我們藉由大家熟知的數學例子來理解這個事實. 考慮 $0 \le x \le 1$, 這表示 $x \le 1$ and $x \ge 0$. 它的相反,大家都知是 x > 1 or x < 0. 我們可以任取一個數 $x \Leftrightarrow P$ 為 $x \le 1$ 這一個 statement,而 Q 為 $x \ge 0$,則 $\neg P$, $\neg Q$ 分別為 x > 1,x < 0. 也就是說 $0 \le x \le 1$ 可以用 $P \land Q$ 表示而 x > 1 or x < 0 就是 $(\neg P) \lor (\neg Q)$. 由此可以看出 $\neg (P \land Q)$ 和 $(\neg P) \lor (\neg Q)$ 為 logically equivalent,而不是 $(\neg P) \land (\neg Q)$ (否則會得到 x > 1 and x < 0 這個矛盾).

我們可以用上一節有關於 statement form 的 logically equivalent 的規則來處理 not. 例 如將式子 (1.8) 中的 P, Q 分別用 $\neg P$ 和 $\neg Q$ 取代, 可得

$$\neg((\neg P) \land (\neg Q)) \sim (\neg(\neg P)) \lor (\neg(\neg Q)).$$

再利用 $\neg(\neg P) \sim P$, 得

$$\neg((\neg P) \land (\neg Q)) \sim (P \lor Q).$$

最後兩邊取 not, 得

$$\neg (P \lor Q) \sim (\neg P) \land (\neg Q). \tag{1.9}$$

例如考慮 $x \ge 0$ 的情形, 我們知它的相反為 x < 0. 若令 P, Q 分別為 x > 0, x = 0, 則 $x \ge 0$ 即 為 $P \lor Q$. 此時 ¬P 為 $x \le 0$, ¬Q 為 $x \ne 0$. 而 (¬P) \land (¬Q) 為 $x \le 0$ and $x \ne 0$, 即為 x < 0 也就是 $x \ge 0$ 的相反.

式子 (1.7), (1.8), (1.9) 對於推導和 not 有關的 statement forms 之間的 logical equivalence 相當重要. 其中式子 (1.8), (1.9) 稱為 $DeMorgan's \ laws$.

接下來我們自然會問, 怎樣的 statement form 會和 $\neg(P\Rightarrow Q)$ logically equivalent 呢? 或 許大家會認為是 $P\Rightarrow\neg Q$, 不過利用 truth table 檢查一下, 大家會發現在 P 是對的時 $P\Rightarrow Q$ 和 $P\Rightarrow\neg Q$ 確實對錯相反, 但是當 P 為錯時 $P\Rightarrow Q$ 和 $P\Rightarrow\neg Q$ 皆為對. 所以 $\neg(P\Rightarrow Q)$ 和 $P\Rightarrow\neg Q$ 並不是 logically equivalent, 千萬要記住.

Question 1.12. 試寫下會使得 $x \ge 0 \Rightarrow x \ge 1$ 為對的所有實數 x, 也寫下會使得 $x \ge 0 \Rightarrow x < 1$ 為對的所有實數 x. 它們是否相反呢?

大家常忽略的就是 $P \Rightarrow Q$ 中 P 錯的情況, 而造成邏輯的錯誤, 千萬要注意. 不過另一方面, 若 A, B 為 statement form 且 A 為 tautology, 那麼 $\neg (A \Rightarrow B)$ 就和 $A \Rightarrow \neg B$ 為 logically equivalent. 主要的原因是, A 既然全為對, 那麼 $A \Rightarrow B$ 的對錯完全會和 B 的對錯完全一致了.

Question 1.13. 試寫下會使得 $x^2 \ge 0 \Rightarrow x > 0$ 為對的所有實數 x, 也寫下會使得 $x^2 \ge 0 \Rightarrow x \le 0$ 為對的所有實數 x. 它們是否相反呢?

要處理 $\neg(P\Rightarrow Q)$ 會和什麼為 logically equivalent, 我們可以換一個角度來看 $P\Rightarrow Q$. 首先回顧一下 $P\Rightarrow Q$ 較通俗的說法是 P 對則 Q 一定對. 所以我們知道 Q 會對, 除非 P 是錯的. 也就是說要不然是 Q 對, 要不然就是 P 錯. 這讓我們想到 $Q\lor\neg P$ 這一個 statement form. 事實上用 truth table 檢驗

1. Basic Logic

P	Q	$\neg P$	$Q \lor \neg P$
T	T	F	Τ
T	$\mid \mathbf{F} \mid$	F	\mathbf{F}
F	$\mid T \mid$	T	${ m T}$
F	F	Т	${ m T}$

我們得到

$$(P \Rightarrow Q) \sim (Q \vee \neg P). \tag{1.10}$$

利用 $(Q \vee \neg P) \sim ((\neg P) \vee Q)$ 以及 $\neg (\neg Q) \sim Q$, 我們得 $(P \Rightarrow Q) \sim ((\neg P) \vee \neg (\neg Q))$, 再利用式子 (1.10) 得 $((\neg P) \vee \neg (\neg Q)) \sim ((\neg Q) \Rightarrow (\neg P))$, 故知

$$(P \Rightarrow Q) \sim ((\neg Q) \Rightarrow (\neg P)).$$
 (1.11)

這和我們提過 $P \Rightarrow Q$ 為對, 表示若 Q 為錯則 P 一定錯, 相吻合.

利用式子 (1.10), 我們可得 $\neg (P \Rightarrow Q) \sim \neg (Q \vee \neg P)$. 而由 DeMorgan's laws 知

$$\neg (Q \lor \neg P) \sim ((\neg Q) \land \neg (\neg P))$$

故得

$$\neg (P \Rightarrow Q) \sim (P \land (\neg Q)). \tag{1.12}$$

式子 (1.10), (1.11), (1.12) 是我們將來處理 "若 P 則 Q" 這種類型的論述時常用的 logical equivalences.

由式子 (1.10) 我們知道, 所有的 statement form 都可以利用 logical equivalence 寫成 \neg, \land, \lor 的組合. 例如由 $P \Leftrightarrow Q$ 的定義, 我們可得

$$(P \Leftrightarrow Q) \sim (Q \vee (\neg P)) \wedge (P \vee (\neg Q)). \tag{1.13}$$

再利用 \land,\lor 的分配性 (即式子 (1.3)) 推得

$$(P \Leftrightarrow Q) \sim (P \land Q) \lor ((\neg P) \land (\neg Q)). \tag{1.14}$$

因此我們可以用 DeMorgan's laws, 式子 (1.7), 以及 \land , \lor 之間的關係式 (式子 (1.1),(1.2),(1.3)), 推導出一個 statement form 取 not 之後的 logical equivalence. 例如式子 (1.13) 取 not 可得

$$\neg (P \Leftrightarrow Q) \sim ((\neg Q) \land P) \lor ((\neg P) \land Q).$$

有趣的是, 若比較式子 (1.14) 中的 Q 用 $\neg Q$ 取代後的結果, 我們得到

$$\neg (P \Leftrightarrow Q) \sim (P \Leftrightarrow \neg Q).$$

當 A 為 statement form 時, $\neg A$ 的對錯完全和 A 的對錯相反, 所以 $A \Leftrightarrow \neg A$ 的 truth table 在任何情況之下皆為錯, 可知 $A \Leftrightarrow \neg A$ 為 contradiction. 反之, 若 B 為 statement form 且 $A \Leftrightarrow B$ 為 contradiction, 表示在任何情况下 A 和 B 的對錯情況相反, 可知 $B \sim \neg A$. 因此我們有以下和 Proposition 1.2.2 相對應的性質.

Proposition 1.3.1. 假設 A,B 為兩個 statement forms. 則 $\neg A$ 和 B 為 logically equivalent 等同於 $A \Leftrightarrow B$ 為 contradiction.

1.4. Quantifiers

1.4. Quantifiers

我們已經了解在已知各 statement 的對錯情況之下它們用 connective 以及 not 連接之後其對錯的狀況, 我們也知道一個 statement form 的否定為何. 不過一個單一的 statement, 很可能就很複雜, 不容易判斷對錯. 例如在數學上一個 statement 常常會有一些 quantifier (量詞) 出現, 而增加了判斷對錯的困難度. 在本節中我們將介紹常見的 quantifiers, 並探討它們取否定的情形.

數學上常見的 quantifiers 有以下幾種:

- "for all", "for every" (即對所有的), 常用 ∀表示.
- "there exists", "there is" (即存在, 可以找到), 常用 ∃表示.
- "there is a unique" (即存在唯一的), 常用 ∃! 表示.

 $\exists !$ 牽涉到唯一性的問題,以後我們在談論證明方法時會提到它,這裡我們先探討 \forall 和 \exists . 首先要說明的是,在談論這些 quantifiers 時必須說明清楚是在怎樣的集合內. 比方說對所有的整數和對所有的有理數就是完全不同的兩回事,而存在一個自然數和存在一個偶數也不同. 不過由於我們僅介紹這些 quantifiers 的概念,而不觸及證明. 所以這裡為了簡單起見我們說明的例子考慮的都是整個實數. 例如我們說 $\forall x$ 或 $\exists x$, 它們分別表示的就是 for all x in \mathbb{R} 或 there exists an x in \mathbb{R} , 以後就不再聲明指的是實數了.

我們先看簡單的例子: $\forall x, x^2 \geq 0$. 指的就是所有的實數 x 皆會滿足 $x^2 \geq 0$. 我們知道這個 statement 是對的,因為每一個實數 x 都對,沒有例外. 這類的 statement 我們可以用以下的形式表示 " $\forall x, P(x)$ ". 這裡 P(x) 指的是和 x 有關的條件 (例如上例中 P(x) 就是 $x^2 \geq 0$). 它指的就是所有的 x 皆會滿足 P(x) 這個條件. 這個 statement 要對就必須所有的 x 都對,一個都不能錯. 例如 $\forall x, x^2 > 0$ 便是錯的 (x = 0) 就不成立).

類似的, 我們可以用" $\exists x$, P(x)"來表示, 存在 x 使得 P(x) 成立. 這個 statement 要對, 只要能找到一個 x 使得 P(x) 成立即可. 注意它並沒有說有多少個會對, 有可能很多, 有可能只有一個, 所以只要找到一個對即可 (這就是英文用 there exists 的原因). 上面提過 $\forall x, x^2 > 0$ 是錯的, 但若改為 $\exists x, x^2 > 0$ 便是對的 (取 x = 1, 即可).

∀和∃有著有趣的關係,例如 "∀x, P(x)" 是對的話,那麼 " $\exists x$, P(x)" 就一定對 (只要挑隨便一個x即可). 不過反過來就不對. 你不能隨便挑幾個x符合 P(x), 就聲稱對所有的x都會符合 P(x). 另外 ∀和 ∃在取否定時關係就更密切了. 當你發現 " $\forall x$, P(x)" 有可能錯時,如何說明它是錯的呢? 前面說過 " $\forall x$, P(x)" 只要有一個x 不符合 P(x) 就是錯的,所以要否定它,我們只要找到一個x讓 P(x) 不成立即可. 用符號表示就是 $\exists x$, $\neg P(x)$. 例如前面提過 $\forall x$, $x^2 > 0$ 是錯的,因為我們發現 $\exists x$, $x^2 \le 0$.

注意很多同學會誤以為 " $\forall x$, P(x)" 的否定是 " $\forall x$, $\neg P(x)$ ". 雖然若 " $\forall x$, $\neg P(x)$ " 是對的可以知道 " $\forall x$, P(x)" 是錯的. 但是 " $\forall x$, P(x)" 是錯的, 並不表示 " $\forall x$, $\neg P(x)$ " 是對的. 所以不能說 " $\forall x$, P(x)" 的否定是 " $\forall x$, $\neg P(x)$ ". 例如 $\forall x$, $x^2 > 0$ 是錯的, 但 $\forall x$, $x^2 \le 0$ 也是錯的, 唯

1. Basic Logic

有 $\exists x, x^2 \le 0$ 才會對. 大家千萬注意, 不要弄錯. 總而言之我們有以下的 logical equivalence

$$\neg(\forall x, P(x)) \sim (\exists x, \neg P(x)). \tag{1.15}$$

同理要否定 " $\exists x, P(x)$ ",表示找不到 x 使得 P(x) 成立. 所以我們便需說明所有的 x 皆不滿足 P(x),也就是說 $\forall x, \neg P(x)$. 同樣的,很多同學會誤以為 " $\exists x, P(x)$ " 的否定是 " $\exists x, \neg P(x)$ ". 這是錯的,因為找到 x 不滿足 P(x) 還是有可能找到另一個 x 會滿足 P(x). 因此光由 " $\exists x, \neg P(x)$ " 並不能否定 " $\exists x, P(x)$ ". 總而言之我們有以下的 logical equivalence

$$\neg(\exists x, P(x)) \sim (\forall x, \neg P(x)). \tag{1.16}$$

Question 1.14. 試利用式子 (1.15) 以及 logical equivalence 的規則推導出式子 (1.16).

Quantifier 有時會發生在兩個或更多變數的情形,這裡我們僅探討兩個變數的情形,更多變數的情況可以依兩個變數的情況類推下去. 所謂兩個變數的情況,是形如 " $\forall x, \exists y, P(x,y)$ "的 statement,這裡 P(x,y) 指的是和 x,y 有關的條件. 例如微積分中,函數 f(x) 在 x=a 的極限為 l (即 $\lim_{x\to a} f(x) = l$) 的定義 " $\forall \varepsilon > 0, \exists \delta > 0, 0 < |x-a| < \delta \Rightarrow |f(x)-l| < \varepsilon$ "就是兩個變數的情況. 大致上我們會有下面四種類型的 statement.

$$(1)\forall x, \exists y, P(x,y)$$
 $(2)\exists x, \forall y, P(x,y)$ $(3)\forall x, \forall y, P(x,y)$ $(4)\exists x, \exists y, P(x,y).$

- (1) 指的是: 對於所有的 x 皆可找到 y 使得 P(x,y) 成立. 注意這裡 x 的部分先講, 再提存在 y, 所以這個存在的 y 並不是固定的, 它可能會隨著 x 的選取而變動. 例如 $\forall x, \exists y, x+y=0$ 這個 statement 是對的. 它說任意選取 x, 皆可找到 y 滿足 x+y=0. 這裡 y 會隨著 x 而變動, 即 y=-x. 例如 x=1 時 y=-1, 而 x=2 時 y=-2. 這裡 x,y 的先後順序很重要, 千萬要注意.
- (2) 指的是:存在 x 使得對所有的 y 都會滿足 P(x,y). 注意這裡存在的 x 先講, 再提所有的 y, 所以這個存在的 x 並是固定的,它不可以隨著 y 而變動. 例如 $\exists x, \forall y, x+y=y$ 這個 statement 是對的. 它是說可以找到 x 讓任意的 y 皆滿足 x+y=y. 這裡 x 找到後便固定下來了,即 x=0. 不過例如在 (1) 的情形我們知道 $\forall x, \exists y, x+y=0$ 這個 statement 是對的,但若將 $\forall x$ 和 $\exists y$ 的順序交換得 $\exists y, \forall x, x+y=0$ 這個 statement 便是錯的. 因為我們無法找到一個固定的 y 使的所有的 x 都會滿足 x+y=0. 再次強調,這裡先後順序很重要," $\forall x, \exists y, P(x,y)$ " 和 " $\exists y, \forall x, P(x,y)$ " 雖然只是 $\forall x$ 和 $\exists y$ 先後順序調動,但意義完全不同千萬要注意.

Question 1.15. $\exists x, \forall y, x+y=y$ 這個 statement 是對的,但若換成 $\forall y, \exists x, x+y=y$,是否為 對呢? 又換成 $\forall x, \exists y, x+y=y$ 及 $\exists y, \forall x, x+y=y$,哪一個對呢?

Question 1.16. 假設 f(x,y), g(x,y) 皆為兩個變數的多項式. 已知 " $\forall x, \exists y, f(x,y) = 0$ " 和 " $\exists y, \forall x, g(x,y) = 0$ " 皆為對. 試問 f(x,y) = 0 和 g(x,y) = 0 在坐標平面上的圖形哪一個一定 會包含一條水平直線,哪一個一定會和鉛直線 x = 101 相交?

(3) 和 (4) 的情況較為單純. (3) 指的是任取一個 x, 對於任意的 y 都會使得 P(x,y) 成立. 利用坐標平面的看法, 我們可以說平面上任一點 (x,y) 都會使得 P(x,y) 成立, 所以此時

1.4. Quantifiers

 $\forall x$ 和 $\forall y$ 變換順序並不會改變整個 statement. 而 (4) 指的是可以找到 x 使得有一個 y 滿足 P(x,y). 利用坐標平面的看法,我們可以說平面上存在一點 (x,y) 使得 P(x,y) 成立. 因此此時 $\exists x$ 和 $\exists y$ 變換順序並不會改變整個 statement. 例如若我們在 x=3 時,可找到 y=7 使得 P(3,7) 是正確的,此時我們也可以說 y=7 時,可找到 x=3 使得 P(x,y) 為對. 總而言之 (3),(4) 因兩個變數的 quantifier 皆相同,所以 x,y 的先後不重要. (3) 一般會簡化成 $\forall x,y$, P(x,y), 而 (4) 簡化成 $\exists x,y$, P(x,y).

接下來我們來看有兩個變數的 statement 取否定時 quantifier 的變化情形. 在 (1) 的情形, 即 " $\forall x, \exists y, P(x,y)$ ". 此時, 我們可以把 " $\exists y, P(x,y)$ " 看成是 H(x) 這樣的條件. 所以原 statement 可看成 $\forall x, H(x)$. 利用式子 (1.15), 我們知道它的否定為 $\exists x, \neg H(x)$. 然而式子 (1.16) 告訴我們 $\neg H(x) \sim (\forall y, \neg P(x,y))$, 所以我們得

$$\neg(\forall x, \exists y, P(x,y)) \sim (\exists x, \forall y, \neg P(x,y)).$$

同理我們可得

$$\neg(\exists x, \forall y, P(x, y)) \sim (\forall x, \exists y, \neg P(x, y))$$
$$\neg(\forall x, \forall y, P(x, y)) \sim (\exists x, \exists y, \neg P(x, y))$$
$$\neg(\exists x, \exists y, P(x, y)) \sim (\forall x, \forall y, \neg P(x, y)).$$

例如前面所提, 函數 f(x) 滿足 $\lim_{x\to a} f(x) = l$ 的否定應為

$$\exists \varepsilon > 0, \forall \delta > 0, \neg (0 < |x - a| < \delta \Rightarrow |f(x) - l| < \varepsilon).$$

利用式子 (1.12) 我們知

$$\neg (0 < |x - a| < \delta \Rightarrow |f(x) - l| < \varepsilon) \sim ((0 < |x - a| < \delta) \land (|f(x) - l| \ge \varepsilon)).$$

所以 $\lim_{x\to a} f(x) = l$ 的否定應為

$$\exists \varepsilon > 0, \forall \delta > 0, (0 < |x - a| < \delta) \land (|f(x) - l| \ge \varepsilon).$$

最後,我們說明一下 \forall 和 \exists 在習慣上用法的差異. 在習慣上的用語,我們常會省略 $\forall x$. 例如 $x \geq 3 \Rightarrow x^2 \geq 9$,這一個 statement 嚴格來說應寫成 $\forall x, x \geq 3 \Rightarrow x^2 \geq 9$. 也就是說,在邏輯上我們說這個 statement 是對的應該是對所有的實數 x 都是對的. 給定一實數 x,當 $x \geq 3$,當然可得 $x^2 \geq 9$. 而當 x < 3,因為它已不符合 $x \geq 3$ 的前提,我們知道此時 $x \geq 3 \Rightarrow x^2 \geq 9$ 也是對的. 所以我們可以認定 $\forall x, x \geq 3 \Rightarrow x^2 \geq 9$ 是對的 (這也是邏輯上定義 P 錯時 $P \Rightarrow Q$ 為對的用意,希望同學能體會). 要注意的是 $\exists x$ 就絕不能省略,否則就弄不清楚是 $\forall x$ 或 $\exists x$ 了. 總而言之,當我們碰到「所有 x 只要符合 P(x) 也會符合 Q(x)」這種 statement 時,原本應寫成「 $\forall x, P(x) \Rightarrow Q(x)$ 」,我們常省略 $\forall x$ 而用「 $P(x) \Rightarrow Q(x)$ 」來表達. 而如果是「存在 x符合 $x \in Y$ 0 也符合 $x \in Y$ 1 也符合 $x \in Y$ 2 也符合 $x \in Y$ 3 也符合 $x \in Y$ 3 可以以此一个人。 $x \in Y$ 4 可以以此一个人。 $x \in Y$ 5 可以以此一个人。 $x \in Y$ 6 可以以此一个人。 $x \in Y$ 6 可以以此一个人。 $x \in Y$ 7 可以以此一个人。 $x \in Y$ 8 可以以此一个人。 $x \in Y$ 9 可以以此一个人,一个人。 $x \in Y$ 9 可以以此一个人。 $x \in Y$ 9 可以以此一个。 $x \in Y$ 9 可以以此一个人。 $x \in Y$ 9 可以以此一个。 $x \in Y$ 9 可以以此一个。 $x \in Y$ 9 可以此一个。 $x \in Y$ 9 可以以此一个。 $x \in$

1. Basic Logic

寫成「 $\exists x, (x>3) \land (x^2=10)$ 」(此時 $x=\sqrt{10}$),而不是「 $\exists x, (x>3) \Rightarrow (x^2=10)$ 」(此時 x=2 也會對).

Question 1.17. 假設 f(x,y) 是一個兩個變數的多項式. 「存在一實數 a>0 使得 f(a,y)=0 無解」這一個 statement, 數學的表示法為何?並寫出這 statement 的否定.