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Abstract. Let K" be the Lorentz/second-order cone in R”. For any function f from R to R, one can define
a corresponding function f*°°(x) on R” by applying f to the spectral values of the spectral decomposi-
tion of x € R" with respect to . We show that this vector-valued function inherits from f the properties
of continuity, (local) Lipschitz continuity, directional differentiability, Fréchet differentiability, continuous
differentiability, as well as (p-order) semismoothness. These results are useful for designing and analyzing
smoothing methods and nonsmooth methods for solving second-order cone programs and complementarity
problems.
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1. Introduction

Let K" (n > 1) be the second-order cone (SOC), also called the Lorentz cone, in R”,
defined by

K" :={(x1,x2) e Rx R" | x|l < x1}.

where | - || denotes the Euclidean norm. By definition, K! is the set of nonnegative
reals R . The second-order cone has recently received much attention in optimization,
particularly in the context of applications and solution methods for second-order cone
programs (SOCP) [1, 2, 12, 20, 22, 27, 31]. Any x = (x1,x2) € R x R"~! can be
decomposed as

x = auP + nu®, (1)

where A, A> and uD, 1@ are the spectral values and the associated spectral vectors of
x, with respect to ", given by

x1 4+ (=D xal, 2)
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fori = 1, 2, with w being any vector in R”~! satisfying ||w| = 1.If x» # 0, the decom-
position (1) is unique. In [12], for any function f : R — R, the following vector-valued
function associated with X" (n > 1) was considered:

5@ = £o0u® + fOu®  ¥x = (x1,x0) e R x R"L (4)

If f is defined only on a subset of R, then /™ is defined on the corresponding subset
of R". The definition (4) is unambiguous whether x, # 0 or x; = 0. The cases of
f e (x) = x172, x2, exp(x) are discussed in the book of Faraut and Koranyi [9]. The
above definition (4) is analogous to one associated with the semidefinite cone 5", see
[28, 30].

Our study of this function is motivated by optimization and complementarity prob-
lems whose constraints involve the direct product of second-order cones. In particular,
we wish to find vectors x, y € R" and ¢ € R satisfying

(x,y)=0, xek, yek, F(x,y,£)=0, (®)]

where (-, -) denotes the Euclidean inner product, F : R* x R* x R* - R” x Rfisa
continuously differentiable mapping, and

K=K" x...x K", (6)

with £ > 0, m,n(,... ,ny, > 1and ny + --- + n,, = n. We will refer to (5), (6)
as the second-order-cone complementarity problem (SOCCP). This problem has wide
applications and, in particular, includes a large class of quadratically constrained prob-
lems as special cases [20]. It also includes as a special case the well-known nonlinear
complementarity problem (NCP) [10], corresponding to n; = 1 for all i, i.e., K is the
nonnegative orthant R’ . When £ = 0 and the mapping F has the form

F(x,y,8) = Fo(x) —y (7
for some Fy : R” — R", the SOCCP (5) becomes
(x, Fo(x)) =0, xek, Folx)ek, 3)

which is a natural generalization of the ordinary NCP corresponding to X = R} .

Optimization problems with SOC constraints have been the focus of several recent
studies. It is known that K", like R, and the cone S} of n x n real symmetric positive
semidefinite matrices, belongs to the class of symmetric cones, to which a Jordan algebra
may be associated [9]. Using this connection, interior-point methods have been devel-
oped for solving linear programs with SOC constraints [20, 22, 31] and, more generally,
linear programs with symmetric cone constraints [1, 27]. An alternative approach based
on reformulating SOC constraints as smooth convex constraints was studied in [2]. In
[12], a non-interior smoothing approach to solving (5) was considered, for which the
vector-valued function f e played a central role. For the special case of f(£§) = |£]|,
f (&) = max{0, £}, further studies of f " such as strong semismoothness and bounded-
ness of solutions to SOCCP were made in [7, 14]. Formulas for directional derivatives
and strong stability of isolated solution to SOCCP were made in [23].
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In this paper, we study the continuity and differential properties of the vector-valued
function ™ in general. In particular, we show that the properties of continuity, strict
continuity, Lipschitz continuity, directional differentiability, differentiability, continuous
differentiability, and (p-order) semismoothness are each inherited by f  from f (see
Props. 2-7). Here and throughout, differentiability means differentiability in the Fréchet
sense. These results parallel those obtained recently in [6] for matrix-valued functions
and are useful in the design and analysis of smoothing and nonsmooth methods for solv-
ing SOCP and SOCCP. Our p-order semismoothness result generalizes a recent result
of Chen, Sun and Sun [7], which considers the cases of f(§) = |&]|, f(§) = max{0, §},
and shows that f Tx) = (D12, f (x) = [x]4 are strongly semismooth. Our proofs
are based on an elegant relation between the vector-valued function f* and its matrix-
valued counterpart (see Lemma 1). This relation enables us to apply the results from [6]
for matrix-valued functions to the vector-valued function f . Our proofs also use two
lemmas from [26] and [28]. The property of semismoothness, as introduced by Mifflin
[21] for functionals and scalar-valued functions and further extended by Qi and Sun [25]
for vector-valued functions, is of particular interest due to the key role it plays in the
superlinear convergence analysis of certain generalized Newton methods [13, 17, 24,
25, 32].

In what follows, R"” (n > 1) denotes the space of n-dimensional real column vectors,
R™ x --- x R™ is identified with R*1+ " Thus, (x1, ..., xn) € R* x .. x R
is viewed as a column vector in R"1++m_Also, R, and R, denote the nonnega-
tive and positive reals. For any x, y € R”, the Euclidean inner product and norm are
denoted by (x, y) = x” yand ||x|| = v/xT x. For any differentiable (in the Fréchet sense)
mapping F : R” — R™, we denote its Jacobian at x € R” by VF(x) € R"*", i.e.,
(F(x+u) — F(x) — VFx)u)/|lull - 0asu — 0. :=" means “define”. For any
linear mapping M : R" — R", we denote its operator norm ||| M]|| := max =1 |Mx]|.
For any x € R”" and scalar y > 0, we denote the y-ball around x by B(x, y) :={y €
R" | |ly — x|l < y}. We write z = O(a) (respectively, z = o(«)), with « € R and
z € R”, to mean | z||/|«| is uniformly bounded (respectively, tends to zero) as & — 0.

2. Basic properties

In this section, we review some basic properties of vector-valued functions. These prop-
erties are continuity, (local) Lipschitz continuity, directional differentiability, differentia-
bility, continuous differentiability, as well as (p-order) semismoothness. In what follows,
we consider a function/mapping F : RF — R

We say F is continuous at x € R¥ if

F(y) > F(x) as y— x;
and F is continuous if F is continuous at every x € R¥. F is strictly continuous (also
called ‘locally Lipschitz continuous’) at x € R¥ [26, Chap. 9] if there exist scalars k > 0

and § > 0 such that

IF(y) — F@ll <«lly —zll Vy,zeREwith ||y —x|| <8, llz — x|l <&
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and F is strictly continuous if F is strictly continuous at every x € R¥. If § can be taken
to be oo, then F is Lipschitz continuous with Lipschitz constant k. Define the function
lipF : R* — [0, oo] by

F(y)-F
lipF (x) = lim sup 1) = F@I
V.Z—x ||y _ Z||
Y#z

Then F is strictly continuous at x if and only if lipF (x) is finite.
We say F is directionally differentiable at x € R¥ if

F'(x;h) = lim Fa+ih) - F&)

t—0t t

exists Vh € Rk;

and F is directionally differentiable if F is directionally differentiable at every x € R¥.
F is differentiable (in the Fréchet sense) at x € R¥ if there exists a linear mapping
VF(x) : R - R¢ such that

F(x+h) — F(x) = VF(x)h = o(|h]).

We say that F is continuously differentiable if F is differentiable at every x € R¥ and
V F is continuous.

If F is strictly continuous, then F is almost everywhere differentiable by Rademach-
er’s Theorem—see [8] and [26, Sec. 9J]. In this case, the generalized Jacobian d F'(x) of
F at x (in the Clarke sense) can be defined as the convex hull of the generalized Jacobian
op F(x), where

opF(x) := { lim VF(xj)|F is differentiable at x/ € Rk} .
xJ/—x

The notation dp is adopted from [24]. In [26, Chap. 9], the case of £ = 1 is considered
and the notations “V”” and “9” are used instead of, respectively, “0p” and “9”.

Assume F : RF — R is strictly continuous. We say F is semismooth at x if F is
directionally differentiable at x and, for any V € 9 F (x + h), we have

F(x+h)— F(x) = Vh=o(hl).

We say F is p-order semismooth at x (0 < p < o0) if F is semismooth at x and, for
any V € dF(x + h), we have

F(x +h) — F(x) — Vi = O(|h|'"*).

We say F is semismooth (respectively, p-order semismooth) if F is semismooth (respec-
tively, p-order semismooth) at every x € R¥. We say F is strongly semismooth if it is
1-order semismooth. Convex functions and piecewise continuously differentiable func-
tions are examples of semismooth functions. The composition of two (respectively,
p-order) semismooth functions is also a (respectively, p-order) semismooth function.
The property of semismoothness plays an important role in nonsmooth Newton methods
[24, 25] as well as in some smoothing methods mentioned in the previous section. For
extensive discussions of semismooth functions, see [11, 21, 25].
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3. Results for matrix-valued functions

Let R"*" denote the space of n x n real matrices, equipped with the trace inner product
and the Frobenious norm

(X, V) :=ulX"Y], 1XIF = v (X, X),

where X,Y € R™" and tr[-] denotes the matrix trace, i.e., tr[X] = Z?zl Xi;. Let
O denote the set of P € R™"*" that are orthogonal, i.e., PT = P! Let 8" denote
the subspace comprising those X € R"*" that are symmetric, i.e., X’ = X. This is a
subspace of R"*" with dimension n(n + 1)/2, which can be identified with R*"*+1/2,
Thus, a function mapping S” to S” may be viewed equivalently as a function mapping
R +D/2 to R +1D/2 for which the properties of Sec. 2 are all applicable. We consider
such a function below.

Forany X € §”, its (repeated) eigenvalues A1, .. ., A, arereal and it admits a spectral
decomposition of the form:

X = P diag[Aq,..., A ]PT, 9)

for some P € O, where diag[A1, ..., A,] denotes the n x n diagonal matrix with its ith
diagonal entry A;. Then, for any function f : R — R, we can define a corresponding
function fmm : 8" — S§"[3],[16] by

M) = P diag[f (M), ..., FOIPT. (10)

It is known that f e (X) is well defined (independent of the ordering of Ay, ..., A, and
the choice of P) and belongs to S”, see [3, Chap. V] and [16, Sec. 6.2]. Moreover, a
result of Daleckii and Krein showed that if f is continuously differentiable, then f i
is differentiable and its Jacobian V f e (X) has a simple formula—see [3, Thm. V.3.3];
also see [6, Prop. 4.3]. In [5], f ™ was used to develop non-interior continuation meth-
ods for solving semidefinite programs and semidefinite complementarity problems. A
related method was studied in [18]. Further studies of f ™ in the case of f()=1&|and
f (&) = max{0, &} are given in [23, 28], obtaining results such as strong semismooth-
ness, formulas for directional derivatives, and necessary/sufficient conditions for strong
stability of an isolated solution to semidefinite complementarity problem (SDCP).

The following key result is from Props. 4.1, 4.2, 4.3, 4.4, 4.6, 4.10 of [6], as
well as a remark at the end of Sec. 4 of [6]. It says that f ™ inherits from f the
property of continuity (respectively, strict continuity, Lipschitz continuity, directional
differentiability, differentiability, continuous differentiability, semismoothness, p-order
semismoothness).

Proposition 1. For any f : R — R, the following results hold:

(a) fmal is continuous at an X € S"™ with eigenvalues A1, ..., Ay if and only if f is
continuous at Ay, ..., An.
mat
(b) f  isdirectionally differentiable at an X € 8" with eigenvalues A1, ..., \, if and

only if f is directionally differentiable at 11, ..., Ay



100 J.-S. Chen et al.

(c) fma‘ is differentiable at an X € S" with eigenvalues Ay, ..., Ay if and only if f is
differentiable at A1, . .., Ay.

(d) f s continuously differentiable at an X € 8" with eigenvalues Ay, . .., A, if and
only if f is continuously differentiable at 11, ..., Ay.

(e) fmm is strictly continuous at an X € S™ with eigenvalues 71, ..., L, if and only if
f is strictly continuous at A1, ..., Ay.

o f " is Lipschitz continuous (with respect to || - || p) with constant k if and only if f
is Lipschitz continuous with constant k.

(g) [ " is semismooth if and only if f is semismooth. If f : R — R is p-order semi-
smooth (0 < p < 00), then fmat is min{1, p}-order semismooth.

4. Relating vector-valued function to matrix-valued function

For any x = (x1,x2) € Rx R*land y = (y1, y2) € R x R*~!, we define their Jordan
product as

x-y:(xTy, y1x2+x1y2>. (11)

We will write x> to mean x - x and write x 4 y to mean the usual componentwise addition
of vectors. Then, -, +, together with

e=(1,0,...,0) e R",

give rise to a Jordan algebra associated with K" [9, Chap. II]. If x € K", then there exists
aunique vector in K", which we denote by x/2 such that ()cl/z)2 = x1/2.xY2 = x_ For
any x € R”, we have x2 € K". Hence there exists a unique vector (xz)l/ 2 ¢ K", which
we denote by |x|. Clearly we have x> = |x|>. We define [x]. to be the nearest-point (in
the Euclidean norm) projection of x onto . It is shown in [12] that |x| and [x]+ have
the form (4), corresponding to f(§) = |&| and f(§) = max{0, £}. Moreover, they are
related to each other by |x| = (xHl/2, [x]+ = (x+]x])/2, as in the cases of nonnegative
orthant R and positive semidefinite cone S”. Further properties of |x|, [x] and x? are
investigated in [12, 14, 23].
For any x = (x1, x2) € R x R"~1 we define the symmetric matrix

T
L= [x‘ 2 ] (12)

xy x11

viewed as a linear mapping from R” to R”. The matrix L, has various interesting prop-
erties that were studied in [12]. For our purpose, the following lemma using Ly is key
to relating f “tof "

Lemma 1. Forany x = (x1, x2) € R x R"1L Jet Ay, A be its spectral values given by
(). Let z = x5 if xp # 0; otherwise let 7 be any nonzero vector in R*~. The following
results hold:
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(a) For any t € R, the matrix Ly 4+ tM; has eigenvalues of L1, A2, and x| + t of

multiplicity n — 2, where
0 0
M, = . 13
; [0 I —zzT/nznz} (13

(b) Forany f : R — Randanyt € R, we have
FUw = L+ tMe.

Proof. Tt is straightforward to verify that, for any x = (x1, x2) € R x R*~!, the eigen-
values of L, are A1, Ay, as given by (2), and x| of multiplicity n — 2. The corresponding
orthonormal set of eigenvectors is V2u®, /2u® and u = (0, u([)) i =3,..,n,
where u", u® are given by (3) with w = z/|/z|| whenever x = 0, and u(g) s ugn)
is any orthonormal set of vectors that span the subspace of R”~! orthogonal to z. Thus,

Ly = Udiag[A1, A2, x1, ..., x]]JUT, where U := [v2uD 2u® u® ... u™]. Also,
it is straightforward to verify using ) = (0, ug)), i =3,..,n,that

0 0
Udiag[0,0, 1, ..., NUT = :
Since Q = [z/|z|l u 3 ugn)] is an orthogonal matrix, we have I = QQ7 =

221zl + Ty u ”(u“))T and hence Y7y ul @NT = 1 — 227 /|lz|12. This
together with (13) shows that Udiag|O0, 0, 1, ..., l]UT = M,. Thus,

Ly +tM. = Udiag[r1, Ao, x1 + 1, ..., x; + 11U T, (14)
This proves (a).
(b) Using (14), we have

F™ (L + tM)e = UdiagLf (), f(R2), fx1+10), ey fOr1 + 01U e
= fOu® + fOu® = 700,
where the second equality uses the special form of U and (3). This proves (b). O

Of particular interest is the choice of t+ = +||x;||, for which L, + tM,, has eigen-
values of A1, Ap. More generally, for any f, g : R — R4, any 2 : Ry — R and any
x = (x1,x2) € R x R"! we have

soc SOC mat mat
h (f (x)+gwe)=h (f (Lx)+gDe.
In particular, the spectral values of f “(x) and g(u)e are nonnegative, as are the eigen-
values of f e (Ly) and g(w)1, so both sides are well defined. In particular, for
fE =€, g =u> hE=¢7
we obtain that
%+ " 20)1/2 = (L2 + le)l/z

It was shown in [29] that (X, u) — (X% + /LZI)I/Z is strongly semismooth. Then, it
follows from the above equation that (x, i) — x2+ p,ze)l/ 2 s strongly semismooth.
This provides a shorter proof of Theorem 4.2 in [7].
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5. Continuity and differential properties of vector-valued function

In this section, we use the results from Secs. 3, 4 to show that if f : R — R has the
property of continuity (respectively, strict continuity, Lipschitz continuity, directional
differentiability, differentiability, continuous differentiability, semismoothness, p-order
semismoothness), then so does the vector-valued function f " defined by (1)—(4).

We begin with the following continuity result for f ", based on Lemma 1 and Prop.
1(a) on continuity properties of f "

Proposition 2. Forany f : R — R, the following results hold:

(a) fsoC is continuous at an x € S with spectral values A1, Ly if and only if f is contin-
uous at Ay, Ap.
soc . . . . .
(b) [ is continuous if and only if f is continuous.

Proof. (a) Suppose f is continuous at A1, Ap. If xo = 0, then x; = A1 = Ay and, by
Lemma 1(a), L, has eigenvalue of A1 = A, of multiplicity n. Then, by Prop. 1(a), f m
is continuous at L,. Since L, is continuous in x, Lemma 1(b) yields that f x) =
f e (Ly)e is continuous at x. If xo # 0, then, by Lemma 1(a), Ly + [|x2|| My, has eigen-
value of A1 of multiplicity 1 and A5 of multiplicity n — 1. Then, by Prop. 1(a), £ is
continuous at Ly + [|x2|[My,. Since x +— L, + |x2||M,, is continuous at x, Lemma
1(b) yields that x > £ (x) = f™ (Ly + ||x2]| My, )e is continuous at x.

Suppose f is continuous at x with spectral values A1, A, and spectral vectors
u® u® Forany u; €R, let

y = ulu(l) + kzu(z).
Then y — x as 1 — Aj. Since fSOC is continuous at x, we have
Fuu® + fou® = 70 = 7@ = Fou + fou®.

Since u'" = 0, this implies f(u1) — f(A1) as u; — Aq. Thus f is continuous at Aj.
A similar argument shows that f is continuous at A,.
(b) is an immediate consequence of (a). |

The “if” direction of Prop. 2(a) can alternatively be proved using the Lipschitzian
property of the spectral values (Lemma 2) and an upper Lipschitzian property of the
spectral vectors. However, this alternative proof is more complicated. If f has a power
series expansion, then so does f SOC, with the same coefficients of expansion; see [12,
Prop. 3.1].

By using Lemma 1 and Prop. 1(b), we have the following directional differentiability
result for £, together with a computable formula for the directional derivative of £~ .
In the special case of f(-) = max{0, -}, for which f (%) corresponds to the projection
of x onto K", an alternative formula expressing the directional derivative as the unique
solution to a certain convex program is given in [23, Prop. 13].
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Proposition 3. For any f : R — R, the following results hold:

(a) £ is directionally differentiable at an x = (x1, x3) € R x R*~! with spectral
values A1, Ay if and only if f is directionally differentiable at Ay, \o; Moreover, for
any nonzero h = (hy, hy) € R x R"! we have

) s h) = f(x1s hye

ifxo =0and hy =0;

soc h h
f ) (x h)——f(X1 hl—llhzll)(l —>+ f(X1,h1+||h2||)< z )

1722 ]] 172]]
(15)
if xo = 0 and hy # 0; otherwise
soc 1 xThZ —X2 f()"l)
FY s hy = 2 (agm =2 (1, )- Mo
2 EA 2l ) 20l
1 xThy X2 f(A2)
+ = f A2y by + 22 (1, >+ M., h. (16)
2 ( ||x2||) beall ) 20l

(b) f s directionally differentiable if and only if f is directionally differentiable.

Proof. (a) Suppose f is directionally differentiable at A1, A>. If x = 0, then x; =
A1 = X and, by Lemma 1(a), L, has eigenvalue of x; of multiplicity n. Then, by
Prop. 1(b), f ™ s directionally differentiable at L. Since L, is differentiable in x,
Lemma 1(b) yields that f ) = f e (Ly)e is directionally differentiable at x. If
x2 # 0, then, by Lemma 1(a), L, + [[x2]|My, has eigenvalue of | of multiplicity 1
and A2 of multiplicity n — 1. Then, by Prop. 1(b), " is directionally differentiable at
Ly + ||x2||My,. Since x — Ly + ||x2||M,, is differentiable at x, Lemma 1(b) yields that
X f (x) = f i (Ly =+ ||x2]|My,)e is directionally differentiable atx
Fix any nonzero h = (h1, hy) € R x R"™ I Below we calculate (f Y (x; h). Sup-
pose xo = 0. Then A1 = A» = x1 and the spectral vectors uD 4y ® sumto e = (1, 0).
If hp = 0, then for any ¢ > 0, x + th has the spectral values u; = o = x1 + th; and
its spectral vectors v, v® sum to e = (1, 0). Thus

fSOC (x + z‘h) _ fSOC (x)
t

1
= (v + v = Fou® — FO2u®)

_ f(X1+th1)—f(x1)e
t
— f'(x1;h1)e ast — 0.

Ifhy #£ 0, thenforanyt_ > 0,x+th has the spectral values ut; = (x;+th1)+(=1)'t||ha||
and spectral vectors v® = %(1, (=1)*hy/|lh2ll), i = 1, 2. Moreover, since x3 = 0, we
can choose u® = v® fori = 1, 2. Thus
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soc

o+ th) — £ ()
t
= ; (F@e® + £ = rGv® = fG2v®)
_ St b)) = f) ) fG G+ Il = f6) o
t t
— £ by = h2lDo®D + £ (xps by + ThalDv® ast — 07

This together with v = (1, (=D'ha/l|h2)), i = 1,2, yields (15). Suppose x # 0.
Then A; = x1 + (—1)’||x2 and the spectral vectors are u = (1, (=Dx2/||x2]),
i = 1,2. For any ¢t > 0 sufficiently small so that xo + thy # 0, x + th has the spectral
values u; = x1 +thy + (=D!||xz2 + thy| and spectral vectors v® = %(1, (=Di(xn +
thy)/|lx2 4+ tha|),i = 1, 2. Thus

fSOC (x + th) _ fSOC (x)
t

1
=~ (v + Fu2® = Fou® f()»z)u(z))
1/1 X2+th2
= - ], =172 —
- <2f(X1+th1 llx2 + thal)(1, 2 & 1o ” f()»l)( ” ”
1 X2+th2
= h h 1, ———— 1, . 17
+ 3 th D)L T2 < 2 ), ll)) am

We now focus on the individual terms in (17). Since

X2+ thall — llx2ll — llx2 + thy||* — [1x21?
t (IIX2T+ tha| + IIJézll)t ,
2x5 hy + t||h X, h
N R 172 272 4o 0t
llx2 + tha|l + l|lx2 |l [l |l

we have

(F Qo+t = I + 1l = £G)

1
1
_ ; (f (M iy (h1 _ IIX2+thi|| - IIX2||>> _ f()hl))

T
h

- f )Ll§h1—x2 2) ast— 0t
flx2]]

Similarly, we find that

1
(o +thi+ I+ thal) = £(22)

X, h
— ' rashy + 2 2) ast— 0t
[l
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Also, letting ® (x2) = x2/||x2]|, we have that

1 ( x+thy  x ) D2 +1thy) — D(x2)
X2+ thall llx2l t
Combining the above relations with (17) and using a product rule, we obtain that

; fsoc (,X' + [h) _ fsoc (x)
m

t—0t t

1 Th -
= f (i - 222 (1,£>—f(m<o,w>(xz)hz>
2 x| x|

T
w2 (g + 212 (1 =2 >+f()»2)(0 Vo (x2)hs)
2 x| x|

Using V& (x2)hy = lL (1 _my >h2 so that (0, V®(x2)hy) = l;M h yields

21?2
(16).
Suppose £ s directionally differentiable at x with spectral eigenvalues A1, A2 and
spectral vectors uD @ For any direction d; € R, let

h = du®
Since x = Aju™M + Au®, this implies x +th = (A1 + tdl)u(l> + 2u@, so that

[Tt = T fOatd) = [0 g,
t t ’

— V®(x2)hy ast — 0.

Since f s directionally differentiable at x, the above difference quotient has a limit
ast — 07. Since u!) # 0, this implies that
S +tdy) — f(h)

1im+ ; exists.
t—0

Hence f is directionally differentiable at A1. A similar argument shows f is directionally
differentiable at A;.
(b) is an immediate consequence of (a). O

Proposition 4. Forany f : R — R, the following results hold:

(a) fsoC is differentiable at an x = (x1,x2) € R x R with spectral values Ay, Ay if
and only if f is differentiable at A1, Ay. Moreover,

soc

Vi @)= fnl (18)
if xo = 0, and otherwise
soe b cx3 /x| }
vie= [cxz/uxzn al + (b — ayeox /a2 ] (19
where

_ f2) = f()

, b=
A2 — A

(f (A2) + f' (A1), (f (A2) — f' (A1) .

(20)

\S) |

2
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(b) f s differentiable if and only if f is differentiable.

Proof. (a) The proof of the “if” direction is identical to the proof of Prop. 3, but with
“directionally differentiable” replaced by “differentiable” and with Prop. 1(b) replaced
by Prop. 1(c). The formula for V f *(x) is from [12, Prop. 5.2].

To prove the “only if” direction, suppose f is differentiable at A1, A>. Then, for each
ief{l,2},

fratmD) = [T Ot = 0D
t t

has a limit as r — 0. Since ) # 0, this implies that

. fi+0—f) .
m exists.
t—0 t

Hence f is differentiable at A;.
(b) is an immediate consequence of (a). O

We next have the following continuous differentiability result for f ** based on Prop.
1(d) and Lemma 1.

Proposition 5. For any f : R — R, the following results hold:

(a) f is continuously differentiable at an x = (x1,x3) € R x R"™! with spectral
values M1, A if and only if f is continuously differentiable at A1, \».
(b) f s continuously differentiable if and only if f is continuously differentiable.

Proof. (a) The proof of the “if” direction is identical to the proof of Prop. 2, but with
“continuous” replaced by “continuously differentiable” and with Prop. 1(a) replaced by
Prop. 1(d). Alternatively, we note that (19) is continuous at any x with xo # 0. The case
of x, = 0 can be checked by taking y = (y1, y2) — x and considering the two cases:
y2=0o0ry #0. o
Conversely, suppose f  is continuously differentiable at an x = (x1,x3) € R X
R"~! with spectral values A1, A>. Then, by Prop. 4, f is differentiable in neighborhoods
around Aq, A2. If xo = 0, then A; = A, = x; and (18) yields V £ (x) = [/ D1 For
any h; € R,leth := (h1, 0). Then me (x+h) = f'(x1+h1)I.Since Vf is continu-
ousatx, thenlimy, o f'(x1+h1)I = f'(x1)1, 1mp1y1ng11mh1_>of (x1+hy) = f'(x1).
Thus, f’is continuous at x;. If xo # 0, then Vf “(x) is given by (19) with a, b, ¢ given
by (20). For any hy € R, let h := (h1,0). Then x + & = (x1 + h1, x2) has spectral
values p1 := A1 + hy1, w2 := A2 + h1. By (19),
_ p x x5 /llx2] ]
VI = [x %/l al + (B — a)xax /x|

where

_ f(u2) = f(u)
12 — Qi

. B= (f (1) + f(nD), x = (f (12) — f'(n)) -

l\JI
l\JI
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Since me is continuous at x so that limy_.q stoc (x+h) = stoc (x) and xp # 0,
we see from comparing terms that § — b and x — ¢ as & — 0. This means that

f'(u2) + f'(u) = f' (o) + f(A) and
() = f' () = ') — f'() ashy — 0.

Adding and subtracting the above two limits and we obtain

f'(w) = f'(a) and  f'(u2) — f'(A2) ashy — 0.

Since 1 = A1 + hi, o = Ay + hy, this shows that f’ is continuous at A1, A.
(b) is an immediate consequence of (a). |

In the case where f = g’ for some differentiable g, Prop. 1(d) is a special case
of Thm. 4.2 in [19]. This raises the question of whether an SOC analog of the second
derivative results in [19] holds.

We now study the strict continuity and Lipschitz continuity properties of /. The
proof is similar to that of [6, Prop. 4.6], but with a different estimation of V( f ”)m. We
begin with the following lemma, which is analogous to a result of Weyl for eigenvalues

of symmetric matrices, e.g., [3, p. 63], [15, p. 367].

Lemma 2. For any x = (x1,x2) € R x R with spectral values A, Lo and any
y=01,n) eRx R with spectral values |1, 12, we have

i — il < V2lx —yll, i=12.

Proof. We have

A= il = Ix1 — lx2ll — y1 + ly2ll|
< lx1 = yil + llx2ll = 1y2ll]
< lx1 =1l + llx2 — y2l
< V2(Ix1 = 311 + I = »2H?
= V2llx -yl

where the second inequality uses [|x2]| < [lx2—y2[l+ly2[l and [[y2[| < [lx2 —y2ll+lx2];
the last inequality uses the relation between the 1-norm and the 2-norm. A similar argu-
ment applies to [Ay — wal. |

We also need the following result of Rockafellar and Wets [26, Thm. 9.67].

Lemma 3. Suppose f : RK — R is strictly continuous. Then there exist continuously
differentiable functions f* : R¥ — R, v = 1,2, ..., converging uniformly to f on any
compact set C in R* and satisfying

Vi'(x) <sup lipf(y) VxeC, V.
yeC
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Lemma 3 is slightly different from the original version given in [26, Thm. 9.67].
In particular, the second part of Lemma 3 is not contained in [26, Thm. 9.67], but is
implicit in its proof. This second part is needed to show that strict continuity and Lips-
chitz continuity are inherited by f * from f. We note that Prop, 1(e),(f) and Lemma 1
can be used to give a short proof of strict continuity and Lipschitz continuity of f™,
but the Lipschitz constant would not be sharp. In particular, the constant would be off
by a multiplicative factor of i/ due to ||Ly||r < /n||lx| for all x € R". Also, spectral
vectors do not behave in a (locally) Lipschitzian manner, so we cannot use (4) directly.

Proposition 6. For any f : R — R, the following results hold:

(a) fSOC is strictly continuous at an x € R" with spectral values 11, . .., \, if and only
if f is strictly continuous at Ay, ..., Ay.

(b) ™ is strictly continuous if and only if f is strictly continuous.

(c) f s Lipschitz continuous (with respect to | - ||) with constant « if and only if f is
Lipschitz continuous with constant k.

Proof. (a) Fix any x € R" with spectral values A1, X2 given by (2).
“if” Suppose f is strictly continuous at A1, A». Then there exist k; > 0 and §; > 0
fori = 1, 2, such that

[fE) - fOI=<kils—¢l Y&, ¢ elhi—8i,AM+&] i=1,2
Let § := min{8;, 8»} and
C:=[M =81 +8] Ur—382r+3].

We define f : R — R to be the function that coincides with f on C; and is linearly
extrapolated at the boundary points of C on R \ C. In other words,

G _ifsec, )
_ 1=0fn —i_—(S) if A +6 < Ag—(S_and,for some 1 € O, 1),
f) = +1f (A2 —8) E=0—-0R1+8)+1(k2—9),
f(1—=96) if§ < —34,
f(Oa2+98) if & > Ay +34.

From the above, we see that f is Lipschitz continuous, so that there exists a scalar
k > 0 such that lip f (§) < k for all £ € R. Since C is compact, by Lemma 3, there
exist continuously differentiable functions f* : R — R, v = 1,2, ..., converging
uniformly to f and satisfying

[(fM'(®) <k VEeC, Vv . 2n
Letd ;= %5_, so by Lemma 2, C contains all spectral values of y € B(x, §). Moreover,
for any w € B(x, §) with spectral factorization

w = piu® + ppu®
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we have 1, up € C and

soc

ICED) ™ ) — £ I = 1 en) — Fe)u® + (P (p2) — f(p2)u®|?

1 v 2 1 v 2
=—|f (1) = fuol +—|f (2) — fu)l=,  (22)

where we use ||u®||> = 1/2fori = 1, 2, and (u(l))T 2 = 0. Since { f¥ 12 1convelrges
uniformly to f on C, equation (22) shows that {( f" ) } - | converges uniformly to f
on B(x, §). Moreover, forallw = (wy, wz) € B(x, §) and all v, we have from Prop. 4 that
VY™ ) = (FYY () if wy = 0, in which case V()™ (w) = (/") (wp)] < k.
Otherwise wy # 0 and

T
VY™ (w) = [ b ¢ wy /lwa]) }

cwy/lwall al + (b — aywow! /|wa|?

where a, b, ¢ are given by (20) but with Ay, A> replaced by w1, uo, respectively. If
¢ = 0, the above matrix has the form b1 + (a — b)M,,. S1nce M, has eigenvalues of
0 and 1, this matrix has eigenvalues of b and a. Thus, V(f") (w) max{|al, |b|} < k.
If ¢ # 0, the above matrix has the form —— Hw T L;4+(a—b)M,, = ”w2” (L; 4+ (a —b)||lwa]l

¢! MWQ), where z = (b||wz||/c, w2). By Lemma 1, this matrix has eigenvalues of b4-c
and a. Thus, V(f*)™ (w) = max{|b + ¢|, |b — ¢|, a]} < «. In all cases, we have

Nv )™l < «. <23>

Fix any y, z € B(x, §) with y # z. Since {(f" )" } - converges uniformly to f
B(x, 8), for any € > 0 there exists an integer vy such that for all v > vy we have

1™ ) = 5wl <elly—zll Yw e B(x, ).

Since fV is continuously differentiable, then Prop. 5 shows that (f*)"™ is also continu-
ously differentiable for all v. Thus, by inequality (23) and the mean value theorem for
continuously differentiable functions, we have

soc

1770 = @l
=1/ =-UNT UMUM@+ U@ - @I
<1 =D DI+ ) = D) @I+ I @ = £ @
1 soc
< 2¢lly —zll + ||/0 V(") @+t — )y — 2)dr]
< (k+ 20y —zll -
Since y, z € B(x, §) and € is arbitrary, this yields
IF“0) = @l <«ly -zl Vy,zeBx,9). (24)

Hence, f s strictly continuous at x.

“only if” Suppose instead that /" is strictly continuous at x with spectral values
A1, A2 and spectral vectors u, u@ . Then, there exist scalars x > 0 and § > 0 such
that (24) holds. For any i € {1, 2} and any ¥, ¢ € [A; — &, A; + 6], let

yi=x+ @ —au?”,  zi=x4 @ —au?,
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Then, ||y —x| = [ — Ai|/v/2 < 8 and ||z — x|| = [¢ — A;]/+/2 < 8, so it follows from
(4) and (24) that

@) = FOI =210 = £ @
< Vaklly —z|
=kly =&l
This shows that f is strictly continuous at A1, Ap.
(b) is an immediate consequence of (a).

(c) Suppose f is Lipschitz continuous with constant k > 0. Then lip f (§) < « for
all £ € R. Fix any x € R" with spectral values A1, A». For any scalar § > 0, let

C:=[A =82 +06] U [r2—=6,A+6] .

Then, as in the proof of part (a), we obtain that (24) holds. Since the choice of § > 0
was arbitrary and « is independent of §, this implies that

£ — £ @I <«klly—zIl Vy,zeR".

Hence, f s Lipschitz continuous with Lipschitz constant «.
Suppose instead that ™ is Lipschitz continuous with constant k¥ > 0. Then, for any
&, ¢ € R we have

1FE) = F@1 =11 E) — £ ol
< «kll§e—Zell
=kl§ =<l
so f is Lipschitz continuous with constant «. O

Suppose f : R — R s strictly continuous. Then, by Prop. 6, f s strictly contin-
uous. Hence dp f e (x) is well defined for all x € R". The following lemma studies the
structure of this generalized Jacobian.

Lemmad. Let f : R — R be strictly continuous. Then, for any x € R", the generalized

Jacobian dp fSOC (x) is well defined and nonempty. Moreover, if x, # 0, then dp fSoc (x)
equals the following set

H b cx] /x| ]‘a_f(kz)—f(kl) b+c€33f(?»2)}
cxo/llxoll al + b —a)xaxd /2l |17 ay—ay  Tb—cedpf) ]’
(25)

where A1, Ay are the spectral values of x. If x; = 0, then 0p fSOC (x) is a subset of the
following set

b cwT :|‘

{|:cwa1+(b—a)wa acdf(xy), bxceadpf(xy), |lw|= 1}. (26)
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Proof. Suppose xp # 0. For any sequence {xk},‘j‘;l — x with f " differentiable at
x*, we have from Prop. 4 that {A¥}>°, — A; with f differentiable at A¥, i = 1,2,
where )Jf , )J; are the spectral values of xX. Since any cluster point of {f’ ()\f)}zo:l is
in dp f(A;), it follows from the gradient formula (19)—(20) that any cluster point of
{stoc (xk)},‘zil is an element of (25). Conversely, for any b, ¢ with b — ¢ € dp f (A1),
b+ c € 3p f(\2), there exist {)Jf}}zil — Al {)»’2‘},‘3‘;1 — Mo with f differentiable at
A K and (£/00)2, = b —c, [f/O5)), — b+ c. Since 2 > Ay, by taking k
large, we can assume that 2k > )Jf for all k. Let

X2

1 1
k ko 4k k k_ 4k
x; = (A5 + 1)), X3 = =(A3 — A )

xk = (xlf, x12‘).

Then, {xk},fil — x and, by Prop. 4, f " is differentiable at x. Moreover, the limit
of {Vf e (xk)},i’i1 is an element of (25) associated with the given b, c. Thus dp f e (x)
equals (25).

Suppose xo = 0. Consider any sequence {xk},cc’i1 = {(xi‘, )clz‘)}]‘zi1 — x with fsnC
differentiable at x* for all k. By passing to a subsequence, we can assume that either
x5 =0 for all k or x5 # 0 for all k. If x4 = 0 for all k, Prop. 4 yields that f is differ-
entiable at x{‘ and me (xk) = f’(x{‘)l. Hence any cluster point of {stOC (xk)},fi1
is an element of (26) witha = b € dpf(x1) € 9f(x1) and ¢ = 0. If xlz‘ # 0 for
all k, by further passing to a subsequence, we can assume without loss of generality
that {x’2‘/||x’2‘ (172, — w for some w with [|w] = 1. Let Ak, )J; be the spectral values of

xk and let a, b*, c* be the coefficients given by (20) corresponding to )J]‘, )\é. We can
similarly prove that b + ¢ € dp f (x1), where (b, ¢) is any cluster point of {(bF, ck)},‘:il.
Also, by a mean-value theorem of Lebourg [8, Prop. 2.3.7],

o f0D = f0D

€ af (i
k k
)‘2 - )‘1

for some A* in the interval between )Jz‘ and )Jl‘ . Since f is strictly continuous so that
af is upper semicontinuous [8, Prop. 2.1.5] or, equivalently, outer semicontinuous

[26, Prop. 8.7], this together with Af — x1,1 = 1,2, implies that any cluster point of
{ak},‘:il belongs to df (x1). Then, the gradient formula (19)—(20) yields that any cluster

point of {V £ (x¥)}2 | is an element of (26). O

Below we refine Lemma 4 to characterize dp f (%) completely for two special cases
of f.In the first case, the directional derivative of f has a one-sided continuity property,
and our characterization is analogous to [6, Prop. 4.8] for the matrix-valued function
f e However, despite Lemma 1, our characterization cannot be deduced from [6, Prop.
4.8] and hence is proved directly. The second case is an example from [26, p. 304]. Our
analysis shows that the structure of dp f (%) depends on f in a complicated way. In
particular, in both cases, dp f x)isa proper subset of (26) when x; = 0.

In what follows we denote the right- and left-directional derivative of f : R — R

by
) . @O =f® / . @O =f®
= lim =2 2> 7€) ;= lim —2 L7
fi®) ;ir?+ C—f fo©) c;ﬂ;_ =
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Lemma 5. Suppose f : R — R is strictly continuous and directionally differentiable
function with the property that

FOZTO) _ i poy= @), VeeR oe(— 4. @)
e Y
¢ teby

where Dy = {§ € R|f is differentiable at §}. Then, for any x = (x1,0) € R x R -1
apf(x1) = {f.(x1), fi(x1)}, and dpf" (x) equals the following set

b cw’ ‘eitherazbeagf(xl)v c=0 lwl=1
cw a]+(b—a)wa oracdf(x1),b— c:fl(xl), b +C=f-;-()fl)7 wi = .
(28)

Proof. By (27), dp f(x1) = {f.(x1), f1(x1)}. Consider any sequence {xk},fil — X
with f ** differentiable at x* = (x{‘, x’z‘) for all k. By passing to a subsequence, we can
assume that either x§ = O forall k or x§ # 0 for all .

It xlz‘ = 0 for all k, Prop. 4 yields that f is differentiable at xll‘ and V£ (x¥) =
f’(x{‘)l. Hence any cluster point of {stOC ()ck)},‘j‘;1 is an element of (28) witha = b €
op f(x1)and c = 0.

If x§ # 0 for all k, by passing to a subsequence, we can assume without loss of
generality that {x]2‘/||x]2‘ 172, — w for some w with [fw| = 1. Let 2k, Aé be the spec-
tral values of x¥. Then )J]‘ < )»]5 for all k and )\i.‘ — x1, I = 1, 2. By further passing
to a subsequence if necessary, we can assume that either (i) )J]‘ < ké < xj for all k
or (i) x; < A% < 24 for all k or (iii) A% < x; < A4 for all k. Let a*, b¥, c* be the
coefficients given by (20) corresponding to A%, A’Z‘. By Prop. 4, f is differentiable at
)Jf, Aé and f’()»’f) = bk — ck, f/()»’é) = bk 4 k. Let (a, b, ¢) be any cluster point of
{(a*, b, ck)},fil. In case (i), we see from (27) that b + ¢ = a = f’ (x1), which implies
b = f!(x1) and ¢ = 0. In case (ii), we obtain similarly thata = b = f} (x;) and ¢ = 0.
In case (iii), we obtain that b — ¢ = f’(x1), b + ¢ = f}(x1). Also, the directional
differentiability of f implies that

gho LOD = F0D K= x fOY) = fer) | x =M ) = G

k k o9k k k k k k
Ak —ak U Y Ak x

’

which yields in the limit that
a=(-wo)fix)+aofl(x),

for some w € [0, 1]. Thus @ € df (x1). This shows that dp f“yc (x) is a subset of (28).
Conversely, forany a = b € dp f(x1), c = 0 and any w € R*! with ||w] = 1,
we can find a sequence xlf € Dy, k = 1,2, ..., such that x’l‘ — x1 and f’(xlf) — a.
Then x* = (x’f, 0) — x and the preceding analysis shows that {me (xk)},‘:i1 con-
verges to the element of (28) corresponding to the given a, b, ¢, w. For any a, b, ¢ with
b—c=fl(x1),b+c= fi(x1),a € 3f(x1), and any w € R ! with |w|| = 1, we
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have that a = (1 — ) fi (x1) + wf—(x1) for some w € [0, 1]. Since Dy is dense in R,
for any integer k > 1,

1 1
DfNfx—w

1 1 1 1
z‘k—z’xl—wz}’é“’ Df”[’““l“")z’““‘wwﬁ}#”

Let )Jf be any element of the first set and let ké be any element of the second set. Then
k k k k
k_ (P2t A MM
2 72

w) — x and x* has spectral values )Jl‘ < )J; which satisfy

X1 —)Jf

Aé—xl
Ak — ok @
2 1

k k
)‘2_)‘1

)L]f<x1<)xé‘v’k, -1 —-ow,

The preceding analysis shows that {V f e (xk)},‘:i] converges to the element of (28)
corresponding to the given a, b, ¢, w. O

The assumptions of Lemma 5 are satisfied if f is piecewise continuously differen-
tiable, e.g., f(-) = || or f(-) = max{0, -}. If f is differentiable, but not continuously
differentiable, then dp f™ (x) is more complicated as is shown in the following lemma.

Lemma 6. Suppose f : R — R is defined by
§2sin(1/€) if§ #0,

0 else.

f(E)Z{

Then, for any x = (x1,0) € R x R"L we have that dp f(x1) = [—1,1], and
0B fSOC (x) = {f'(xDI1} if x1 # 0 and otherwise equals the following set

b cwl b—c;—cos(@l), b+ c = —cos(6r), |lw| =1,
[Cw a1+(b_a)wa}‘ _ sin(@) —sin8) «€{0, 1, ..., 00}, 6y, 02€[0.27], }
91—92—}—2/(1'[’ 0 >6if k=0
(29)

with the convention that a = 0 if k = oo and a = cos(01) if «k = 0 and 61 = 0.

Proof. f is differentiable everywhere, with

£ = {25 sin (1/8) —cos (1/§)  if§ #0, (30)

0 else.

Thus 3z f (x1) = [—1, 1]. Consider any sequence {x* Yoo, — x with f " differentiable
atx* = (x{‘ , x’zC ) for all k. By passing to a subsequence, we can assume that either x§ =0
for a}(ll k or x’z‘ # O for all k. Let )Jl‘ = x’f — ||x’2‘||, A’z‘ = x{‘ + ||x’2‘|| be the spectral values
of x*.

If x5 = 0 for all k, Prop. 4 yields that f is differentiable at x* and V ™ (x¥) =
f’(xf)l. Hence any cluster point of {me (xk)},f‘;1 is of the form b1 for some b €
0p f(x1). If x; # 0,then b = f'(x1). If x; = 0, then b € [—1, 1], i.e,, b = cos(0))



114 J.-S. Chen et al.

for some 6 € [0, 2x]. Then bl has the form (29) with a = b, ¢ = 0, corresponding to
01 =6,k =0.

If xlz‘ # O for all k, by passing to a subsequence, we can assume without loss of gener-
ality that {x’2‘/||x§||},‘(’i1 — w for some w with ||w| = 1. By Prop. 4, f is differentiable
at )Jf, A§ and f’(k’f) = bk — ¢k, f/(ké) = b* + ¢k, where a*, b¥, ¥ are the coefficients
given by (20) corresponding to AX, A%, If x| # 0, then a¥ — f/(x1), b¥ — f'(x1) and
& =0, so any cluster point of {meC ()ck)},‘ii1 equals f/(x1)I. Suppose x; = 0. Then
)Jf < )»]2“ tend to zero. By further passing to a subsequence if necessary, we can assume
that either (i) both are nonzero for all k or (ii) A’l‘ = 0 for all & or (iii) )\]5 = 0 for all k.
In case (i),

1 k 1 k
)\—k = 0] + 2y, )\—k =0y + 2w 31D
1 2
for some 9{‘, 95 € [0, 2] and integers v, ik tending to oo or —oo. By further pass-

ing to a subsequence if necessary, we can assume that {(6%, Gf )52 converges to some
(61, 62) € [0, 27r]%. Then (30) yields
F/8y = 225 sin(6F) — cos(6F) — —cos@), i=1,2,
o FOD = fOD _ 09)?sin@) — ()? sin(6])

k k k k
)‘2_)‘1 )‘2_)‘1

sin(65) — sin(6f)

= A5 + 2% sin(0%) + .
S 2O —0F 1200 — ym)ak/ak

If vy — g is bounded as k — oo, then Aé/kk — 1 and, by (31) and )Jf < )»]5, Ve > .
In this case, any cluster point (a, b, ¢) of {(cz’g , b*, ck)}}zi1 would satisfy
sin(6) — sin(61)
b —c = —cos(by), b+ c = —cos(6r), a= o1 — 6y % 2k 32)

for some integer k > (. Here, we use the convention that a = cos(67) if « = 0, 61 = 6.
Moreover, if « = 0, then vy = g for all k sufficiently large along the corresponding sub-
sequence, so (31) and A]f < )»”5 yields 9{‘ > 94‘ > 0, implying furthermore that 8; > 6,.
If Jvy — i | = oo and | g /vi| is bounded away from zero, then |vg — p ||k /vi| — oo.
If |vp — pg| — oo and g /vk| — O, then |vg — willpr /vl = (1 — g /vi)| — 00
due to x| — oo. Thus, if |vp — ux| — oo, we have |v; — uk||k§/k’f| — 00 and the
above equation yields a¥ — 0, corresponding to (32) with k = oo. In case (ii), we have
f/(klf) =0and af = f()»’é)/)\k = Ag sin(l/)»’zc) for all &, so any cluster point (a, b, ¢)
of {(a*, b, c")},foz1 satisfies b —c =0, b + ¢ = —cos(02), a = 0. This corresponds to
(32) with ) = 7, k = oc. In case (iii), we obtain similarly (32) with 6, = 7, k = oo.
This and (19)~(20) show that any cluster point of {V ™ (x€)}2, is in the set (29).

Conversely, if x; # 0, since dp f e (x) is a nonempty subset of { f'(x1)1}, the two
must be equal. If x; = 0, then for any integer x > 0 and any 61, 6> € [0, 27] satisfying
01 > 6, whenever k = 0, and any w € R"! with lw|| = 1, we let, for each integer
k>1,

M= ! AT SRS S
014+ 2k +rx)mr+1/k 0y + 2km
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AE pak Ak ok
%, %w — x and x* has spectral values A%, )Jg

which satisfy (31) with ve = k + «, g = k, 6F = 0; + 1/k, 65 = 6,. The preceding
analysis shows that {V f (K )17, converges to the element of (28) corresponding to

the given 01, 62, k, w with a given by (32). The case of a = 0 can be obtained similarly
by taking « to go to oo with k. O

ThenO < )Jf < )\é,xk = (

The following lemma, proven by Sun and Sun [28, Thm. 3.6] using the definition of
generalized Jacobian,! enables one to study the semismooth property of £ by exam-
ining only those points x € R" where f™ is differentiable and thus work only with the
Jacobian of f " rather than the generalized Jacobian.

Lemma 7. Suppose F : R¥ — R js strictly continuous and directionally differentiable
in a neighborhood of x € R¥. Then, for any 0 < p < 00, the following two statements
(where O (-) depends on F and x only) are equivalent:

(a) Foranyh € R* and any V € 9F (x + h),
F(x4+h)—F(x)—Vh=o0(|hll) (respectively, 0(||h||1+p)).
(b) Forany h € R* such that F is differentiable at x + h,
F(x+h)—Fx)—VFx+h)h =o0(|h|) (respectively, 0(||h||l+p)).

By using Lemmas 1, 7 and Props. 1, 3, 6, 4, we can now state and prove the last result
of this section, on the semismooth property of f ** This result generalizes [7, Thm. 4.2]

for the cases of f (&) = |&], f(§) = max{0, &}.

Proposition 7. For any f : R — R, the vector-valued function f" is semismooth if
and only if f is semismooth. If f is p-order semismooth (0 < p < oc), then [ is
min{1, p}-order semismooth.

Proof. Suppose f is semismooth. Then f is strictly continuous and directionally differ-
entiable. By Props. 3 and 6, /™ is strictly continuous and directionally differentiable.
By Lemma 1(b), £ (x) = f" (Ly)e for all x. By Prop. 1(g), f" is semismooth.
Since L, is continuously differentiable in x, f e x)=f ma[(L,C)e is semismooth in
x. If f is p-order semismooth (0 < p < 00), then, by Prop. 1(g), fmt is min{1, p}-
order semismooth. Since L, is continuously differentiable in x, f (x) = f m (Ly)eis
min{l, p}- order semismooth in x.

Suppose f * is semismooth. Then f “is strictly continuous and directionally differ-
entiable. By Props. 3 and 6, f is strictly continuous and directionally differentiable. For
any £ € Rand any n € R such that f is differentiable at & + 1, Prop. 4 ylelds that /™
differentiable at x + &, where we denote x := £e and h := ne. Since f is semlsmooth
it follows from Lemma 7 that

Fr ) = @) = VT (x+ hyh = o(|k]),

! Sun and Sun did not consider the case of o(||/2]|) but their argument readily applies to this case.
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which, by (4) and (18), is equivalent to

fE+m) = f&) — f'E+mn=oln.

Then Lemma 7 yields that f is semismooth. O

Notice that, for each of the preceding global results there is a corresponding local
result. Some of our results, namely Props. 2, 4, 5 and Lemma 2, had appeared in the
unpublished Master thesis by the first author [4]. However, the proofs in [4] did not make
use of Lemma 1 and hence were more complex in some cases.

6. Applications to SOCCP

Consider the SOCCP (5), i.e., for a given mapping F : R x R” x Rf — R" x R, find
an (x,y,¢) € R" x R" x R¢ satisfying

(x,y)=0, xek, yekKk, F(x,y,£)=0, (33)

where KC is given by (6). We assume that F is continuously differentiable. It is known
[12] that (x, y,¢) € R" x R" x R¢ solves SOCCP if and only if it solves the equations

H(x,y,¢) = <’;(_x[); _g_)y“) —0, (34)

where [-]4 : R” — I denotes the nearest-point projection onto /C, i.e.,
[x]4 == argmin{|lx — y| | y € K}.

The function H is nonsmooth due to the nonsmoothness of the projection operator [-].
Chen, Sun and Sun [7] showed that [-] is strongly semismooth, so that H is semismooth.
This result also follows from Prop. 7 with f(-) = max{0, -}, for which fm(-) = []+.
[Here, f is applied to the spectral decomposition associated witheach K" ,i = 1, ..., m.]
More generally, the results of Sec. 5 can be used to design and analyze smoothing or
nonsmooth Newton-type methods for solving H (x, y, ) = 0, such as was done in [7]
for SOCCP and in [6] for SDCP when F' has the form (7). In particular, it appears that
the analysis in [6, Sec. 5] can be adapted to the above SOCCP. For simplicity, we omit
the details.
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