Exercises

1 Basic Logic

- 試分別在以下各小題,找出使之為 true statement 的所有可能整數 n (請不要只寫答案,盡量說明理由).
 - (a) $n \ge 3$ and n < 5.
 - (b) n > 3 or $n \le 5$.
 - (c) $n \ge 3$ and $n \le 3$.
 - (d) n > 3 or n < 3.
- 2. 在課堂上我們介紹了 $((P \land Q) \lor R) \sim ((P \lor R) \land (Q \lor R))$ 這稱為 distribution of disjunction over conjunction. 試利用 truth table 檢查以下的 distribution laws.
 - (a) $((P \land Q) \land R) \sim ((P \land R) \land (Q \land R))$, distribution of conjunction over conjunction.
 - (b) $((P \lor Q) \lor R) \sim ((P \lor R) \lor (Q \lor R))$, distribution of disjunction over disjunction.
 - (c) $((P \lor Q) \land R) \sim ((P \land R) \lor (Q \land R))$, distribution of conjunction over disjunction.
- 3. (Optional) 在課堂上我們提及當一個 statement $P \$ 為 T, 我們可以定它的值 p=1; 若為 F, 則定 p=0. 假設 P,Q 為 statement 且其值分別為 p,q.
 - (a) 試說明 $P \land Q$ 的值可表成 $p \times q$, 也可表成 min $\{p,q\}$.
 - (b) 試說明 $P \lor Q$ 的值可表成 $p+q-p \times q$, 也可表成 max $\{p,q\}$.
 - (c) 利用 truth table 以及 (a),(b) 的各種方法驗證 $(P \land P) \sim P$ 以及 $(P \lor P) \sim P$. 你覺得哪一種方法較好用?
 - (d) 利用 $P \land Q$ 和 $P \lor Q$ 的值可分別表成 $p \times q$ 和 $p + q p \times q$. 證明 $((P \land Q) \lor R) \sim ((P \lor R) \land (Q \lor R))$ 以及 $((P \lor Q) \land R) \sim ((P \land R) \lor (Q \land R))$.
 - (e) 利用當 $a,b,c \ge 0$ 時 max $\{a,b\} \times c = \max\{a \times c, b \times c\}$ (可嘗試證明看看), 證明 ($(P \lor Q) \land R$) ~ ($(P \land R) \lor (Q \land R)$).
- 4. 試依照指定方式解決以下問題。
 - (a) Negate $(P \Rightarrow Q) \Rightarrow P$ (寫出否定句,不需化簡)。
 - (b) 利用 $((P \land Q) \lor P) \sim P$ 說明 $\neg [(P \Rightarrow Q) \Rightarrow P]$ 和 $\neg P$ 是 logically equivalent.
 - (c) 敘述 Proposition 1.2.2 且利用它說明 $((P \Rightarrow Q) \Rightarrow P) \Leftrightarrow P$ 是一個 tautology.
- 5. 將下列的 statement forms, 僅利用 ¬ and ∨ 寫下與之等價的 (logically equivalent) statement forms.
 - (a) $P \Leftrightarrow \neg Q$.
 - (b) $(P \lor Q) \Rightarrow (P \land Q)$.

(c) $(P \Rightarrow Q) \lor (Q \Rightarrow P)$.

- 6. 我們會將 $(\neg P) \land (\neg Q)$ 縮寫成 $P \triangle Q$. 僅利用 \triangle 和 \neg 寫下與 $P \Rightarrow Q$ 等價的 statement forms.
- 7. 證明 if " $\exists y < 0, \forall x > 0, P(x, y)$ ", then " $\forall x > 0, \exists y < 0, P(x, y)$ ".
- 8. Find an example for P(x, y) so that the statement " $\forall x < 0, \exists y < 0, P(x, y)$ " is true, but the statement " $\exists y < 0, \forall x < 0, P(x, y)$ " is false.
- 9. Negate the statement: If $\forall x > 0$, $\exists y < 0$, $P(x) \land Q(y)$, then $\exists z \leq 0$, $R(x,z) \lor S(y,z)$.
- 10. Let *P* be the statement: If $x^2 3x + 2 < 0$, then 1.3 < x < 1.7.
 - (a) Write ¬*P*. (Hint: 注意在 if-then statement 中隱含的 " $\forall x$ ".)
 - (b) 說明 *P* 或 ¬*P* 哪一個是對的.

2 Methods of Proof

- 1. Using the indicated method to directly prove that if n is an integer, then $n^2 + 3n + 2$ is even.
 - (a) Factorize $n^2 + 3n + 2$. (因式分解)
 - (b) Divide n into 2 cases.
- 2. Suppose that a, b are integers. Let P be the statement: if $a \times b$ is even, then either a or b is even.
 - (a) Write the contrapositive statement of P.
 - (b) Prove P by using direct method (Hint: you can assume a is odd).
 - (c) Prove P by using contrapositive method.
- 3. Let Q be the statement: if a, b are positive integers, then $a^2 b^2 \neq 1$.
 - (a) Negate Q.
 - (b) Prove Q by using proof by cases (Hint: (1) a < b; (2) a = b; (3) a > b, and for (3) write a = b + k).
 - (c) Prove Q by using contradiction method.
- 4. You have a five points in the plane, not all colinear. Prove that there is a line passing through just two of these points. (平面上有不共線的 5 個點。證明存在一條線僅通過其中兩個點)
- 5. Given $a, b \in \mathbb{N}$ with b > 1, prove that if there exist $h, r \in \mathbb{Z}$ with $0 \le r < b$ such that a = bh + r, then h is unique and r is unique.

- 6. Use the pigeonhole principle to prove that no matter how 7 points are placed within an 8 by 9 rectangle, there will always be a pair whose distance is at most 5. (在 8×9的長方形中任點 7 個點,一定有兩個點其距離不大於 5)(Hint: $3^2 + 4^2 = 5^2$)
- 7. Prove the pigeonhole principle by mathematical induction.
- 8. Using (strong) mathematical induction to prove the following:
 - (a) If $a_1 = 1$ and $a_n = 2a_{n-1} + 1$, for $n \ge 2$, then $a_n = 2^n 1$ for all $n \in \mathbb{N}$.
 - (b) If $b_1 = 1$ and $b_n = n + \sum_{i=1}^{n-1} b_i$, for $n \ge 2$, then $b_n = 2^n 1$ for all $n \in \mathbb{N}$.

3 Set

1. Let

$$A = \{n \in \mathbb{N} \mid n^2 + 5\}, \quad B = \{n^2 + 5 \mid n \in \mathbb{N}\},$$
$$C = \{n \in \mathbb{N} \mid n^2 + 5 > 35\}, \quad D = \{n^2 + 5 > 35 \mid n \in \mathbb{N}\}.$$

- (a) Two of the expressions above describe sets. Find Them. (以上哪兩個是正確 集合表示?)
- (b) Write 3 elements for each of the two sets.
- (c) Is one of the set a subset of the other? Show your reasoning.
- 2. Let

$$S = \{n \in \mathbb{N} \mid 1 \le n \le 5\}, \quad T = \{n \in \mathbb{N} \mid 5 \le 2n - 1 \le 17\},$$
$$U = \{2n - 1 \mid n \in S\}, \quad V = \{2n \mid n = 1, 2, 3, 4\}.$$

Calculate each of the following. (Hint: List all the elements of the set)

- (a) $S \cap U$.
- (b) $(S \cap T) \cup U$.
- (c) $S \cap (T \cup U)$.
- (d) $(S \cup T) \cap V$.

3. Let $S = \{x \in \mathbb{R} \mid 2 < x < 9\}, \quad T = \{y \in \mathbb{R} \mid 5 \le y < 14\}.$

- (a) Prove $S \cap T = \{z \in \mathbb{R} \mid 5 \le z < 9\}.$
- (b) Write $S \cup T$ and prove your answer.
- 4. Let A, B, C, D be sets.
 - (a) Prove that if $A \subseteq B$ and $C \subseteq B$, then $A \cup C \subseteq B$, by showing that every element of $A \cup C$ is an element of B.
 - (b) Using *B* and *D* are both a subset of $B \cup D$ and (a) to prove that if $A \subseteq B$ and $C \subseteq D$, then $(A \cup C) \subseteq (B \cup D)$.

- 5. Let C, D be sets.
 - (a) Which one of the following statements is equivalent to $C \not\subseteq D$.
 - i. If $x \in C$, then $x \notin D$.
 - ii. $x \in C$ and $x \notin D$.
 - iii. If there is an $x \in C$, then $x \notin D$.
 - iv. There is an $x \in C$ such that $x \notin D$.
 - (b) Using your answer for (a) to explain why $\emptyset \not\subseteq D$ is wrong.

6. Let
$$A = \{(x, y) \in \mathbb{R}^2 : x^2 - y^2 = 0\}$$
 and $B = \{(x, y) \in \mathbb{R}^2 : x + y = 0\}$. Find $A \setminus B$.

- 7. Prove that $A = (A \cap B) \cup (A \setminus B)$.
- 8. Which of the following is true? (Please show your reasoning.)

$$(\mathbf{a}) (C \setminus (B \setminus A)) \subseteq ((C \setminus B) \setminus A) \qquad (\mathbf{b}) ((C \setminus B) \setminus A) \subseteq (C \setminus (B \setminus A)).$$

- 9. Suppose $B \setminus C \subseteq A$. Prove the following.
 - (a) $B \setminus C \subseteq A \setminus C$.
 - (b) If $A \cap C \subseteq A \cap B$ then $(A \setminus B) \cup (B \setminus C) \subseteq A \setminus C$
- 10. Let $I = \{i \in \mathbb{N} : i \ge 2\}$ and $\forall i \in I$, let $A_i = \{m/i : m \in \mathbb{Z}\}$.
 - (a) Prove for any $k \in I$, $\bigcup_{i=k}^{\infty} A_i = \mathbb{Q}$.
 - (b) Is it possible to find $j, k \in I$ with j < k such that $\bigcap_{i=j}^{k} A_i = \mathbb{Q}$?
- 11. Let *I* be the closed interval $[1,2] = \{r \in \mathbb{R} : 1 \le r \le 2\}$. Suppose that for every $r \in I$, A_r is a set and $A_r \subseteq A_s$ for all $r, s \in I$ with r > s. We know that there exist $i, j \in I$ such that

$$\bigcap_{r\in I} A_r = A_i, \quad \bigcup_{r\in I} A_r = A_j.$$

Find i and j. (Please show your reasoning.)

12. Let A_i, B_i are sets with index set I. Find an example to show the following are not always true.

$$(\bigcap_{i\in I} A_i) \cup (\bigcap_{i\in I} B_i) = \bigcap_{i\in I} (A_i \cup B_i),$$
$$(\bigcup_{i\in I} A_i) \cap (\bigcup_{i\in I} B_i) = \bigcup_{i\in I} (A_i \cap B_i).$$

Please find correct statements for them with proof.

13. Let A, B, C, D be sets.

- (a) Explain why $(C \setminus A) \times (D \setminus B) = ((C \setminus A) \cap C) \times (D \cap (D \setminus B)).$
- (b) Use (a) to prove $(C \setminus A) \times (D \setminus B) = ((C \setminus A) \times D) \cap (C \times (D \setminus B))$.
- (c) Use (b) to prove $(C \setminus A) \times (D \setminus B) = (C \times D) \setminus ((A \times D) \cup (C \times B))$.
- (d) Explain why $(C \times D) \setminus (A \times B) = (C \times D) \setminus ((C \times D) \cap (A \times B)).$
- (e) Use (d) to prove $(C \times D) \setminus (A \times B) = (C \times D) \setminus ((C \times B) \cap (A \times D)).$
- (f) Use (e) to prove $(C \times D) \setminus (A \times B) = (C \times (D \setminus B)) \cup ((C \setminus A) \times D)$.

14. For a given set A, let $\mathfrak{T}_A = \{(a, S) \in A \times \mathscr{P}(A) : a \in S\}.$

- (a) Please describe \mathfrak{T}_{\emptyset} , $\mathfrak{T}_{\{a\}}$ and $\mathfrak{T}_{\{a,b\}}$ using list mehthod.
- (b) Let A be a finite set of n elements, find the number of elements of \mathfrak{T}_A . (you can use the fact that $\#(\mathscr{P}(A)) = 2^n$.)
- (c) Let A, B be sets. Is it true that $\mathfrak{T}_{A \cap B} = \mathfrak{T}_A \cap \mathfrak{T}_B$? Explain your answer.

4 Relation and Order

- 1. Define a relation on \mathbb{R} by setting $x \sim y$ if and only if |x y| < 1. Is this relation an equivalence relation? Explain your answer.
- 2. Let $X = \{1, 2, 3\}$ and suppose $S \subseteq X \times X$ is an equivalence relation on X. Suppose further that $(1,2) \in S$ and $(2,3) \notin S$. Find all the elements of S. Let $X = \{1,2,3\}$. How many different equivalence relations can we find on X (在 X 中可以定義多少 種 equivalence relation)?

(Hint: X 的 partition 和 X 的 equivalence relation 有著一對一的對應關係.)

3. Let (\mathbb{C},\prec) be a strict total ordered set with the following additional properties:

A: If $a \prec b$, then for every $c \in \mathbb{C}$, $a + c \prec b + c$

- **M:** If $a \prec b$ and $0 \prec c$, then $ac \prec bc$
- (a) Prove if $a \prec 0$, then $0 \prec -a$.
- (b) Prove $0 \prec c^2, \forall c \in \mathbb{C}$.
- 4. Let A, B be nonempty subsets of a partial order set (X, \preceq) . Suppose that $A \subseteq B$.
 - (a) Prove that if there exists an upper bound of B, then there exists an upper bound of A.
 - (b) Suppose that a and b are the least upper bound of A and B, respectively. Prove that $a \leq b$.
- 5. Define a relation \prec on \mathbb{Z} by the rule: $a \prec b$ if and only if either $(ab < 0) \land (a < b)$ or $(ab \ge 0) \land (|a| < |b|)$.
 - (a) Prove that (\mathbb{Z}, \prec) is a strict total ordered set.

- (b) Let $-\mathbb{N}$ be the set of negative integers. Show that 1 is the least upper bound of $-\mathbb{N}$.
- (c) Prove that (\mathbb{Z}, \prec) is a well ordered set (*i.e.* for any nonempty $S \subseteq \mathbb{Z}$, the least element of S exists).

5 Function

1. Let $f \subseteq \mathbb{R} \times \mathbb{R}$ be a relation from \mathbb{R} to \mathbb{R} defined by

$$f = \{(a,b) : b - a = \begin{cases} 1, & \text{if } a \ge 0; \\ -1, & \text{if } a \le 0. \end{cases} \}$$

Is f a function from \mathbb{R} to \mathbb{R} ? Show your reason.

- 2. Suppose that $f: X \to X$ is a function and consider f as a relation on X. Prove that if f is symmetric then $f \circ f = id_X$.
- 3. Let $f: X \to Y$ and $g: Y \to Z$ be functions. Suppose $\forall x, x' \in X, y, y' \in Y$ and $z, z' \in Z$ we have $x \star x' \in X, y \diamond y' \in Y$ and $z \star z' \in Z$. Moreover, suppose we have

$$f(x \star x') = f(x) \diamond f(x')$$
 and $g(y \diamond y') = g(y) \star g(y')$.

Prove if $(g \circ f)(x) = z$ and $(g \circ f)(x') = z'$, then $(g \circ f)(x \star x') = z \star z'$.

- 4. Consider the function $f: \{1,2,3\} \rightarrow \{1,2,3\}$ defined by f(1) = f(3) = 2 and f(2) = 3. List all subsets $A \subseteq \{1,2,3\}$ and find f(A) and $f^{-1}(A)$.
- 5. Suppose that $f: X \to X$ is a function and $A \subseteq X$. Which of the following statements are true? Explain each case.

$$\begin{array}{ll} (a) \ f(A^c) \subseteq f(A)^c & (b) \ f(A)^c \subseteq f(A^c) \\ (c) \ f^{-1}(A^c) \subseteq f^{-1}(A)^c & (d) \ f^{-1}(A)^c \subseteq f^{-1}(A^c) \end{array}$$

- 6. Suppose that $g: X \to Y$ is a surjective function and $B \subseteq Y$.
 - (a) Prove that there exists $A \subseteq X$ such that g(A) = B.
 - (b) Prove $g(g^{-1}(B)) = B$.
 - (c) Suppose $B' \subseteq Y$ and $B' \neq B$. Prove $g^{-1}(B') \neq g^{-1}(B)$.
- 7. Find functions $f: \mathbb{N} \to \mathbb{N}$ and $g: \mathbb{N} \to \mathbb{N}$ such that f is not onto and yet $g \circ f$ is onto.
- 8. Find functions $f : \mathbb{N} \to \mathbb{N}$ and $g : \mathbb{N} \to \mathbb{N}$ such that g is not injective but $g \circ f$ is injective.
- 9. Suppose that $f: X \to Y$ is a bijection and $g: Y \to Z$ is a function. Prove the following.
 - (a) $g \circ f$ is surjective if and only if g is surjective.

- (b) $g \circ f$ is injective if and only if g is injective.
- 10. Suppose $h: X \to Y$ is injective.
 - (a) For $A \subseteq X$, prove |A| = |h(A)|.
 - (b) For $B \subseteq Y$, prove $|h^{-1}(B)| \le |B|$.
- 11. Suppose that A, B, C, D are nonempty sets with |A| = |B| and |C| = |D|. Prove $|A \times C| = |B \times D|$.
- 12. Let X be a nonempty set and $Y, Z \subseteq X$.
 - (a) Suppose Y is uncountable and Z is countable. Prove $Y \setminus Z$ is uncountable.
 - (b) Using the fact that \mathbb{R} is uncountable to show that the set of irrational numbers is uncountable.
 - (c) Suppose that $Y \times Z$ is uncountable. Prove Y or Z is uncountable.
- 13. 給定 *n* ∈ N, 試證明所有次數小於 *n* 的整係數多項式所成的集合為 countable. (Hint: 利用若 $S_1, ..., S_n$ 為 countable, 則 $S_1 \times \cdots \times S_n$ 為 countable)
- 14. 試證明所有整係數多項式所成的集合為 countable. (Hint: 利用若 S_i , $\forall i \in \mathbb{N}$ is countable, 則 $\bigcup_{i=1}^{\infty} S_i$ is countable)
- 15. 令 S 為所有整數部分為 0, 而小數點後各位數是 0 或 1 所組成的實數所成的集合. 假設 f: N→S 是一個函數. 考慮 S 中的元素 s = 0.a₁a₂a₃..., 其中對任意 i ∈ N, 我們令 s 的小數點後第 i 位的值 a_i 為

$$a_i = \begin{cases} 1, & \vec{x} \ f(i) \ \text{\nbox{hybrid}} \\ 0, & \vec{x} \ f(i) \ \text{\nbox{hybrid}} \\ \end{bmatrix} \\ \begin{array}{c} a_i = \begin{cases} 1, & \vec{x} \ f(i) \ \text{\nbox{hybrid}} \\ 0, & \vec{x} \ f(i) \ \text{\nbox{hybrid}} \\ \end{array} \end{cases}$$

試證明 *s* 不在 *f*: \mathbb{N} → *S* 的 image 中, 並依此說明 *S* 是 uncountable.

16. For sets A, B, we define the set $A^B = \{f \mid f : B \to A \text{ is a function}\}$. Suppose that A_1, A_2, B are sets. Prove $|(A_1 \times A_2)^B| = |A_1^B \times A_2^B|$. (Hint: for $f_1 \in A_1^B, f_2 \in A_2^B$, define $(f_1 \times f_2) \in (A_1 \times A_2)^B$ by setting $(f_1 \times f_2)(b) = (f_1(b), f_2(b)), \forall b \in B$.)