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Abstract. Let Kn be the Lorentz/second-order cone in R
n. For any function f from R to R, one can define

a corresponding function f soc(x) on R
n by applying f to the spectral values of the spectral decomposi-

tion of x ∈ R
n with respect to Kn. We show that this vector-valued function inherits from f the properties

of continuity, (local) Lipschitz continuity, directional differentiability, Fréchet differentiability, continuous
differentiability, as well as (ρ-order) semismoothness. These results are useful for designing and analyzing
smoothing methods and nonsmooth methods for solving second-order cone programs and complementarity
problems.
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1. Introduction

Let Kn (n ≥ 1) be the second-order cone (SOC), also called the Lorentz cone, in R
n,

defined by

Kn := {(x1, x2) ∈ R × R
n−1 | ‖x2‖ ≤ x1},

where ‖ · ‖ denotes the Euclidean norm. By definition, K1 is the set of nonnegative
reals R+. The second-order cone has recently received much attention in optimization,
particularly in the context of applications and solution methods for second-order cone
programs (SOCP) [1, 2, 12, 20, 22, 27, 31]. Any x = (x1, x2) ∈ R × R

n−1 can be
decomposed as

x = λ1u
(1) + λ2u

(2), (1)

where λ1, λ2 and u(1), u(2) are the spectral values and the associated spectral vectors of
x, with respect to Kn, given by

λi = x1 + (−1)i‖x2‖, (2)

u(i) =





1
2

(
1, (−1)i

x2

‖x2‖
)
, if x2 �= 0,

1
2

(
1, (−1)iw

)
, if x2 = 0,

(3)
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for i = 1, 2, withw being any vector in R
n−1 satisfying ‖w‖ = 1. If x2 �= 0, the decom-

position (1) is unique. In [12], for any function f : R → R, the following vector-valued
function associated with Kn (n ≥ 1) was considered:

f
soc
(x) = f (λ1)u

(1) + f (λ2)u
(2) ∀x = (x1, x2) ∈ R × R

n−1. (4)

If f is defined only on a subset of R, then f
soc

is defined on the corresponding subset
of R

n. The definition (4) is unambiguous whether x2 �= 0 or x2 = 0. The cases of
f

soc
(x) = x1/2, x2, exp(x) are discussed in the book of Faraut and Korányi [9]. The

above definition (4) is analogous to one associated with the semidefinite cone Sn+, see
[28, 30].

Our study of this function is motivated by optimization and complementarity prob-
lems whose constraints involve the direct product of second-order cones. In particular,
we wish to find vectors x, y ∈ R

n and ζ ∈ R
� satisfying

〈x, y〉 = 0, x ∈ K, y ∈ K, F (x, y, ζ ) = 0, (5)

where 〈·, ·〉 denotes the Euclidean inner product, F : R
n × R

n × R
� → R

n × R
� is a

continuously differentiable mapping, and

K = Kn1 × · · · × Knm, (6)

with � ≥ 0, m, n1, . . . , nm ≥ 1 and n1 + · · · + nm = n. We will refer to (5), (6)
as the second-order-cone complementarity problem (SOCCP). This problem has wide
applications and, in particular, includes a large class of quadratically constrained prob-
lems as special cases [20]. It also includes as a special case the well-known nonlinear
complementarity problem (NCP) [10], corresponding to ni = 1 for all i, i.e., K is the
nonnegative orthant R

n+. When � = 0 and the mapping F has the form

F(x, y, ζ ) = F0(x)− y (7)

for some F0 : R
n → R

n, the SOCCP (5) becomes

〈x, F0(x)〉 = 0, x ∈ K, F0(x) ∈ K, (8)

which is a natural generalization of the ordinary NCP corresponding to K = R
n+.

Optimization problems with SOC constraints have been the focus of several recent
studies. It is known that Kn, like R

n+ and the cone Sn+ of n× n real symmetric positive
semidefinite matrices, belongs to the class of symmetric cones, to which a Jordan algebra
may be associated [9]. Using this connection, interior-point methods have been devel-
oped for solving linear programs with SOC constraints [20, 22, 31] and, more generally,
linear programs with symmetric cone constraints [1, 27]. An alternative approach based
on reformulating SOC constraints as smooth convex constraints was studied in [2]. In
[12], a non-interior smoothing approach to solving (5) was considered, for which the
vector-valued function f

soc
played a central role. For the special case of f (ξ) = |ξ |,

f (ξ) = max{0, ξ}, further studies of f
soc

such as strong semismoothness and bounded-
ness of solutions to SOCCP were made in [7, 14]. Formulas for directional derivatives
and strong stability of isolated solution to SOCCP were made in [23].



Analysis of nonsmooth vector-valued functions associated with second-order cones 97

In this paper, we study the continuity and differential properties of the vector-valued
function f

soc
in general. In particular, we show that the properties of continuity, strict

continuity, Lipschitz continuity, directional differentiability, differentiability, continuous
differentiability, and (ρ-order) semismoothness are each inherited by f

soc
from f (see

Props. 2–7). Here and throughout, differentiability means differentiability in the Fréchet
sense. These results parallel those obtained recently in [6] for matrix-valued functions
and are useful in the design and analysis of smoothing and nonsmooth methods for solv-
ing SOCP and SOCCP. Our ρ-order semismoothness result generalizes a recent result
of Chen, Sun and Sun [7], which considers the cases of f (ξ) = |ξ |, f (ξ) = max{0, ξ},
and shows that f

soc
(x) = (x2)1/2, f

soc
(x) = [x]+ are strongly semismooth. Our proofs

are based on an elegant relation between the vector-valued function f
soc

and its matrix-
valued counterpart (see Lemma 1). This relation enables us to apply the results from [6]
for matrix-valued functions to the vector-valued function f

soc
. Our proofs also use two

lemmas from [26] and [28]. The property of semismoothness, as introduced by Mifflin
[21] for functionals and scalar-valued functions and further extended by Qi and Sun [25]
for vector-valued functions, is of particular interest due to the key role it plays in the
superlinear convergence analysis of certain generalized Newton methods [13, 17, 24,
25, 32].

In what follows, R
n (n ≥ 1) denotes the space of n-dimensional real column vectors,

R
n1 × · · · × R

nm is identified with R
n1+···+nm . Thus, (x1, . . . , xm) ∈ R

n1 × · · · × R
nm

is viewed as a column vector in R
n1+···+nm . Also, R+ and R++ denote the nonnega-

tive and positive reals. For any x, y ∈ R
n, the Euclidean inner product and norm are

denoted by 〈x, y〉 = xT y and ‖x‖ =
√
xT x. For any differentiable (in the Fréchet sense)

mapping F : R
n → R

m, we denote its Jacobian at x ∈ R
n by ∇F(x) ∈ R

m×n, i.e.,
(F (x + u) − F(x) − ∇F(x)u)/‖u‖ → 0 as u → 0. “ := ” means “define”. For any
linear mappingM : R

n → R
n, we denote its operator norm |||M||| := max‖x‖=1 ‖Mx‖.

For any x ∈ R
n and scalar γ > 0, we denote the γ -ball around x by B(x, γ ) := {y ∈

R
n | ‖y − x‖ ≤ γ }. We write z = O(α) (respectively, z = o(α)), with α ∈ R and

z ∈ R
n, to mean ‖z‖/|α| is uniformly bounded (respectively, tends to zero) as α → 0.

2. Basic properties

In this section, we review some basic properties of vector-valued functions. These prop-
erties are continuity, (local) Lipschitz continuity, directional differentiability, differentia-
bility, continuous differentiability, as well as (ρ-order) semismoothness. In what follows,
we consider a function/mapping F : R

k → R
�.

We say F is continuous at x ∈ R
k if

F(y) → F(x) as y → x;

and F is continuous if F is continuous at every x ∈ R
k . F is strictly continuous (also

called ‘locally Lipschitz continuous’) at x ∈ R
k [26, Chap. 9] if there exist scalars κ > 0

and δ > 0 such that

‖F(y)− F(z)‖ ≤ κ‖y − z‖ ∀y, z ∈ R
k with ‖y − x‖ ≤ δ, ‖z− x‖ ≤ δ;
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and F is strictly continuous if F is strictly continuous at every x ∈ R
k . If δ can be taken

to be ∞, then F is Lipschitz continuous with Lipschitz constant κ . Define the function
lipF : R

k → [0,∞] by

lipF(x) := lim sup
y,z→x

y �=z

‖F(y)− F(z)‖
‖y − z‖ .

Then F is strictly continuous at x if and only if lipF(x) is finite.
We say F is directionally differentiable at x ∈ R

k if

F ′(x;h) := lim
t→0+

F(x + th)− F(x)

t
exists ∀h ∈ R

k;

and F is directionally differentiable if F is directionally differentiable at every x ∈ R
k .

F is differentiable (in the Fréchet sense) at x ∈ R
k if there exists a linear mapping

∇F(x) : R
k → R

� such that

F(x + h)− F(x)− ∇F(x)h = o(‖h‖).
We say that F is continuously differentiable if F is differentiable at every x ∈ R

k and
∇F is continuous.

If F is strictly continuous, then F is almost everywhere differentiable by Rademach-
er’s Theorem–see [8] and [26, Sec. 9J]. In this case, the generalized Jacobian ∂F (x) of
F at x (in the Clarke sense) can be defined as the convex hull of the generalized Jacobian
∂BF (x), where

∂BF (x) :=
{

lim
xj→x

∇F(xj )∣∣F is differentiable at xj ∈ R
k

}

.

The notation ∂B is adopted from [24]. In [26, Chap. 9], the case of � = 1 is considered
and the notations “∇̄” and “∂̄” are used instead of, respectively, “∂B” and “∂”.

Assume F : R
k → R

� is strictly continuous. We say F is semismooth at x if F is
directionally differentiable at x and, for any V ∈ ∂F (x + h), we have

F(x + h)− F(x)− V h = o(‖h‖).
We say F is ρ-order semismooth at x (0 < ρ < ∞) if F is semismooth at x and, for
any V ∈ ∂F (x + h), we have

F(x + h)− F(x)− V h = O(‖h‖1+ρ).

We sayF is semismooth (respectively, ρ-order semismooth) ifF is semismooth (respec-
tively, ρ-order semismooth) at every x ∈ R

k . We say F is strongly semismooth if it is
1-order semismooth. Convex functions and piecewise continuously differentiable func-
tions are examples of semismooth functions. The composition of two (respectively,
ρ-order) semismooth functions is also a (respectively, ρ-order) semismooth function.
The property of semismoothness plays an important role in nonsmooth Newton methods
[24, 25] as well as in some smoothing methods mentioned in the previous section. For
extensive discussions of semismooth functions, see [11, 21, 25].
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3. Results for matrix-valued functions

Let R
n×n denote the space of n× n real matrices, equipped with the trace inner product

and the Frobenious norm

〈X, Y 〉F := tr[XT Y ], ‖X‖F :=
√

〈X,X〉,
where X, Y ∈ R

n×n and tr[·] denotes the matrix trace, i.e., tr[X] = ∑n
i=1Xii . Let

O denote the set of P ∈ R
n×n that are orthogonal, i.e., PT = P−1. Let Sn denote

the subspace comprising those X ∈ R
n×n that are symmetric, i.e., XT = X. This is a

subspace of R
n×n with dimension n(n+ 1)/2, which can be identified with R

n(n+1)/2.
Thus, a function mapping Sn to Sn may be viewed equivalently as a function mapping
R
n(n+1)/2 to R

n(n+1)/2, for which the properties of Sec. 2 are all applicable. We consider
such a function below.

For anyX ∈ Sn, its (repeated) eigenvaluesλ1, . . . , λn are real and it admits a spectral
decomposition of the form:

X = P diag [λ1, . . . , λn]PT , (9)

for some P ∈ O, where diag [λ1, . . . , λn] denotes the n×n diagonal matrix with its ith
diagonal entry λi . Then, for any function f : R → R, we can define a corresponding
function f

mat
: Sn → Sn [3], [16] by

f
mat
(X) := P diag [f (λ1), . . . , f (λn)]P

T . (10)

It is known that f
mat
(X) is well defined (independent of the ordering of λ1, . . . , λn and

the choice of P ) and belongs to Sn, see [3, Chap. V] and [16, Sec. 6.2]. Moreover, a
result of Daleckii and Krein showed that if f is continuously differentiable, then f

mat

is differentiable and its Jacobian ∇f mat
(X) has a simple formula–see [3, Thm. V.3.3];

also see [6, Prop. 4.3]. In [5], f
mat

was used to develop non-interior continuation meth-
ods for solving semidefinite programs and semidefinite complementarity problems. A
related method was studied in [18]. Further studies of f

mat
in the case of f (ξ) = |ξ | and

f (ξ) = max{0, ξ} are given in [23, 28], obtaining results such as strong semismooth-
ness, formulas for directional derivatives, and necessary/sufficient conditions for strong
stability of an isolated solution to semidefinite complementarity problem (SDCP).

The following key result is from Props. 4.1, 4.2, 4.3, 4.4, 4.6, 4.10 of [6], as
well as a remark at the end of Sec. 4 of [6]. It says that f

mat
inherits from f the

property of continuity (respectively, strict continuity, Lipschitz continuity, directional
differentiability, differentiability, continuous differentiability, semismoothness, ρ-order
semismoothness).

Proposition 1. For any f : R → R, the following results hold:

(a) f
mat

is continuous at an X ∈ Sn with eigenvalues λ1, . . . , λn if and only if f is
continuous at λ1, . . . , λn.

(b) f
mat

is directionally differentiable at anX ∈ Sn with eigenvalues λ1, . . . , λn if and
only if f is directionally differentiable at λ1, . . . , λn
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(c) f
mat

is differentiable at an X ∈ Sn with eigenvalues λ1, . . . , λn if and only if f is
differentiable at λ1, . . . , λn.

(d) f
mat

is continuously differentiable at anX ∈ Sn with eigenvalues λ1, . . . , λn if and
only if f is continuously differentiable at λ1, . . . , λn.

(e) f
mat

is strictly continuous at an X ∈ Sn with eigenvalues λ1, . . . , λn if and only if
f is strictly continuous at λ1, . . . , λn.

(f) f
mat

is Lipschitz continuous (with respect to ‖ · ‖F ) with constant κ if and only if f
is Lipschitz continuous with constant κ .

(g) f
mat

is semismooth if and only if f is semismooth. If f : R → R is ρ-order semi-
smooth (0 < ρ < ∞), then f

mat
is min{1, ρ}-order semismooth.

4. Relating vector-valued function to matrix-valued function

For any x = (x1, x2) ∈ R×R
n−1 and y = (y1, y2) ∈ R×R

n−1, we define their Jordan
product as

x · y =
(
xT y, y1x2 + x1y2

)
. (11)

We will write x2 to mean x ·x and write x+y to mean the usual componentwise addition
of vectors. Then, ·, +, together with

e = (1, 0, . . . , 0) ∈ R
n,

give rise to a Jordan algebra associated with Kn [9, Chap. II]. If x ∈ Kn, then there exists
a unique vector in Kn, which we denote by x1/2, such that (x1/2)2 = x1/2 ·x1/2 = x. For
any x ∈ R

n, we have x2 ∈ Kn. Hence there exists a unique vector (x2)1/2 ∈ Kn, which
we denote by |x|. Clearly we have x2 = |x|2. We define [x]+ to be the nearest-point (in
the Euclidean norm) projection of x onto Kn. It is shown in [12] that |x| and [x]+ have
the form (4), corresponding to f (ξ) = |ξ | and f (ξ) = max{0, ξ}. Moreover, they are
related to each other by |x| = (x2)1/2, [x]+ = (x+|x|)/2, as in the cases of nonnegative
orthant R

n+ and positive semidefinite cone Sn. Further properties of |x|, [x]+ and x2 are
investigated in [12, 14, 23].

For any x = (x1, x2) ∈ R × R
n−1, we define the symmetric matrix

Lx =
[
x1 xT2
x2 x1I

]

, (12)

viewed as a linear mapping from R
n to R

n. The matrix Lx has various interesting prop-
erties that were studied in [12]. For our purpose, the following lemma using Lx is key
to relating f

soc
to f

mat
.

Lemma 1. For any x = (x1, x2) ∈ R × R
n−1, let λ1, λ2 be its spectral values given by

(2). Let z = x2 if x2 �= 0; otherwise let z be any nonzero vector in R
n−1. The following

results hold:
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(a) For any t ∈ R, the matrix Lx + tMz has eigenvalues of λ1, λ2, and x1 + t of
multiplicity n− 2, where

Mz :=
[

0 0
0 I − zzT /‖z‖2

]

. (13)

(b) For any f : R → R and any t ∈ R, we have

f
soc
(x) = f

mat
(Lx + tMz)e.

Proof. It is straightforward to verify that, for any x = (x1, x2) ∈ R × R
n−1, the eigen-

values of Lx are λ1, λ2, as given by (2), and x1 of multiplicity n− 2. The corresponding
orthonormal set of eigenvectors is

√
2u(1),

√
2u(2) and u(i) = (0, u(i)2 ), i = 3, ..., n,

where u(1), u(2) are given by (3) with w = z/‖z‖ whenever x2 = 0, and u(3)2 , ..., u
(n)
2

is any orthonormal set of vectors that span the subspace of R
n−1 orthogonal to z. Thus,

Lx = Udiag[λ1, λ2, x1, ..., x1]UT , where U := [√
2u(1)

√
2u(2) u(3) · · · u(n)]. Also,

it is straightforward to verify using u(i) = (0, u(i)2 ), i = 3, ..., n, that

Udiag[0, 0, 1, ..., 1]UT =
[

0 0
0
∑n
i=3 u

(i)
2 (u

(i)
2 )

T

]

.

Since Q := [z/‖z‖ u(3)2 · · · u(n)2 ] is an orthogonal matrix, we have I = QQT =
zzT /‖z‖2 + ∑n

i=3 u
(i)
2 (u

(i)
2 )

T and hence
∑n
i=3 u

(i)
2 (u

(i)
2 )

T = I − zzT /‖z‖2. This

together with (13) shows that Udiag[0, 0, 1, ..., 1]UT = Mz. Thus,

Lx + tMz = Udiag[λ1, λ2, x1 + t, ..., x1 + t]UT . (14)

This proves (a).

(b) Using (14), we have

f
mat
(Lx + tMz)e = Udiag[f (λ1), f (λ2), f (x1 + t), ..., f (x1 + t)]UT e

= f (λ1)u
(1) + f (λ2)u

(2) = f
soc
(x),

where the second equality uses the special form of U and (3). This proves (b). ��
Of particular interest is the choice of t = +‖x2‖, for which Lx + tMx2 has eigen-

values of λ1, λ2. More generally, for any f, g : R → R+, any h : R+ → R and any
x = (x1, x2) ∈ R × R

n−1, we have

h
soc
(f

soc
(x)+ g(µ)e) = h

mat
(f

mat
(Lx)+ g(µ)I)e.

In particular, the spectral values of f
soc
(x) and g(µ)e are nonnegative, as are the eigen-

values of f
mat
(Lx) and g(µ)I , so both sides are well defined. In particular, for

f (ξ) = ξ2, g(µ) = µ2, h(ξ) = ξ1/2,

we obtain that
(x2 + µ2e)1/2 = (L2

x + µ2I )1/2e.

It was shown in [29] that (X,µ) �→ (X2 + µ2I )1/2 is strongly semismooth. Then, it
follows from the above equation that (x, µ) �→ (x2 + µ2e)1/2 is strongly semismooth.
This provides a shorter proof of Theorem 4.2 in [7].
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5. Continuity and differential properties of vector-valued function

In this section, we use the results from Secs. 3, 4 to show that if f : R → R has the
property of continuity (respectively, strict continuity, Lipschitz continuity, directional
differentiability, differentiability, continuous differentiability, semismoothness, ρ-order
semismoothness), then so does the vector-valued function f

soc
defined by (1)–(4).

We begin with the following continuity result for f
soc

, based on Lemma 1 and Prop.
1(a) on continuity properties of f

mat
.

Proposition 2. For any f : R → R, the following results hold:

(a) f
soc

is continuous at an x ∈ S with spectral values λ1, λ2 if and only if f is contin-
uous at λ1, λ2.

(b) f
soc

is continuous if and only if f is continuous.

Proof. (a) Suppose f is continuous at λ1, λ2. If x2 = 0, then x1 = λ1 = λ2 and, by
Lemma 1(a), Lx has eigenvalue of λ1 = λ2 of multiplicity n. Then, by Prop. 1(a), f

mat

is continuous at Lx . Since Lx is continuous in x, Lemma 1(b) yields that f
soc
(x) =

f
mat
(Lx)e is continuous at x. If x2 �= 0, then, by Lemma 1(a), Lx +‖x2‖Mx2 has eigen-

value of λ1 of multiplicity 1 and λ2 of multiplicity n − 1. Then, by Prop. 1(a), f
mat

is
continuous at Lx + ‖x2‖Mx2 . Since x �→ Lx + ‖x2‖Mx2 is continuous at x, Lemma
1(b) yields that x �→ f

soc
(x) = f

mat
(Lx + ‖x2‖Mx2)e is continuous at x.

Suppose f
soc

is continuous at x with spectral values λ1, λ2 and spectral vectors
u(1), u(2). For any µ1 ∈ R, let

y := µ1u
(1) + λ2u

(2).

Then y → x as µ1 → λ1. Since f
soc

is continuous at x, we have

f (µ1)u
(1) + f (λ2)u

(2) = f
soc
(y) → f

soc
(x) = f (λ1)u

(1) + f (λ2)u
(2).

Since u(1) �= 0, this implies f (µ1) → f (λ1) as µ1 → λ1. Thus f is continuous at λ1.
A similar argument shows that f is continuous at λ2.

(b) is an immediate consequence of (a). ��

The “if” direction of Prop. 2(a) can alternatively be proved using the Lipschitzian
property of the spectral values (Lemma 2) and an upper Lipschitzian property of the
spectral vectors. However, this alternative proof is more complicated. If f has a power
series expansion, then so does f

soc
, with the same coefficients of expansion; see [12,

Prop. 3.1].
By using Lemma 1 and Prop. 1(b), we have the following directional differentiability

result for f
soc

, together with a computable formula for the directional derivative of f
soc

.
In the special case of f (·) = max{0, ·}, for which f

soc
(x) corresponds to the projection

of x onto Kn, an alternative formula expressing the directional derivative as the unique
solution to a certain convex program is given in [23, Prop. 13].
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Proposition 3. For any f : R → R, the following results hold:

(a) f
soc

is directionally differentiable at an x = (x1, x2) ∈ R × R
n−1 with spectral

values λ1, λ2 if and only if f is directionally differentiable at λ1, λ2; Moreover, for
any nonzero h = (h1, h2) ∈ R × R

n−1, we have

(f
soc
)′(x;h) = f ′(x1;h1)e

if x2 = 0 and h2 = 0;

(f
soc
)′(x;h)= 1

2
f ′(x1;h1−‖h2‖)

(

1,
−h2

‖h2‖
)

+ 1

2
f ′(x1;h1+‖h2‖)

(

1,
h2

‖h2‖
)

(15)

if x2 = 0 and h2 �= 0; otherwise

(f
soc
)′(x;h) = 1

2
f ′
(

λ1;h1 − xT2 h2

‖x2‖

)(

1,
−x2

‖x2‖
)

− f (λ1)

2‖x2‖Mx2h

+ 1

2
f ′
(

λ2;h1 + xT2 h2

‖x2‖

)(

1,
x2

‖x2‖
)

+ f (λ2)

2‖x2‖Mx2h. (16)

(b) f
soc

is directionally differentiable if and only if f is directionally differentiable.

Proof. (a) Suppose f is directionally differentiable at λ1, λ2. If x2 = 0, then x1 =
λ1 = λ2 and, by Lemma 1(a), Lx has eigenvalue of x1 of multiplicity n. Then, by
Prop. 1(b), f

mat
is directionally differentiable at Lx . Since Lx is differentiable in x,

Lemma 1(b) yields that f
soc
(x) = f

mat
(Lx)e is directionally differentiable at x. If

x2 �= 0, then, by Lemma 1(a), Lx + ‖x2‖Mx2 has eigenvalue of λ1 of multiplicity 1
and λ2 of multiplicity n− 1. Then, by Prop. 1(b), f

mat
is directionally differentiable at

Lx +‖x2‖Mx2 . Since x �→ Lx +‖x2‖Mx2 is differentiable at x, Lemma 1(b) yields that
x �→ f

soc
(x) = f

mat
(Lx + ‖x2‖Mx2)e is directionally differentiable at x.

Fix any nonzero h = (h1, h2) ∈ R × R
n−1. Below we calculate (f

soc
)′(x;h). Sup-

pose x2 = 0. Then λ1 = λ2 = x1 and the spectral vectors u(1), u(2) sum to e = (1, 0).
If h2 = 0, then for any t > 0, x + th has the spectral values µ1 = µ2 = x1 + th1 and
its spectral vectors v(1), v(2) sum to e = (1, 0). Thus

f
soc
(x + th)− f

soc
(x)

t
= 1

t

(
f (µ1)v

(1) + f (µ2)v
(2) − f (λ1)u

(1) − f (λ2)u
(2)
)

= f (x1 + th1)− f (x1)

t
e

→ f ′(x1;h1)e as t → 0+.

Ifh2 �= 0, then for any t > 0, x+th has the spectral valuesµi = (x1+th1)+(−1)i t‖h2‖
and spectral vectors v(i) = 1

2 (1, (−1)ih2/‖h2‖), i = 1, 2. Moreover, since x2 = 0, we
can choose u(i) = v(i) for i = 1, 2. Thus
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f
soc
(x + th)− f

soc
(x)

t

= 1

t

(
f (µ1)v

(1) + f (µ2)v
(2) − f (λ1)v

(1) − f (λ2)v
(2)
)

= f (x1 + t (h1 − ‖h2‖))− f (x1)

t
v(1) + f (x1 + t (h1 + ‖h2‖))− f (x1)

t
v(2)

→ f ′(x1;h1 − ‖h2‖)v(1) + f ′(x1;h1 + ‖h2‖)v(2) as t → 0+.

This together with v(i) = 1
2 (1, (−1)ih2/‖h2‖), i = 1, 2, yields (15). Suppose x2 �= 0.

Then λi = x1 + (−1)i‖x2‖ and the spectral vectors are u(i) = 1
2 (1, (−1)ix2/‖x2‖),

i = 1, 2. For any t > 0 sufficiently small so that x2 + th2 �= 0, x + th has the spectral
values µi = x1 + th1 + (−1)i‖x2 + th2‖ and spectral vectors v(i) = 1

2 (1, (−1)i(x2 +
th2)/‖x2 + th2‖), i = 1, 2. Thus

f
soc
(x + th)− f

soc
(x)

t

= 1

t

(
f (µ1)v

(1) + f (µ2)v
(2) − f (λ1)u

(1) − f (λ2)u
(2)
)

= 1

t

(
1

2
f (x1 + th1 − ‖x2 + th2‖)(1,− x2 + th2

‖x2 + th2‖ )− 1

2
f (λ1)(1,− x2

‖x2‖ )

+ 1

2
f (x1 + th1 + ‖x2 + th2‖)(1, x2 + th2

‖x2 + th2‖ )− 1

2
f (λ2)(1,

x2

‖x2‖ )
)

. (17)

We now focus on the individual terms in (17). Since

‖x2 + th2‖ − ‖x2‖
t

= ‖x2 + th2‖2 − ‖x2‖2

(‖x2 + th2‖ + ‖x2‖)t
= 2xT2 h2 + t‖h2‖2

‖x2 + th2‖ + ‖x2‖ → xT2 h2

‖x2‖ as t → 0+,

we have

1

t

(
f (x1 + th1 − ‖x2 + th2‖)− f (λ1)

)

= 1

t

(

f

(

λ1 + t

(

h1 − ‖x2 + th2‖ − ‖x2‖
t

))

− f (λ1)

)

→ f ′
(

λ1;h1 − xT2 h2

‖x2‖

)

as t → 0+.

Similarly, we find that

1

t

(
f (x1 + th1 + ‖x2 + th2‖)− f (λ2)

)

→ f ′
(

λ2;h1 + xT2 h2

‖x2‖

)

as t → 0+.
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Also, letting �(x2) = x2/‖x2‖, we have that

1

t

(
x2 + th2

‖x2 + th2‖ − x2

‖x2‖
)

= �(x2 + th2)−�(x2)

t
→ ∇�(x2)h2 as t → 0+.

Combining the above relations with (17) and using a product rule, we obtain that

lim
t→0+

f
soc
(x + th)− f

soc
(x)

t

= 1

2

(

f ′
(

λ1;h1 − xT2 h2

‖x2‖

)(

1,
−x2

‖x2‖
)

− f (λ1)(0,∇�(x2)h2)

)

+1

2

(

f ′
(

λ2;h1 + xT2 h2

‖x2‖

)(

1,
x2

‖x2‖
)

+ f (λ2)(0,∇�(x2)h2)

)

Using ∇�(x2)h2 = 1
‖x2‖

(

I − x2x
T
2

‖x2‖2

)

h2 so that (0,∇�(x2)h2) = 1
‖x2‖Mx2h yields

(16).
Suppose f

soc
is directionally differentiable at x with spectral eigenvalues λ1, λ2 and

spectral vectors u(1), u(2). For any direction d1 ∈ R, let

h := d1u
(1).

Since x = λ1u
(1) + λ2u

(2), this implies x + th = (λ1 + td1)u
(1) + λ2u

(2), so that

f
soc
(x + th)− f

soc
(x)

t
= f (λ1 + td1)− f (λ1)

t
u(1).

Since f
soc

is directionally differentiable at x, the above difference quotient has a limit
as t → 0+. Since u(1) �= 0, this implies that

lim
t→0+

f (λ1 + td1)− f (λ1)

t
exists.

Hence f is directionally differentiable at λ1.A similar argument shows f is directionally
differentiable at λ2.

(b) is an immediate consequence of (a). ��
Proposition 4. For any f : R → R, the following results hold:

(a) f
soc

is differentiable at an x = (x1, x2) ∈ R × R
n−1 with spectral values λ1, λ2 if

and only if f is differentiable at λ1, λ2. Moreover,

∇f soc
(x) = f ′(x1)I (18)

if x2 = 0, and otherwise

∇f soc
(x) =

[
b c xT2 /‖x2‖

c x2/‖x2‖ aI + (b − a)x2x
T
2 /‖x2‖2

]

, (19)

where

a = f (λ2)− f (λ1)

λ2 − λ1
, b = 1

2

(
f ′(λ2)+ f ′(λ1)

)
, c = 1

2

(
f ′(λ2)− f ′(λ1)

)
.

(20)
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(b) f
soc

is differentiable if and only if f is differentiable.

Proof. (a) The proof of the “if” direction is identical to the proof of Prop. 3, but with
“directionally differentiable” replaced by “differentiable” and with Prop. 1(b) replaced
by Prop. 1(c). The formula for ∇f soc

(x) is from [12, Prop. 5.2].
To prove the “only if” direction, suppose f is differentiable at λ1, λ2. Then, for each

i ∈ {1, 2},
f

soc
(x + tu(i))− f

soc
(x)

t
= f (λi + t)− f (λi)

t
u(i)

has a limit as t → 0. Since u(i) �= 0, this implies that

lim
t→0

f (λi + t)− f (λi)

t
exists.

Hence f is differentiable at λi .
(b) is an immediate consequence of (a). ��

We next have the following continuous differentiability result for f
soc

based on Prop.
1(d) and Lemma 1.

Proposition 5. For any f : R → R, the following results hold:

(a) f
soc

is continuously differentiable at an x = (x1, x2) ∈ R × R
n−1 with spectral

values λ1, λ2 if and only if f is continuously differentiable at λ1, λ2.
(b) f

soc
is continuously differentiable if and only if f is continuously differentiable.

Proof. (a) The proof of the “if” direction is identical to the proof of Prop. 2, but with
“continuous” replaced by “continuously differentiable” and with Prop. 1(a) replaced by
Prop. 1(d). Alternatively, we note that (19) is continuous at any x with x2 �= 0. The case
of x2 = 0 can be checked by taking y = (y1, y2) → x and considering the two cases:
y2 = 0 or y2 �= 0.

Conversely, suppose f
soc

is continuously differentiable at an x = (x1, x2) ∈ R ×
R
n−1 with spectral values λ1, λ2. Then, by Prop. 4, f is differentiable in neighborhoods

around λ1, λ2. If x2 = 0, then λ1 = λ2 = x1 and (18) yields ∇f soc
(x) = f ′(x1)I . For

any h1 ∈ R, let h := (h1, 0). Then ∇f soc
(x+h) = f ′(x1+h1)I . Since ∇f soc

is continu-
ous atx, then limh1→0 f

′(x1+h1)I = f ′(x1)I , implying limh1→0 f
′(x1+h1) = f ′(x1).

Thus, f ′ is continuous at x1. If x2 �= 0, then ∇f soc
(x) is given by (19) with a, b, c given

by (20). For any h1 ∈ R, let h := (h1, 0). Then x + h = (x1 + h1, x2) has spectral
values µ1 := λ1 + h1, µ2 := λ2 + h1. By (19),

∇f soc
(x + h) =

[
β χ xT2 /‖x2‖

χ x2/‖x2‖ αI + (β − α)x2x
T
2 /‖x2‖2

]

,

where

α = f (µ2)− f (µ1)

µ2 − µ1
, β = 1

2

(
f ′(µ2)+ f ′(µ1)

)
, χ = 1

2

(
f ′(µ2)− f ′(µ1)

)
.
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Since ∇f soc
is continuous at x so that limh→0 ∇f soc

(x + h) = ∇f soc
(x) and x2 �= 0,

we see from comparing terms that β → b and χ → c as h → 0. This means that

f ′(µ2)+ f ′(µ1) → f ′(λ2)+ f ′(λ1) and

f ′(µ2)− f ′(µ1) → f ′(λ2)− f ′(λ1) as h1 → 0.

Adding and subtracting the above two limits and we obtain

f ′(µ1) → f ′(λ1) and f ′(µ2) → f ′(λ2) as h1 → 0.

Since µ1 = λ1 + h1, µ2 = λ2 + h1, this shows that f ′ is continuous at λ1, λ2.
(b) is an immediate consequence of (a). ��

In the case where f = g′ for some differentiable g, Prop. 1(d) is a special case
of Thm. 4.2 in [19]. This raises the question of whether an SOC analog of the second
derivative results in [19] holds.

We now study the strict continuity and Lipschitz continuity properties of f
soc

. The
proof is similar to that of [6, Prop. 4.6], but with a different estimation of ∇(f ν)soc

. We
begin with the following lemma, which is analogous to a result of Weyl for eigenvalues
of symmetric matrices, e.g., [3, p. 63], [15, p. 367].

Lemma 2. For any x = (x1, x2) ∈ R × R
n−1 with spectral values λ1, λ2 and any

y = (y1, y2) ∈ R × R
n−1 with spectral values µ1, µ2, we have

|λi − µi | ≤
√

2‖x − y‖, i = 1, 2.

Proof. We have

|λ1 − µ1| = |x1 − ‖x2‖ − y1 + ‖y2‖|
≤ |x1 − y1| + |‖x2‖ − ‖y2‖|
≤ |x1 − y1| + ‖x2 − y2‖
≤

√
2(|x1 − y1|2 + ‖x2 − y2‖2)1/2

=
√

2‖x − y‖,

where the second inequality uses ‖x2‖ ≤ ‖x2−y2‖+‖y2‖ and ‖y2‖ ≤ ‖x2−y2‖+‖x2‖;
the last inequality uses the relation between the 1-norm and the 2-norm. A similar argu-
ment applies to |λ2 − µ2|. ��

We also need the following result of Rockafellar and Wets [26, Thm. 9.67].

Lemma 3. Suppose f : R
k → R is strictly continuous. Then there exist continuously

differentiable functions f ν : R
k → R, ν = 1, 2, . . . , converging uniformly to f on any

compact set C in R
k and satisfying

∇f ν(x) ≤ sup
y∈C

lipf (y) ∀x ∈ C, ∀ν.
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Lemma 3 is slightly different from the original version given in [26, Thm. 9.67].
In particular, the second part of Lemma 3 is not contained in [26, Thm. 9.67], but is
implicit in its proof. This second part is needed to show that strict continuity and Lips-
chitz continuity are inherited by f

soc
from f . We note that Prop, 1(e),(f) and Lemma 1

can be used to give a short proof of strict continuity and Lipschitz continuity of f
soc

,
but the Lipschitz constant would not be sharp. In particular, the constant would be off
by a multiplicative factor of

√
n due to ‖Lx‖F ≤ √

n‖x‖ for all x ∈ R
n. Also, spectral

vectors do not behave in a (locally) Lipschitzian manner, so we cannot use (4) directly.

Proposition 6. For any f : R → R, the following results hold:

(a) f
soc

is strictly continuous at an x ∈ R
n with spectral values λ1, . . . , λn if and only

if f is strictly continuous at λ1, . . . , λn.
(b) f

soc
is strictly continuous if and only if f is strictly continuous.

(c) f
soc

is Lipschitz continuous (with respect to ‖ · ‖) with constant κ if and only if f is
Lipschitz continuous with constant κ .

Proof. (a) Fix any x ∈ R
n with spectral values λ1, λ2 given by (2).

“if” Suppose f is strictly continuous at λ1, λ2. Then there exist κi > 0 and δi > 0
for i = 1, 2, such that

|f (ξ)− f (ζ )| ≤ κi |ξ − ζ | ∀ξ, ζ ∈ [λi − δi, λi + δi] i = 1, 2.

Let δ̄ := min{δ1, δ2} and

C := [λ1 − δ̄, λ1 + δ̄] ∪ [λ2 − δ̄, λ2 + δ̄] .

We define f̃ : R → R to be the function that coincides with f on C; and is linearly
extrapolated at the boundary points of C on R \ C. In other words,

f̃ (ξ) =






f (ξ) if ξ ∈ C,
(1 − t)f (λ1 + δ̄) if λ1 + δ̄ < λ2 − δ̄ and, for some t ∈ (0, 1),

+tf (λ2 − δ̄) ξ = (1 − t)(λ1 + δ̄)+ t (λ2 − δ̄),

f (λ1 − δ̄) if ξ < λ1 − δ̄,

f (λ2 + δ̄) if ξ > λ2 + δ̄.

From the above, we see that f̃ is Lipschitz continuous, so that there exists a scalar
κ > 0 such that lipf̃ (ξ) ≤ κ for all ξ ∈ R. Since C is compact, by Lemma 3, there
exist continuously differentiable functions f ν : R → R, ν = 1, 2, . . . , converging
uniformly to f̃ and satisfying

|(f ν)′(ξ)| ≤ κ ∀ξ ∈ C, ∀ν . (21)

Let δ := 1√
2
δ̄, so by Lemma 2, C contains all spectral values of y ∈ B(x, δ). Moreover,

for any w ∈ B(x, δ) with spectral factorization

w = µ1u
(1) + µ2u

(2) ,
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we have µ1, µ2 ∈ C and

‖(f ν)soc
(w)− f

soc
(w)‖2 = ‖(f ν(µ1)− f (µ1))u

(1) + (f ν(µ2)− f (µ2))u
(2)‖2

= 1

2
|f ν(µ1)− f (µ1)|2 + 1

2
|f ν(µ2)− f (µ2)|2 , (22)

where we use ‖u(i)‖2 = 1/2 for i = 1, 2, and (u(1))T u(2) = 0. Since {f ν}∞ν=1 converges
uniformly to f on C, equation (22) shows that {(f ν)soc}∞ν=1 converges uniformly to f

soc

on B(x, δ). Moreover, for allw = (w1, w2) ∈ B(x, δ) and all ν, we have from Prop. 4 that
∇(f ν)soc

(w) = (f ν)′(w1)I if w2 = 0, in which case ∇(f ν)soc
(w) = |(f ν)′(w1)| ≤ κ .

Otherwise w2 �= 0 and

∇(f ν)soc
(w) =

[
b c wT2 /‖w2‖

c w2/‖w2‖ aI + (b − a)w2w
T
2 /‖w2‖2

]

,

where a, b, c are given by (20) but with λ1, λ2 replaced by µ1, µ2, respectively. If
c = 0, the above matrix has the form bI + (a − b)Mw2 . Since Mw2 has eigenvalues of
0 and 1, this matrix has eigenvalues of b and a. Thus, ∇(f ν)soc

(w) = max{|a|, |b|} ≤ κ .
If c �= 0, the above matrix has the form c

‖w2‖Lz+(a−b)Mw2 = c
‖w2‖ (Lz + (a − b)‖w2‖

c−1Mw2

)
, where z = (b‖w2‖/c,w2). By Lemma 1, this matrix has eigenvalues of b+c

and a. Thus, ∇(f ν)soc
(w) = max{|b + c|, |b − c|, |a|} ≤ κ . In all cases, we have

‖|∇(f ν)soc
(w)‖| ≤ κ. (23)

Fix any y, z ∈ B(x, δ) with y �= z. Since {(f ν)soc}∞ν=1 converges uniformly to f
soc

on
B(x, δ), for any ε > 0 there exists an integer ν0 such that for all ν ≥ ν0 we have

‖(f ν)soc
(w)− f

soc
(w)‖ ≤ ε‖y − z‖ ∀w ∈ B(x, δ) .

Since f ν is continuously differentiable, then Prop. 5 shows that (f ν)
soc

is also continu-
ously differentiable for all ν. Thus, by inequality (23) and the mean value theorem for
continuously differentiable functions, we have

‖f soc
(y)− f

soc
(z)‖

= ‖f soc
(y)− (f ν)

soc
(y)+ (f ν)

soc
(y)− (f ν)

soc
(z)+ (f ν)

soc
(z)− f

soc
(z)‖

≤ ‖f soc
(y)− (f ν)

soc
(y)‖ + ‖(f ν)soc

(y)− (f ν)
soc
(z)‖ + ‖(f ν)soc

(z)− f
soc
(z)‖

≤ 2ε‖y − z‖ + ‖
∫ 1

0
∇(f ν)soc

(z+ τ(y − z))(y − z)dτ‖
≤ (κ + 2ε)‖y − z‖ .

Since y, z ∈ B(x, δ) and ε is arbitrary, this yields

‖f soc
(y)− f

soc
(z)‖ ≤ κ‖y − z‖ ∀y, z ∈ B(x, δ) . (24)

Hence, f
soc

is strictly continuous at x.
“only if” Suppose instead that f

soc
is strictly continuous at x with spectral values

λ1, λ2 and spectral vectors u(1), u(2). Then, there exist scalars κ > 0 and δ > 0 such
that (24) holds. For any i ∈ {1, 2} and any ψ, ζ ∈ [λi − δ, λi + δ], let

y := x + (ψ − λi)u
(i), z := x + (ζ − λi)u

(i).
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Then, ‖y − x‖ = |ψ − λi |/
√

2 ≤ δ and ‖z− x‖ = |ζ − λi |/
√

2 ≤ δ, so it follows from
(4) and (24) that

|f (ψ)− f (ζ )| =
√

2‖f soc
(y)− f

soc
(z)‖

≤
√

2κ‖y − z‖
= κ|ψ − ζ |.

This shows that f is strictly continuous at λ1, λ2.
(b) is an immediate consequence of (a).
(c) Suppose f is Lipschitz continuous with constant κ > 0. Then lipf (ξ) ≤ κ for

all ξ ∈ R. Fix any x ∈ R
n with spectral values λ1, λ2. For any scalar δ > 0, let

C := [λ1 − δ, λ1 + δ] ∪ [λ2 − δ, λ2 + δ] .

Then, as in the proof of part (a), we obtain that (24) holds. Since the choice of δ > 0
was arbitrary and κ is independent of δ, this implies that

‖f soc
(y)− f

soc
(z)‖ ≤ κ‖y − z‖ ∀y, z ∈ R

n .

Hence, f
soc

is Lipschitz continuous with Lipschitz constant κ .
Suppose instead that f

soc
is Lipschitz continuous with constant κ > 0. Then, for any

ξ, ζ ∈ R we have

|f (ξ)− f (ζ )| = ‖f soc
(ξe)− f

soc
(ζ e)‖

≤ κ‖ξe − ζe‖
= κ|ξ − ζ |,

so f is Lipschitz continuous with constant κ . ��

Suppose f : R → R is strictly continuous. Then, by Prop. 6, f
soc

is strictly contin-
uous. Hence ∂Bf

soc
(x) is well defined for all x ∈ R

n. The following lemma studies the
structure of this generalized Jacobian.

Lemma 4. Let f : R → R be strictly continuous. Then, for any x ∈ R
n, the generalized

Jacobian ∂Bf
soc
(x) is well defined and nonempty. Moreover, if x2 �= 0, then ∂Bf

soc
(x)

equals the following set

{[
b c xT2 /‖x2‖

c x2/‖x2‖ aI + (b − a)x2x
T
2 /‖x2‖2

] ∣
∣
∣ a = f (λ2)− f (λ1)

λ2 − λ1
,
b + c ∈ ∂Bf (λ2)

b − c ∈ ∂Bf (λ1)

}

,

(25)

where λ1, λ2 are the spectral values of x. If x2 = 0, then ∂Bf
soc
(x) is a subset of the

following set

{[
b c wT

c w aI + (b − a)wwT

] ∣
∣
∣ a ∈ ∂f (x1), b ± c ∈ ∂Bf (x1), ‖w‖ = 1

}

. (26)
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Proof. Suppose x2 �= 0. For any sequence {xk}∞k=1 → x with f
soc

differentiable at
xk , we have from Prop. 4 that {λki }∞k=1 → λi with f differentiable at λki , i = 1, 2,
where λk1, λ

k
2 are the spectral values of xk . Since any cluster point of {f ′(λki )}∞k=1 is

in ∂Bf (λi), it follows from the gradient formula (19)–(20) that any cluster point of

{∇f soc
(xk)}∞k=1 is an element of (25). Conversely, for any b, c with b − c ∈ ∂Bf (λ1),

b + c ∈ ∂Bf (λ2), there exist {λk1}∞k=1 → λ1, {λk2}∞k=1 → λ2 with f differentiable at
λk1, λ

k
2 and {f ′(λk1)}∞k=1 → b − c, {f ′(λk2)}∞k=1 → b + c. Since λ2 > λ1, by taking k

large, we can assume that λk2 ≥ λk1 for all k. Let

xk1 = 1

2
(λk2 + λk1), xk2 = 1

2
(λk2 − λk1)

x2

‖x2‖ , xk = (xk1 , x
k
2 ).

Then, {xk}∞k=1 → x and, by Prop. 4, f
soc

is differentiable at xk . Moreover, the limit
of {∇f soc

(xk)}∞k=1 is an element of (25) associated with the given b, c. Thus ∂Bf
soc
(x)

equals (25).
Suppose x2 = 0. Consider any sequence {xk}∞k=1 = {(xk1 , xk2 )}∞k=1 → x with f

soc

differentiable at xk for all k. By passing to a subsequence, we can assume that either
xk2 = 0 for all k or xk2 �= 0 for all k. If xk2 = 0 for all k, Prop. 4 yields that f is differ-
entiable at xk1 and ∇f soc

(xk) = f ′(xk1 )I . Hence any cluster point of {∇f soc
(xk)}∞k=1

is an element of (26) with a = b ∈ ∂Bf (x1) ⊆ ∂f (x1) and c = 0. If xk2 �= 0 for
all k, by further passing to a subsequence, we can assume without loss of generality
that {xk2/‖xk2‖}∞k=1 → w for some w with ‖w‖ = 1. Let λk1, λ

k
2 be the spectral values of

xk and let ak, bk, ck be the coefficients given by (20) corresponding to λk1, λ
k
2. We can

similarly prove that b± c ∈ ∂Bf (x1), where (b, c) is any cluster point of {(bk, ck)}∞k=1.
Also, by a mean-value theorem of Lebourg [8, Prop. 2.3.7],

ak = f (λk2)− f (λk1)

λk2 − λk1

∈ ∂f (λ̂k)

for some λ̂k in the interval between λk2 and λk1. Since f is strictly continuous so that
∂f is upper semicontinuous [8, Prop. 2.1.5] or, equivalently, outer semicontinuous

[26, Prop. 8.7], this together with λki → x1, i = 1, 2, implies that any cluster point of
{ak}∞k=1 belongs to ∂f (x1). Then, the gradient formula (19)–(20) yields that any cluster

point of {∇f soc
(xk)}∞k=1 is an element of (26). ��

Below we refine Lemma 4 to characterize ∂Bf
soc
(x) completely for two special cases

of f . In the first case, the directional derivative of f has a one-sided continuity property,
and our characterization is analogous to [6, Prop. 4.8] for the matrix-valued function
f

mat
. However, despite Lemma 1, our characterization cannot be deduced from [6, Prop.

4.8] and hence is proved directly. The second case is an example from [26, p. 304]. Our
analysis shows that the structure of ∂Bf

soc
(x) depends on f in a complicated way. In

particular, in both cases, ∂Bf
soc
(x) is a proper subset of (26) when x2 = 0.

In what follows we denote the right- and left-directional derivative of f : R → R

by

f ′
+(ξ) := lim

ζ→ξ+
f (ζ )− f (ξ)

ζ − ξ
, f ′

−(ξ) := lim
ζ→ξ−

f (ζ )− f (ξ)

ζ − ξ
.
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Lemma 5. Suppose f : R → R is strictly continuous and directionally differentiable
function with the property that

lim
ζ,ν→ξσ

ζ �=ν

f (ζ )− f (ν)

ζ − ν
= lim

ζ→ξσ

ζ∈Df
f ′(ζ ) = f ′

σ (ξ), ∀ξ ∈ R, σ ∈ {−,+}. (27)

where Df = {ξ ∈ R|f is differentiable at ξ}. Then, for any x = (x1, 0) ∈ R × R
n−1,

∂Bf (x1) = {f ′−(x1), f
′+(x1)}, and ∂Bf

soc
(x) equals the following set

{[
b c wT

c w aI+(b−a)wwT
] ∣
∣
∣
either a = b ∈ ∂Bf (x1), c = 0
or a∈∂f (x1), b − c=f ′−(x1), b + c=f ′+(x1)

, ‖w‖=1

}

.

(28)

Proof. By (27), ∂Bf (x1) = {f ′−(x1), f
′+(x1)}. Consider any sequence {xk}∞k=1 → x

with f
soc

differentiable at xk = (xk1 , x
k
2 ) for all k. By passing to a subsequence, we can

assume that either xk2 = 0 for all k or xk2 �= 0 for all k.
If xk2 = 0 for all k, Prop. 4 yields that f is differentiable at xk1 and ∇f soc

(xk) =
f ′(xk1 )I . Hence any cluster point of {∇f soc

(xk)}∞k=1 is an element of (28) with a = b ∈
∂Bf (x1) and c = 0.

If xk2 �= 0 for all k, by passing to a subsequence, we can assume without loss of
generality that {xk2/‖xk2‖}∞k=1 → w for some w with ‖w‖ = 1. Let λk1, λ

k
2 be the spec-

tral values of xk . Then λk1 < λk2 for all k and λki → x1, i = 1, 2. By further passing
to a subsequence if necessary, we can assume that either (i) λk1 < λk2 ≤ x1 for all k
or (ii) x1 ≤ λk1 < λk2 for all k or (iii) λk1 < x1 < λk2 for all k. Let ak, bk, ck be the
coefficients given by (20) corresponding to λk1, λ

k
2. By Prop. 4, f is differentiable at

λk1, λ
k
2 and f ′(λk1) = bk − ck, f ′(λk2) = bk + ck . Let (a, b, c) be any cluster point of

{(ak, bk, ck)}∞k=1. In case (i), we see from (27) that b± c = a = f ′−(x1), which implies
b = f ′−(x1) and c = 0. In case (ii), we obtain similarly that a = b = f ′+(x1) and c = 0.
In case (iii), we obtain that b − c = f ′−(x1), b + c = f ′+(x1). Also, the directional
differentiability of f implies that

ak = f (λk2)− f (λk1)

λk2 − λk1

= λk2 − x1

λk2 − λk1

f (λk2)− f (x1)

λk2 − x1
+ x1 − λk1

λk2 − λk1

f (x1)− f (λk1)

x1 − λk1

,

which yields in the limit that

a = (1 − ω)f ′
+(x1)+ ωf ′

−(x1),

for some ω ∈ [0, 1]. Thus a ∈ ∂f (x1). This shows that ∂Bf
soc
(x) is a subset of (28).

Conversely, for any a = b ∈ ∂Bf (x1), c = 0 and any w ∈ R
n−1 with ‖w‖ = 1,

we can find a sequence xk1 ∈ Df , k = 1, 2, ..., such that xk1 → x1 and f ′(xk1 ) → a.
Then xk = (xk1 , 0) → x and the preceding analysis shows that {∇f soc

(xk)}∞k=1 con-
verges to the element of (28) corresponding to the given a, b, c, w. For any a, b, c with
b − c = f ′−(x1), b + c = f ′+(x1), a ∈ ∂f (x1), and any w ∈ R

n−1 with ‖w‖ = 1, we
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have that a = (1 − ω)f+(x1)+ ωf−(x1) for some ω ∈ [0, 1]. Since Df is dense in R,
for any integer k ≥ 1,

Df ∩
[

x1−ω1

k
− 1

k2 , x1−ω1

k

]

�=∅, Df ∩
[

x1+(1−ω)1

k
, x1+(1−ω)1

k
+ 1

k2

]

�=∅.

Let λk1 be any element of the first set and let λk2 be any element of the second set. Then

xk =
(
λk2 + λk1

2
,
λk2 − λk1

2
w

)

→ x and xk has spectral values λk1 < λk2 which satisfy

λk1 < x1 < λk2 ∀k, λk2 − x1

λk2 − λk1

→ 1 − ω,
x1 − λk1

λk2 − λk1

→ ω.

The preceding analysis shows that {∇f soc
(xk)}∞k=1 converges to the element of (28)

corresponding to the given a, b, c, w. ��
The assumptions of Lemma 5 are satisfied if f is piecewise continuously differen-

tiable, e.g., f (·) = | · | or f (·) = max{0, ·}. If f is differentiable, but not continuously
differentiable, then ∂Bf

soc
(x) is more complicated as is shown in the following lemma.

Lemma 6. Suppose f : R → R is defined by

f (ξ) =
{
ξ2 sin(1/ξ) ifξ �= 0,

0 else.

Then, for any x = (x1, 0) ∈ R × R
n−1, we have that ∂Bf (x1) = [−1, 1], and

∂Bf
soc
(x) = {f ′(x1)I } if x1 �= 0 and otherwise equals the following set






[
b c wT

c w aI+(b−a)wwT
]∣
∣
∣

b − c = − cos(θ1), b + c = − cos(θ2), ‖w‖ = 1,

a = sin(θ1)− sin(θ2)

θ1 − θ2 + 2κπ
,
κ ∈{0, 1, ...,∞}, θ1, θ2 ∈ [0,2π ],

θ1 ≥ θ2 if κ = 0





,

(29)

with the convention that a = 0 if κ = ∞ and a = cos(θ1) if κ = 0 and θ1 = θ2.

Proof. f is differentiable everywhere, with

f ′(ξ) =
{

2ξ sin (1/ξ)− cos (1/ξ) ifξ �= 0,

0 else.
(30)

Thus ∂Bf (x1) = [−1, 1]. Consider any sequence {xk}∞k=1 → x with f
soc

differentiable
at xk = (xk1 , x

k
2 ) for all k. By passing to a subsequence, we can assume that either xk2 = 0

for all k or xk2 �= 0 for all k. Let λk1 = xk1 − ‖xk2‖, λk2 = xk1 + ‖xk2‖ be the spectral values
of xk .

If xk2 = 0 for all k, Prop. 4 yields that f is differentiable at xk1 and ∇f soc
(xk) =

f ′(xk1 )I . Hence any cluster point of {∇f soc
(xk)}∞k=1 is of the form bI for some b ∈

∂Bf (x1). If x1 �= 0, then b = f ′(x1). If x1 = 0, then b ∈ [−1, 1], i.e., b = cos(θ1)
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for some θ ∈ [0, 2π ]. Then bI has the form (29) with a = b, c = 0, corresponding to
θ1 = θ2, κ = 0.

If xk2 �= 0 for all k, by passing to a subsequence, we can assume without loss of gener-
ality that {xk2/‖xk2‖}∞k=1 → w for some w with ‖w‖ = 1. By Prop. 4, f is differentiable
at λk1, λ

k
2 and f ′(λk1) = bk − ck , f ′(λk2) = bk + ck , where ak, bk, ck are the coefficients

given by (20) corresponding to λk1, λ
k
2. If x1 �= 0, then ak → f ′(x1), bk → f ′(x1) and

ck → 0, so any cluster point of {∇f soc
(xk)}∞k=1 equals f ′(x1)I . Suppose x1 = 0. Then

λk1 < λk2 tend to zero. By further passing to a subsequence if necessary, we can assume
that either (i) both are nonzero for all k or (ii) λk1 = 0 for all k or (iii) λk2 = 0 for all k.
In case (i),

1

λk1

= θk1 + 2νkπ,
1

λk2

= θk2 + 2µkπ (31)

for some θk1 , θ
k
2 ∈ [0, 2π ] and integers νk, µk tending to ∞ or −∞. By further pass-

ing to a subsequence if necessary, we can assume that {(θk1 , θk2 )}∞k=1 converges to some
(θ1, θ2) ∈ [0, 2π ]2. Then (30) yields

f ′(λki ) = 2λki sin(θki )− cos(θki ) → − cos(θi), i = 1, 2,

ak = f (λk2)− f (λk1)

λk2 − λk1

= (λk2)
2 sin(θk2 )− (λk1)

2 sin(θk1 )

λk2 − λk1

= (λk2 + λk1) sin(θk2 )+ sin(θk2 )− sin(θk1 )

(θk1 − θk2 + 2(νk − µk)π)λ
k
2/λ

k
1

.

If |νk −µk| is bounded as k → ∞, then λk2/λ
k
1 → 1 and, by (31) and λk1 < λk2, νk ≥ µk .

In this case, any cluster point (a, b, c) of {(ak, bk, ck)}∞k=1 would satisfy

b − c = − cos(θ1), b + c = − cos(θ2), a = sin(θ2)− sin(θ1)

θ1 − θ2 + 2κπ
(32)

for some integer κ ≥ 0. Here, we use the convention that a = cos(θ1) if κ = 0, θ1 = θ2.
Moreover, if κ = 0, then νk = µk for all k sufficiently large along the corresponding sub-
sequence, so (31) and λk1 < λk2 yields θk1 > θk2 > 0, implying furthermore that θ1 ≥ θ2.
If |νk−µk| → ∞ and |µk/νk| is bounded away from zero, then |νk−µk||µk/νk| → ∞.
If |νk − µk| → ∞ and |µk/νk| → 0, then |νk − µk||µk/νk| = |µk(1 − µk/νk)| → ∞
due to |µk| → ∞. Thus, if |νk − µk| → ∞, we have |νk − µk||λk2/λk1| → ∞ and the
above equation yields ak → 0, corresponding to (32) with κ = ∞. In case (ii), we have
f ′(λk1) = 0 and ak = f (λk2)/λ

k
2 = λk2 sin(1/λk2) for all k, so any cluster point (a, b, c)

of {(ak, bk, ck)}∞k=1 satisfies b − c = 0, b + c = − cos(θ2), a = 0. This corresponds to
(32) with θ1 = π

2 , κ = ∞. In case (iii), we obtain similarly (32) with θ2 = π
2 , κ = ∞.

This and (19)–(20) show that any cluster point of {∇f soc
(xk)}∞k=1 is in the set (29).

Conversely, if x1 �= 0, since ∂Bf
soc
(x) is a nonempty subset of {f ′(x1)I }, the two

must be equal. If x1 = 0, then for any integer κ ≥ 0 and any θ1, θ2 ∈ [0, 2π ] satisfying
θ1 ≥ θ2 whenever κ = 0, and any w ∈ R

n−1 with ‖w‖ = 1, we let, for each integer
k ≥ 1,

λk1 = 1

θ1 + 2(k + κ)π + 1/k
, λk2 = 1

θ2 + 2kπ
.
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Then 0 < λk1 < λk2, xk =
(
λk2 + λk1

2
,
λk2 − λk1

2
w

)

→ x and xk has spectral values λk1, λ
k
2

which satisfy (31) with νk = k + κ , µk = k, θk1 = θ1 + 1/k, θk2 = θ2. The preceding
analysis shows that {∇f soc

(xk)}∞k=1 converges to the element of (28) corresponding to
the given θ1, θ2, κ, w with a given by (32). The case of a = 0 can be obtained similarly
by taking κ to go to ∞ with k. ��

The following lemma, proven by Sun and Sun [28, Thm. 3.6] using the definition of
generalized Jacobian,1 enables one to study the semismooth property of f

soc
by exam-

ining only those points x ∈ R
n where f

soc
is differentiable and thus work only with the

Jacobian of f
soc

, rather than the generalized Jacobian.

Lemma 7. SupposeF : R
k → R

k is strictly continuous and directionally differentiable
in a neighborhood of x ∈ R

k . Then, for any 0 < ρ < ∞, the following two statements
(where O(·) depends on F and x only) are equivalent:

(a) For any h ∈ R
k and any V ∈ ∂F (x + h),

F(x + h)− F(x)− V h = o(‖h‖) (respectively, O(‖h‖1+ρ)).

(b) For any h ∈ R
k such that F is differentiable at x + h,

F(x + h)− F(x)− ∇F(x + h)h = o(‖h‖) (respectively, O(‖h‖1+ρ)).

By using Lemmas 1, 7 and Props. 1, 3, 6, 4, we can now state and prove the last result
of this section, on the semismooth property of f

soc
. This result generalizes [7, Thm. 4.2]

for the cases of f (ξ) = |ξ |, f (ξ) = max{0, ξ}.
Proposition 7. For any f : R → R, the vector-valued function f

soc
is semismooth if

and only if f is semismooth. If f is ρ-order semismooth (0 < ρ < ∞), then f
soc

is
min{1, ρ}-order semismooth.

Proof. Suppose f is semismooth. Then f is strictly continuous and directionally differ-
entiable. By Props. 3 and 6, f

soc
is strictly continuous and directionally differentiable.

By Lemma 1(b), f
soc
(x) = f

mat
(Lx)e for all x. By Prop. 1(g), f

mat
is semismooth.

Since Lx is continuously differentiable in x, f
soc
(x) = f

mat
(Lx)e is semismooth in

x. If f is ρ-order semismooth (0 < ρ < ∞), then, by Prop. 1(g), f
mat

is min{1, ρ}-
order semismooth. Since Lx is continuously differentiable in x, f

soc
(x) = f

mat
(Lx)e is

min{1, ρ}-order semismooth in x.
Suppose f

soc
is semismooth. Then f

soc
is strictly continuous and directionally differ-

entiable. By Props. 3 and 6, f is strictly continuous and directionally differentiable. For
any ξ ∈ R and any η ∈ R such that f is differentiable at ξ +η, Prop. 4 yields that f

soc
is

differentiable at x+h, where we denote x := ξe and h := ηe. Since f
soc

is semismooth,
it follows from Lemma 7 that

f
soc
(x + h)− f

soc
(x)− ∇f soc

(x + h)h = o(‖h‖),
1 Sun and Sun did not consider the case of o(‖h‖) but their argument readily applies to this case.
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which, by (4) and (18), is equivalent to

f (ξ + η)− f (ξ)− f ′(ξ + η)η = o(|η|).
Then Lemma 7 yields that f is semismooth. ��

Notice that, for each of the preceding global results there is a corresponding local
result. Some of our results, namely Props. 2, 4, 5 and Lemma 2, had appeared in the
unpublished Master thesis by the first author [4]. However, the proofs in [4] did not make
use of Lemma 1 and hence were more complex in some cases.

6. Applications to SOCCP

Consider the SOCCP (5), i.e., for a given mapping F : R
n × R

n × R
� → R

n × R
�, find

an (x, y, ζ ) ∈ R
n × R

n × R
� satisfying

〈x, y〉 = 0, x ∈ K, y ∈ K, F (x, y, ζ ) = 0, (33)

where K is given by (6). We assume that F is continuously differentiable. It is known
[12] that (x, y, ζ ) ∈ R

n × R
n × R

� solves SOCCP if and only if it solves the equations

H(x, y, ζ ) :=
(
x − [x − y]+
F(x, y, ζ )

)

= 0, (34)

where [·]+ : R
n → K denotes the nearest-point projection onto K, i.e.,

[x]+ := arg min{‖x − y‖ | y ∈ K}.
The functionH is nonsmooth due to the nonsmoothness of the projection operator [·]+.
Chen, Sun and Sun [7] showed that [·]+ is strongly semismooth, so thatH is semismooth.
This result also follows from Prop. 7 with f (·) = max{0, ·}, for which f

soc
(·) = [·]+.

[Here, f is applied to the spectral decomposition associated with each Kni , i = 1, ..., m.]
More generally, the results of Sec. 5 can be used to design and analyze smoothing or
nonsmooth Newton-type methods for solving H(x, y, ζ ) = 0, such as was done in [7]
for SOCCP and in [6] for SDCP when F has the form (7). In particular, it appears that
the analysis in [6, Sec. 5] can be adapted to the above SOCCP. For simplicity, we omit
the details.
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