由 minimal polynomial 定義知 $\mu_T(T) = \mathbf{O}$, 故由 Lemma 5.4.1, 得 $\overline{\mu_T}(T^*) = (\mu_T(T))^* = \mathbf{O}$, 故知 $\mu_{T^*}(x) \mid \overline{\mu_T}(x)$. 同理由 $(T^*)^* = T$, 得 $\mu_T(x) \mid \overline{\mu_{T^*}}(x)$, 再將兩邊多項式的係數取 conjugate 得 $\overline{\mu_T}(x) \mid \mu_{T^*}(x)$. 得證 $\mu_{T^*}(x) = \overline{\mu_T}(x)$.

有關 linear operator 的 decomposition, 最重要的便是 T-invariant subspace. 現若 W 為 T-invariant subspace, 我們自然會問 W 是否為 T^* -invariant subspace. 一般來說這不一定 對, 但我們有以下之結果.

Lemma 5.4.3. 若 $T: V \to V$ 為 linear operator, 則 $W \subseteq V$ 為 T-invariant subspace 若且唯 若 $W^{\perp} \subseteq V$ 為 T^* -invariant subspace.

Proof. 假設 W 為 T-invariant, 要說明 W^{\perp} 為 T^* -invariant, 就是要說明對任意 $\mathbf{w}' \in W^{\perp}$ 皆有 $T^*(\mathbf{w}') \in W^{\perp}$. 然而若 $\mathbf{w} \in W$, 則由 $T(\mathbf{w}) \in W$ 以及 $\mathbf{w}' \in W^{\perp}$, 得 $\langle \mathbf{w}, T^*(\mathbf{w}') \rangle = \langle T(\mathbf{w}), \mathbf{w}' \rangle = 0$. 此即證明 $T^*(\mathbf{w}') \in W^{\perp}$, 故 W^{\perp} 為 T^* -invariant.

反之,若 W^{\perp} 為 T^* -invariant,則由上面所證 $(W^{\perp})^{\perp}=W$ 為 $(T^*)^*$ -invariant,即 T-invariant.

給定一個 inner product space V, 及其 subspace W, 最直接的 decomposition 為 $V = W \boxplus W^{\perp}$. 所以當 W 為 T-invariant 時, 我們自然會問是否 W^{\perp} 亦為 T-invariant. 利用 Lemma 5.4.3, 這剛好回答了何時 W 亦為 T^* -invariant.

Corollary 5.4.4. 假設 $T:V\to V$ 為 linear operator 且 $W\subseteq V$ 為 T-invariant subspace. 則 W^{\perp} 為 T-invariant subspace 若且唯若 W 為 T^* -invariant subspace. 另外若 W 為 T-invariant 和 T^* -invariant, 則

$$(T|_W)^* = T^*|_W.$$

Proof. 由 Lemma 5.4.3, 我們知 W^{\perp} 為 T-invariant 等價於 $W = (W^{\perp})^{\perp}$ 為 T^* -invariant. 此時對任意的 $\mathbf{w}, \mathbf{w}' \in W$ 皆有

$$\langle T|_W(\mathbf{w}), \mathbf{w}' \rangle = \langle T(\mathbf{w}), \mathbf{w}' \rangle = \langle \mathbf{w}, T^*(\mathbf{w}') \rangle = \langle \mathbf{w}, T^*|_W(\mathbf{w}') \rangle,$$

得證
$$(T|_{W})^{*} = T^{*}|_{W}$$
.

接下來我們探討幾個特殊的 linear operator 及其 adjoint 間的關係. 首先回顧若 $V = W_1 \oplus W_2$,則對任意 $\mathbf{v} \in V$,皆存在唯一的 $\mathbf{w}_1 \in W_1$, $\mathbf{w}_2 \in W_2$ 使得 $\mathbf{v} = \mathbf{w}_1 + \mathbf{w}_2$. 此時我們 定義 $\pi_{W_1,W_2}: V \to V$,為 $\pi_{W_1,W_2}(\mathbf{v}) = \mathbf{w}_1$. 我們稱 π_{W_1,W_2} 為 projection on W_1 along W_2 . 要注意,若 $V = W_1 \oplus W_2'$,其中 $W_2 \neq W_2'$,則 $\pi_{W_1,W_2} \neq \pi_{W_1,W_2'}$.

Question 5.19. 如上所述, $\pi_{W_2,W_1}(\mathbf{v})$ 為何? 並說明若 $V = W_1 \oplus W_2 = W_1 \oplus W_2'$ 但 $W_2 \neq W_2'$ 則 $\pi_{W_1,W_2} \neq \pi_{W_1,W_1'}$.

當 V 是 finite dimensional inner product space, 我們可由 $V=W_1\oplus W_2$ 推得 $V=W_1^\perp\oplus W_2^\perp$. 這是因為若 $\mathbf{w}\in W_1^\perp\cap W_2^\perp$,則對任意 $\mathbf{v}\in V$,我們有 $\mathbf{v}=\mathbf{w}_1+\mathbf{w}_2$,其中 $\mathbf{w}_1\in W_1,\mathbf{w}_2\in W_2$,故

得 $\langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{w}_1, \mathbf{w} \rangle + \langle \mathbf{w}_2, \mathbf{w} \rangle = 0$. 由 Lemma 5.1.4 得知 $\mathbf{w} = \mathbf{O}_V$. 再由 $\dim(W_1^{\perp} + W_2^{\perp}) = \dim(W_1^{\perp}) + \dim(W_2^{\perp}) = \dim(W_2) + \dim(W_1) = \dim(V),$

得證 $V=W_1^\perp\oplus W_2^\perp$. 利用此我們可以得到 π_{W_1,W_2} 的 adjoint π_{W_1,W_2}^* .

Proposition 5.4.5. 若 $V = W_1 \oplus W_2$, 則 $V = W_1^{\perp} \oplus W_2^{\perp}$ 且

$$\pi_{W_1,W_2}^* = \pi_{W_2^\perp,W_1^\perp}.$$

Proof. 前面已知 $V = W_1^{\perp} \oplus W_2^{\perp}$, 故對任意 $\mathbf{v}, \mathbf{v}' \in V$, 我們知存在 $\mathbf{w}_1 \in W_1, \mathbf{w}_2 \in W_2$ 以及 $\mathbf{w}_1' \in W_1^{\perp}, \mathbf{w}_2' \in W_2^{\perp}$ 满足 $\mathbf{v} = \mathbf{w}_1 + \mathbf{w}_2, \mathbf{v}' = \mathbf{w}_1' + \mathbf{w}_2'$. 此時

$$\langle \pi_{W_1,W_2}(\mathbf{v}),\mathbf{v}'\rangle = \langle \mathbf{w}_1,\mathbf{w}_1'+\mathbf{w}_2'\rangle = \langle \mathbf{w}_1,\mathbf{w}_2'\rangle.$$

另一方面

$$\langle \mathbf{v}, \pi_{W_2^\perp, W_1^\perp}(\mathbf{v}') \rangle = \langle \mathbf{w}_1 + \mathbf{w}_2, \mathbf{w}_2' \rangle = \langle \mathbf{w}_1, \mathbf{w}_2' \rangle.$$
 得證 $\langle \pi_{W_1, W_2}(\mathbf{v}), \mathbf{v}' \rangle = \langle \mathbf{v}, \pi_{W_2^\perp, W_1^\perp}(\mathbf{v}') \rangle, \ \forall \, \mathbf{v}, \mathbf{v}' \in V, \ \ \ \mathbb{P} \ \pi_{W_1, W_2}^* = \pi_{W_2^\perp, W_1^\perp}.$

我們知道在 inner product space 中最常用的 decomposition 就是 $V = W \boxplus W^{\perp}$. 此時我們稱 projection $\pi_{W,W^{\perp}}$ 為 orthogonal projection on W. 為了方便,以後我們都會把 orthogonal projection on W 用 π_W 來表示 (因為它僅和 W 有關). 利用 Proposition 5.4.5,我們馬上有以下之結果.

Corollary 5.4.6. 設 V 是 finite dimensional inner product space 且 W 為其 subspace. 令 $\pi_W: V \to V$ 為 orthogonal projection on W, 則 $\pi_W = \pi_W^{\circ 2}$ 且 $\pi_W^* = \pi_W$.

Proof. 對任意 $\mathbf{v} \in V$, 我們有 $\mathbf{v} = \mathbf{w} + \mathbf{w}'$, 其中 $\mathbf{w} \in W, \mathbf{w}' \in W^{\perp}$, 故

$$\pi_W^{\circ 2}(\mathbf{v}) = \pi_W(\pi_W(\mathbf{v})) = \pi_W(\pi_W(\mathbf{w} + \mathbf{w}')) = \pi_W(\mathbf{w}) = \pi_W(\mathbf{v}), \forall \mathbf{v} \in V.$$

得證 $\pi_W = \pi_W^{\circ 2}$. 另一方面, 利用 Proposition 5.4.5 以及 $(W^\perp)^\perp = W$, 我們有

$$\pi_W^* = \pi_{W,W^{\perp}}^* = \pi_{(W^{\perp})^{\perp},W^{\perp}} = \pi_{W,W^{\perp}} = \pi_W.$$

Question 5.20. 試證明對任意 $\mathbf{v} \in V$, π_W 就是 Proposition 5.1.12 中提的 projection proj_W .

一個 linear operator $T: V \to V$ 若滿足 $T^{\circ 2} = T$, 則稱為 idempotent. 由 Corollary 5.4.6 的證明我們知道任何的 projection 皆為 idempotent (不需 orthogonal projection 之假設). 至於 $T^* = T$ 的性質, 我們稱為 self-adjoint. 一般的 projection 不會是 self-adjoint, 除非它是 orthogonal projection, 這是由於我們有下結果.

Proposition 5.4.7. 假設 $T: V \to V$ 為 linear transformation 滿足 $T^{\circ 2} = T$, 則下列敘述為 等價:

- (1) T 為 orthogonal projection.
- (2) $T^* = T$.

- (3) $\operatorname{Ker}(T) = \operatorname{Im}(T)^{\perp}$.
- (4) $\operatorname{Im}(T) = \operatorname{Ker}(T)^{\perp}$.

Proof. 首先我們說明若 T 為 idempotent (即 $T^{\circ 2} = T$), 則 $T = \pi_{\text{Im}(T),\text{Ker}(T)}$. 這需先證明 $V = \text{Im}(T) \oplus \text{Ker}(T)$. 事實上 $\dim(V) = \dim(\text{Im}(T)) + \dim(\text{Ker}(T))$, 所以只要證明

$$\operatorname{Im}(T) \cap \operatorname{Ker}(T) = \{ \mathbf{O}_V \},$$

則由 $\operatorname{Im}(T) + \operatorname{Ker}(T) \subseteq V$,可得 $V = \operatorname{Im}(T) \oplus \operatorname{Ker}(T)$. 然而若 $\mathbf{v} \in \operatorname{Im}(T)$,表示存在 $\mathbf{w} \in V$ 使得 $\mathbf{v} = T(\mathbf{w})$,故由 $T^{\circ 2} = T$,得 $T(\mathbf{v}) = T^{\circ 2}(\mathbf{w}) = T(\mathbf{w}) = \mathbf{v}$. 若再加上 $\mathbf{v} \in \operatorname{Ker}(T)$ 可得 $\mathbf{v} = T(\mathbf{v}) = \mathbf{O}_V$. 現已知 $V = \operatorname{Im}(T) \oplus \operatorname{Ker}(T)$,故對任意 \mathbf{v} ,皆存在 $\mathbf{w} \in \operatorname{Im}(T)$, $\mathbf{w}' \in \operatorname{Ker}(T)$ 使得 $\mathbf{v} = \mathbf{w} + \mathbf{w}'$. 可得 $T(\mathbf{v}) = T(\mathbf{w}) + T(\mathbf{w}') = T(\mathbf{w})$. 但前面已知若 $\mathbf{w} \in \operatorname{Im}(T)$,則 $T(\mathbf{w}) = \mathbf{w}$,故知 $T(\mathbf{v}) = \mathbf{w}$. 此和 projection on $\operatorname{Im}(T)$ along $\operatorname{Ker}(T)$ 即 $\pi_{\operatorname{Im}(T),\operatorname{Ker}(T)}$ 對 \mathbf{v} 的作用相同,故得證 $T = \pi_{\operatorname{Im}(T),\operatorname{Ker}(T)}$.

現由 Corollary 5.1.14, 我們知道 $\operatorname{Ker}(T)=\operatorname{Im}(T)^{\perp}$ 若且唯若 $\operatorname{Im}(T)=\operatorname{Ker}(T)^{\perp}$ (即 $(3)\Leftrightarrow (4)$). 而又若 $\operatorname{Ker}(T)=\operatorname{Im}(T)^{\perp}$ 則 $\pi_{\operatorname{Im}(T),\operatorname{Ker}(T)}=\pi_{\operatorname{Im}(T),\operatorname{Im}(T)^{\perp}}$, 得證 $T=\pi_{\operatorname{Im}(T),\operatorname{Ker}(T)}$ 為 orthogonal projection (即 $(3)\Rightarrow (1)$). 又若 T 為 orthogonal projection, 則由 Corollary 5.4.6 知 $T^*=T$ (即 $(1)\Rightarrow (2)$). 最後利用 Proposition 5.3.8(1) 知若 $T^*=T$, 則 $\operatorname{Im}(T)=\operatorname{Ker}(T)^{\perp}$ (且 $\operatorname{Ker}(T)=\operatorname{Im}(T)^{\perp}$) (即 $(2)\Rightarrow (3)(4)$) 得證本定理.

一般來說, 我們可以將一個 finite dimensional inner product space 寫成 orthogonal direct sum $V = W_1 \boxplus \cdots \boxplus W_k$, 此時 $W_i^{\perp} = \oplus_{j \neq i} W_j$. 若令 π_i 為 orthogonal projection on W_i (即 $\pi_i = \pi_{W_i}$), 則很容易看出

$$\pi_1 + \cdots + \pi_k = \mathrm{id}_V$$
.

我們稱此為 orthogonal resolution of the identity. 注意此時我們有 $\pi_i^{\circ 2} = \pi_i$, $\pi_i^* = \pi_i$ 以及當 $i \neq j$ 時, $\pi_i \circ \pi_i = \mathbf{0}$. 事實上, 我們有以下之結果.

Lemma 5.4.8. 假設 V 為 finite dimensional inner product space 且 W_1, W_2 為 V 的 subspace. 令 π_1, π_2 分別為 orthogonal projection on W_1, W_2 . 則下列為等價:

- (1) $W_1 \perp W_2$.
- (2) $\pi_1 \circ \pi_2 = \mathbf{O}$.
- (3) $\pi_2 \circ \pi_1 = \mathbf{O}$.

Proof. 對於任意 $\mathbf{v} \in V$, 由於 $\pi_1(\mathbf{v}) \in W_1$, 故若 $W_1 \perp W_2$, 則 $\pi_1(\mathbf{v}) \in W_2^{\perp}$. 得證 $\pi_2(\pi_1(\mathbf{v})) = \mathbf{O}_V$, $\forall \mathbf{v} \in V$ 即 $\pi_1 \circ \pi_2 = \mathbf{O}$. 同理可得 $\pi_2 \circ \pi_1 = \mathbf{O}$.

現對任意 $\mathbf{w}_1 \in W_1, \mathbf{w}_2 \in W_2$,我們有 $\langle \mathbf{w}_1, \mathbf{w}_2 \rangle = \langle \pi_1(\mathbf{w}_1), \pi_2(\mathbf{w}_2) \rangle = \langle \mathbf{w}_1, \pi_1^*(\pi_2(\mathbf{w}_2)) \rangle$. 因 π_1 為 orthogonal projection,由 Corollary 5.4.6 知 $\pi_1^* = \pi_1$. 故若 $\pi_1 \circ \pi_2 = \mathbf{O}$,則 $\langle \mathbf{w}_1, \mathbf{w}_2 \rangle = \langle \mathbf{w}_1, \mathbf{O}_V \rangle = 0$,得證 $W_1 \perp W_2$. 同理若 $\pi_2 \circ \pi_1 = \mathbf{O}$ 亦可得 $W_1 \perp W_2$.

回顧過去我們提過, 若對於 linear operator $T: V \to V$, 我們可以找到 V 的一組 basis 是由 T 的 eigenvectors 所組成, 則表示 T 是 diagonalizable. 特別的, 若存在一組 T 的 eigenvectors 形成 V 的一組 orthogonal basis (或 orthonormal basis), 則我們有以下的定義.

Definition 5.4.9. 假設 V 是一個 finite dimensional inner product space over F 且 $T:V\to V$ 為 linear operator. 若存在一組 T 的 eigenvectors 形成 V 的一組 orthogonal basis (或 orthonormal basis), 則我們稱 T 為 $unitary\ diagonalizable$ (當 $F=\mathbb{R}$ 時, 有的書會特別稱 T 為 $orthogonal\ diagonalizable$).

當 A 是一個 $n \times n$ matrix over F, 若考慮 F^n 上的 standard inner product, 存在一組 A 的 eigenvectors 為 F^n 的一組 orthogonal basis (或 orthonormal basis), 則我們稱 A 為 unitary diagonalizable (當 $F = \mathbb{R}$ 時, 有的書會特別稱 A 為 orthogonal diagonalizable).

在此特別說明,當一個 matrix A 為 unitary diagonalizable 時,在 $F=\mathbb{C}$ 的情況即表示存在一個 matrix P 满足 $P^*=P^{-1}$ 使得 P^*AP 為一個 diagonal matrix. 這樣的矩陣 P 是由那些 eigenvectors 所成的 orthonormal basis 所組成的,我們稱為 unitary matrix. 而在 $F=\mathbb{R}$ 的情況,表示存在一個 matrix P 满足 $P^{\mathfrak{l}}=P^{-1}$ 使得 $P^{\mathfrak{l}}AP$ 為一個 diagonal matrix. 這樣的矩陣 P 是由那些 eigenvectors 所成的 orthonormal basis 所組成的,我們稱為 orthogonal matrix. 這就是 unitary diagonalizable (或 orthogonal diagonalizable) 名稱的由來. 為了方便起見,我們不去區分 unitary diagonalizable 或 orthogonal diagonalizable, 一律用 unitary diagonalizable 來稱之. 接下來我們來探討 unitary diagonalizable linear operator 的特性.

Proposition 5.4.10. 假設 V 是一個 finite dimensional inner product space over F 且 $T:V\to V$ 為 linear operator. 則下列是等價的.

- (1) T 為 unitary diagonalizable.
- (2) 存在相異 $\lambda_1, \ldots, \lambda_k \in F$ 使得 $V = E_{\lambda_1} \boxplus \cdots \boxplus E_{\lambda_k}$, 其中 E_{λ_i} , 為 λ_i 的 eigenspace, 即 $E_{\lambda_i} = \{ \mathbf{v} \in V \mid T(\mathbf{v}) = \lambda_i \mathbf{v} \}$.
- (3) 存在 $\lambda_1, \ldots, \lambda_k \in F$ 使得 $T = \lambda_1 \pi_1 + \cdots + \lambda_k \pi_k$, 其中 π_i 為 orthogonal projection 且 満足 $\pi_i \circ \pi_i = \mathbf{0}$, $\forall i \neq j$.

Proof. 假設 T 為 unitary diagonalizable, 假設 $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ 為 T 的一組 eigenvectors 所組成的 orthogonal basis. 將其適當重排使得相同 eigenvalue 的 eigenvectors 擺在一起, 我們假設 $\mathbf{v}_1,\ldots,\mathbf{v}_{l_1}$ 為 eigenvalue 為 λ_1 的 eigenvectors, $\mathbf{v}_{l_1+1},\ldots,\mathbf{v}_{l_2}$ 為 eigenvalue 為 λ_2 的 eigenvectors, 依此類推 (其中每個 λ_i 皆相異). 我們要說明 $W_i = \operatorname{Span}(\{\mathbf{v}_{l_{i-1}+1},\ldots,\mathbf{v}_{l_i}\})$ 等於 E_{λ_i} . 事實上 $W_i \subseteq E_{\lambda_i}$, 又由 T 為 diagonalizable 知 $V = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_k}$. 我們有

$$\dim(V) = \dim(W_1) + \cdots + \dim(W_k) \le \dim(E_{\lambda_1}) + \cdots + \dim(E_{\lambda_k}) = \dim(V),$$

得證 $\dim(W_i) = \dim(E_{\lambda_i})$,即 $W_i = E_{\lambda_i}$. 很自然的,對於 $i \neq j$ 我們有 $W_i \perp W_j$,故得證 $V = E_{\lambda_1} \boxplus \cdots \boxplus E_{\lambda_k}$. 反之,若 $V = E_{\lambda_1} \boxplus \cdots \boxplus E_{\lambda_k}$,則考慮每個 E_{λ_i} 上的一組 orthogonal basis,由於這些 E_{λ_i} 上的 orthogonal basis 可組成 V 的一組 orthogonal basis,且皆為 T 的 eigenvectors. 得證 $(1) \Leftrightarrow (2)$.