Exercises

1 Basic Logic

1．試分別在以下各小題，找出使之為 true statement 的所有可能整數 n（請不要只寫答案，盡量說明理由）。
（a）$n \geq 3$ and $n<5$ ．
（b）$n>3$ or $n \leq 5$ ．
（c）$n \geq 3$ and $n \leq 3$ ．
（d）$n>3$ or $n<3$ ．
2．在課堂上我們介紹了 $((P \wedge Q) \vee R) \sim((P \vee R) \wedge(Q \vee R))$ 這稱為 distribution of disjunction over conjunction．試利用 truth table 檢查以下的 distribution laws．
（a）$((P \wedge Q) \wedge R) \sim((P \wedge R) \wedge(Q \wedge R))$ ，distribution of conjunction over conjunction．
（b）$((P \vee Q) \vee R) \sim((P \vee R) \vee(Q \vee R))$ ，distribution of disjunction over disjunction．
（c）$((P \vee Q) \wedge R) \sim((P \wedge R) \vee(Q \wedge R))$ ，distribution of conjunction over disjunction．
3．（Optional）在課堂上我們提及當一個 statement P 為 T ，我們可以定它的值 $p=1$ ；若為 F ，則定 $p=0$ 。假設 P, Q 為 statement 且其值分別為 p, q 。
（a）試說明 $P \wedge Q$ 的值可表成 $p \times q$ ，也可表成 $\min \{p, q\}$ ．
（b）試說明 $P \vee Q$ 的值可表成 $p+q-p \times q$ ，也可表成 $\max \{p, q\}$ 。
（c）利用 truth table 以及 $(\mathrm{a}),(\mathrm{b})$ 的各種方法驗證 $(P \wedge P) \sim P$ 以及 $(P \vee P) \sim P$ ．你覺得哪一種方法較好用？
（d）利用 $P \wedge Q$ 和 $P \vee Q$ 的值可分別表成 $p \times q$ 和 $p+q-p \times q$ ．證明 $((P \wedge Q) \vee R) \sim$ $((P \vee R) \wedge(Q \vee R))$ 以及 $((P \vee Q) \wedge R) \sim((P \wedge R) \vee(Q \wedge R))$ ．
（e）利用當 $a, b, c \geq 0$ 時 $\max \{a, b\} \times c=\max \{a \times c, b \times c\}$（可嘗試證明看看），證明 $((P \vee Q) \wedge R) \sim((P \wedge R) \vee(Q \wedge R))$.

4．試依照指定方式解決以下問題。
（a）Negate $(P \Rightarrow Q) \Rightarrow P$（寫出否定句，不需化簡）。
（b）利用 $((P \wedge Q) \vee P) \sim P$ 說明 $\neg[(P \Rightarrow Q) \Rightarrow P]$ 和 $\neg P$ 是 logically equivalent．
（c）敘述 Proposition 1．2．2 且利用它說明 $((P \Rightarrow Q) \Rightarrow P) \Leftrightarrow P$ 是一個 tautology．
5．將下列的 statement forms，僅利用 \neg and \vee 寫下與之等價的（logically equivalent） statement forms．
（a）$P \Leftrightarrow \neg Q$ ．
（b）$(P \vee Q) \Rightarrow(P \wedge Q)$ ．
（c）$(P \Rightarrow Q) \vee(Q \Rightarrow P)$ ．
6．我們會將 $(\neg P) \wedge(\neg Q)$ 縮寫成 $P \triangle Q$ ．僅利用 \triangle 和 \neg 寫下與 $P \Rightarrow Q$ 等價的 statement forms．

7．證明 if＂$\exists y<0, \forall x>0, P(x, y)$＂，then＂$\forall x>0, \exists y<0, P(x, y)$＂．
8．Find an example for $P(x, y)$ so that the statement＂$\forall x<0, \exists y<0, P(x, y)$＂is true， but the statement＂$\exists y<0, \forall x<0, P(x, y)$＂is false．

9．Negate the statement：If $\forall x>0, \exists y<0, P(x) \wedge Q(y)$ ，then $\exists z \leq 0, R(x, z) \vee S(y, z)$ ．
10．Let P be the statement：If $x^{2}-3 x+2<0$ ，then $1.3<x<1.7$ ．
（a）Write $\neg P$ ．（Hint：注意在 if－then statement 中隱含的＂$\forall x$＂．）
（b）說明 P 或 $\neg P$ 哪一個是對的．

2 Methods of Proof

1．Using the indicated method to directly prove that if n is an integer，then $n^{2}+3 n+2$ is even．
（a）Factorize $n^{2}+3 n+2$ ．（因式分解）
（b）Divide n into 2 cases．
2．Suppose that a, b are integers．Let P be the statement：if $a \times b$ is even，then either a or b is even．
（a）Write the contrapositive statement of P ．
（b）Prove P by using direct method（Hint：you can assume a is odd）．
（c）Prove P by using contrapositive method．
3．Let Q be the statement：if a, b are positive integers，then $a^{2}-b^{2} \neq 1$ ．
（a）Negate Q ．
（b）Prove Q by using proof by cases（Hint：（1）$a<b$ ；（2）$a=b$ ；（3）$a>b$ ，and for （3）write $a=b+k)$ ．
（c）Prove Q by using contradiction method．
4．You have a five points in the plane，not all colinear．Prove that there is a line passing through just two of these points．（平面上有不共線的 5 個點。證明存在一條線僅通過其中兩個點）

5．Given $a, b \in \mathbb{N}$ with $b>1$ ，prove that if there exist $h, r \in \mathbb{Z}$ with $0 \leq r<b$ such that $a=b h+r$ ，then h is unique and r is unique．

6．Use the pigeonhole principle to prove that no matter how 7 points are placed within an 8 by 9 rectangle，there will always be a pair whose distance is at most 5 ．（在 8×9 的長方形中任點 7 個點，一定有兩個點其距離不大於 5 ）（Hint： $3^{2}+4^{2}=5^{2}$ ）

7．Prove the pigeonhole principle by mathematical induction．
8．Using（strong）mathematical induction to prove the following：
（a）If $a_{1}=1$ and $a_{n}=2 a_{n-1}+1$ ，for $n \geq 2$ ，then $a_{n}=2^{n}-1$ for all $n \in \mathbb{N}$ ．
（b）If $b_{1}=1$ and $b_{n}=n+\sum_{i=1}^{n-1} b_{i}$ ，for $n \geq 2$ ，then $b_{n}=2^{n}-1$ for all $n \in \mathbb{N}$ ．

3 Set

1．Let

$$
\begin{aligned}
A=\left\{n \in \mathbb{N} \mid n^{2}+5\right\}, & B=\left\{n^{2}+5 \mid n \in \mathbb{N}\right\}, \\
C=\left\{n \in \mathbb{N} \mid n^{2}+5>35\right\}, & D=\left\{n^{2}+5>35 \mid n \in \mathbb{N}\right\} .
\end{aligned}
$$

（a）Two of the expressions above describe sets．Find Them．（以上哪兩個是正確集合表示？）
（b）Write 3 elements for each of the two sets．
（c）Is one of the set a subset of the other ？Show your reasoning．
2．Let

$$
\begin{gathered}
S=\{n \in \mathbb{N} \mid 1 \leq n \leq 5\}, \quad T=\{n \in \mathbb{N} \mid 5 \leq 2 n-1 \leq 17\}, \\
U=\{2 n-1 \mid n \in S\}, \quad V=\{2 n \mid n=1,2,3,4\} .
\end{gathered}
$$

Calculate each of the following．（Hint：List all the elements of the set）
（a）$S \cap U$ ．
（b）$(S \cap T) \cup U$ ．
（c）$S \cap(T \cup U)$ ．
（d）$(S \cup T) \cap V$ ．
3．Let $S=\{x \in \mathbb{R} \mid 2<x<9\}, \quad T=\{y \in \mathbb{R} \mid 5 \leq y<14\}$ ．
（a）Prove $S \cap T=\{z \in \mathbb{R} \mid 5 \leq z<9\}$ ．
（b）Write $S \cup T$ and prove your answer．
4．Let A, B, C, D be sets．
（a）Prove that if $A \subseteq B$ and $C \subseteq B$ ，then $A \cup C \subseteq B$ ，by showing that every element of $A \cup C$ is an element of B ．
（b）Using B and D are both a subset of $B \cup D$ and（a）to prove that if $A \subseteq B$ and $C \subseteq D$ ，then $(A \cup C) \subseteq(B \cup D)$ ．
5. Let C, D be sets.
(a) Which one of the following statements is equivalent to $C \nsubseteq D$.
i. If $x \in C$, then $x \notin D$.
ii. $x \in C$ and $x \notin D$.
iii. If there is an $x \in C$, then $x \notin D$.
iv. There is an $x \in C$ such that $x \notin D$.
(b) Using your answer for (a) to explain why $\emptyset \nsubseteq D$ is wrong.
6. Let $A=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}-y^{2}=0\right\}$ and $B=\left\{(x, y) \in \mathbb{R}^{2}: x+y=0\right\}$. Find $A \backslash B$.
7. Prove that $A=(A \cap B) \cup(A \backslash B)$.
8. Which of the following is true? (Please show your reasoning.)

$$
(\mathbf{a})(C \backslash(B \backslash A)) \subseteq((C \backslash B) \backslash A) \quad(\mathbf{b})((C \backslash B) \backslash A) \subseteq(C \backslash(B \backslash A))
$$

9. Suppose $B \backslash C \subseteq A$. Prove the following.
(a) $B \backslash C \subseteq A \backslash C$.
(b) If $A \cap C \subseteq A \cap B$ then $(A \backslash B) \cup(B \backslash C) \subseteq A \backslash C$
10. Let $I=\{i \in \mathbb{N}: i \geq 2\}$ and $\forall i \in I$, let $A_{i}=\{m / i: m \in \mathbb{Z}\}$.
(a) Prove for any $k \in I, \bigcup_{i=k}^{\infty} A_{i}=\mathbb{Q}$.
(b) Is it possible to find $j, k \in I$ with $j<k$ such that $\bigcap_{i=j}^{k} A_{i}=\mathbb{Q}$?
11. Let I be the closed interval $[1,2]=\{r \in \mathbb{R}: 1 \leq r \leq 2\}$. Suppose that for every $r \in I$, A_{r} is a set and $A_{r} \subseteq A_{s}$ for all $r, s \in I$ with $r>s$. We know that there exist $i, j \in I$ such that

$$
\bigcap_{r \in I} A_{r}=A_{i}, \quad \bigcup_{r \in I} A_{r}=A_{j}
$$

Find i and j. (Please show your reasoning.)
12. Let A_{i}, B_{i} are sets with index set I. Find an example to show the following are not always true.

$$
\begin{aligned}
& \left(\bigcap_{i \in I} A_{i}\right) \cup\left(\bigcap_{i \in I} B_{i}\right)=\bigcap_{i \in I}\left(A_{i} \cup B_{i}\right), \\
& \left(\bigcup_{i \in I} A_{i}\right) \cap\left(\bigcup_{i \in I} B_{i}\right)=\bigcup_{i \in I}\left(A_{i} \cap B_{i}\right) .
\end{aligned}
$$

Please find correct statements for them with proof.
13. Let A, B, C, D be sets.
（a）Explain why $(C \backslash A) \times(D \backslash B)=((C \backslash A) \cap C) \times(D \cap(D \backslash B))$ ．
（b）Use（a）to prove $(C \backslash A) \times(D \backslash B)=((C \backslash A) \times D) \cap(C \times(D \backslash B))$ ．
（c）Use（b）to prove $(C \backslash A) \times(D \backslash B)=(C \times D) \backslash((A \times D) \cup(C \times B))$ ．
（d）Explain why $(C \times D) \backslash(A \times B)=(C \times D) \backslash((C \times D) \cap(A \times B))$ ．
（e）Use（d）to prove $(C \times D) \backslash(A \times B)=(C \times D) \backslash((C \times B) \cap(A \times D))$ ．
（f）Use（e）to prove $(C \times D) \backslash(A \times B)=(C \times(D \backslash B)) \cup((C \backslash A) \times D)$ ．
14．For a given set A ，let $\mathfrak{T}_{A}=\{(a, S) \in A \times \mathscr{P}(A): a \in S\}$ ．
（a）Please describe $\mathfrak{T}_{⿹}, \mathfrak{T}_{\{a\}}$ and $\mathfrak{T}_{\{a, b\}}$ using list mehthod．
（b）Let A be a finite set of n elements，find the number of elements of \mathfrak{T}_{A} ．（you can use the fact that $\#(\mathscr{P}(A))=2^{n}$ ．）
（c）Let A, B be sets．Is it true that $\mathfrak{T}_{A \cap B}=\mathfrak{T}_{A} \cap \mathfrak{T}_{B}$ ？Explain your answer．

4 Relation and Order

1．Define a relation on \mathbb{R} by setting $x \sim y$ if and only if $|x-y|<1$ ．Is this relation an equivalence relation？Explain your answer．

2．Let $X=\{1,2,3\}$ and suppose $S \subseteq X \times X$ is an equivalence relation on X ．Suppose further that $(1,2) \in S$ and $(2,3) \notin S$ ．Find all the elements of S ．Let $X=\{1,2,3\}$ ． How many different equivalence relations can we find on X（在 X 中可以定義多少種 equivalence relation）？
（Hint：X 的 partition 和 X 的 equivalence relation 有著一對一的對應關係．）
3．Let (\mathbb{C}, \prec) be a strict total ordered set with the following additional properties：
A：If $a \prec b$ ，then for every $c \in \mathbb{C}, a+c \prec b+c$
M：If $a \prec b$ and $0 \prec c$ ，then $a c \prec b c$
（a）Prove if $a \prec 0$ ，then $0 \prec-a$ ．
（b）Prove $0 \prec c^{2}, \forall c \in \mathbb{C}$ ．
4．Let A, B be nonempty subsets of a partial order set（ X, \preceq ）．Suppose that $A \subseteq B$ ．
（a）Prove that if there exists an upper bound of B ，then there exists an upper bound of A ．
（b）Suppose that a and b are the least upper bound of A and B ，respectively．Prove that $a \preceq b$ ．

5．Define a relation \prec on \mathbb{Z} by the rule：$a \prec b$ if and only if either $(a b<0) \wedge(a<b)$ or $(a b \geq 0) \wedge(|a|<|b|)$ ．
（a）Prove that (\mathbb{Z}, \prec) is a strict total ordered set．
(b) Let $-\mathbb{N}$ be the set of negative integers. Show that 1 is the least upper bound of $-\mathbb{N}$.
(c) Prove that (\mathbb{Z}, \prec) is a well ordered set (i.e. for any nonempty $S \subseteq \mathbb{Z}$, the least element of S exists).

5 Function

1. Let $f \subseteq \mathbb{R} \times \mathbb{R}$ be a relation from \mathbb{R} to \mathbb{R} defined by

$$
f=\left\{(a, b): b-a=\left\{\begin{array}{ll}
1, & \text { if } a \geq 0 \\
-1, & \text { if } a \leq 0
\end{array}\right\}\right.
$$

Is f a function from \mathbb{R} to \mathbb{R} ? Show your reason.
2. Suppose that $f: X \rightarrow X$ is a function and consider f as a relation on X. Prove that if f is symmetric then $f \circ f=\mathrm{id}_{X}$.
3. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be functions. Suppose $\forall x, x^{\prime} \in X, y, y^{\prime} \in Y$ and $z, z^{\prime} \in Z$ we have $x \star x^{\prime} \in X, y \diamond y^{\prime} \in Y$ and $z * z^{\prime} \in Z$. Moreover, suppose we have

$$
f\left(x \star x^{\prime}\right)=f(x) \diamond f\left(x^{\prime}\right) \text { and } g\left(y \diamond y^{\prime}\right)=g(y) * g\left(y^{\prime}\right)
$$

Prove if $(g \circ f)(x)=z$ and $(g \circ f)\left(x^{\prime}\right)=z^{\prime}$, then $(g \circ f)\left(x \star x^{\prime}\right)=z * z^{\prime}$.
4. Consider the function $f:\{1,2,3\} \rightarrow\{1,2,3\}$ defined by $f(1)=f(3)=2$ and $f(2)=3$. List all subsets $A \subseteq\{1,2,3\}$ and find $f(A)$ and $f^{-1}(A)$.
5. Suppose that $f: X \rightarrow X$ is a function and $A \subseteq X$. Which of the following statements are true? Explain each case.

$$
\begin{array}{ll}
\text { (a) } f\left(A^{c}\right) \subseteq f(A)^{c} & \text { (b) } f(A)^{c} \subseteq f\left(A^{c}\right) \\
\text { (c) } f^{-1}\left(A^{c}\right) \subseteq f^{-1}(A)^{c} & \text { (d) } f^{-1}(A)^{c} \subseteq f^{-1}\left(A^{c}\right)
\end{array}
$$

6. Suppose that $g: X \rightarrow Y$ is a surjective function and $B \subseteq Y$.
(a) Prove that there exists $A \subseteq X$ such that $g(A)=B$.
(b) Prove $g\left(g^{-1}(B)\right)=B$.
(c) Suppose $B^{\prime} \subseteq Y$ and $B^{\prime} \neq B$. Prove $g^{-1}\left(B^{\prime}\right) \neq g^{-1}(B)$.
7. Find functions $f: \mathbb{N} \rightarrow \mathbb{N}$ and $g: \mathbb{N} \rightarrow \mathbb{N}$ such that f is not onto and yet $g \circ f$ is onto.
8. Find functions $f: \mathbb{N} \rightarrow \mathbb{N}$ and $g: \mathbb{N} \rightarrow \mathbb{N}$ such that g is not injective but $g \circ f$ is injective.
9. Suppose that $f: X \rightarrow Y$ is a bijection and $g: Y \rightarrow Z$ is a function. Prove the following.
(a) $g \circ f$ is surjective if and only if g is surjective.
（b）$g \circ f$ is injective if and only if g is injective．
10．Suppose $h: X \rightarrow Y$ is injective．
（a）For $A \subseteq X$ ，prove $|A|=|h(A)|$ ．
（b）For $B \subseteq Y$ ，prove $\left|h^{-1}(B)\right| \leq|B|$ ．
11．Suppose that A, B, C, D are nonempty sets with $|A|=|B|$ and $|C|=|D|$ ．Prove $|A \times C|=|B \times D|$ ．

12．Let X be a nonempty set and $Y, Z \subseteq X$ ．
（a）Suppose Y is uncountable and Z is countable．Prove $Y \backslash Z$ is uncountable．
（b）Using the fact that \mathbb{R} is uncountable to show that the set of irrational numbers is uncountable．
（c）Suppose that $Y \times Z$ is uncountable．Prove Y or Z is uncountable．
13．給定 $n \in \mathbb{N}$ ，試證明所有次數小於 n 的整係數多項式所成的集合為 countable。 （Hint：利用若 S_{1}, \ldots, S_{n} 為 countable，則 $S_{1} \times \cdots \times S_{n}$ 為 countable）

14．試證明所有整係數多項式所成的集合為 countable．（Hint：利用若 $S_{i}, \forall i \in \mathbb{N}$ is countable，則 $\bigcup_{i=1}^{\infty} S_{i}$ is countable）

15．令 S 為所有整數部分為 0 ，而小數點後各位數是 0 或 1 所組成的實數所成的集合。假設 $f: \mathbb{N} \rightarrow S$ 是一個函數。考慮 S 中的元素 $s=0 . a_{1} a_{2} a_{3} \ldots a_{i} \ldots$ ，其中對任意 $i \in \mathbb{N}$ ，我們令 s 的小數點後第 i 位的值 a_{i} 為

$$
a_{i}=\left\{\begin{array}{lll}
1, & \text { 若 } f(i) \text { 小數點後第 } i \text { 位為 } 0 ; \\
0, & \text { 若 } f(i) \text { 小數點後第 } i \text { 位為 } 1 .
\end{array}\right.
$$

試證明 s 不在 $f: \mathbb{N} \rightarrow S$ 的 image 中，並依此說明 S 是 uncountable．
16．For sets A, B ，we define the set $A^{B}=\{f \mid f: B \rightarrow A$ is a function $\}$ ．Suppose that A_{1}, A_{2}, B are sets．Prove $\left|\left(A_{1} \times A_{2}\right)^{B}\right|=\left|A_{1}^{B} \times A_{2}^{B}\right|$ ．（Hint：for $f_{1} \in A_{1}^{B}, f_{2} \in A_{2}^{B}$ ，define $\left(f_{1} \times f_{2}\right) \in\left(A_{1} \times A_{2}\right)^{B}$ by setting $\left(f_{1} \times f_{2}\right)(b)=\left(f_{1}(b), f_{2}(b)\right), \forall b \in B$ ．）

