
Exercise

1 Vector Spaces

In this set of exercises, V is always a vector space over a field F .

1. Let U be a subspace of V . For v ∈ V define v + U = {v + u | u ∈ U}.

(a) Prove that v + U is a subspace of V if and only if v ∈ U .

(b) For v,w ∈ V , prove the following are equivalent:

i. (v + U) ∩ (w + U) ̸= ∅.
ii. v −w ∈ U .

iii. v + U = w + U .

2. Let S, U,W be subspaces of V .

(a) Show that S ∩ (U +W ) ⊇ (S ∩ U) + (S ∩W ).

(b) Find an example that S ∩ (U +W ) = (S ∩ U) + (S ∩W ) is not true.

(c) Show that if W ⊆ S, then S ∩ (U +W ) = (S ∩ U) + (S ∩W ).

(d) Prove S ∩ (U + (S ∩W )) = (S ∩ U) + (S ∩W ).

3. Let Pn(F ) = {anxn+ · · ·+a1x+a0 | ai ∈ F} and let F [x] be the set of polynomials
with coefficients in F .

(a) Let f0(x) ̸= 0, f1(x), . . . , fn(x) ∈ Pn(F ) with deg(fi(x)) = i, for i = 0, . . . , n.
Prove that {f0(x), f1(x), . . . , fn(x)} is a basis of Pn(F ).

(b) Show that F [x] is a vector space over F , but is not a finite dimensional vector
space over F .

4. Let V be a finite dimensional vector space over F and let U,W be subspaces of V .

(a) Show that max{dim(U), dim(W )} ≤ dim(U +W ) ≤ dim(U) + dim(W ).

(b) Prove that dim(U +W ) + dim(U ∩W ) = dim(U) + dim(W ).

(c) Suppose dim(V ) = 8, dim(U) = 7 and dim(W ) = 5. Suppose further that
W * U . Show that dim(U ∩W ) = 4.

5. Let F ′ be a subfield of F .

(a) Prove that F is a vector space over F ′.

(b) Suppose that F is finite dimensional over F ′ and V is a finite dimensional
vector space over F . Prove that V is a finite dimensional vector space over
F ′ and dimF ′(V ) = dimF (V ) dimF ′(F ).

6. Let W be a subspace of V and consider the quotient space V/W with a subspace

Ũ .

(a) Let U = {u ∈ V | u ∈ Ũ}. Show that U is a subspace of V and W ⊆ U .

(b) Prove U/W = Ũ .
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2 Linear Transformation

1. Let T : V → W be a linear transformation. Suppose that dim(V ) ≥ 2 and
dim(W ) ≥ 2.

(a) Prove the following are equivalent:

i. T is one-to-one.

ii. T−1(T ({OV })) = {OV }.
iii. For every nontrivial subspace V ′ of V , T−1(T (V ′)) = V ′.

(b) Prove the following are equivalent:

i. T is onto.

ii. T (T−1(W )) = W .

iii. For every nontrivial subspace W ′ of W , T (T−1(W ′)) = W ′.

2. Let T1 : V → W and T2 : W → U be linear transformations. Consider the
composition T2 ◦ T1 : V → U .

(a) Show that Ker(T2 ◦ T1) = T−1
1 (Ker(T2)).

(b) Prove that T2 ◦ T1 is one-to-one if and only if T1 is one-to-one and

Ker(T2) ∩ Im(T1) = {OW}.

(c) Show that Im(T2 ◦ T1) = T2(Im(T1)).

(d) Prove that T2 ◦ T1 is onto if and only if T2 is onto and

Ker(T2) + Im(T1) = W.

(e) Suppose that W is finite dimensional. Prove

dim(Im(T1))+dim(Im(T2))−dim(W ) ≤ dim(Im(T2◦T1)) ≤ min{dim(Im(T1)), dim(Im(T2))}.

(Hint: Consider the restriction map T2|Im(T1) : Im(T1) → U for the first
inequality.)

3. Suppose that V1, V2 are vector spaces and U1, U2 are subspaces of V1, V2 respectively.

(a) Prove that U1 ⊕ U2 is a subspace of V1 ⊕ V2.

(b) Show that
(V1 ⊕ V2)/(U1 ⊕ U2) ≃ (V1/U1)⊕ (V2/U2).

4. Let V,W be finite dimensional vector space such that dim(V ) = n, dim(W ) = m
and let β, β′ be an order basis of V,W , respectively. Suppose that T : V → W is a
linear transformation and let β′ [T ]β be the representative matrix of T with respect
to β, β′.

(a) Show that C(β′ [T ]β) (the column space of β′ [T ]β) is isomorphic to Im(T ) and
prove the following are equivalent:

i. T is onto

ii. There exists a linear transformation T ′ : W → V such that T ◦ T ′ is the
identity map of W .
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iii. There exists an n ×m matrix A such that β′ [T ]β · A = Im (where Im is
the m×m identity matrix).

iv. The rank of β′ [T ]β is m.

(b) Show that N(β′ [T ]β) (the null space of β′ [T ]β) is isomorphic to Ker(T ) and
prove the following are equivalent:

i. T is one-to-one

ii. There exists a linear transformation T ′′ : W → V such that T ′′ ◦ T is the
identity map of V .

iii. There exists an n×m matrix B such that B · β′ [T ]β = In.

iv. The rank of β′ [T ]β is n.

5. For a vector space V over F , let V ∗ = L(V, F ) be the set of linear transformations
from V to F (called the dual space of V ). Let β = (v1, . . . ,vn) be an ordered basis
of V and ϵ = (1) be the standard basis of F . For every vi, i = 1, . . . , n, consider

v∗
i ∈ V ∗, the unique linear transformation satisfying v∗

i (vj) =

{
1, if i = j;
0, if i ̸= j.

For

v ∈ V , write v = c1v1 + · · ·+ cnvn, with ci ∈ F . Let v∗ = c1v
∗
1 + · · ·+ cnv

∗
n.

(a) For v = c1v1 + · · · + cnvn, find the representative matrix of v∗ ∈ V ∗ with
respect to β, ϵ.

(b) Prove that ∗ : V → V ∗, defined by ∗(v) = v∗,∀v ∈ V is a linear transforma-
tion. Furthermore, prove that ∗ : V → V ∗ is an isomorphism.

(c) Show that {v∗
1, . . . ,v

∗
n} is a basis of V ∗ (this is called a dual basis). Consider

β∗ = (v∗
1, . . . ,v

∗
n) as an ordered basis of V ∗. Find the representative matrix

of ∗ : V → V ∗ with respect to β, β∗

6. Continuing Exercise 5, let W be a vector space over F with an ordered basis
γ = (w1, . . . ,wm) and let γ∗ be the ordered dual basis (w∗

1, . . . ,w
∗
m) of W

∗. For
w = c1w1 + · · · + cmwm, with ci ∈ F , let w∗ = c1w

∗
1 + · · · + cmw

∗
m. Consider a

linear transformation T : V → W and let γ[T ]β be the representative matrix of T
with respective to β, γ.

(a) Consider the map T ′ : V ∗ → W ∗ defined by T ′(v∗) = T (v)∗, ∀v∗ ∈ V ∗. Prove
that T ′ is a linear transformation.

(b) Find γ∗ [T ′]β∗ (the representative matrix of T ′ with respective to β∗, γ∗) by
using γ[T ]β.

(c) Consider the map T ∗ : W ∗ → V ∗ defined by T ∗(f) = f ◦ T, ∀ f ∈ W ∗. Prove
that T ∗ is a linear transformation.

(d) Let ϵ[w
∗]γ be the representative matrix of w∗ ∈ W ∗ with respect to γ, ϵ. Find

the representative matrix of T ∗(w∗) ∈ V ∗ with respective to β, ϵ by using

γ[T ]β and ϵ[w
∗]γ.

(e) Find β∗ [T ∗]γ∗ (the representative matrix of T ∗ with respective to γ∗, β∗), by
using γ[T ]β.

7. * (This exercise is more challenging) Continuing Exercise 6, consider the linear
transformation T : V → W and its dual T ∗ : W ∗ → V ∗, defined by T ∗(f) =
f ◦ T, ∀ f ∈ W ∗. Let S = {w1, . . . ,wr} be a basis of Im(T ). Extending S to
an order basis γ = (w1, . . . ,wr, . . . ,wm) and let γ∗ = (w∗

1, . . . ,w
∗
r , . . . ,w

∗
m) the
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ordered dual basis of W ∗. Let β be an ordered basis of V and β∗ the ordered dual
basis of V ∗.

(a) Show that Ker(T ∗) = {f ∈ W ∗ | Im(T ) ⊆ Ker(f)}.
(b) Prove that {w∗

r+1, . . . ,w
∗
m} is a basis of Ker(T ∗) and show that

m = dim(Im(T )) + dim(Ker(T ∗)).

(c) Prove that dim(Im(T )) = dim(Im(T ∗)) and show that the rank of γ[T ]β is
equal to the rank of β∗ [T ∗]γ∗ .

(d) Using the result of Exercise 6(e), show that for any matrix A, the rank of A
is equal to the rank of its transpose AT (this is equivalent to the dimension
of the column space of A is equal to the dimension of the row space of A).

(e) Use results in Exercise 4 to show that T is onto if and only if T ∗ is one-to-one
and show that T is one-to-one if and only if T ∗ is onto.
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3 Linear Operator

In this set of exercises, we let V be a finite dimensional vector space, L(V ) be the vector
space of F -linear operator and Mn(F ) be the vector space of n× n matrices over F .

For an ordered basis β of V and a linear operator T : V → V , let [T ]β be the
representative matrix of T with respect to β and χT (x), µT (x) be the characteristic and
minimal polynomials of T , respectively.

1. For T1, T2 ∈ L(V ), define the “multiplication” of T1, T2 by T1 ◦ T2.

(a) Prove that under this multiplication and the original addition, L(V ) is a ring.

(b) For an ordered basis β of V , let Φ : L(V ) → Mn(F ) be the linear transfor-
mation defined by Φ(T ) = [T ]β. Prove that Φ is a ring Isomorphism.

2. Determinant the characteristic and minimal polynomials of each of the following
matrices: 1 2 3

0 1 2
0 0 1

 ,

 1 0 3
0 1 0
0 0 1

 ,

 1 0 1
0 2 0
1 0 1

 ,

 1 −1 0
1 0 1
0 1 1

 ,

 0 0 2
1 0 −1
0 1 1

 .

3. Suppose that T ∈ L(V ) and p(x) is an irreducible polynomial in F [x] such that
p(T ) is not one-to-one. Prove that p(x) | χT (x) and p(x) | µT (x).

4. Suppose that T ∈ L(V ) and p(x), q(x) ∈ F [x] are relatively prime.

(a) Prove that Im(p(T )) + Im(q(T )) = V .

(b) Prove that Ker(p(T )) ∩Ker(q(T )) = {O}.
(c) Suppose that µT (x) = p(x)q(x). Prove that Ker(p(T )) = Im(q(T )) and hence

show

V = Ker(p(T ))⊕ Im(p(T )) and V = Im(p(T ))⊕ Im(q(T )).

5. For each of the following matrix A, (using its minimal polynomial found in 2) find
an invertible matrix P so that P−1 · A · P is a block diagonal matrix. 1 2 3

0 1 2
0 0 1

 ,

 1 0 3
0 1 0
0 0 1

 ,

 1 0 1
0 2 0
1 0 1

 ,

 1 −1 0
1 0 1
0 1 1

 .

6. Suppose that T ∈ L(V ) and χT (x) = p1(x)
c1 · · · pk(x)ck , µT (x) = p1(x)

m1 · · · pk(x)mk

where ci,mi ∈ N and p1(x), . . . , pk(x) are distinct monic irreducible polynomials.

(a) Show that dim(Ker(pi(T )
◦mi)) = ci deg(pi(x)),∀ i = 1, . . . , k.

(b) Prove that Ker(p1(T )
◦m1) = Im(p2(T )

◦m2 ◦ · · · ◦ pk(T )◦mk).

(c) Prove that Ker(pi(T )
◦mi) = ker(pi(T )

◦m),∀m > mi.

7. Suppose that T ∈ L(V ) and V = U ⊕W , where U,W are T -invariant. Consider
a map πU : V → V defined by πU(v) = u, if v = u+w with u ∈ U,w ∈ W .

(a) Show that πU is a linear transformation and find Im(πU),Ker(πU).

(b) Prove that πU ◦ T = T ◦ πU .
(c) Suppose that µT (x) = f(x)g(x) with f(x), g(x) ∈ F [x] relatively prime. Sup-

pose further that Ker(f(T )) = U and Ker(g(T )) = W . Prove that there
exists h(x) ∈ F [x] such that πU = h(T ).
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4 Form Reduction

In this set of exercises, for a given square matrix A, χA(x) is the characteristic polynomial
of A and µA(x) is the minimal polynomials of A. For a given F -linear operator T : V →
V and for v ∈ V , Cv is the T -cyclic space spanned by v.

1. Let θ ∈ R and consider A =

(
cos θ − sin θ
sin θ cos θ

)
as a matrix over C. Find the

eigenvalues of A in C and find its corresponding eigenspace.

2. Let A =

(
a b
c d

)
∈M2(F ) with b ̸= 0.

(a) Suppose that λ ∈ F is an eigenvalue of A. Prove that

(
b
λ

)
is an eigenvector

of A.

(b) Suppose that λ1, λ2 are distinct eigenvalues of A. Let P =

(
b b
λ1 λ2

)
. Show

that P−1 · A · P is a diagonal matrix.

3. Let A ∈Mn(F ) and λ ∈ F is an eigenvalue of A.

(a) Suppose that A is invertible. Prove that λ−1 is an eigenvalue of A.

(b) Let f(x) ∈ F [x]. Prove that f(λ) is an eigenvalue of f(A).

4. Suppose that A ∈Mn(R) is diagonalizable.

(a) Suppose that A is invertible. Prove that A−1 is also diagonalizable.

(b) Prove that there exists B ∈Mn(R) such that B3 = A.

5. Let T1, T2 be linear operators of P2(R) where

T1(ax
2 + bx+ c) = (−3a+ b− c)x2 + (−7a+ 5b− c)x+ (−6a+ 6b− 2c),

T2(ax
2 + bx+ c) = (a− 3b+ 3c)x2 + (3a− 5b+ 3c)x+ (6a− 6b+ 4c).

Which operator is diagonalizable and find an ordered basis β of P2(R) so that its
representative matrix with respect to β is a diagonal matrix.

6. Let A =


λ 0 0 0
1 λ 0 0
0 1 λ 0
0 0 1 λ

 ∈ M4(F ). Suppose that r, s, t are nonzero. Find an

invertible matrix P ∈M4(F ) such that P−1 · A · P =


λ 0 0 0
r λ 0 0
0 s λ 0
0 0 t λ

 .

7. Find the Jordan form J of the following matrix A and find an invertible P such
that P−1 · A · P = J .

A =


1 8 6 4 0
0 1 0 0 0
0 1 2 1 0
0 −1 −1 0 1
0 −5 −4 −3 −2

 .
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8. Suppose that A,B are square matrices over F . For the following given character-
istic polynomials, find all the possible minimal polynomials of A and B and find
all the possible Jordan forms for the corresponding minimal polynomial.

(a) χA(x) = (x− λ)5.

(b) χB(x) = (x− λ1)
2(x− λ2)

3, where λ1 ̸= λ2.

9. Let A,B be square matrices over F with χA(x) = χB(x) = (x − λ1)
2(x − λ2)

3

where λ1 ̸= λ2. Suppose further that µA(x) = µB(x). Prove A and B are similar.

10. Consider the following nilpotent matrices

A =



0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
1 0 0 0 0 0 1
0 0 0 −1 0 0 0


, B =



0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 −1 0 0 0


.

Show that A and B are not similar.

11. Let u,w ∈ V suppose that the T -annihilators µu(x) and µw(x) are relatively
prime. Let v = u+w.

(a) Show that Cu ∩ Cw = {OV }.
(b) Prove that µv(x) = µu(x)µw(x).

(c) Show that Cv = Cu ⊕ Cw.

12. Let u,w ∈ V and suppose that Cu∩Cw = {OV }. Show that Cu⊕Cw is a T -cyclic
space if and only if µu(x) and µw(x) are relatively prime.

13. Prove that there exists a cyclic decomposition V = Cv1 ⊕Cv2 ⊕· · ·⊕Cvk
such that

µvi+1
(x) | µvi

(x) for all i ∈ {1, . . . , k−1}. (Definition : (µv1(x), µv2(x), . . . , µvk
(x))

is called the invariant factors of T .)

14. Prove the invariant factors of T is unique.

15. Let (µv1(x), µv2(x), . . . , µvk
(x)) be the invariant factors of T . Prove that

χT (x) = µv1(x)µv2(x) · · ·µvk
(x) and µT (x) = µv1(x).

16. For two F -linear operators T : V → V and T ′ : V → V , prove that T and T ′

have the same rational form (or classical form) if and only if they have the same
invariant factors.

17. Suppose that F̃ is a field extension of F . For A ∈Mn(F ), we can consider A as a
matrix in Mn(F̃ ).

(a) Suppose that v ∈ F n with µv(x) = p(x)m where p(x) is a monic irreducible
polynomial in F [x]. Suppose that p(x) = q1(x)

n1 · · · ql(x)nl , where qi(x)
are distinct monic irreducible polynomial in F̃ [x]. Prove that there exist
v1, . . . ,vl ∈ F̃ n such that Cv = Cv1 ⊕ · · · ⊕Cvl

as a vector space over F̃ and
µvi

(x) = qi(x)
mni .
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(b) Let (p1(x)
m1 , . . . , pt(x)

mt) be the elementary divisors of A as matrix inMn(F )
(pi(x) not necessary distinct). Suppose that pi(x) = qi,1(x)

ni,1 · · · qi,li(x)ni,li ,
where qi,j(x) are distinct monic irreducible polynomial in F̃ [x]. Prove that

(p1,1(x)
m1n1,1 , . . . , p1,l1(x)

m1n1,l1 , . . . , pt,1(x)
mtnt,1 , . . . , pt,lt(x)

mtnt,lt )

is the elementary divisors of A as matrix in Mn(F̃ ).

(c) Show that A has the same invariant factors no matter considering A as a
matrix in Mn(F ) or considering A as a matrix in Mn(F̃ ).

(d) Prove that if A,B ∈Mn(F ) and A ∼ B in Mn(F̃ ), then A ∼ B in Mn(F ).
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5 Operators on Inner Product Space

1. Let V be an inner product space over C and let W be a subspace of V . Prove that
v ∈ W⊥ if and only if ⟨v,w⟩+ ⟨w,v⟩ ≤ ⟨w,w⟩, ∀w ∈ W .

2. Let W be a subspace of a finite dimensional inner product space V . Prove that
for every v ∈ V , there exists a unique u ∈ W⊥ such that u = v in V/W .

3. Let V be a vector space (not necessary being finite dimensional) and let U,W be
subspaces of V such that V = U ⊕W .

(a) Prove that (V/W )∗ is isomorphic to W 0.

(b) Prove that V ∗/W 0 is isomorphic to W ∗.

(c) Prove that V ∗ = Im(πt
W,U) ⊕ Im(πt

U,W ). (Where πt
W,U : V ∗ → V ∗ is the

transpose of πW,U : V → V .)

4. Let V,W be finite dimensional vector spaces over the same field F and let L(V,W )
be the vector space of F -linear transformations from V to W .

(a) Prove that the mapping ψ : L(V,W ) → L(W ∗, V ∗) given by ψ(T ) = T t is an
isomorphism.

(b) Suppose that V,W are inner product spaces. Prove that the mapping φ :
L(V,W ) → L(W,V ) given by φ(T ) = T ∗ is a conjugate isomorphism.

5. For a given field F , let Mm×n(F ) be the vector space of m × n matrices over F .
For A ∈Mn×n(F ), let tr(A) =

∑n
i=1 ai,i, where ai,i is the (i, i)-th entry of A.

(a) For the case F = C or F = R, consider ⟨A,B⟩ = tr(B∗A), ∀A,B ∈Mm×n(F ).
Prove ⟨ , ⟩ is an inner product on Mm×n(F ).

(b) For an arbitrary field F , given B ∈ Mm×n(F ), consider ϕB : Mm×n → F
defined by ϕB(A) = tr(B∗A), ∀A ∈Mm×n(F ). Prove that ϕB ∈ (Mm×n(F ))

∗

(i.e. ϕB is a linear functional on Mm×n(F )). Prove also that for every linear
functional f ∈ (Mm×n(F ))

∗, there exists a unique B ∈ Mm×n(F ) such that
f = ϕB.

(c) For the case F = C or F = R, consider the inner product on Mm×n(F ) as in
(a). For every C ∈ Mm×l(F ), let TC : Ml×n(F ) → Mm×n(F ) be the linear
transformation given by TC(A) = CA, ∀A ∈ Ml×n(F ). Find the adjoint T ∗

C

of TC .

6. Let V be a finite dimensional inner product space over C. For all u,w ∈ V with
u ̸= OV and w ̸= OV , let Tu,w : V → V be given by Tu,w(v) = ⟨v,w⟩u, ∀v ∈ V .

(a) Prove that Tu,w is a linear operator and Tu,v◦Tv,w = ∥v∥2Tu,w, ∀u,v,w ∈ V .

(b) Prove that T ∗
u,w = Tw,u.

(c) Prove that Tu,w is a normal operator if and only if there exists λ ∈ C such
that u = λw.

(d) Prove that Tu,w is a self-adjoint operator if and only if there exists λ ∈ R
such that u = λw.

7. Let V be a finite dimensional inner product space over F and let T : V → V be a
linear operator.
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(a) Suppose F = C. Prove that T is self-adjoint if and only if ⟨T (v),v⟩ ∈ R,
∀v ∈ V .

(b) Suppose that F = R and T is self-adjoint. Prove that T = O if and only if
⟨T (v),v⟩ = 0, ∀v ∈ V .

(c) Suppose F = R. Prove that T is skew-adjoint if and only if ⟨T (v),v⟩ = 0,
∀v ∈ V .

(d) Suppose F = R. Prove that there is a unique self-adjoint operator T1 : V → V
such that ⟨T (v),v⟩ = ⟨T1(v),v⟩, ∀v ∈ V .

8. Let V be a finite dimensional inner product space over F and let T : V → V be a
self-adjoint operator.

(a) Prove the following are equivalent.

i. ⟨T (v),v⟩ ≥ 0, ∀v ∈ V .

ii. Every eigenvalue of T is greater than or equal to 0.

iii. There is a self-adjoint operator T1 : V → V such that T ◦2
1 = T .

iv. There is a linear operator T2 : V → V such that T ∗
2 ◦ T2 = T .

(Definition: A self-adjoint operator T : V → V is said to be positive if it
satisfies ⟨T (v),v⟩ ≥ 0, ∀v ∈ V .)

(b) Prove the following are equivalent.

i. ⟨T (v),v⟩ > 0, ∀v ∈ V \ {OV }.
ii. Every eigenvalue of T is greater than 0.

iii. There is a self-adjoint isomorphism T1 : V → V such that T ◦2
1 = T .

iv. There is an isomorphism T2 : V → V such that T ∗
2 ◦ T2 = T .

(Definition: A self-adjoint operator T : V → V is said to be positive definite
if it satisfies ⟨T (v),v⟩ > 0, ∀v ∈ V \ {OV }.)

9. Let V be a finite dimensional vector space over F with a given inner product ⟨ , ⟩.

(a) Prove that if ⟨⟨ , ⟩⟩ is another inner product on V , then there is a unique
positive definite T : V → V such that ⟨⟨v,w⟩⟩ = ⟨T (v),w⟩, ∀v,w ∈ V .

(b) Let {v1, . . . ,vn} be a basis of V . Prove there is a unique self-adjoint n × n
matrix A such that if v = x1v1 + · · ·+ xnvn and w = y1v1 + · · ·+ ynvn, then

⟨v,w⟩ =
(
x1 · · · xn

)
A

 y1
...
yn

 .

Prove also that A is a positive definite matrix (i.e., every eigenvalue of A is
positive.)

10. Let V be a finite dimensional inner product space and let T : V → V be a normal
operator.

(a) Prove that if T is nilpotent, then T = O.

(b) Prove that if T ◦n+1 = T ◦n, for some n ∈ N, then T is a self-adjoint operator.

(c) Prove that T is an orthogonal projection if and only if T is a projection.
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