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Figure 1: Relationship between means defined on real number.

1 Introduction

During the past few decades, many well-known means defined on positive numbers have

been generalized to the setting of positive semidefinite matrices. For instance, the arith-

metic mean A(a, b), harmonic mean H(a, b), geometric mean G(a, b), logarithm mean

L(a, b), see [5, 7, 8, 9]. In particular, the matrix version of Arithmetic-Geometric-Mean

Inequality (AGM) is proved in [1, 5, 6], and has attracted much attention. In addition,

Lim [23] generalizes the geometric mean from the cone of positive semidefinite matrices

to the symmetric cone setting. Some applications are established in [22, 24] accordingly.

Recently, Chang et al. [10] also define some well-known means on the second-order cone

(SOC for short) and build up several means inequalities under the partial order induced

by SOC, denoted by Kn.

In this paper, we are interested in the weighted means and their induced inequalities

associated with SOC. More specifically, we set up the concepts of some weighted means

in the SOC setting. Then, we achieve a few inequalities on the new-extended weighted

means and their corresponding traces associated with second-order cone. As a byproduct,

a version of Powers-Størmer’s inequality is established. Indeed, for real numbers, there

exits a diagraph regarding the weighted means and the weighted Arithmetic-Geometric-

Mean inequality, see Figure 1. The direction of arrow in Figure 1 represents the ordered

relationship. In Section 3, we shall define these weighted means in the setting of second-

order cone and build up the relationship among these SOC weighted means. Moreover,

we establish the Heinz mean Mν(x, y) and the ordered relationship as well. In Section 4,

we achieve a version of Powers-Størmer’s inequality [17, 18] in the SOC setting.
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2 Preliminary

In this section, we briefly review some background materials regarding the second-order

cone, also known as Lorentz cone. The second-order cone (SOC for short) in Rn, is

defined by

Kn =
{
x = (x1, x2) ∈ R× Rn−1 | ‖x2‖ ≤ x1

}
.

For n = 1, Kn denotes the set of nonnegative real number R+. For any x, y in Rn, we

write x �Kn y if x − y ∈ Kn and write x �Kn y if x − y ∈ int(Kn). In other words, we

have x �Kn 0 if and only if x ∈ Kn and x �Kn 0 if and only if x ∈ int(Kn). The relation

�Kn is a partial ordering but not a linear ordering in Kn, i.e., there exist x, y ∈ Kn such

that neither x �Kn y nor y �Kn x. To see this, for n = 2, let x = (1, 1) and y = (1, 0),

we have x− y = (0, 1) /∈ Kn, y − x = (0,−1) /∈ Kn.

For any x = (x1, x2) ∈ R×Rn−1 and y = (y1, y2) ∈ R×Rn−1, we define their Jordan

product as

x ◦ y = (xTy , y1x2 + x1y2).

We write x2 to mean x ◦ x and write x + y to mean the usual componentwise addition

of vectors. Then, ◦,+, together with e′ = (1, 0, . . . , 0)T ∈ Rn and for any x, y, z ∈ Rn,

the following basic properties [14, 15] hold: (1) e′ ◦ x = x, (2) x ◦ y = y ◦ x, (3)

x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y), (4) (x+ y) ◦ z = x ◦ z+ y ◦ z. Notice that the Jordan product is

not associative in general. However, it is power associative, i.e., x ◦ (x ◦ x) = (x ◦ x) ◦ x
for all x ∈ Rn. Thus, we may, without loss of ambiguity, write xm for the product of m

copies of x and xm+n = xm ◦ xn for all positive integers m and n. Here, we set x0 = e′.

Besides, Kn is not closed under Jordan product.

For any x ∈ Kn, it is known that there exists a unique vector in Kn denoted by x1/2

such that (x1/2)2 = x1/2 ◦ x1/2 = x. Indeed,

x1/2 =
(
s,
x2
2s

)
, where s =

√
1

2

(
x1 +

√
x21 − ‖x2‖2

)
.

In the above formula, the term x2/s is defined to be the zero vector if x2 = 0 and s = 0,

i.e., x = 0. For any x ∈ Rn, we always have x2 ∈ Kn, i.e., x2 �Kn 0. Hence, there exists

a unique vector (x2)1/2 ∈ Kn denoted by |x|. It is easy to verify that |x| �Kn 0 and

x2 = |x|2 for any x ∈ Rn. It is also known that |x| �Kn x. For any x ∈ Rn, we define

[x]+ to be the nearest point (in Euclidean norm, since Jordan product does not induce

a norm) projection of x onto Kn, which is the same definition as in Rn
+. In other words,

[x]+ is the optimal solution of the parametric SOCP: [x]+ = arg min{‖x − y‖ | y ∈ Kn}.
In addition, it can be verified that [x]+ = (x+ |x|)/2; see [14, 15].

Recently, there has found many optimization problems involved second-order cones

in real world applications. For dealing with second-order cone programs (SOCP) and
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second-order cone complementarity problems (SOCCP), there needs spectral decomposi-

tion associated with SOC [13]. More specifically, for any x = (x1, x2) ∈ R × Rn−1, the

vector x can be decomposed as

x = λ1u
(1)
x + λ2u

(2)
x , (1)

where λ1, λ2 and u
(1)
x , u

(2)
x are the spectral values and the associated spectral vectors of

x, respectively, given by

λi = x1 + (−1)i‖x2‖, (2)

u(i)x =

{
1
2
(1, (−1)i x2

‖x2‖) if x2 6= 0,
1
2
(1, (−1)iw) if x2 = 0.

(3)

for i = 1, 2 with w being any vector in Rn−1 satisfying ‖w‖ = 1. If x2 6= 0, the decom-

position is unique. Accordingly, the determinant, the trace, and the Euclidean norm of

x can all be represented in terms of λ1 and λ2:

det(x) = λ1λ2, tr(x) = λ1 + λ2, ‖x‖2 =
1

2

(
λ21 + λ22

)
.

From the simple calculation, we especially point out that tr(x) = 2x1, which we fre-

quently use in the following paragraphs.

For any function f : R→ R, the following vector-valued function associated with Kn
(n ≥ 1) was considered in [11, 12]:

f soc(x) = f(λ1)u
(1)
x + f(λ2)u

(2)
x , ∀x = (x1, x2) ∈ R× Rn−1. (4)

If f is defined only on a subset of R, then f soc is defined on the corresponding subset of Rn.

The definition (4) is unambiguous whether x2 6= 0 or x2 = 0. The cases of f soc(x) = x1/2,

x2, exp(x) are discussed in [14]. For subsequent analysis, we will frequently use the

vector-valued functions corresponding to tp (t > 0, p > 0). In particular, they can be

expressed as

xp = λp1u
(1)
x + λp2u

(2)
x , ∀x ∈ Kn.

The spectral decomposition along with the Jordan algebra associated with SOC entails

some basic properties as listed in the following text. We omit the proofs since they can

be found in [11, 14, 15].

Lemma 2.1. For any x = (x1, x2) ∈ R×Rn−1 with spectral decomposition (1)-(3), there

have

(a) |x| = (x2)1/2 = |λ1|u(1)x + |λ2|u(2)x ;

(b) [x]+ = [λ1]+u
(1)
x + [λ2]+u

(2)
x = 1

2
(x+ |x|).
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(c) x �Kn 0 ⇐⇒ 〈x, y〉 ≥ 0, ∀y �Kn 0.

(d) If x �Kn y, then λi(x) ≥ λi(y), ∀i = 1, 2. Hence, tr(x) ≥ tr(y). Moreover, if

x �Kn y �Kn 0, then det(x) ≥ det(y).

We point out that the relation �Kn is not a linear ordering. Hence, it is not possible

to compare any two vectors (elements) via �Kn . Nonetheless, we note that

max{a, b} = b+ [a− b]+ =
1

2
(a+ b+ |a− b|),

min{a, b} = a− [a− b]− =
1

2
(a+ b− |a− b|).

This motivates us to define supremum and infimum of {x, y}, denoted by x∨ y and x∧ y
respectively, in the setting of second-order cone as follows. For any x, y ∈ Rn,

x ∨ y := y + [x− y]+ =
1

2
(x+ y + |x− y|),

x ∧ y :=

{
x− [x− y]+ = 1

2
(x+ y − |x− y|), if x+ y �Kn |x− y|;

0, otherwise.

Next, we recall the concepts of SOC-monotone and SOC-convex functions which are

introduced in [11] and will be needed for subsequent analysis. For a real valued function

f : R → R, f is said to be SOC-monotone of order n if its corresponding vector-valued

function f soc defined as in (4) satisfies

x �Kn y =⇒ f soc(x) �Kn f soc(y).

The function f is said to be SOC-monotone if f is SOC-monotone of all order n. The

function f is said to be SOC-convex of order n if its corresponding vector-valued function

f soc defined as in (4) satisfies

f soc((1− λ)x+ λy) �Kn (1− λ)f soc(x) + λf soc(y)

for all x, y ∈ Rn and 0 ≤ λ ≤ 1. The function f is said to be SOC-convex if f is SOC-

convex of all order n.

The concepts of SOC-monotone and SOC-convex functions are analogous to matrix-

monotone and matrix-convex functions [4, 16], and can be viewed special cases of operator

monotone and operator convex functions [3, 9, 20]. Examples and characterizations of

SOC-monotone and SOC-convex functions are given in [11, 12].

Lemma 2.2. ([11, Proposition 3.3]) Let f : (0,∞)→ (0,∞) be f(t) = 1/t. Then,

(a) −f is SOC-monotone on (0,∞);
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(b) f is SOC-convex on (0,∞).

Lemma 2.3. ([11, Proposition 3.7]) Let f : [0,∞) → [0,∞) be f(t) = tr, 0 ≤ r ≤ 1.

Then,

(a) f is SOC-monotone on [0,∞);

(b) −f is SOC-convex on [0,∞).

Let V be a Euclidean Jordan algebra, K be the set of all square elements of V (the

associated symmetric cone in V ), and Ω := intK (the interior symmetric cone). For

x ∈ V , let L(x) denote the linear operator given by L(x)y := x ◦ y, and let P (x) :=

2L(x)2 − L(x2). The mapping P is called the quadratic representation of V . If x is

invertible, then we have

P (x)K = K and P (x)Ω = Ω.

Here, we list some properties of the mapping P whose proofs can be found in Proposition

II.3.1, Proposition II.3.2, and Proposition II.3.4 of [14] and Lemma 2.3 of [22].

Proposition 2.1. Let V be a Jordan algebra with an identity element e.

(a) An element x is invertible if and only if P (x) is invertible. In this case, P (x)x−1 = x

and P (x)−1 = P (x−1).

(b) If x and y are invertible, then P (x)y is invertible and (P (x)y)−1 = P (x−1)y−1.

(c) For any elements x and y, P (P (x)y) = P (x)P (y)P (x). In particular, P (x2) =

P (x)2.

(d) For any elements x, y ∈ Ω, x � y if and only if P (x) � P (y), which means P (y)−
P (x) is a positive semidefinite matrix.

3 Inequality for Weighted Mean

As mentioned in Section 1, some inequalities for SOC means have been established in

[10]. In this section, we set up more general SOC means, i.e., the weighted means as-

sociated with SOC including SOC weighted arithmetic mean, SOC weighted geometric

mean, SOC weighted harmonic mean, and SOC weighted Heinz mean. A few inequalities

based on these means are established accordingly.

In the setting of second-order cone, we call a binary operation (x, y) 7→ M(x, y)

defined on int(Kn)× int(Kn) an SOC mean if the following are satisfied:
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(i) M(x, y) �Kn 0;

(ii) x ∧ y �Kn M(x, y) �Kn x ∨ y;

(iii) M(x, y) is monotone in x, y;

(iv) M(αx, αy) = αM(x, y), α > 0;

(v) M(x, y) is continuous in x, y.

As introduced in [10], the SOC arithmetic mean A(x, y) : int(Kn) × int(Kn) → int(Kn)

is defined by

A(x, y) =
x+ y

2
;

the SOC harmonic mean H(x, y) : int(Kn)× int(Kn)→ int(Kn) is defined as

H(x, y) =

(
x−1 + y−1

2

)−1
;

whereas the geometric mean G(x, y) is defined as

G(x, y) := P (x
1
2 )
(
P (x−

1
2 )y
) 1

2
.

Compared with the definition in [10], we omit the symmetric property, i.e., the condi-

tion M(x, y) = M(y, x) is dropped out, since the SOC weighted mean is not symmetric

in general. Now, we consider the SOC weighted means as below. For 0 ≤ λ ≤ 1, we let

Aλ(x, y) := (1− λ)x+ λy (5)

Hλ(x, y) :=
(
(1− λ)x−1 + λy−1

)−1
(6)

Gλ(x, y) := P
(
x

1
2

)(
P (x−

1
2 )y
)λ
, (7)

denote the SOC weighted arithmetic mean, the SOC weighted harmonic mean, and the

SOC weighted geometric mean, respectively. According to the definition, it is clear that

A1−λ(x, y) = Aλ(y, x)

H1−λ(x, y) = Hλ(y, x)

G1−λ(x, y) = Gλ(y, x)

We note that when λ = 1/2, these SOC weighted means coincide with the SOC arith-

metic mean A(x, y), the SOC harmonic mean H(x, y), and the SOC geometric mean

G(x, y), respectively. For more details, please refer to [10].

To achieve inequalities for the aforementioned SOC weighted means, we need the

following technical lemma [10, Lemma 4], which is indeed a symmetric cone version of

Bernoulli inequality.
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Lemma 3.1. Let V be a Euclidean Jordan algebra, K be the associated symmetric cone,

and e be the Jordan identity. Then,

(e+ s)t �K e+ ts,

where 0 ≤ t ≤ 1, s �K −e, and the partial order is induced by the closed convex cone K.

Theorem 3.1. Suppose 0 ≤ λ ≤ 1. Let Aλ(x, y), Hλ(x, y), and Gλ(x, y) be defined as in

(5), (6), and (7), respectively. Then, for any x �Kn 0 and y �Kn 0, there holds

x ∧ y �Kn Hλ(x, y) �Kn Gλ(x, y) �Kn Aλ(x, y) �Kn x ∨ y.

Proof. (i) To verify the first inequality, we discuss two cases. For 1
2
(x + y − |x− y|) /∈

Kn, the inequality holds automatically. For 1
2
(x + y − |x − y|) ∈ Kn, we note that

1
2
(x+y−|x−y|) �Kn x and 1

2
(x+y−|x−y|) �Kn y. Then, using the SOC-monotonicity

of f(t) = −t−1 (Lemma 2.3), we obtain

x−1 �Kn
(
x+ y − |x− y|

2

)−1
and y−1 �Kn

(
x+ y − |x− y|

2

)−1
,

which imply

(1− λ)x−1 + λy−1 �Kn
(
x+ y − |x− y|

2

)−1
.

Next, applying the SOC-monotonicity again to this inequality, we conclude that

x+ y − |x− y|
2

�Kn
(
(1− λ)x−1 + λy−1

)−1
.

(ii) For the second and third inequalities, it suffices to verify the third inequality (the

second one can be deduced thereafter). Let s = P (x−
1
2 )y − e, which gives s �Kn −e.

Then, applying Lemma 3.1 yields(
e+ P (x−

1
2 )y − e

)λ
�Kn e+ λ

[
P (x−

1
2 )y − e

]
,

which is equivalent to

0 �Kn (1− λ)e+ λ
[
P (x−

1
2 )y
]
−
(
P (x−

1
2 )y
)λ
.

Since P (x
1
2 ) is invariant on Kn, we have

0 �Kn P (x
1
2 )

(
(1− λ)e+ λ

[
P (x−

1
2 )y
]
−
(
P (x−

1
2 )y
)λ)

= (1− λ)x+ λy − P (x
1
2 )
(
P (x−

1
2 )y
)λ
,
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and hence

P (x
1
2 )
(
P (x−

1
2 )y
)λ
�Kn (1− λ)x+ λy. (8)

For the second inequality, replacing x and y in (8) by x−1 and y−1, respectively, gives

P (x−
1
2 )
(
P (x

1
2 )y−1

)λ
�Kn (1− λ)x−1 + λy−1.

Using the SOC-monotonicity again, we conclude

(
(1− λ)x−1 + λy−1

)−1 �Kn (P (x−
1
2 )
(
P (x

1
2 )y−1

)λ)−1
= P (x

1
2 )
(
P (x−

1
2 )y
)λ
.

where the equality holds by Proposition 2.1(b).

(iii) To see the last inequality, we observe that x �Kn 1
2
(x + y + |x − y|) and y �Kn

1
2
(x+ y + |x− y|), which imply

(1− λ)x+ λy �Kn
x+ y + |x− y|

2
.

Then, the desired result follows. 2

In [19], Huang et al. established three SOC trace versions of Young inequalities. Based

on Theorem 3.1, we have the following SOC determinant version of Young inequality.

Theorem 3.2. (Young inequality) For any x �Kn 0 and y �Kn 0, there holds

det(x ◦ y) ≤ det

(
xp

p
+
yq

q

)

where 1 < p, q <∞ and
1

p
+

1

q
= 1.

Proof. Since xp

p
+ yq

q
�Kn G 1

q
(xp, yq) = P (x

p
2 )
(
P (x−

p
2 )yq

) 1
q , and hence

det

(
xp

p
+
yq

q

)
≥ det

(
P (x

p
2 )
(
P (x−

p
2 )yq

) 1
q

)
= det(x) det(y) ≥ det(x ◦ y)

by Proposition III.4.2 of [14] and Proposition 2.2(b) of [11]. 2

Now, we consider the family of Heinz means

Mν(a, b) :=
aνb1−ν + a1−νbν

2
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for a, b > 0 and 0 ≤ ν ≤ 1. Following the idea of Kubo-Ando extension in [21], the SOC

Heinz mean can be defined as

Mν(x, y) :=
Gν(x, y) +Gν(y, x)

2
(9)

where x, y �Kn 0 and 0 ≤ ν ≤ 1. We point out that an obvious “naive” extension could

be

Bν(x, y) :=
xν ◦ y1−ν + x1−ν ◦ yν

2
. (10)

Unfortunately, Bν may not always satisfy the definition of SOC mean. Although it is

not an SOC mean, we still are interested in seeking the trace or norm inequality about

Bν and other SOC means, and it will be discussed in the next section.

For any positive numbers a, b, it is well-known that

√
ab ≤Mν(a, b) ≤

a+ b

2
. (11)

Together with the proof of Theorem 3.1, we can obtain the following inequality ac-

cordingly.

Theorem 3.3. Suppose 0 ≤ ν ≤ 1 and λ = 1
2
. Let A 1

2
(x, y), G 1

2
(x, y), and Mν(x, y) be

defined as in (5), (7), and (9), respectively. Then, for any x �Kn 0 and y �Kn 0, there

holds

G 1
2
(x, y) �Kn Mν(x, y) �Kn A 1

2
(x, y).

Proof. Consider x �Kn 0, y �Kn 0 and 0 ≤ ν ≤ 1, from Theorem 3.1, we have

Mν(x, y) =
Gν(x, y) +Gν(y, x)

2

�Kn
Aν(x, y) + Aν(y, x)

2
= A 1

2
(x, y).

On the other hand, we note that

Mν(x, y) =
Gν(x, y) +G1−ν(x, y)

2

=
P (x

1
2 )
(
P (x−

1
2 )y
)ν

+ P (x
1
2 )
(
P (x−

1
2 )y
)1−ν

2

= P (x
1
2 )


(
P (x−

1
2 )y
)ν

+
(
P (x−

1
2 )y
)1−ν

2


�Kn P (x

1
2 )

((
P (x−

1
2 )y
) ν

2 ◦
(
P (x−

1
2 )y
) 1−ν

2

)
= G 1

2
(x, y)
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where the inequality holds due to the fact
u+ v

2
�Kn u

1
2 ◦ v

1
2 for any u, v ∈ Kn and the

invariant property of P (x
1
2 ) on Kn. 2

Over all, we could have a picture regarding the ordered relationship of these SOC

weighted means as depicted in Figure 2.
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Figure 2: Relationship between means defined on second-order cone.

4 Inequalities for Trace of SOC Weighted Means

Up to now, we have extended the weighted harmonic mean, weighted geometric mean,

weighted Heinz mean, and weighted arithmetic mean to second-order cone setting. In this

section, we explore some other inequalities associated with traces of these SOC weighted

means. First, by applying Lemma 2.1(d), we immediately obtain the following trace

inequalities for SOC weighted means.

Theorem 4.1. Suppose 0 ≤ λ ≤ 1. Let Aλ(x, y), Hλ(x, y), and Gλ(x, y) be defined as in

(5), (6), and (7), respectively. For, any x �Kn 0 and y �Kn 0, there holds

tr(x ∧ y) ≤ tr(Hλ(x, y)) ≤ tr(Gλ(x, y)) ≤ tr(Aλ(x, y)) ≤ tr(x ∨ y).

Theorem 4.2. Suppose 0 ≤ ν ≤ 1 and λ = 1
2
. Let A 1

2
(x, y), H 1

2
(x, y), G 1

2
(x, y), and

Mν(x, y) be defined as in (5), (6), (7), and (9), respectively. Then, for any x �Kn 0 and

y �Kn 0, there holds

tr(x ∧ y) ≤ tr(H 1
2
(x, y)) ≤ tr(G 1

2
(x, y)) ≤ tr(Mν(x, y)) ≤ tr(A 1

2
(x, y)) ≤ tr(x ∨ y).
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As mentioned earlier, there are some well-known means, like Heinz mean

Mν(a, b) =
aνb1−ν + a1−νbν

2
for 0 < ν < 1

which cannot serve as SOC means albeit it is a natural extension. Even though they are

not SOC means, it is still possible to deriving some trace or norm inequality about these

means.

Next, we pay attention to another special inequality. The Powers-Størmer’s inequality

asserts that for s ∈ [0, 1] the following inequality

2Tr
(
AsB1−s) ≥ Tr (A+B − |A−B|) .

holds for any pair of positive definite matrices A, B. This is a key inequality to prove the

upper bound of Chernoff bound, in quantum hypothesis testing theory [2]. In [17, 18],

Hou, Osaka and Tomiyama investigate the generalized Powers-Størmer inequality. More

specifically, for any positive matrices A, B and matrix-concave function f , they prove

that

Tr(A) + Tr(B)−Tr(|A−B|) ≤ 2Tr
(
f(A)

1
2 g(B)f(A)

1
2

)
.

where g(t) =

{
t

f(t)
, t ∈ (0,+∞)

0, t = 0
. Moreover, Hou et al. also show that the Powers-

Størmer’s inequality characterizes the trace property for a normal linear positive func-

tional on a von Neumann algebras and for a linear positive functional on a C∗-algebra.

Motivated by the above facts, we establish a version of the Powers-Størmer’s inequal-

ity for SOC-monotone function on [0,+∞) in the SOC setting. To proceed, we need a

technical lemma.

Lemma 4.1. For 0 �Kn u �Kn x and 0 �Kn v �Kn y, there holds

0 ≤ tr(u ◦ v) ≤ tr(x ◦ y).

Proof. Suppose 0 �Kn u �Kn x and 0 �Kn v �Kn y, we have

tr(x ◦ y)− tr(u ◦ v)

= tr(x ◦ y − u ◦ v)

= tr(x ◦ y − x ◦ v + x ◦ v − u ◦ v)

= tr(x ◦ (y − v) + (x− u) ◦ v)

= tr(x ◦ (y − v)) + tr((x− u) ◦ v)

≥ 0,

where the inequality holds by Lemma 2.1(c). 2

Recall that the Jordan product is not associative in general. However, it would be

associative after taking trace.

12



Proposition 4.1. For any x, y, z ∈ Rn, there holds tr((x ◦ y) ◦ z) = tr(x ◦ (y ◦ z)).

Proof. From direct computation, we have x ◦ y =
(
x1y1 + xT2 y2, x1y2 + y1x2

)
and

tr((x ◦ y) ◦ z) = 2
(
x1y1z1 + z1x

T
2 y2 + x1y

T
2 z2 + y1x

T
2 z2
)
.

Similarly, we also have y ◦ z =
(
y1z1 + yT2 z2, y1z2 + z1y2

)
and

tr(x ◦ (y ◦ z)) = 2
(
x1y1z1 + x1y

T
2 z2 + y1x

T
2 z2 + z1x

T
2 y2
)
.

Therefore, we conclude the desired result. 2

According to the proof in [17, 18], the crucial point is under what conditions of f(t),

there holds the SOC-monotonicity of t
f(t)

. For establishing the SOC version of Powers-

Størmer’s inequality, it is also a key, which is answered in next proposition.

Proposition 4.2. Let f be a strictly positive, continuous function on [0,+∞). The

function g(t) :=
t

f(t)
is SOC-monotone if one of the following conditions holds.

(a) f is matrix-monotone of order 4.

(b) f is matrix-concave of order 3.

(c) For any contraction T : Kn 7→ Kn and z ∈ Kn, there holds

f soc(Tz) �Kn Tf
soc(z). (12)

Proof. (a) According to [17, Proposition 2.1], the 4-matrix-monotonicity of f would

imply the 2-matrix-monotonicity of g, which coincides with the SOC-monotonicity by

[12, Corollary 3.1].

(b) From [18, Theorem 2.1], the 3-matrix-concavity of f implies the 2-matrix-monotonicity

of g, which coincides with the SOC-monotonicity as well.

(c) Suppose 0 �Kn x �Kn y, we have P (x) � P (y) by Proposition 2.1(d). This to-

gether with [4, Lemma V.1.7] implies ‖P (x
1
2 )P (y−

1
2 )‖ ≤ 1. Hence, P (x

1
2 )P (y−

1
2 ) is an

contraction. Then

x = P (x
1
2 )(P (y−

1
2 )y)

=⇒ f soc(x) = f soc(P (x
1
2 )(P (y−

1
2 )y))

=⇒ f soc(x) �Kn P (x
1
2 )(P (y−

1
2 )f soc(y))

⇐⇒ P (x−
1
2 )f soc(x) �Kn P (y−

1
2 )f soc(y)

⇐⇒ x−1 ◦ f soc(x) �Kn y
−1 ◦ f soc(y)

⇐⇒ x ◦ (f soc(x))−1 �Kn y ◦ (f soc(y))−1

⇐⇒ gsoc(x) �Kn g
soc(y).
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where the second implication holds by setting T = P (x
1
2 )P (y−

1
2 ) and the first equivalence

holds by the invariant property of P (x−
1
2 ) on Kn. 2

Remark 4.1. We elaborate more about Proposition 4.2. We notice that the SOC-

monotonicity and SOC-concavity of f are not strong enough to guarantee the SOC-

monotonicity of g. Indeed, the SOC-monotonicity and SOC-concavity only coincides with

the 2-matrix-monotonicity and 2-matrix-concavity, respectively. Hence, we need stronger

condition on f to assure the SOC-monotonicity of g. Another point to mention is that

the condition (12) in Proposition 4.2(c) is a similar idea for SOC setting parallel to the

following condition:

C∗f(A)C � f(C∗AC) (13)

for any positive semidefinite A and a contraction C in the space of matrices. This in-

equality (13) plays a key role in proving matrix-monotonicity and matrix-convexity. For

more details about this condition, please refer to [17, 18]. To the contrast, it is not

clear about how to define (·)∗ associated with SOC. Nonetheless, we figure out that the

condition (12) may act as a role like (13).

Theorem 4.3. Let f : [0,+∞) −→ (0,+∞) be SOC-monotone and satisfy one of the

conditions in Proposition 4.2. Then, for any x, y ∈ Kn, there holds

tr(x+ y)− tr(|x− y|) ≤ 2tr
(
f soc(x)

1
2 ◦ gsoc(y) ◦ f soc(x)

1
2

)
, (14)

where g(t) = t
f(t)

if t > 0, and g(0) = 0.

Proof. For any x, y ∈ Kn, it is known that x− y can be expressed as [x− y]+− [x− y]−.

Let us denote by p := [x− y]+ and q := [x− y]−. Then we have

x− y = p− q and |x− y| = p + q

and the inequality (14) is equivalent to the following

tr(x)− tr
(
f soc(x)

1
2 ◦ gsoc(y) ◦ f soc(x)

1
2

)
≤ tr(p).

Since y+p �Kn y �Kn 0 and y+p = x+q �Kn x �Kn 0, we have gsoc(x) �Kn gsoc(y+p)
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and by Proposition 4.1

tr(x)− tr
(
f soc(x)

1
2 ◦ gsoc(y) ◦ f soc(x)

1
2

)
= tr

(
f soc(x)

1
2 ◦ gsoc(x) ◦ f soc(x)

1
2

)
− tr

(
f soc(x)

1
2 ◦ gsoc(y) ◦ f soc(x)

1
2

)
≤ tr

(
f soc(x)

1
2 ◦ gsoc(y + p) ◦ f soc(x)

1
2

)
− tr

(
f soc(x)

1
2 ◦ gsoc(y) ◦ f soc(x)

1
2

)
= tr

(
f soc(x)

1
2 ◦ (gsoc(y + p)− gsoc(y)) ◦ f soc(x)

1
2

)
≤ tr

(
f soc(y + p)

1
2 ◦ (gsoc(y + p)− gsoc(y)) ◦ f soc(y + p)

1
2

)
= tr

(
f soc(y + p)

1
2 ◦ gsoc(y + p) ◦ f soc(y + p)

1
2

)
−tr

(
f soc(y + p)

1
2 ◦ gsoc(y) ◦ f soc(y + p)

1
2

)
≤ tr(y + p)− tr

(
f soc(y)

1
2 ◦ gsoc(y) ◦ f soc(y)

1
2

)
= tr(y + p)− tr(y)

= tr(p).

Hence, we prove the assertion. 2

As an application we get the SOC version of Powers-Størmer’s inequality.

Theorem 4.4. For any x, y ∈ Kn and 0 ≤ λ ≤ 1, there holds

tr (x+ y − |x− y|) ≤ 2tr
(
xλ ◦ y1−λ

)
≤ tr (x+ y + |x− y|) .

Proof. (i) For the first inequality, taking f(t) = tλ for 0 ≤ λ ≤ 1 and applying

Theorem 4.3. It is known that f is matrix-monotone with f((0,+∞)) ⊆ (0,+∞) and

g(t) = t
f(t)

= t1−λ. Then, the inequality follows from (14) in Theorem 4.3.

(ii) For the second inequality, we note that

0 �Kn x �Kn
x+ y + |x− y|

2
,

0 �Kn y �Kn
x+ y + |x− y|

2
.

Moreover, for 0 ≤ λ ≤ 1, f(t) = tλ is SOC-monotone on [0,+∞). This implies that

0 �Kn xλ �Kn
(
x+ y + |x− y|

2

)λ
,

0 �Kn y1−λ �Kn
(
x+ y + |x− y|

2

)1−λ

.
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Then, applying Lemma 4.1 gives

tr
(
xλ ◦ y1−λ

)
≤ tr

(
x+ y + |x− y|

2

)
,

which is the desired result. 2

According to the definition of Bλ, we observe that

B0(x, y) = B1(x, y) =
x+ y

2
= A 1

2
(x, y).

This together with Theorem 4.3 leads to

tr(x ∧ y) ≤ tr (Bλ(x, y)) ≤ tr(x ∨ y).

In fact, we can sharpen the upper bound of tr(Bλ(x, y)) as shown in the following theo-

rem, which also shows when the maximum occurs. Moreover, the inequality (11) remains

true for second-order cone, in the following trace version.

Theorem 4.5. For any x, y ∈ Kn and 0 ≤ λ ≤ 1, there holds

2tr
(
x

1
2 ◦ y

1
2

)
≤ tr

(
xλ ◦ y1−λ + x1−λ ◦ yλ

)
≤ tr(x+ y),

which is equivalent to tr
(
x

1
2 ◦ y 1

2

)
≤ tr (Bλ(x, y)) ≤ tr(A 1

2
(x, y)). In particular,

tr
(
x1−λ ◦ yλ

)
≤ tr (Aλ(x, y)) .

Proof. It is clear that the inequalities hold when λ = 0, 1. Suppose that λ 6= 0, 1, we

set p = 1
λ
, q = 1

1−λ .

For the first inequality, we write x = ξ1u
(1)
x + ξ2u

(2)
x , y = µ1u

(1)
y + µ2u

(2)
y by spectral

decomposition (1)-(3). We note that ξi, µj ≥ 0 and u
(i)
x , u

(j)
y ∈ Kn for all i, j = 1, 2. Then

xλ ◦ y1−λ + x1−λ ◦ yλ − 2x
1
2 ◦ y

1
2 =

2∑
i,j=1

(
ξλi µ

1−λ
j + ξ1−λi µλj − 2

√
ξiµj

)
u(i)x ◦ u(j)y ,

which implies

tr
(
xλ ◦ y1−λ + x1−λ ◦ yλ − 2x

1
2 ◦ y

1
2

)
= tr

(
2∑

i,j=1

(
ξλi µ

1−λ
j + ξ1−λi µλj − 2

√
ξiµj

)
u(i)x ◦ u(j)y

)

=
2∑

i,j=1

tr
((
ξλi µ

1−λ
j + ξ1−λi µλj − 2

√
ξiµj

)
u(i)x ◦ u(j)y

)
=

2∑
i,j=1

(
ξλi µ

1−λ
j + ξ1−λi µλj − 2

√
ξiµj

)
tr
(
u(i)x ◦ u(j)y

)
≥ 0,
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where the inequality holds by (11) and Lemma 2.1(c).

For the second inequality, by the trace version of Young inequality [19], we have

tr
(
xλ ◦ y1−λ

)
≤ tr

(
(xλ)p

p
+

(y1−λ)q

q

)
= tr

(
x

p
+
y

q

)
,

tr
(
x1−λ ◦ yλ

)
≤ tr

(
(x1−λ)q

q
+

(yλ)p

p

)
= tr

(
x

q
+
y

p

)
.

Adding up these two inequalities together yields the desired result. 2
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