Exercise

1 Vector Spaces

In this set of exercises, V' is always a vector space over a field F'.
1. Let U be a subspace of V. For ve V definev+U ={v+u|ueU}.

(a) Prove that v 4+ U is a subspace of V' if and only if v € U.
(b) For v,w € V|, prove the following are equivalent:
i (v+U)N(w+U) #0.
i. v—welU.
iii. v+U=w+U.
2. Let S,U, W be subspaces of V.

(a) Show that SN(U+W) D (SNU)+ (SNW).

(b) Find an example that SN (U + W) = (SNU)+ (SN W) is not true.
(c¢) Show that if W C S, then SN(U+ W) =(SNU)+ (SNW).

(d) Prove SN(U+(SNW))=(SNU)+ (SNW).

3. Let P,(F) ={ana"+---+a1x+ap | a; € F'} and let F[x] be the set of polynomials
with coefficients in F'.

(a) Let fo(z) #0, fi(z),..., fulz) € P, (F) with deg(f;(x)) =14, fori =0,...,n.
Prove that {fo(x), fi(z),..., fu(z)} is a basis of P,(F).

(b) Show that F[z] is a vector space over F, but is not a finite dimensional vector
space over F.

4. Let V be a finite dimensional vector space over F' and let U, W be subspaces of V.

(a) Show that max{dim(U),dim(W)} < dim(U + W) < dim(U) + dim(W).
(b) Prove that dim(U + W) + dim(U N W) = dim(U) + dim(W).
(¢) Suppose dim(V) = 8, dim(U) = 7 and dim(W) = 5. Suppose further that
W ¢ U. Show that dim(UNW) = 4.
5. Let F’ be a subfield of F.

(a) Prove that F'is a vector space over F”.

(b) Suppose that F' is finite dimensional over F” and V' is a finite dimensional
vector space over F. Prove that V' is a finite dimensional vector space over
F" and dimp (V) = dimp (V) dimp (F).

6. Let W be a subspace of V' and consider the quotient space V/W with a subspace

U.
(a) Let U ={uecV |uecU}. Show that U is a subspace of V and W C U.
(b) Prove U/W = U.



2 Linear Transformation

1. Let T : V. — W be a linear transformation. Suppose that dim(V) > 2 and
dim(W) > 2.
(a) Prove the following are equivalent:

i. T is one-to-one.
ii. T7Y(T({Ov})) ={Ov}.
iii. For every nontrivial subspace V' of V, T-Y(T(V")) = V".

(b) Prove the following are equivalent:
i. T is onto.
i, T(T-Y(W)) = W.
iii. For every nontrivial subspace W' of W, T(T~}(W")) = W".
2. Let Ty : V. — W and 15 : W — U be linear transformations. Consider the
composition To 0Ty : V — U.
(a) Show that Ker(Ty o Ty) = T, ' (Ker(T3)).

(b) Prove that Ty o T is one-to-one if and only if 77 is one-to-one and
KGF(TQ) N Im(Tl) = {Ow}

(¢) Show that Im(T3 o T}) = To(Im(T7)).
(d) Prove that Ty o T} is onto if and only if T3 is onto and

Ker(Ty) + Im(T}) = W.
(e) Suppose that W is finite dimensional. Prove
dim(Im(77))+dim(Im(7%)) —dim(W) < dim(Im(7%077)) < min{dim(Im(7})), dim(Im(73))}.

(Hint: Consider the restriction map Tb|iwnery) @ Im(7h) — U for the first
inequality. )

3. Suppose that V, V5 are vector spaces and Uy, Us are subspaces of Vi, V5 respectively.

(a) Prove that U; @ Us is a subspace of V] @& V5.

(b) Show that
(Vl S7) VQ)/(U1 S5 Uz) ~ <V1/U1) s>, (VQ/Uz)

4. Let V,W be finite dimensional vector space such that dim(V') = n, dim(W) =m
and let 3, 5’ be an order basis of V| W, respectively. Suppose that T': V — W is a
linear transformation and let 4 [Tz be the representative matrix of 7" with respect

to B, 5.

(a) Show that C'(z[T]s) (the column space of z[T']g) is isomorphic to Im(7") and
prove the following are equivalent:
i. T"is onto

ii. There exists a linear transformation 7" : W — V such that T o T” is the
identity map of W.



iii. There exists an n x m matrix A such that z[T]s - A = I,,, (where I, is
the m x m identity matrix).

iv. The rank of z[T]s is m.
(b) Show that N(gz[T]|s) (the null space of z[T]s) is isomorphic to Ker(T") and
prove the following are equivalent:
i. T'is one-to-one

ii. There exists a linear transformation 7" : W — V such that 7" o T is the
identity map of V.

iii. There exists an n x m matrix B such that B - [Tz = I,,.
iv. The rank of z[T]z is n.

5. For a vector space V over F, let V* = L(V, F) be the set of linear transformations

from V to F (called the dual space of V). Let 8 = (v1,...,v,) be an ordered basis

of V and € = (1) be the standard basis of F. For every v;, i = 1,...,n, consider
. : : e 1, ifi=y;
v} € V*, the unique linear transformation satisfying v;(v;) = { 0’ &z y :;.’ For

veV,writev=cvy+ -+, vy, withc; € F. Let vi =c¢vi + -+ + ¢, V).

(a) For v.= ¢;vy + -+ + ¢, vy, find the representative matrix of v* € V* with
respect to [, €.

(b) Prove that % : V' — V* defined by *(v) = v*,Vv € V is a linear transforma-
tion. Furthermore, prove that x : V' — V* is an isomorphism.

(¢) Show that {v7,...,v:} is a basis of V* (this is called a dual basis). Consider
p* = (v§,...,v}) as an ordered basis of V*. Find the representative matrix

of x : V — V* with respect to 3, 5*

. Continuing Exercise 5, let W be a vector space over F with an ordered basis
v = (Wi,...,W,,) and let v* be the ordered dual basis (wj,...,w ) of W*. For
W = W1 + -+ + Wy, with ¢; € F, let w* = cqw] + -+ 4+ ¢,,w},,. Consider a
linear transformation 7' : V' — W and let ,[T]g be the representative matrix of T

with respective to (3, 7.

(a) Consider the map 7" : V* — W* defined by T"(v*) = T'(v)*,Vv* € V*. Prove
that 7" is a linear transformation.

(b) Find .«[T"]s (the representative matrix of 7" with respective to §*,~v*) by
using ~[17s.

(c) Consider the map 7% : W* — V* defined by T*(f) = fo T,V f € W*. Prove

that T™ is a linear transformation.

(d) Let ([w*], be the representative matrix of w* € W* with respect to v, e. Find
the representative matrix of 7%(w*) € V* with respective to 3,€ by using
(75 and fwl,.

(e) Find g-[T*],~ (the representative matrix of 7™ with respective to v*, 5*), by
using ~[717]s.

. * (This exercise is more challenging) Continuing Exercise 6, consider the linear
transformation 7' : V' — W and its dual T : W* — V* defined by T*(f) =
foT,Vf e W* Let S = {wy,...,w,.} be a basis of Im(7T). Extending S to

an order basis v = (Wy,...,W,, ..., W,,) and let v* = (wi,...,w’, ..., w}) the

Ty



ordered dual basis of W*. Let [ be an ordered basis of V' and * the ordered dual
basis of V'*.

(a) Show that Ker(7T*) = {f € W* | Im(T") C Ker(f)}.

(b) Prove that {w;,,,...,w;,} is a basis of Ker(7™) and show that

m = dim(Im(7)) 4+ dim(Ker(7™)).

(c) Prove that dim(Im(7)) = dim(Im(7*)) and show that the rank of [Tz is
equal to the rank of g«[T"],«.

(d) Using the result of Exercise 6(e), show that for any matrix A, the rank of A
is equal to the rank of its transpose AT (this is equivalent to the dimension
of the column space of A is equal to the dimension of the row space of A).

(e) Use results in Exercise 4 to show that 7" is onto if and only if 7* is one-to-one
and show that 7" is one-to-one if and only if 7™ is onto.



3 Linear Operator

In this set of exercises, we let V be a finite dimensional vector space, £(V') be the vector
space of F-linear operator and M, (F") be the vector space of n x n matrices over F.

For an ordered basis § of V' and a linear operator T' : V' — V., let [T]z be the
representative matrix of 7" with respect to 5 and x7(x), ur(x) be the characteristic and
minimal polynomials of T', respectively.

1. For T}, Ty € L(V), define the “multiplication” of Ty, Ty by T} o Ts.

(a) Prove that under this multiplication and the original addition, £(V') is a ring.

(b) For an ordered basis § of V, let ® : L(V) — M, (F) be the linear transfor-
mation defined by ®(T") = [T]g. Prove that & is a ring Isomorphism.

2. Determinant the characteristic and minimal polynomials of each of the following

matrices:
1 2 3 1 0 3 1 0 1 1 -1 0 0 0 2
o12¢,{o1roy},fo201],{1 0 1 |,{10 -1
0 0 1 0 0 1 1 01 0 1 1 01 1

3. Suppose that T' € L(V) and p(z) is an irreducible polynomial in F[z]| such that
p(T) is not one-to-one. Prove that p(x) | xr(x) and p(z) | pr(z).

4. Suppose that T' € L(V) and p(x), q(x) € F|x] are relatively prime.

(a) Prove that Im(p(7T")) + Im(q(T)) = V.

(b) Prove that Ker(p(7")) N Ker(¢(T)) = {O}.

(c) Suppose that pur(x) = p(x)g(x). Prove that Ker(p(7)) = Im(q(7")) and hence
show

V =Ker(p(T)) @ Im(p(T)) and V = Im(p(T)) ® Im(q(T)).

5. For each of the following matrix A, (using its minimal polynomial found in 2) find
an invertible matrix P so that P~ - A . P is a block diagonal matrix.

12 3 10 3 101 1 -1 0
o12],lotrol,lo20],[1 0 1
00 1 001 101 0 1 1

6. Suppose that T' € L(V) and x7(z) = p1(z)° - - pe()%*, pr(z) = pr(x)™ - - pp(a)™
where ¢;, m; € N and p;(z),. .., pp(z) are distinct monic irreducible polynomials.
(a) Show that dim(Ker(p;(T7)°™)) = ¢; deg(pi(z)),¥Vi=1,... k.
(b) Prove that Ker(py (7)) = Im(pa(T)°™2 o - - - o pp(T")°™*).
(c) Prove that Ker(p;(T)°™) = ker(p;(T)°™),¥Y'm > m,.
7. Suppose that T' € L(V) and V = U & W, where U, W are T-invariant. Consider
amap 7y : V — V defined by my(v) =u, if v=u+w withu e Uyw e W.
(a) Show that 7y is a linear transformation and find Im(7y ), Ker(my).
(b) Prove that 7y o T =T o my.

(c) Suppose that ur(x) = f(x)g(x) with f(z), g(z) € F|x] relatively prime. Sup-
pose further that Ker(f(7)) = U and Ker(g(7)) = W. Prove that there
exists h(z) € F[z] such that 7y = h(T).



4 Form Reduction

In this set of exercises, for a given square matrix A, x 4(z) is the characteristic polynomial
of A and p4(z) is the minimal polynomials of A. For a given F-linear operator 7' : V —
V and for v € V| C} is the T-cyclic space spanned by v.

cosf) —sinf
sinf  cosf
eigenvalues of A in C and find its corresponding eigenspace.

a b
2. LetA—<C d

1. Let 8 € R and consider A = ( ) as a matrix over C. Find the

) € My(F) with b +# 0.

(a) Suppose that A € F'is an eigenvalue of A. Prove that ( i ) is an eigenvector

of A.
(b) Suppose that A1, Ay are distinct eigenvalues of A. Let P = ( ;\)1 /\bQ ) Show
that P~'- A - P is a diagonal matrix.
3. Let A€ M,(F) and X € F is an eigenvalue of A.

(a) Suppose that A is invertible. Prove that A~! is an eigenvalue of A.
(b) Let f(z) € Flz]. Prove that f()) is an eigenvalue of f(A).

4. Suppose that A € M, (R) is diagonalizable.

(a) Suppose that A is invertible. Prove that A™! is also diagonalizable.
(b) Prove that there exists B € M, (R) such that B3 = A.

5. Let T1,T5 be linear operators of P»(R) where
Ti(ax® + bz + ¢) = (=3a + b — ¢)z* + (—Ta + 5b — ¢)z + (—6a + 6b — 2¢),
Ty(ax® +bx +¢) = (a — 3b+ 3c)x* + (3a — 5b + 3c)x + (6a — 6b + 4c).

Which operator is diagonalizable and find an ordered basis § of P»(R) so that its
representative matrix with respect to § is a diagonal matrix.

A0 00
1 A 00 .
6. Let A = 01 x o0 |€ M,(F). Suppose that r,s,t are nonzero. Find an
00 1 A
A0 00
i . . _1 r A 0 0
invertible matrix P € M,(F') such that P~'- A.- P = 0 s A0
00 t A

7. Find the Jordan form J of the following matrix A and find an invertible P such
that P~'-A-P = J.

1 8 6 4 0
o 1 0 0 0
A= 0 1 2 1 0
0 -1 -1 0 1
0 -5 -4 -3 -2



8.

10.

11.

12.

13.

14.
15.

16.

17.

Suppose that A, B are square matrices over F'. For the following given character-
istic polynomials, find all the possible minimal polynomials of A and B and find
all the possible Jordan forms for the corresponding minimal polynomial.

(a) xa(z) = (x =)
(b) xB(x) = (x — A\)*(x — X2)3, where \; # Xo.

Let A, B be square matrices over F with xa(z) = xg(z) = (x — A\)*(x — Xo)?
where A; # Ao, Suppose further that pa(x) = pp(z). Prove A and B are similar.

Consider the following nilpotent matrices

000 1 0O0O 000 1 0O0O0
000 O 0O0O0O 100 0 00O
010 0 0O0O 000 0 O0O0O0
A= 000 O OO0OO0O], B=]1000 0 000
000 0 01O 010 0 010
100 0 001 000 0 O0O0T1
000 -1002P0 000 -1000

Show that A and B are not similar.

Let u,w € V suppose that the T-annihilators pu,(z) and pw(x) are relatively
prime. Let v=u+ w.

(a) Show that Cy, N Cy = {Oy}.
(b) Prove that py(2) = fiu(®)pw(2).
(¢) Show that C, = Cy & Cy.

Let u,w € V and suppose that C, NCy = {Oy }. Show that C, @ Cy, is a T-cyclic
space if and only if pu,(x) and pyw () are relatively prime.

Prove that there exists a cyclic decomposition V' = Cy, ®Cy, @ - - - B C}, such that

Prvir () | pv, () for alld € {1,..., k—1}. (Definition : (piv, (), thvs (), - - -, fiv, (7))
is called the invariant factors of T.)

Prove the invariant factors of 71" is unique.

Let (piy, (), fiy, (), ..., iy, (x)) be the invariant factors of T'. Prove that
X1 (%) = fvy (2)pny (2) - pry (2) - and (@) = g, ().

For two F-linear operators T : V. — V and T : V. — V, prove that T and T’
have the same rational form (or classical form) if and only if they have the same
invariant factors.

Suppose that ]:i is a field extension of F'. For A € M,,(F), we can consider A as a
matrix in M, (F).

(a) Suppose that v € F" with py(z) = p(x)™ where p(z) is a monic irreducible
polynomial in F[z]. Suppose that p(z) = ¢ ()™ ---q(x)™, where ¢(z)
are distinct monic irreducible polynomial in F[z]. Prove that there exist
Vi,...,V] € F" such that C, = Cy, @--- @ (Y, as a vector space over F and

pvi (@) = gi)™™



(b) Let (pi(x)™, ... p(x)™) be the elementary divisors of A as matrix in M, (F)
(pi(x) not necessary distinct). Suppose that p;(x) = g;1(x)™ - - - qig, (2)"4,

where ¢; j(x) are distinct monic irreducible polynomial in F[z]. Prove that

(p171(x)m1n1717 <.y P (‘r)mlnl’ll) <oy P (:E)mtntJ? - Py (x)mtnt’lt)

is the elementary divisors of A as matrix in M, (F).

(c) Show that A has the same invariant factors no matter considering A as a
matrix in M, (F') or considering A as a matrix in M, (F).

(d) Prove that if A, B € M, (F) and A ~ B in M, (F), then A ~ B in M, (F).



Operators on Inner Product Space

1. Let V' be an inner product space over C and let W be a subspace of V. Prove that
v € Wt if and only if (v, w) + (w,v) < (w,w), Vw € W.

2. Let W be a subspace of a finite dimensional inner product space V. Prove that
for every v € V, there exists a unique u € W+ such that u = v in V/W.

3. Let V be a vector space (not necessary being finite dimensional) and let U, W be
subspaces of V' such that V =U & W.

(a) Prove that (V/W)* is isomorphic to W?.
(b) Prove that V*/W?9 is isomorphic to W*.

(c) Prove that V* = Im(my) @ Im(ngy). (Where my,p @V — V* is the
transpose of Ty 1 V = V)

4. Let V, W be finite dimensional vector spaces over the same field F' and let L(V, W)
be the vector space of F-linear transformations from V to W.

(a) Prove that the mapping ¢ : L(V, W) — L(W*,V*) given by ¢(T) = T* is an
isomorphism.

(b) Suppose that V, W are inner product spaces. Prove that the mapping ¢ :
LV, W) — L(W,V) given by ¢(T) = T* is a conjugate isomorphism.

5. For a given field F', let M,,«,(F') be the vector space of m x n matrices over F.
For A € My, (F), let tr(A) =>"" | a;;, where a;; is the (i, 7)-th entry of A.

(a) For the case FF' = C or F = R, consider (A, B) = tr(B*A),V A, B € M,xn(F).
Prove (,) is an inner product on M, ., (F).

(b) For an arbitrary field F, given B € M,,x,(F'), consider ¢p : Myxp, — F
defined by ¢p(A) = tr(B*A), VA € Myxn(F). Prove that ¢p € (Myxn(F))*
(i.e. ¢p is a linear functional on M,, ., (F)). Prove also that for every linear
functional f € (M,,xn(F))*, there exists a unique B € M, (F') such that
[ =¢5.

(c) For the case F' = C or F = R, consider the inner product on M,,y,(F) as in
(a). For every C' € Mp«i(F), let To : Mixn(F) — Mpyn(F) be the linear
transformation given by Tr(A) = CA, VA € Myx,,(F). Find the adjoint T
of Tc.

6. Let V be a finite dimensional inner product space over C. For all u,w € V with
u# Oy and w # Oy, let Tyw : V — V be given by Ty w(v) = (v,w)u, Vv e V.
(a) Prove that Ty is a linear operator and Ty y 0Ty w = || V|[*Tuw, VU, v,w € V.

(b) Prove that Ty |, = Ty u.

(c) Prove that Ty is a normal operator if and only if there exists A € C such
that u = Aw.

(d) Prove that T, is a self-adjoint operator if and only if there exists A € R
such that u = \w.

7. Let V be a finite dimensional inner product space over F and let T': V' — V be a
linear operator.



(a) Suppose F' = C. Prove that T is self-adjoint if and only if (T'(v),v) € R,
VveV.

(b) Suppose that F' = R and T is self-adjoint. Prove that 7' = O if and only if
(I'(v),v)=0,VveV.

(c) Suppose F' = R. Prove that T is skew-adjoint if and only if (T'(v),v) = 0,
VvelV.

(d) Suppose F' = R. Prove that there is a unique self-adjoint operator 7} : V. — V/
such that (T'(v),v) = (Ti(v),v), Vv e V.

8. Let V be a finite dimensional inner product space over F and let T': V' — V be a
self-adjoint operator.
(a) Prove the following are equivalent.
i. (T(v),v)>0,VvevV.
ii. Every eigenvalue of T' is greater than or equal to 0.
iii. There is a self-adjoint operator Ty : V' — V such that T7% =T
iv. There is a linear operator 75 : V' — V such that 75 o T5 = T.

(Definition: A self-adjoint operator T : V' — V is said to be positive if it
satisfies (T'(v),v) > 0,Vv e V.)

(b) Prove the following are equivalent.
i. (T'(v),v)>0,VveV\{Oy}.
ii. Every eigenvalue of T is greater than 0.
iii. There is a self-adjoint isomorphism 77 : V' — V such that 772 = T.
iv. There is an isomorphism 75 : V' — V such that 75 oT5 =T.

(Definition: A self-adjoint operator T': V' — V is said to be positive definite
if it satisfies (T'(v),v) >0, Vv € V' \ {Oy}.)
9. Let V be a finite dimensional vector space over F' with a given inner product ().
(a) Prove that if ((,)) is another inner product on V', then there is a unique
positive definite 7" : V' — V such that ((v,w)) = (T'(v),w), Vv,w € V.

(b) Let {vy,...,v,} be a basis of V. Prove there is a unique self-adjoint n x n
matrix A such that if v=xz;vi+---+2,v, and w = y;v; +-- -+ y,V,, then

Y1
(viw)y= (a1 -+ x, JA| :

Yn

Prove also that A is a positive definite matrix (i.e., every eigenvalue of A is
positive.)

10. Let V be a finite dimensional inner product space and let T': V' — V be a normal
operator.

(a) Prove that if T is nilpotent, then 7" = O.
(b) Prove that if 7°"*! = T°" for some n € N, then T is a self-adjoint operator.

(c) Prove that T is an orthogonal projection if and only if 7" is a projection.
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