g(t) = a+ Bt + yt* is SOC-convex on R for all a,pcR
and y > 0.

Proof

(a) For any x,y € R", we have

L)+ ) — /() = (Y e

Since f'is continuous, the above implies that fis SOC-convex.
(b) This is an immediate consequence of (a). |

Example 3.1 The function f{r)=r> is not SOC-monotone on R.

To see this, let x=(1,0), y=(-2,0), then x—y=(3,0)>x 0. But,
X =y =(1,0) = (4,0) = (=3,0) #x 0

It is clear that f{r)=1¢> is also SOC-convex on the smaller interval [0,00) by
Proposition 3.2(a). We may ask a natural question: Is f{r)=r> SOC-monotone on the
interval [0, 00)? The answer is: it is true only for n=2 and is, false for general n > 3.
We show this in the following example.

Example 3.2

(a) The function f{r)=¢* is SOC-monotone on [0, cc0) for n=2.
(b) However, f{f)=¢ is not SOC-monotone on [0, o0) for n > 3.

(a) Let x = (x1,x2) =2 ¥ = (y1,)2) =42 0. Then we have the following inequalities:

[X2] < x1, D2l <1, x2a =2l < x1 =1,
which implies
X =X2=2y1—y220,
(11)

X1 +x2>y1+y2>0.

We want to prove that fix)—fy) = (x} +x3 —y7 — y3.2x1x2 — 2y1)2) =42 0,
which is enough to verify that x? + x3 — 33 — »3 > |2x1x2 — 2p1¥2|. This can been
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seen by

X1+ X3 — )1 — y3 — [2x1x2 — 29100

xS — Qaaxa —2pp) i X =y =0
x% +x§ —y% —y% — 21y = 2x1x3) if xpxo — 12 <0

(X1 —x2)" — (v1 — ) if xix2 —y1)2 >0
(X1 +x2)" — (1 + 32 ifxixa — 212 <0
0,

v

where the inequalities are true due to the inequalities (11).

(b) For n>3, we give a counterexample to show that f{¢)= 7> is not SOC-monotone
on the interval [0,00). Let x=(3,1, 2) e K* and y=(1,1,0) € K. It is
clear that x—y=(2,0, =2) > 0. But x*—)*=(14,6, —12) —(2,2,0) =
(12,4, —=12) #, 0.

Now we look at the function f{r)=1r". As expected, f(r)=1" is not SOC-convex.
However, it is true that f{r)=1r’ is SOC-convex on [0, co) for n =2, whereas it is false
for n > 3. Besides, we will se f{(r) = ¢* is neither SOC-monotone on R nor SOC-monotone
on the interval [0, c0) in general. Nonetheless, it is true that it is SOC-monotone on the
interval [0, o0) for n=2. The following two examples show what we have just said.

Example 3.3

(a) The function f{¢)= 1’ is not SOC-convex on R.
(b) Moreover, f(r)=1> is not SOC-convex on [0, o0) for n> 3.
(c) However, f(f)=1r is SOC-convex on [0, 00) for n=2.

To see (a), let x=(0,-2), y=(1,0). It can be verified that

1/2(f(x) + f(») = fA(x +)/2) = (=9/8, —9/4) #,2 0, which says f(1)= £ is not
SOC-convex on R.
To see (b), let x=(2,1,-1), y=(1,1,0)>,3 0, then we have 1/2(f(x)+

JO) —fix+y/2) =3, 1, =3) ¥, 0, which implies f{7)= 7 is not even SOC-convex
on the interval [0, o).

To see (c), it is enough to show that f{(x+ y)/2) <2 1/2(f(x)+f(y)) for any
X,y in K% 0. Let x = (x1,x2) =2 0 and y = (y1,2) =42 0, then we have

¥ = (x} + 3x1x3, 3x7x2 + 13),
¥ =0+ 3y13. 3t + 53),

which yields

f(x ; y) - % (et +22)° 4 30e1 + y0)(x2 + 32)%.3(x1 + 3107 (x2 4 32) + (%2 + 32)°).

1 , 1
S +10) =5 (3] + 11+ 35033 4 39193, + 33 + 35t + 3710).
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After simplifications, we denote 1/2(f(x) +f(»)) — fA(x+»)/2) := 1/8(E;, E,), where

Er =4} + 4y + 12013 + 129103 — (1 +31)° = 3001 + )02 + 32)
{ By = 4x3 +4p3 + 1263 x + 12312 — (x2 +12)° — 3(x1 + 1) (x2 + »2).
To show that E; > |E,| we discuss two cases. First, if 2, >0, then
E1 — 8] = (dx] + 123133 — 123702 — 4x3) + (497 + 120133 — 120792 — 4p3)
— (1 + 907 3001 + ¥ + 327 = 301 + 31072+ 32) — (2 + 32))
=4(x1 = x2)' + 401 — )’ = ((x1 +31) — (2 4 12))°
= 4(x1 —x2)’ + 401 =2’ = ((x1 = x2) + (1 =)’
=3(x1 —x2)” + 31 —12)° = 3(x1 — 22)* (11 — 32) — 3(x1 — X)(¥1 — 1)’
= 3((x1 — x2) + (1 — ) ((x1 — x2)° — (x1 = x2)(¥1 — 32) + (1 — 1))
= 3(x1 = x2)(1 = y2)((x1 = x2) + (1 — 2))
= 3((x1 = x2) + 01 = y2)((x1 = x2) = (1 = 2))?
>0,
where the inequality is true since x, y € K2 Similarly, if E, < 0, we also have,
E1 — |Bal = (4x] + 123133 + 123700 +4x3) + (4y] + 12y1)3 + 120102 + 49))
— (1 4+ 21 + 3001 4+ p0)a +32)7 + 3001+ 1) (2 4 32) + (X2 + 12)°)
=4(x1 +x2) + 401 + 12 — (1 +3) + (2 + 12))°
=41 +x2)" + 401 + 32 = (v +x2) + (1 +2)
= 3(x1 + )" 4301 +22)° = 3001 + %) 01 +32) = 31+ )01+ )’
= 3((x1 + x2) + (1 + 1)) ((x1 + x2)° = (x1 + X201 +32) + (01 + 32)%)
= 3(x1 +2x2)(1 + y2)((x1 + x2) + (1 + 32))
= 3((x1 4+ x2) + (1 + 351+ X2) — (1 +32))

>0,
where the inequality is true since x,y € K>. Thus, we have verified that f(r)=1r is
SOC-convex on [0, c0) for n=2.
Example 3.4

(a) The function f{r)= ¢’ is not SOC-monotone on R.
(b) Moreover, f(r)=1> is not SOC-monotone on [0, c0) for n > 3.
(c) However, f(f)=1" is SOC-monotone on [0, 00) for n=2.

To see (a) and (b), let x=(2,1, —1) =50 and y=(1,1,0) =5 0. It is clear
that x > y. But, we have f(x)=x"=(20,14,—14) and f(y)=)’=(4,4,0), which
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gives f(x) —f(y) = (16,10, —14) ¥, 0. Thus, we show that fin=+¢ is not even

SOC-monotone on the interval [0, 00).
To see (c), let x = (x1,x2) =2 ¥y = (y1,)2) =42 0. Again, we have the following
inequalities:

X2l < x1, 2l =y, X2 =2l S x1 =1,

which leads to the inequalities (11). In addition, we know
fx) =x* = (x] +3x1x3,  3xixs +x3),
)=y =l +3. Win+).
We denote f(x) — f(y) := (B}, E»), where
{ E1 =x7 — )7 +3x153 = 3y1)3.

2 =X

We wish to prove that f{x) — f(y) = x* — 3* == 0, which is enough to show ;> |E,|.
This is true because
x? — y% + 3x1x% — 3y1y§ — }xi —y% + 3x%xz — 3y%y2}
_ x? — y*? +3x1x3 — 3y1)3 — (x% — y% +3x2x; —3)7y,) if B2 >0
X7 = »i 33133 = 39133 + (5 — 3+ 3x{x0 = 3pjyn) if B2 <0

(x1—x) — (1 —y) ifE >0
(X1 +x2) =1 4+12) ifE,<0

v

0,
where the inequalities are true by the inequalities (11).
Hence, we complete the verification.

Now, we move to another simple function f{7) = 1/t. We will prove that —1/¢ is SOC-
monotone on the interval (0, c0) and 1/¢ is SOC-convex on the interval (0, co) as well.
For the proof, we need the following technical lemmas.

LemMmA 3.1 Forany a>b > 0 and ¢>d > 0, we always have

a c a—+c
(E)'(Zz)zbﬂi (12
Proof The proof is followed by ac(b + d) — bd(a + ¢) = ab(c — d) + cd(a —b) = 0. R

LemMA 3.2 For any x = (x1,x2), ¥y = (y1,12) € K", we have

(@) (x1+y1)° — ||yzg2 > 4x1,/33 — Il
(b) (x1 +y1— IIszI)2 > 4x1(y1 — l»21D).
©) (x1+y1 +1y2D)” = dx1(v1 + ly2)-

(d) X191 — (v p2) = /37— Il 53— Il

@) (x1 +31)% = X2+ 3207 = 4/x2 =[xl - /3% — Il
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Proof
(a) The proof follows from

(X1 + 307 = 102l = X3+ 0 = p2l?) + 2x101

> 2x14/ 3} = 201 + 2x101
> 2x14/ 37 = I2ll? + 2x14/3% = 2 ?
= 4x1,/y} — I l%

where the first inequality is true due to the fact that a + b > 2+/ab for any positive
numbers « and b.
(b) The proof follows from

(x1+ 11 = 120> =4x1(1 = I2ll) = X3 + 37 + 20> = 2x101 = 2yl + 2x1 (132l
= (x1 —y1 + Iy2l)*= 0.

(c) Similarly, the proof follows from
(14 2P =4x1 0+ y2l) = X7 437 + [2l® = 201 + 20 pall = 21 12|
= (x1 — 1 — [Ip2l)*= 0.
(d) We know that x1y; — (x2,12) = x11 — [|x2]l - [»2]l = 0, and

G = Il - 120 = (3 = 1203 (7F = 192017) = x5l + yi ) = 2x1p1 %l - 1yl
= (x1 2]l = yillxall)*> 0.

Hence, we obtain x1y1 — (x2,2) = x131 — [[xall - 12l 2 /37 = Il + /3 = Iy
(e) The proof follows from

G127 = v 4+ 320 = (67 = 12 l?) + 07 = 12l?) + 21 — (x2,22))
> 2,/ — 11207 — 22 + 26131 = (x2.32))
> 2,/ — 1203 — 22 + 2/ (5 = 1201207 = 1yl
— 4,/ — 12?07 - 21,

where the first inequality is true since a + b > 2+/ab for all positive a, b and the
second inequality is from part(d). |

ProposiTioN 3.3 Let f: (0,00) — (0,00) be f(t)=1/t. Then

(a) —fis SOC-monotone on (0, 0).
(b) fis SOC-convex on (0, 00).
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Proof

(a) It suffices to show that x >x» y >, 0 implies x~! <» y~!. For any x,y € K", we
know that y=! = (1/det(y))(y1, —»2), x~! = 1/det(x)(x;, —x»). Thus,

(o x o x»»
y det(y)  det(x)’ det(x)  det(y)
1
=————(det —det(y)xy, det(y)x, — det .
To complete the proof, we need to verify two things.

(1) First, we have to show that det(x)y; — det(y)x; > 0. Applying Lemma 3.1 yields
det(x) _ xi — Il _ (x1 + ||x2||> (xl - ||X2||> J2a
det() 32 — > i+ 12l \vi—1v2ll) =2

Then cross multiplying gives det(x)y; > det(y)xy, i.e., det(x)y; — det(y)x; > 0.
(2) Secondly, we show that || det(y)x, — det(x)y,|| < det(x)y; — det(y)x;. This is true by

(det(x)y; — det(y)x1)*—| det(y)x2 — det(x)y2|>
= (det(x))*y? — 2 det(x) det(y)x1y + (det(y))*x?
— ((det()*[lx2]|* — 2 det(x) det(y){xa, y2) + (det(x))*[[y2]I*)
= (det(x))’(17 — ly211*) + (det(»)*(x] — [|x2[*)
— 2det(x) det(y)(x1y1 — (x2,12))
= (det(x))’ det(y) + (det(y))” det(x) — 2 det(x) det(y)(x1y1 — (x2.12))
= det(x) det(y)(det(x) + det(y) — 2x1y1 + 2(x2, y2))
= det(x) det(y)((x] — [Ix211?) + 0] — [1p2l®) = 2x131 + 2(x2.12))
= det(x) det(y)((x1 — y1)* = (201> + 217 = 2(x2.2)))
= det(x) det(»)((x1 — ¥1)* = (Ix2 — »2119)

>0,
where the last step holds by the inequality (8) given as in the proof of
Proposition 2.1(a). Thus, from all the above, we proved y~! —x~! e K", ie.,
-1 -1
Yooz xo.

(b) For any x >x» 0 and y >x» 0 we have

xi =[xl >0
yi— Iyl >0 (13)
[{x2, y2)| < %2l - [Iy2ll < X131

From x~! = 1/det(x)(x;, —x») and y~! = 1/det(y)(y1, —2), we also have

1 _1 X V1 X ¢m
3 (fix) + /) = 5 <det(x) + det(y)”  det(x) det(y))’

and

—1

5 = (550 =qaag o+~
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We denote 1/2(fix) + f(y)) — Al(x + »)/2) := 1/2(E}, E>), where 2, € R and E, € R"!
are given by

(1]

o x N V1 AL+
"7 \det(v) T det(y))  det(x + )’
_ 42t ( X2 »2 >
T det(x+y)  \det(x) ' det(y))

[1]

2

Again, to prove f'is SOC-convex, it suffices to verify two things: ;>0 and || E;| < &;.

(1) First, we verify that E; > 0. In fact, if we define the function

(V)= =
e Tl T det)’
then we observe that
X+ 1 ~
(F535) =500 +207) <= &1 = 0.

Hence, to prove E; >0, it is equivalent to show g is convex on int(K"). Since int(K") is
a convex set, it is sufficient to show that V?g(x) is a positive semidefinite matrix. From
direct computations, we have

1 [ 2} + 631 x| —(6xF + 2llx2|1)x] ]

Vig(x) = ——
(O3 = Ixal? | =(6x7 + 2[1x2[H)x2 2x1((xF — [x2l1)] + 4x0x7)

Let V2g(x) be denoted by the matrix

A B
BT C
given as in Lemma 2.2 (here A4 is a scalar). Then, we have

2
AC = BTB = 21 (2 + 631 [1l?) (7 = IxalP)] + 4xx]) = (637 + 202 2) o]
= (4x} + 126 1o 12) (o — 12 l12)7 = (205 — 24531 1 + Az |1*) o]
= (4} + 1207 o l1?) (6 = 2 1) T = 4(5x7 = oeal®) (7 = [1x211%) 2]
= (7 = l2l?)[(4x] + 12571132 17) ] = 4(5x7 = lx211P) %27 ]
= (x{ = lIx201?) - M,
where we denote the whole matrix in the big parenthesis of the last second equality
by M. From Lemma 2.1, we know that x,x1 is p.s.d. with only one nonzero eigenvalue
|x2°>. Hence, all the eigenvalues of the matrix M are (4x}+12x7x|*—
2052 [1x2 /1% + 4llx2 (%) and 4xt + 1233 ||x2[|* with multiplicity of n—2, which are all
positive since
4xt + 12x7[1%201* = 20x7 13217 + 4llx21* = 4} — 8x{llx2 1 + 4llx21*
= 4(x7 = [x21%)
> 0.



Convex and monotone functions 379

Thus, by Lemma 2.2, we obtain that V?g(x) is positive definite and hence is positive
semidefinite. It follows g is convex on int(K"), which says £; > 0.
(2) It remains to show that E? — ||E;[* > 0:

,;,2_“,:2”2:|:< x? N 2x1 ) n )_8(x1+y1)< n " )
! det(x)’  det(x)det(y) = det(y)’/ det(x+y)\det(x) = det(y)
16
+ 2
det(x+y)

4(x2+y2) X2
(xT+2x131 +y%)i| ~ldet(x+y) (det(x) det(y)) H

_|:< ST 2x1)1 T )_8(X1+y1)< LN )
o det(x)*>  det(x)det(y) det(y)z det(x+y) \det(x) det(y)
L 2 2y | L
+det(x+y)2 (ei+2xyy +yl)i| |:det(x+y)2
_8< e IR SN > <||X2||2 2(x2,2) +||y2||2>}
det(x+y) det(x) det(y)) \det(x)> det(x)det(y) det(y)?

_ |:X% =[x | 2(x1p1 = (x2,02)) | ¥ — ||y2||2:|
det(x)* det(x)det(y) det(y)?

(2l +2(x2,32) + l19211%)

+m[(>ff —12l1?) +2(x1p1 = (x2,2) + (0 = [13211P)]

Cg[ ol =G | xon=(oan) vt
det(x+y)det(x) det(x+y)det(x) det(x+y)det(y) det(x+ y)det(y)

(x2—||xz||2)( 40 8 )
: det(x )2 det(x+y)* det(x+y)det(x)

. 16 8

1 16
"‘f‘
det(x)det(y) ' det(x +y)?

+2(x1y1 — (xz,yz))(

4 4
det(x+y)det(x) det(x+y) det(y))

e 5 (det(x4y) —4det(x)\> 5 (det(x +y) —4det(y)\*
==l )< det(x)det(x + ) > +o1 =12l )< det(y)det(x+) )

det(x+ 4det det(x+ 4det
oY <wm(( (r-+3) — Adet()det(r-+) — (y)))
det(x)det(y) det(x +)
Now apply the fact that det(x) = x} — [x201%, det(y) = y? — |[y2]|%, and det(x + y) —

det(x) — det(y) = 2(x1y1 — (x2,)2)), we can simplify the last equality (after a lot of
algebra simplifications) and obtain

[det(x + y) — 2det(x) — 2 det(»)]* .
det(x) det(y) det(x + y) -

(]

2
1

= j—
— 182l =

Hence, we proved that f{x + y/2) <j» 1/2(f(x) + f(¥)), which says the function f{f) = 1/¢
is SOC-convex on the interval (0, co). |

)
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ProrosiTioN 3.4

(a) The function f(t) = t/(1 4 t) is SOC-monotone on (0, c0).
(b) For any x > 0, the function f(t) = t/(A + t) is SOC-monotone on (0, 00).

Proof

(a) Let g(ty=—1/t and h(f)=1++1t, then both functions are SOC-monotone from
Propositions 3.2 and 3.3. Since (1) = 1 — 1/(1 + t) = h(g(1 + 1)), the result follows
from that the composition of two SOC-monotone functions is also
SOC-monotone.

(b) Similarly, let g(r) =t/(1 +1¢) and h(t)=t/A, then both functions are SOC-
monotone by part (a). Since f{(tr)=g(h(r)), the result is true by the same reason
as in part (a). |

ProrosiTiON 3.5  For any x =x» 0 and y >=x» 0, we have
L=y Ly L =g LT = L1 =0 Lo

Proof By the property of L, that x >x» y <= L, >k L,, and Proposition 3.3(a), then
proof follows. |

Next, we examine another simple function f{f) =+/t. We will see that it is
SOC-monotone on the interval [0, co), and —+/f is SOC-convex on [0, 00).

PROPOSITION 3.6 Let f: [0, 00) — [0, 00) be f(t)=1t">. Then

(a) fis SOC-monotone on [0, o).
(b) —fis SOC-convex on [0, 00).

Proof

(a) This is a consequence of Property 2.3(b).

(b) To show —f is SOC-convex, it is enough to prove that f((x+ y)/2) ==
(f(x) + f(»)/2), which is equivalent to verify that ((x + »)/2)"? = (VX + /7)/2,
Vx,y € K". Since x+y>x» 0, by Property 2.3(e), it is sufficient to show
that ((x +1)/2) =x (/X + ﬁ)/2)2. This can be seen by ((x+y)/2)—
(VX + /2 = (Jx — ﬁ)2/4 >i» 0. Thus, we complete the proof. [ |

ProrosiTioN 3.7 Let f:[0,00) — [0,00) be f(t)=1",0<r<1. Then

(a) fis SOC-monotone on [0, c0).
(b) —fis SOC-convex on [0, 00).

Proof (a) Let r be a dyadic rational, i.e., a number of the form r = m/2", where n
is any positive integer and 1 <m <2". It is enough to prove the assertion is true
for such r since such r are dense in [0,1]. We will show this by induction on .
Let x,y e K" with x>y y, then by Property 2.3(b) we have x'/? > p!/2,
Therefore, part (a) is true when n=1. Suppose it is also true for all dyadic
rational m/2;, in which 1<j<n—1. Now let r=m/2" with m<2". By induction
hypothesis, we know x"/2"" =iy Then, by applying Property 2.3(b), we
obtain (x™/2"")"/2 = (/¥ )2 which says x™/?" =» y"/*". Thus, we have shown
that x >y y =x» 0 implies x" >y» )", for all dyadic rational r in [0, 1]. Such r are
dense in [0, 1], which says part (a) is true.
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(b) The proof for part (b) is very similar to the preceding arguments. First, we
observe that

(x+y) B <ﬁ+ ﬁ)zz (fz—ﬁy

>n ()
2 2 =K

which implies ((x + )/2)"/? = 1/2(/x + /7) by Property 2.3(b). Hence, we show that
the assertionl is true when n=1. By induction hypothesis, suppose
(x4 )2 =pn (X% 4 y™/?"™")/2). Then we have

<x + y>m/2”"_ X2 4 ym/2” 2 N X2 4 ym/Z”_l ~ w2y ym/Z” 2
2 2 =k 2 2

n ny 2
xm/2 _ ,m/2
= <7y szn 0,

2

which implies ((x + )/2)"?" =i (x™?*" + y™2")/2) by Property 2.3(b). Following the
same arguments about dyadic rational in part (a) yields the desired result. |

From all the aforementioned examples, we know that f being monotone does not
imply f°°¢ is SOC-monotone. Similarly, f/ being convex does not imply 7°°¢ is
SOC-convex. Now, we move onto some famous functions which are used very often
for nonlinear complementarity problem (NCP), SDCP, and SOCCP. It would be
interesting to know about the SOC-convexity and SOC-monotonicity of these
functions. First, we will look at the Fischer—Burmeister function, ¢ : R" x R" — R",
given by

$x,y) =+ )2 = (x + ), (14)

which is a well-known merit function for complementarity problem [13,18].
For SOCCEP, it has been shown that squared norm of ¢, i.c.,

Y(x, ) = lpCx, )% (15)

is continuously differentiable [7] whereas i is only shown differentiable for SDCP [21].
In addition, ¢ is proved to have semismoothness and Lipschitz continuity in recent
paper [20] for both cases of SOCCP and SDCP. In NCP, ¢ is a convex function, so we
may wish to have an analogy for SOCCP. Unfortunately, as shown in the following
text, it is not a SOC-convex function.

Example 3.5 Let ¢ be defined as in (14) and ¥ defined as in (15).

(a) The function p(x,y) = (x* + »*)"/? is not SOC-convex.
(b) The Fischer—Burmeister function ¢ is not SOC-convex.
(¢) The function ¥ : R" x R" — R is not convex.

To see (a), a counter-example occurs when x =(1,1) and y=(1,0).
To see (b), suppose it is SOC-convex. Then we will have p is SOC-convex by
p(x,y) = ¢(x,y) + (x + y), which contradicts (a). Thus, ¢ is not SOC-convex.
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To see (¢), let x=(1,-2), y=(1,—1) and u=(0,—1), v=(1, —1). Then, we have

Py, ) = <_3 +2\/1—3~ ! —£/T§> = ¥(x.y) = llg(x, »)I* = 21 = SV13.
Pu,v) = (_1 ;ﬁ, > _f) = Yl ) = 9w, M)I* =9 = 35,

Thus, 1/2(4(x, y) + ¥(u, v)) = 1/2(30 — 5/13 — 34/5) ~ 2.632.

On the other hand, let (a,b) :=1/2(x,y)+ 1/2(u,v), that is, a = (1/2, —3/2) and
b=(1,—1). Indeed, we have a«*+52=(9/2, —=7/2) and hence (a®+5?)"*=
(14+242/2,1—242/2), which implies (ab) = |[¢(a,b)|> = 14 — 8/2 ~ 2.686.
Therefore, we obtain

1 1 1 1
P50+ 3@ ) = 30050+ 3 v

which shows ¢ is not convex.

Another function based on the Fischer—Burmeister function is vy : R" x R" — R,
given by

Y1, p) = g, 112 (16)

where ¢ is the Fischer—Burmeister function given as in equation (14). In the NCP case,
it is known that v, is convex. It has been an open question whether this is still true for
SDCP and SOCCP (see Q3 on p. 182 of [21]). In fact, Qi and Chen [16] gave the
negative answer for the SDCP case. Here, we provide an answer to the question for
SOCCP: v is not convex in the SOCCP case.

Example 3.6 Let ¢ be defined as in (14) and v defined as in (16).

(a) The function [p(x, »)], = [(x* + Y - (x + »)I is not SOC-convex.
(b) The function v is not convex.

To see (a), let x=(2,1,—1), y=(1,1,0) and u=(1,-2,5), v=(—1,5,0). Also, we
denote ¢1(x, ) := [¢(x, )],. Then, by direct computations, we obtain

%dn(x, y) + %dn(u, V) — 1 (% () + %(u, v)) — (1.0794,0.4071, —1.0563 ) #,: 0,

which says ¢; is not SOC-convex.

To see (b), let x=(17,5,16), y=(20,—-3,15) and u=(2,3,3), v=(9,—7,2). It can be
easily verified that 1/2v(x,y)+ 1/2¢1(u, v) — ¥2(1/2(x, ) + 1/2(u, v)) < 0, which
implies ¥ is not convex.

Example 3.7

(a) The function f{(r) =t is not SOC-monotone.
(b) The function f{¢) = |t is not SOC-convex.

(¢) The function f{¢) =[f],. is not SOC-monotone.
(d) The function f{¢) =[f], is not SOC-convex.
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To see (a), let x=(1,0), y=(—2,0). It is clear that x >> y. Besides, we have x*=(1,0),
> =(4,0), which yields |x| =(1,0) and |y| = (2,0). But, |x| — [y| = (—1,0) Y2 0.

To see (b), let x=(1,1,1), y=(—1,1,0). In fact, we have |x| = (v/2,1/v/2,1/3/2),
[y =(1,-1,0), and lx + y| = (+/5,0,0). Therefore, x|+ Iyl = |x+y =
(V2+1 =5 —1+ V21N £ 0. Thus,  A(x+3)/2) Ze 1/2(/x) +/00),
which shows f(#) = |1| is not SOC-convex.

To see (c) and (d), just follows (a) and (b) and the facts that [¢], = 1/2(¢ + |¢|), where
t € R, and [x], = 1/2(x + |x[), where x € R".

To close this section, we check with one popular smoothing function. It is the
function, f{r) = 1/2(v/2 +4 + 1), proposed by Chen and Harker [4], Kanzow [12],
and Smale [17], and is called the CHKS function. The associated SOC-function is
defined by

S = 3/ e+ ),

where e= (1,0, ...,0)”. The function f(¢) is convex and monotone functions, so we may
also wish to know whether the SOC-function is SOC-convex or SOC-monotone.
Unfortunately, it is neither SOC-convex nor SOC-monotone for n > 3, although it is
both SOC-convex and SOC-monotone for n=2. The following example shows what
we have just said.

Example 3.8 Let /: R — R be f(t) = (V12 +4+1)/2. Then

(a) f'is not SOC-monotone for general n> 3.
(b) However, f'is SOC-monotone for n=2.
(c) f1is not SOC-convex for general n > 3.
(d) However, f'is SOC-convex for n=2.

Again, let x=(2,1,—1), y=(1, 1,0), then it is the counter-example for both (a) and
(c). To see (b) and (d), it can be done by direct verification by using the same techniques
as we have done in Example 3.2 and Example 3.3.

4. Characterization of SOC-convexity and SOC-monotonicity

Based on all the results in the previous section, one may expect some certain relation
between SOC-convex function and SOC-monotone function. One may also like to
know under what conditions a function is SOC-convex. The same question arises for
SOC-monotone. In this section, we explore these relations. In fact, there already have
some analogous results for matrix-functions (see Chapter V of [2]). However, not much
for this kind of vector-valued SOC-functions, so further study on these topics are
definitely necessary.

ProrosiTiON 4.1 Let f:[0,00) — [0, 00) be continuous. If [ is SOC-concave, then f is
SOC-monotone.

Proof For any 0 < A <1, we can write Ax = Ay + (1 — A)A/(1 — A)(x — ). Then the
SOC-concavity of f yields that

150 0 400+ (1 =02 =) e 0,
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where the second inequality is true since f is from [0, c0) into itself and x — y >y 0.
Letting A — 1, we obtain that [%°°(x) >=x» f5°°(y), which says that f is
SOC-monotone. ]

We notice that if fis not a function from [0, co) into itself, this proposition is false.
For instance, f{r) = —¢* is SOC-concave but not SOC-monotone.

ProrosiTioN 4.2 A function f: R — R is SOC-convex if and only if the real-valued
Sfunction g(x) := (f%°°(x), z) is a convex function Yz =y 0.

Proof Suppose f'is SOC-convex and let x,y € R", A € [0, 1]. Then, we have
U@ = Mx 4+ 1y) = (1= 2)f¥(x) + A/ ().

Hence,

g((1 = 1)x + Ay) = (1 = M)x + Ap), 2)
< (1 = 0)f %) + A (1), 2)
= (1 = )(f*(x), 2) + (), 2)
= (I = 2)g(x) + 1g(»),

where the inequality holds by Property 2.3(d). Thus, g is a convex function. For the
other direction, from g is convex, we obtain

(/29 = 2)x + Ap), 2) < (1 = 2F (%) + A (), 2).
since z >y 0, by Property 2.3(d) again, the preceding yields
S = 2)x 4+ Ap) =z (1= A 7x) + A7),
which says f'is SOC-convex. |

ProrosiTiON 4.3 A differentiable function f:R — R is SOC-convex if and only if
JOW) e f090x) + V) — x) for all x,y € R

Proof By [8, Proposition 5.3], we know that f is differentiable if and only if /°°° is
differentiable. Using the gradient formula given therein and following the arguments
as in [1, Proposition B.3] or [3, Theorem 2.3.5], the proof can be done easily. We omit
the details. |

At last, we state two conjectures based on observing all the results and examples
discussed in this article. The conjectures describe the relationship between SOC-convex
and SOC-monotone functions. We are not able to complete the proof right now.
Nonetheless, we notice that some interesting results related to the trace of x, for
example [15, Proposition 6.2.9], might help towards proving our conjectures. Further
study is certainly desirable. On the other hand, this article is just an initial start of
research on SOC-convex and SOC-monotone functions. There are many more
properties to be investigated and studied. For instance, there is a useful property
[2, Theorem V3.6] for matrix-valued function that says every matrix-monotone function
™% on an interval I is smooth. Similarly, we can ask whether the extension of this
theorem to SOC functions is true or not. We leave for future research.

CoNJECTURE 4.1 If f:(0,00) — R is continuous, convex, and nonincreasing, then

(a) f°°° is SOC-convex.
(b) —f%°¢ is SOC-monotone.
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CoNJECTURE 4.2 If  f:[0,00) — [0,00) is continuous, then —f50¢ g
SOC-convex <= *°¢ is SOC-monotone.
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