Exercises

1 Systems of Linear Equations

- 1. 假設 A,B 為同階的矩陣。以下各小題中 A 經由一個 elementary row operation 變成 B, 請說明如何用同樣 type 的 elementary row operation 將 B 變回 A.
 - (a) A 經由將 i-th row 和 j-th row 交換的 type 1 elementary row operation 變成 B.
 - (b) A 經由將 i-th row 乘上非 0 實數 r 的 type 2 elementary row operation 變成 B.
 - (c) A 經由將 *i*-th row 乘上實數 r 加到 *j*-th row 的 type 3 elementary row operation 變成 B.
- 2. 考慮 type 1, type 2 以及 type 3 的 elementary row operations.
 - (a) 試著利用一些 type 3 以及 type 2 的 elementary row operations 將 $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 變 換成 $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
 - (b) 證明所有 type 1 的 elementary row operation 皆可經由三次 type 3 的 elementary row operation 與一次 type 2 的 elementary row operation 得到。
 - (c) 利用習題 1 之 elementary row operation 的可逆性以及 (b) 說明某一個 row 乘上 -1 這種 type 2 的 elementary row operation, 也可經由三次 type 3 的 elementary row operation 與一次 type 1 的 elementary row operation 得到。
 - (d) 說明當 $a \neq \pm 1$ 時,無法經一些 type 1 以及 type 3 的 elementary row operations 將 $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 變換成 $\begin{bmatrix} 1 & 0 \\ 0 & a \end{bmatrix}$ (Hint: 觀察行列式的變化). (註: 這說明當 $a \neq \pm 1$ 時,某一個 row 乘上 a 這種 type 2 的 elementary row operation 無法經由一些 type 1 和 type 3 的 elementary row operations 得到。)
 - (e) 說明無法經一些 type 1 以及 type 2 的 elementary row operations 將 $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 變 換成 $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ (Hint: 觀察 0 的個數變化). (註: 這說明 type 3 的 elementary row operation 無法經由一些 type 1 和 type 2 的 elementary row operations 得到。)
- 3. 分別討論以下 system of linear equations 的 coefficient matrix 的 rank, 並寫下其解集合。

(a)
$$x_1 + x_2 -3x_3 + x_4 = 1 x_1 + x_2 + x_3 - x_4 = 2 x_1 + x_2 - x_3 = 0$$

(b)
$$3x_1 -x_2 +2x_3 +4x_4 +x_5 = 2 x_1 -x_2 +2x_3 +3x_4 +x_5 = -1 2x_1 -3x_2 +6x_3 +9x_4 +4x_5 = -5 7x_1 -2x_2 +4x_3 +8x_4 +x_5 = 6$$

4. 令 λ ∈ \mathbb{R} , 考慮矩陣

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 4 \\ 1 & \lambda & 1 & 1 & 4 \\ 1 & 1 & \lambda & 3 - \lambda & 6 \\ 2 & 2 & 2 & \lambda & 6 \end{bmatrix}$$

試依照 λ 的取值探討 rank(A).

5. 已知存在 $\alpha, \beta \in \mathbb{R}$ 使得聯立方程組

有無窮多組解。試找出這些所有可能的數對 (α, β) .

- 6. 假設 $A\mathbf{x} = \mathbf{b}$ 是一個有三個未知數 x_1, x_2, x_3 的聯立方程組,其中 A 不為零矩陣。已知 $(x_1, x_2, x_3) = (1, 2, 3)$ 以及 $(x_1, x_2, x_3) = (1, 3, 3)$ 皆為此聯立方程組的解。
 - (a) 試舉例說明 x3 未必是 pivot variable.
 - (b) 證明不管 x₃ 是否為 pivot variable, x₂ 一定是 free variable.
 - (c) 證明若 x₃ 是 free variable, 則 x₁ 是 pivot variable.
 - (d) 試依 x_1, x_3 是否為 pivot variables 的各種情況分別寫下與 $A\mathbf{x} = \mathbf{b}$ 為 equivalent 的 linear system. (Hint: 共有 3 種可能,利用 reduced echelon form 處理)
- 7. 試將以下矩陣化為 reduced echelon form. $\begin{bmatrix} -2 & 1 & -5 & -7 & -5 & 4 & -2 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 & 1 & 0 & 0 \\ -1 & -1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$
- 8. 試說明以下矩陣那些可利用 elementary row operations 互换。

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}; \quad \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}; \quad \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}; \quad \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

9. 令 A 為 4×6 matrix 且可利用 elementary row operation 化為 reduced echelon form B. 令 A_i, B_i 分別表示 A, B 的 i-th column.

2

(a) 假設 $A_4 = 4A_1 + 3A_3$, 試說明 homogeneous system $A\mathbf{x} = \mathbf{0}$ 有一組解為

$$(x_1, x_2, x_3, x_4, x_5, x_6) = (4, 0, 3, -1, 0, 0).$$

- (b) 證明 $A_4 = 4A_1 + 3A_3$ 若且唯若 $B_4 = 4B_1 + 3B_3$.
- (c) 已知

$$A_{1} = \begin{bmatrix} 1 \\ -2 \\ -1 \\ 3 \end{bmatrix}; \quad A_{3} = \begin{bmatrix} -1 \\ 1 \\ 2 \\ -4 \end{bmatrix}; \quad A_{6} = \begin{bmatrix} 3 \\ -9 \\ 2 \\ 5 \end{bmatrix}; \quad B = \begin{bmatrix} 1 & -3 & 0 & 4 & 0 & 5 \\ 0 & 0 & 1 & 3 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

試將原先 A 完整的矩陣形式寫下。

2 Matrix

- 1. 假設 $A = [a_{ij}] \in M_{3\times 4}, B = [b_{ij}] \in M_{4\times 3}$ 其中 $a_{ij} = i + j, b_{ij} = i \cdot j.$
 - (a) 試完整寫下矩陣 A 和 B.
 - (b) 試利用 B 的 3rd column 計算 AB 的 3rd column 並依所求結果寫下 AB 的 (2,3)-th entry.
 - (c) 直接利用內積方法計算 AB 的 (2,3)-th entry.
- 2. 設 \mathbf{a} , \mathbf{b} 為 \mathbb{R}^n 上的向量, 若將 \mathbf{a} 寫成 row vector 的形式, \mathbf{b} 寫成 column vector 的形式, 且將 \mathbf{a} , \mathbf{b} 看成矩陣, 即 $\mathbf{a} \in M_{1 \times n}(\mathbb{R})$, $\mathbf{b} \in M_{n \times 1}(\mathbb{R})$. 試問依矩陣乘法定義 \mathbf{ba} 應為何種矩陣? 它和 \mathbf{a} , \mathbf{b} 看成 \mathbb{R}^n 上的向量後取內積 $\langle \mathbf{b}, \mathbf{a} \rangle$ 有關嗎?
- 3. 假設 $A = [a_{ij}] \in M_{m \times n}, B = [b_{ij}] \in M_{n \times k}$ 且令 $AB = [c_{ij}]$. 令 $\mathbf{b}_k, \mathbf{c}_k$ 分別表示 B 和 AB 的 kth column. 已知 $\mathbf{b}_4 = r\mathbf{b}_1 + s\mathbf{b}_2 + t\mathbf{b}_3$ 其中 $r, s, t \in \mathbb{R}$. 證明 $\mathbf{c}_4 = r\mathbf{c}_1 + s\mathbf{c}_2 + t\mathbf{c}_3$.
- 4. 一個 $n \times n$ 的 square matrix 其 (i,i)-th entry 稱為 diagonal entry. 若除了 diagonal entries 以外, 其他的 entry 皆為 0, 我們便稱之為 diagonal matrix. 假設 A,B 皆為 $n \times n$ 的 diagonal matrix 且設 A,B 的 (i,i)-th entry 分別為 a_i,b_i .
 - (a) 試證明 A+B 也是 diagonal matrix 且寫下 A+B 的 (i,i)-th entry.
 - (b) 試證明 AB 也是 diagonal matrix 且寫下 AB 的 (i,i)-th entry. 並依此說明 A 和 B 是否為 commutative (即是否乘法可交換 AB = BA)?
- 5. 固定一正整數 m, 考慮所有 $m \times 3$ matrices.
 - (a) 試找到一個 3×3 matrix E_1 使得對任意 $A \in M_{m \times 3}$, 皆有 AE_1 的 1-st column 就 是 A 的 1-st column, 而 AE_1 的 2-nd column 恰為 A 的 3-rd column 且 AE_1 的 3-rd column 恰為 A 的 2-nd column.
 - (b) 試找到一個 3×3 matrix E_2 使得對任意 $A \in M_{m \times 3}$, 皆有 AE_2 的 1-st column 就是 A 的 1-st column, 而 AE_2 的 2-nd column 也是 A 的 2-nd column 且 AE_2 的 3-rd column 恰為 A 的 3-rd column 的 4 倍.

- (c) 試找到一個 3×3 matrix E_3 使得對任意 $A \in M_{m \times 3}$, 皆有 AE_3 的 1-st column 就 是 A 的 1-st column 減去 A 的 3-rd column, 而 AE_3 的 2-nd column 恰為 A 的 2-rd column 且 AE_3 的 3-rd column 恰為 A 的 3-rd column.
- 6. 假設 $A = [a_{ij}] \in M_{3\times 4}, B = [b_{ij}] \in M_{4\times 3}$ 其中 $a_{ij} = i + j, b_{ij} = i \cdot j.$
 - (a) 試完整寫下矩陣 A^t 和 B^t.
 - (b) 前次習題曾計算 AB 的 3rd column. 請說明可以 $(AB)^t$ 哪個 row 或是 column 來 求 AB 的 3rd column. 並利用 A^t , B^t 的乘法 (注意順序) 求出。
- 7. 給定一實係數多項式 $f(x) = a_m x^m + \cdots + a_1 x + a_0 \in \mathbb{R}[x]$. 對任意 n 階方陣 A, 定義 f(A) 為 n 階方陣 $a_m A^m + \cdots + a_1 A + a_0 I_n$, 其中 I_n 為 n 階單位矩陣.
 - (a) 假設 A 為 diagonal matrix. 利用數學歸納法證明 A^k 為 diagonal matrix, 其中 k 為任意正整數。
 - (b) 若 A 為 diagonal matrix 證明 f(A) 亦為 diagonal matrix.
 - (c) 若 $A \rightarrow B$ 為 commutative, 證明對任意正整數 k,l 皆有 $A^k \rightarrow B^l$ 為 commutative.
 - (d) 假設 $f(x), g(x) \in \mathbb{R}[x]$. 若 A 和 B 為 commutative, 證明矩陣 f(A) 和 g(B) 亦為 commutative.
- 8. 假設 $A_1,A_2...,A_n$ 為矩陣且 $A_1\cdot A_2\cdots A_n$ 符合矩陣乘法。試利用數學歸納法證明

$$(A_1 \cdot A_2 \cdot \cdot \cdot A_n)^{\mathsf{t}} = A_n^{\mathsf{t}} \cdot \cdot \cdot A_2^{\mathsf{t}} \cdot A_1^{\mathsf{t}}.$$

- 9. 對於 n 階 square matrix A, 若存在 n 階 square matrix B 使得 $BA = I_n$ 且 $AB = I_n$, 則稱 A 為 invertible matrix 且稱 B 為其 inverse, 記為 A^{-1} . 請證明以下有關 invertible matrix 的性質。
 - (a) 假設 $A_1, A_2, ..., A_m$ 為 n 階 invertible matrices。試利用數學歸納法證明

$$(A_1 \cdot A_2 \cdot \cdot \cdot A_m)^{-1} = A_m^{-1} \cdot \cdot \cdot A_2^{-1} \cdot A_1^{-1}.$$

- (b) 假設 A 為 invertible, 證明 $(A^t)^{-1} = (A^{-1})^t$.
- (c) 假設 A 為 invertible matrix, 對任意非零 $r \in \mathbb{R}$, 證明 rA 亦為 invertible.
- (d) 假設 A 為 n 階 square matrix 滿足 $A^2 = O$, 證明 A 為 non-invertible 但 $I_n A$ 為 invertible (Hint 利用 $I_n A^2 = (I_n A)(I_n + A)$). 請推廣到一般 $A^k = O$ 的情況。
- 10. 若一個方陣 A 滿足 $A^{t} = A$, 則稱 A 為 symmetric matrix.
 - (a) 假設 A 為 symmetric 且為 invertible. 證明 A^{-1} 亦為 symmetric.
 - (b) 假設 A,B 為 n 階 symmetric matrices. 證明 AB 為 symmetric matrix 若且唯若 A,B 為 commutative.
 - (c) 試說明 elementary matrix 的 transpose 亦為 elementary matrix (需說明原來對應的 elementary row operation 轉置後其所對應的 elementary row operation 為何)。

11. 考慮矩陣
$$A = \begin{bmatrix} 1 & 1 & 2 & 1 \\ 0 & -2 & 0 & 0 \\ 1 & 2 & 1 & -2 \\ 0 & 3 & 2 & 1 \end{bmatrix}$$
.

- (a) 利用一些 elementary row operations 將 A 化成 reduced echelon form. 寫下每個 elementary row operation 所對應的 elementary matrix.
- (b) 寫下 A^{-1} 並將 A^{-1} 寫成一些 elementary matrix 的乘積 (不必乘開驗證)。
- (c) 利用 (b) 的結果將 A 寫成一些 elementary matrix 的乘積 (不必乘開驗證)。

- (a) 試找到一個 invertible matrix E 使得 EA 為 reduced echelon form.
- (b) 試求 rank(A) 並說明對任意 $\mathbf{b} \in \mathbb{R}^k$ 聯立方程組 $A\mathbf{x} = \mathbf{b}$ 皆在 $\mathbf{x} \in \mathbb{R}^\ell$ 有解,其中 k,ℓ 為何?
- (c) 試找到無窮多個 C 滿足 $AC = I_4$.
- 13. 給定一 $m \times n$ matrix A, 其中 $m \neq n$. 假設 B 為 $n \times m$ matrix 滿足 $AB = I_m$.
 - (a) 試說明對任意 $k \in \mathbb{N}$, 皆存在 $n \times k$ 的非零矩陣 C 使得 AC 為 $m \times k$ 的零矩陣。
 - (b) 試說明若 D 為 $k \times m$ matrix 使得 DA 為 $k \times n$ 的零矩陣, 則 D 為零矩陣。
- 14. 假設 $A \stackrel{\wedge}{a} m \times n$ matrix 且 $B \stackrel{\wedge}{a} n \times m$ matrix 滿足 $AB = I_m$. 前面的習題已知當 $m \neq n$ 時會存在無窮多個矩陣 M 使得 $AM = I_m$ 但不存在矩陣 N 使得 $NA = I_n$ 。又存在非零矩陣 C 使得 AC 為零矩陣但不存在非零矩陣 D 使得 DA 為零矩陣。請分別依 $m \neq n$; m = n 兩種情況回答以下問題並說明原因。
 - (a) 是否存在矩陣使得 $BM = I_n$?
 - (b) 是否存在無窮多個矩陣使得 $NB = I_m$?
 - (c) 是否存在非零矩陣 C 使得 BC 為零矩陣?
 - (d) 是否存在非零矩陣 D 使得 DB 為零矩陣?

15. 考慮聯立方程組
$$\begin{cases} x & + z = 1 \\ x + y & = 2 \\ 3x + y + z = 1 \end{cases}, 令 A 為其係數矩陣且令 b =
$$\begin{bmatrix} 1 \\ 2 \\ 1 \\ 2 \end{bmatrix}.$$$$

- (a) 求 rank(A) 並說明此聯立方程組若有解是否解唯一。
- (b) 試找出矩陣 D 使得 $DA = I_3$.
- (c) 試求 $D\mathbf{b}$ 並利用 $\mathbf{x} = D\mathbf{b}$ 代回聯立方程組說明為何此聯立方程組無解。
- 16. 假設 AB 為 invertible, 其中 A 為 $m \times n$ matrix, B 為 $n \times m$ matrix 且 $m \neq n$.

- (a) 試說明 rank(A) 與 rank(B) 為何.
- (b) 證明 BA 不是 invertible.
- 17. 假設 A,B 為 n 階 square matrices 滿足 $AB-I_n$ 為 invertible. 證明

$$(BA - I_n) (B(AB - I_n)^{-1}A - I_n) = I_n$$

並以此說明 $BA - I_n$ 亦為 invertible. (Hint: 利用 $BAB = B(AB - I_n) + B$)

3 Vector Spaces

- 1. 考慮集合 $S = \{1,2\}$, 以及 vector space \mathbb{R}^3 (一般的加法與係數積). 令 $F(S,\mathbb{R}^3)$ 為 所有 S 到 \mathbb{R}^3 的函數所成的集合. 對任意 $f,g \in F(S,\mathbb{R}^3)$, $r \in \mathbb{R}$ 定義 (f+g)(1) = f(1) + g(1), (f+g)(2) = f(2) + g(2) 以及 $(rf)(1) = r \cdot f(1), (rf)(2) = r \cdot f(2)$
 - (a) 已知 $F(S,\mathbb{R}^3)$ 在此定義之下是一個 over \mathbb{R} 的 vector space. 若 $h \in F(S,\mathbb{R}^3)$ 是此空間的零向量, 請寫下 h(1),h(2).
 - (b) 若 $f,g \in F(S,\mathbb{R}^3)$ 満足

$$f(1) = (0,1,2), f(2) = (1,2,3); g(1) = (-1,2,-1), g(2) = (2,0,1)$$

試寫下 (3f-2g) 在 1, 2 的函數值.

- 2. 考慮集合 $U = \{(a,b) : a,b \in \mathbb{R}, a > 0 \text{ 且 } b > 0\}$. 定義 U 上的加法運算為: 若 $\mathbf{u} = (a,b), \mathbf{v} = (c,d) \in U$, 則 $\mathbf{u} + \mathbf{v} = (ac,bd)$. 另外對任意 $r \in \mathbb{R}$, $\mathbf{u} = (a,b) \in U$ 定義係數積 $r\mathbf{u} = (a^r,b^r)$. 試回答以下問題.
 - (a) U 是否為 vector space over \mathbb{R} ? U 是否為 \mathbb{R}^2 (一般的加法與係數積) 的 subspace?
 - (b) 假設 $\mathbf{v} = (25, 1/9), \mathbf{w} = (4, 1)$ 且 $\mathbf{u} = (x, y)$ 在 U 中滿足 $2\mathbf{u} + 3\mathbf{v} = 5\mathbf{w}$. 利用定義分別寫下 $2\mathbf{u} + 3\mathbf{v}$ 以及 $5\mathbf{w}$ 的坐標表示法, 並依此解出 x, y.
 - (c) 若給定 $\mathbf{v}, \mathbf{w} \in U$ 已知 $\mathbf{u} \in U$ 满足 $2\mathbf{u} + 3\mathbf{v} = 5\mathbf{w}$. 試將 \mathbf{u} 寫成 \mathbf{v}, \mathbf{w} 的線性組合. 假設 $\mathbf{v} = (25, 1/9), \mathbf{w} = (4, 1)$. 若 $\mathbf{u} \in U$ 满足 $2\mathbf{u} + 3\mathbf{v} = 5\mathbf{w}$. 利用上述的線性組合, 解出 \mathbf{u} .
 - (d) 下列哪些是 U 的 subspace, 並說明理由.

$$U_1 = \{(x,1) : x > 0\}; \quad U_2 = \{(2^r, 3^r) : r \in \mathbb{R}\};$$

 $U_3 = \{(x,y) : x > 1, y > 1\}; \quad U_4 = \{(x,y) : x > 1, y > 1\}.$

3. 考慮集合 $S = \{1,2\}$, 以及 vector space \mathbb{R}^3 . $F(S,\mathbb{R}^3)$ 為所有 S 到 \mathbb{R}^3 的函數所成的 vector space (上週習題所定的運算方法)。下列哪些是 $F(S,\mathbb{R}^3)$ 的 subspace, 並說明理由.

$$F_1 = \{ f \in F(S, \mathbb{R}^3) : f(2) = (0,0,0) \}; F_2 = \{ f \in F(S, \mathbb{R}^3) : f(1) + f(2) = (0,0,0) \}$$

$$F_3 = \{ f \in F(S, \mathbb{R}^3) : f(1) \cdot f(2) = 0 \}; F_4 = \{ f \in F(S, \mathbb{R}^3) : f(1) = (x,y,z), xyz = 0 \}$$

$$F_5 = \{ f \in F(S, \mathbb{R}^3) : f(2) = (x,y,z), x + 2y - z = 0 \}.$$

- 4. 考慮所有 n 階實方陣所形成 over \mathbb{R} 的 vector space M_n . 令 $W_1 = \{A \in M_n : A^t = A\}$, $W_2 = \{A \in M_n : A^t = -A\}$, $W_3 = \{[a_{ij}] \in M_n : a_{ij} = 0, \forall i \leq j\}$.
 - (a) 證明 W_1, W_2 為 M_n 的 subspace 且 $W_1 + W_2 = M_n$.
 - (b) 證明 W_3 為 M_n 的 subspace 且 $W_1 + W_3 = M_n$.
- 5. 在以下的 vector space 中檢查是否 \mathbf{v} , \mathbf{w} 在 $\mathrm{Span}(S)$ 中.
 - (a) $\mathbf{v} = (-1, 1, 1, 2), \mathbf{w} = (2, -1, 1, -3), S = \{(1, 0, 1, -1), (0, 1, 1, 1)\}$ in \mathbb{R}^4 .
 - (b) $\mathbf{v} = -x^3 + 2x^2 + 3x + 3$, $\mathbf{w} = 2x^3 x^2 + x + 3$, $S = \{x^3 + x^2 + x + 1, x^2 + x + 1, x + 1\}$ in $P_3(\mathbb{R})$.

(c)
$$\mathbf{v} = \begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix}, \mathbf{w} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, S = \left\{ \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \right\} \text{ in } M_2(\mathbb{R}).$$

6. 在 $M_2(\mathbb{R})$ 中令 $W = \{A \in M_2(\mathbb{R}) : A^t = A\}$ 以及

$$A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, A_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, A_3 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, A_4 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, A_5 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, A_6 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

證明 $W = \operatorname{Span}(A_1, A_2, A_3)$ 並說明 $W \subsetneq \operatorname{Span}(A_1, A_2, A_4, A_5)$ 以及 $W \supsetneq \operatorname{Span}(A_3, A_6)$.

- 7. 假設 V 為 vector space 且 $S \subset V$. 證明 $S \neq V$ 的 subspace 若且唯若 Span(S) = S.
- 8. 請決定以下集合在所屬的 vector space 中是否為 linearly independent. 若為 linearly dependent, 試將其中一個元素表示成其他元素的線性組合.
 - (a) $S_1 = \{(1,0,0), (1,2,-1), (0,1,1)\}, S_2 = \{(1,1,-1), (0,1,1), (1,2,0)\} \text{ in } \mathbb{R}^3.$
 - (b) $S_3 = \{2x^2 + x + 1, x^2 + 3, x + 2\}, S_4 = \{2x^2 + x + 1, 3x^2 + x 5, x + 13\} \text{ in } P_2(\mathbb{R}).$

$$\begin{array}{l} \text{(c)} \ \ S_5 = \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} \right\}, \ \ S_6 = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 3 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 3 \\ 4 & 3 \end{bmatrix} \right\} \\ \text{in } M_2(\mathbb{R}) \end{array}$$

9. 假設 V 為 vector space over \mathbb{F} 且 $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \in V$ 為 linearly independent. 令

$$\mathbf{w}_1 = a_1 \mathbf{v}_1 + b_1 \mathbf{v}_2 + c_1 \mathbf{v}_3, \ \mathbf{w}_2 = a_2 \mathbf{v}_1 + b_2 \mathbf{v}_2 + c_2 \mathbf{v}_3, \ \mathbf{w}_3 = a_3 \mathbf{v}_1 + b_3 \mathbf{v}_2 + c_3 \mathbf{v}_3,$$

以及 $A = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}$. 證明 $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$ 為 linearly independent 若且唯若 A 為 invertible.

- 10. 請決定以下集合是否為其所屬的 vector space 中的一組 basis.
 - (a) In \mathbb{R}^3 ,

$$S_1 = \{(1,2,-1),(1,0,2),(2,1,1)\}, \quad S_2 = \{(1,-3,-2),(-3,1,3),(-2,10,-2)\}.$$

- (b) In $P_2(\mathbb{R})$, $S_3 = \{-2x^2 2x + 1, x^2 3x + 2, 6x^2 x + 1\},$ $S_4 = \{x^2 2x 1, x^2 2x + 4, 9x^2 18x + 1\}.$
- 11. 假設 V,W 皆為 over $\mathbb F$ 的 vector space. 令 $U = \{(\mathbf v,\mathbf w): \mathbf v \in V, \mathbf w \in W\}$, 且定義 U 中的加法與係數積如下:

$$(\mathbf{v}, \mathbf{w}) + (\mathbf{v}', \mathbf{w}') = (\mathbf{v} + \mathbf{v}', \mathbf{w} + \mathbf{w}'), \quad c(\mathbf{v}, \mathbf{w}) = (c\mathbf{v}, c\mathbf{w}), \forall \mathbf{v}, \mathbf{v}' \in V; \mathbf{w}, \mathbf{w}' \in W; c \in \mathbb{F}.$$

- (a) 說明 *U* 為 vector space over *F*.
- (b) 假設 $\dim(V) = m, \dim(W) = n$, 證明 $\dim(U) = m + n$.
- 12. 給定 $n \in \mathbb{N}$, 令 $P_n(\mathbb{R})$ 表示所有次數小於等於 n 的實係數多項式所形成 over \mathbb{R} 的 vector space.
 - (a) 若 $m \le n+1$ 且 $f_1(x), \ldots, f_m(x) \in P_n(\mathbb{R})$ 為次數皆相異的非零多項式. 證明 $f_1(x), \ldots, f_m(x)$ 為 linearly independent.
 - (b) 假設 $p_0(x), p_1(x), \ldots, p_n(x) \in P_n(\mathbb{R})$ 且 $\deg(p_i(x)) = i, \forall i \in \{0, 1, \ldots, n\}$ 其中 $p_0(x) \neq 0$. 證明 $p_0(x), p_1(x), \ldots, p_n(x)$ 為 $P_n(\mathbb{R})$ 的一組 basis. (Hint: 可用 $\dim_{\mathbb{R}}(P_n(\mathbb{R})) = n+1$)

- (a) 試求 A 的 nullity 並寫下 N(A) 的一組 basis.
- (b) 試找到矩陣 B 使得 N(B) = Col(A), 並依此找出 Col(A) 的一組 basis.
- (c) 試利用 elementary row operations 在 A 的 column vectors 中找到一組 Col(A) 的 basis.
- (d) 試將 (c) 中 basis 的向量寫成 (b) 中的 basis 的線性組合.
- (e) 試利用 *A^t*, 找到 Row(*A*) 的一組 basis.
- (f) 找到 $N(A^t)$ 的一組 basis. 說明 $N(A^t)$ 和 Col(A) 的關係以及 N(A) 和 Row(A) 的關係.
- 14. 考慮所有次數小於等於 2 的實係數多項式所形成的 vector space $P_2(\mathbb{R})$. 令

$$S = \{2x^2 - 3x + 1, x^2 + 4x - 2, -8x^2 + 12x - 4, x^2 + 37x - 17, -3x^2 - 5x + 8\}$$

且令 V = Span(S). (Hint: 可將 $P_2(\mathbb{R})$ 的元素看成 \mathbb{R}^3 的向量。例如 $2x^2-3x+1$ 看成 (2,-3,1).)

- (a) 試找到 S 的一個 subset 形成 V 的一組 basis.
- (b) 試將 S 中其他的元素寫成 (a) 中所得的 basis 的 linear combination.

- (c) 試說明 V 是否等於 $P_2(\mathbb{R})$.
- 15. 考慮所有 2×3 實矩陣所形成的 vector space 中的一個 subspace

$$V = \left\{ \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix} : a_1 - a_2 + 2b_1 - 3b_2 + b_3 = 2a_1 - a_2 - a_3 + 3b_1 - 4b_2 + 4b_3 = 0 \right\}.$$

$$\not= \mathbb{R} M_1 = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, M_2 = \begin{pmatrix} 0 & 2 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

- (a) 試找到 V 的一組 basis.
- (b) 說明 $M_1, M_2 \in V$ 且 M_1, M_2 為 linearly independent.
- (c) 擴充 M_1, M_2 使其形成 V 中的一組 basis.

 $V = \operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4).$

- (a) 試找到矩陣 A 使得 V = Col(A), 且將 A 化成 echelon form 並說明如何依此找到 V 的一組 basis.
- (b) 試找到矩陣 B 使得 V = Row(B), 且將 B 化成 reduced echelon form 並說明如何 依此找到 V 的一組 basis.
- (c) 若不限制 basis 的形式你覺得此題哪一個找 basis 的方法比較好? 試將其中一組 basis 寫成另一組 basis 的線性組合.
- 17. 考慮 ℝ⁴ 中的兩個 subspace

$$W_1 = \text{Span}((1,1,1,1),(1,0,2,0),(0,2,1,1)), W_2 = \text{Span}((3,0,3,1),(3,2,3,2),(2,-1,2,0))$$

- (a) 找到矩陣 B_1, B_2 使得 $W_1 = N(B_1), W_2 = N(B_2),$ 並以此找出 $W_1 \cap W_2$ 的一組 basis.
- (b) 利用 $W_1 \cap W_2$ 的 basis 分別擴充成 $W_1 + W_2$ 的一組 basis. 並以此驗算

$$\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2).$$

4 Inner Product Space

- 1. 假設 V 為 vector space 且 $\mathbf{v}_1, \mathbf{v}_2$ 為其 basis. 考慮 V 上的一個 inner product \langle , \rangle . 已 知 $\|\mathbf{v}_1\| = 1$, $\|\mathbf{v}_2\| = 9$ 且 $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = -1$. 若 $\mathbf{w}_1 = 2\mathbf{v}_1 \mathbf{v}_2$, $\mathbf{w}_2 = \mathbf{v}_1 + 2\mathbf{v}_2$, 試求 $\langle \mathbf{w}_1, \mathbf{w}_2 \rangle$.
- 2. 當 A = [a] 為 1×1 matrix, 我們定義 $\det(A) = a$, 而當 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ 為 2×2 matrix, 我們定義 $\det(A) = ad bc$.

- (a) 試說明 $\langle A, B \rangle = \det(B^t A), \forall A, B \in M_{2 \times 1}(\mathbb{R})$ 是否為 $M_{2 \times 1}(\mathbb{R})$ 的 inner product?
- (b) 試說明 $\langle A, B \rangle = \det(B^t A), \forall A, B \in M_{1 \times 2}(\mathbb{R})$ 是否為 $M_{1 \times 2}(\mathbb{R})$ 的 inner product?
- 3. 考慮次數不大於 2 的實係數多項式所形成的向量空間 $P_2(\mathbb{R})$.
 - (a) 試說明

$$\langle f, g \rangle = f(-1)g(-1) + f(1)g(1), \forall f, g \in P_2(\mathbb{R})$$

是否為 $P_2(\mathbb{R})$ 的 inner product?

(b) 試說明

$$\langle f,g\rangle = f(-1)g(-1) + f(1)g(1) + f(-2)g(-2) + f(2)g(2), \forall f,g \in P_2(\mathbb{R})$$

是否為 $P_2(\mathbb{R})$ 的 inner product?

(c) 若定義

$$\langle f, g \rangle = f(-1)g(-1) + f(0)g(0) + f(1)g(1), \forall f, g \in P_2(\mathbb{R}).$$

試求 $||x^2||, ||x||, ||1||$ 以及 $||x^2 + x + 1||$.

- 4. 對任意 V 中的子集合 S 定義 $S^{\perp} = \{ \mathbf{v} \in V : \langle \mathbf{v}, \mathbf{w} \rangle = 0, \forall \mathbf{w} \in S \}$.
 - (a) 若 $S \subseteq V$, 證明 S^{\perp} 為 V 的一個 subspace.
 - (b) 證明 $S^{\perp} = \operatorname{Span}(S)^{\perp}$.
 - (c) 假設 $S_1 \subseteq S_2$ 皆為 V 的 subset, 證明 $S_2^{\perp} \subseteq S_1^{\perp}$.
 - (d) 證明 $S \subseteq (S^{\perp})^{\perp}$, 並依此說明 $\operatorname{Span}(S) \subseteq (S^{\perp})^{\perp}$.
- 5. 假設 $\mathbf{v}_1, \dots, \mathbf{v}_n$ 為 V 的一組 orthonormal basis.
 - (a) 假設 $\mathbf{u}, \mathbf{w} \in V$ 且 $\mathbf{u} = a_1 \mathbf{v}_1 + \dots + a_n \mathbf{v}_n$ 且 $\mathbf{w} = b_1 \mathbf{v}_1 + \dots + b_n \mathbf{v}_n$. 證明

$$\langle \mathbf{u}, \mathbf{w} \rangle = a_1 b_1 + \dots + a_n b_n = \sum_{i=1}^n \langle \mathbf{u}, \mathbf{v}_i \rangle \langle \mathbf{w}, \mathbf{v}_i \rangle.$$

(b) 令 $W = \text{Span}(\mathbf{v}_1, \dots, \mathbf{v}_k)$ 其中 $1 \le k < n$. 對任意 $\mathbf{v} \in V$, 證明

$$\|\mathbf{v}\|^2 \geq \sum_{i=1}^k \langle \mathbf{v}, \mathbf{v}_i \rangle^2,$$

且等號成立若且唯若 $\mathbf{v} \in W$.

- 6. 在 \mathbb{R}^4 中考慮 dot product. 令 W = Span((2,-1,-2,4),(-2,1,-5,5),(-1,3,7,11))
 - (a) 利用 Gram-Schmidt Process 找到 W 上的一組 orthonormal basis, 並將之擴大成 \mathbb{R}^4 的一組 orthonormal basis.
 - (b) 試求 $\mathbf{v} = (-11, 8, -4, 18)$ 在 W 上的 orthogonal projection.

7. 考慮 $P_2(\mathbb{R})$ 上的 inner product 定義為

$$\langle f, g \rangle = f(1)g(1) + f(0)g(0) + f(-1)g(-1), \ \forall f, g \in P_2(\mathbb{R}).$$

- (a) 針對 $P_2(\mathbb{R})$ 上 x^2 , 1, x 這組 basis, 利用 Gram-Schmidt Process 找到 $P_2(\mathbb{R})$ 上的 一組 orthonormal basis.
- (b) 試求 $(x+1)^2$ 在 Span $(x^2,1)$ 上的 orthogonal projection.
- 8. 考慮 V 為 finite dimensional inner product space.
 - (a) 假設 W 為 V 的 subspace, 證明若 $\mathbf{v} \notin W$, 則存在 $\mathbf{u} \in W^{\perp}$ 使得 $\langle \mathbf{v}, \mathbf{u} \rangle \neq 0$.
 - (b) 假設 W_1, W_2 為 V 的 subspace, 證明 $(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$.
 - (c) 假設 W_1, W_2 為 V 的 subspace, 證明 $W_1^{\perp} + W_2^{\perp} = (W_1 \cap W_2)^{\perp}$.
- 9. 假設 $A \in M_{m \times n}$ 且 $\operatorname{rank}(A) = n$. 令 P 表示投影到 $\operatorname{Col}(A)$ 的投影矩陣. 請利用 A, A^t 表示 P 並利用矩陣乘法性質 (不要用投影概念) 證明以下敘述:
 - (a) 若 $\mathbf{w} \in \text{Col}(A)$, 則 $P\mathbf{w} = \mathbf{w}$. (Hint: $\mathbf{w} = A\mathbf{x}$ for some $\mathbf{x} \in \mathbb{R}^n$)
 - (b) 若 $\mathbf{v} \in \operatorname{Col}(A)^{\perp}$, 則 $P\mathbf{v} = \mathbf{O}$. (Hint: $\mathbf{v} \in N(B)$ for some matrix B. what's B?)
- 10. 考慮 \mathbb{R}^n 利用 dot product 所成的 inner product space. 令 W 為 V 的 subspace.
 - (a) 已知對任意 $\mathbf{v} \in \mathbb{R}^n$, 存在 $\mathbf{w} \in W, \mathbf{w}' \in W^{\perp}$ 使得 $\mathbf{v} = \mathbf{w} + \mathbf{w}'$. 證明 \mathbf{v} 在 W 的投影 為 \mathbf{w} 且 \mathbf{v} 在 W^{\perp} 的投影為 \mathbf{w}' .
 - (b) 假設 P_W , $P_{W^{\perp}}$ 分別為對 W 和 W^{\perp} 的投影矩陣. 證明 $P_W = I_n P_{W^{\perp}}$ (即證明若 $\mathbf{v} \in \mathbb{R}^n$, 則 $(I_n P_{W^{\perp}})\mathbf{v}$ 為 \mathbf{v} 在 W 的投影).
- 11. 考慮 \mathbb{R}^3 利用 dot product 所成的 inner product space. 令 $W = \{(x,y,z) \in \mathbb{R}^3 : x-2y+z=0\}$. 以下我們用兩種方法求對 W 的投影矩陣.
 - (a) 找出 W 的一組 basis, 並利用此組 basis 得到矩陣 A 使得 Col(A) = W.
 - (b) 利用 (a) 中所得的 A 寫下對 W 的投影矩陣 (請將矩陣具體乘開).
 - (c) 找出 W^{\perp} 的一組 basis, 並利用此組 basis 得到矩陣 B 使得 $Col(B) = W^{\perp}$.
 - (d) 利用 (c) 中所得的 B 寫下對 W^{\perp} 的投影矩陣, 並利用上一題 (b) 的結果寫下對 W 的投影矩陣.
- 12. 此題我們用 normal equations 以及 QR decomposition 求 inconsistent system 的 least squares solution. 請使用以下資訊: $\mathbf{w}_1 = (1,3,1,1), \mathbf{w}_2 = (1,1,1,1), \mathbf{w}_3 = (-1,5,2,2)$ 利用 Gram-Schmidt 在 dot product 之下可得到 orthogonal vectors $\mathbf{u}_1 = (1,3,1,1), \mathbf{u}_2 = (1,-1,1,1), \mathbf{u}_3 = (-2,0,1,1)$. 考慮聯立方程組

$$\begin{cases} x + y - z = 4 \\ 3x + y + 5z = -1 \\ x + y + 2z = 5 \\ x + y + 2z = 1 \end{cases}$$

- (a) 將此聯立方程組寫成 Ax = b 的矩陣形式並寫下其 normal equations.
- (b) 利用 normal equations 求原方程組的 least squares solution 以及其 error vector.
- (c) 將聯立方程組的係數矩陣 A 寫成 QR decomposition.
- (d) 利用 QR decomposition 寫下對 Col(A) 的投影矩陣並求出原方程組的 error vector.
- (e) 利用 QR decomposition 寫下與 normal equations 等價的方程組,並利用此方程組求出原方程組的 least squares solution.
- 13. 考慮二維資料 $\{(-3,9),(-2,6),(0,2),(1,1)\}$. 以下請利用 least squares 的方法分別找到所要求最接近函數並求其 error.
 - (a) 常數函數. (b) 一次函數. (c) 二次函數.
- 14. 在 \mathbb{R}^3 中考慮 dot product. 令 $W = \{(x,y,z) : x+3y-2z=0\}$ 以及 $\mathbf{v} = (2,1,3)$.
 - (a) 找到矩陣 A 使得 W = N(A), 以及 W 的一組 orthogonal basis 並求 \mathbf{v} 在 W 的 orthogonal projection.
 - (b) 利用 $N(A)^{\perp} = \operatorname{Col}(A^{t})$ 求出 W^{\perp} 的一組 basis 並說明此 basis 和高中學的 W 所在平面 E: x+3y-2z=0 有何關係. 利用高中的方法求點 P(2,1,3) 在平面 E 的投影.
 - (c) 考慮 (a) 中的 A 以及 \mathbf{v} 是 $A\mathbf{x} = A\mathbf{v}$ 的一個解. 利用以下的方法找到最短的向量 (x,y,z) 满足 x + 3y 2z = -1.
 - i. 利用 v 以及其在 N(A) 的 orthogonal projection.
 - ii. 利用找 $(AA^{t})\mathbf{x} = A\mathbf{v}$ 的解。
 - iii. 利用 (b) 所求 $Col(A^t)$ 的 basis 找到 $Col(A^t)$ 中唯一滿足 $A\mathbf{x} = A\mathbf{v}$ 的向量。
 - iv. 利用 Cauchy-Schwarz inequality (「柯希、舒瓦茲」不等式).
- 15. 考慮聯立方程組

$$\begin{cases} x +2y +z = 4 \\ x -y +2z = -11 \\ x +5y = 19 \end{cases}$$

今其矩陣表示法為 Ax = b.

- (a) 試求此方程組的解集合.
- (b) 找到此方程組的 minimal solution.
- (c) 將此方程組的 minimal solution 表成 A 的 row vectors 的線性組合 (寫下一組即可).
- 16. 假設 $A \in M_{m \times n}$ 且 $\operatorname{rank}(A) < n$. 若 $\mathbf{b} \in \mathbb{R}^m$ 使得聯立方程組 $A\mathbf{x} = \mathbf{b}$ 為 inconsistent.
 - (a) 試寫下求 $A\mathbf{x} = \mathbf{b}$ 的 least squares solution 所需解的聯立方程組的矩陣表示法.
 - (b) 說明 $A\mathbf{x} = \mathbf{b}$ 的 normal equations 有唯一的解在 A 的 row space 中, 且此解就是 $A\mathbf{x} = \mathbf{b}$ 的 least squares solution.

- 17. 已知當 $A \in M_{m \times n}$ 則 $\operatorname{rank}(A) = n$ 若且唯若 $A^{t}A$ 為 invertible.
 - (a) 利用上述結果證明若 $\operatorname{rank}(A) = n$ 則存在 $B \in M_{n \times m}$ 使得 $BA = I_n$.
 - (b) 利用上述結果證明當 $\operatorname{rank}(A) = m$ 時 AA^{t} 為 invertible 且存在 $C \in M_{n \times m}$ 使得 $AC = I_n$..

5 Determinant

- 1. 假設矩陣 $M = \begin{bmatrix} A & C \\ O & B \end{bmatrix}$ 為 (m+n) 階方陣, 其中 A,B 分別為 m 階、n 階方陣, 而 O 為 $n \times m$ 階零矩陣,C 為 $m \times n$ 階矩陣。證明 $\det M = (\det A)(\det B)$.
- 2. 利用 elementary row (column) operations 以及數學歸納法 (先從階數小的開始,找到規律性) 求以下 n 階方陣的行列式.

(a)
$$A = [a_{ij}]$$
 其中 $a_{ij} = \begin{cases} 1, & \text{if } i+j=n+1; \\ 0, & \text{otherwise.} \end{cases}$

例如
$$n=2$$
 時 $A=\begin{bmatrix}0&1\\1&0\end{bmatrix}$; $n=3$ 時 $A=\begin{bmatrix}0&0&1\\0&1&0\\1&0&0\end{bmatrix}$.

(b)
$$B = [b_{ij}]$$
 其中 $b_{ij} = \begin{cases} j, & \text{if } i = 1; \\ j, & \text{if } i > 1 \text{ and } j > i; \\ -j, & \text{if } i > 1 \text{ and } j < i; \\ 0, & \text{otherwise.} \end{cases}$

例如
$$n=2$$
 時 $B=\begin{bmatrix}1&2\\-1&0\end{bmatrix}$; $n=3$ 時 $B=\begin{bmatrix}1&2&3\\-1&0&3\\-1&-2&0\end{bmatrix}$.

(c)
$$A = [a_{ij}]$$
 其中 $a_{ij} = \begin{cases} r_i, & \text{if } j = i+1; \\ s_j, & \text{if } i = j+1; \\ 0, & \text{otherwise.} \end{cases}$

例如
$$n=2$$
 時 $A=\begin{bmatrix}0&r_1\\s_1&0\end{bmatrix}$; $n=3$ 時 $A=\begin{bmatrix}0&r_1&0\\s_1&0&r_2\\0&s_2&0\end{bmatrix}$ (注意 n 的奇偶).

3. 假設
$$M = \begin{bmatrix} b+8c & 2c-2b & 4b-4c \\ 4c-4a & c+8a & 2a-2c \\ 2b-2a & 4a-4b & a+8b \end{bmatrix}, P = \begin{bmatrix} 0 & 1 & 2 \\ 2 & 0 & 1 \\ 1 & 2 & 0 \end{bmatrix}.$$

- (a) 試求 P^{-1} 並求出 $P^{-1}MP$.
- (b) 求 $\det(P^{-1}MP)$ 並以此求 $\det(M)$ (Hint: $\det(AB) = \det(A)\det(B)$).
- 4. 假設 $A \stackrel{.}{\wedge} 6$ 階方陣滿足 $A^3 = 2I_6 \circ$ 試求 det(A).
- 5. 假設 $f: M_n \to \mathbb{R}$ 是 multi-linear 且滿足對任意 $A \in M_n$, 若 A 有某兩相鄰的 row 是相同的, 則 f(A) = 0. 證明 f 為 alternating.

6. 令
$$A = \begin{bmatrix} 1 & 4 & 1 & -3 \\ 2 & 10 & 0 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & -2 & 1 \end{bmatrix}$$
. 請依以下規定方法求 $\det(A)$.

- (a) 利用 elementary row operations, 並驗證與上週習題 1 是否相符.
- (b) 利用降階方法.
- 7. 假設 A 的每一個 entry 皆為整係數的 n 階方陣.
 - (a) 利用數學歸納法證明 det A 為整數.
 - (b) 若 A 為可逆且 A^{-1} 的每一個 entry 皆為整數,證明 $\det A = \pm 1$.
- 8. 以下為探討 Vandermonde matrix. 假設 $c_1, c_2, \ldots, c_{n-1}$ 為相異實數. 考慮多項式

$$f(x) = \det \begin{bmatrix} 1 & c_1 & \cdots & c_1^{n-1} \\ 1 & c_2 & \cdots & c_2^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & c_{n-1} & \cdots & c_{n-1}^{n-1} \\ 1 & x & \cdots & x^{n-1} \end{bmatrix}.$$

- (a) 例如 n=3 時, $f(x)=\det\begin{bmatrix} 1 & c_1 & c_1^2\\ 1 & c_2 & c_2^2\\ 1 & x & x^2 \end{bmatrix}$. 利用對 3-rd row 降階方式,證明此時 f(x) 的最高次項為 $(c_2-c_1)x^2$.
- (b) 當 n=3 時, 說明 c_1,c_2 為 f(x)=0 的兩相異實根, 並依此利用因式定理證明

$$\det\begin{bmatrix} 1 & c_1 & c_1^2 \\ 1 & c_2 & c_2^2 \\ 1 & c_3 & c_3^2 \end{bmatrix} = (c_2 - c_1)(c_3 - c_2)(c_3 - c_1).$$

(c) 利用數學歸納法證明在一般情形 f(x) 的最高次項為

$$\prod_{1 < i < j < n-1} (c_j - c_i) x^{n-1}.$$

試說明 f(x) = 0 所有的 n-1 個實根為何,並依此證明

$$\det\begin{bmatrix} 1 & c_1 & \cdots & c_1^{n-1} \\ 1 & c_2 & \cdots & c_2^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & c_{n-1} & \cdots & c_{n-1}^{n-1} \\ 1 & c_n & \cdots & c_n^{n-1} \end{bmatrix} = \prod_{1 \le i < j \le n} (c_j - c_i).$$

9. 考慮矩陣
$$B = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 0 \\ 1 & 4 & 2 \end{bmatrix}$$
.

- (a) 利用 Cramer's Rule 解聯立方程組 $B\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$.
- (b) 求 B 的 cofactor matrix, adjoint matrix 以及 inverse matrix.
- 10. 證明若 A 的每一個 entry 皆為整數且 $\det A = \pm 1$ 則 A^{-1} 的每一個 entry 皆為整數.
- 11. 請證明以下有關於 adjoint matrix 的性質。
 - (a) 若 A 為 upper triangular, 則 adj(A) 亦為 upper triangular.
 - (b) 若 A 為 symmetric, 則 adj(A) 亦為 symmetric.
 - (c) 若 A,B 皆為 n 階方陣,則 $(BA)(\operatorname{adj}(A)\operatorname{adj}(B)) = \operatorname{det}(AB)I_n$.
 - (d) 若 A,B 皆為 n 階 invertible matrix,則 adj(AB) = adj(B)adj(A).

6 Linear Transformations

- 1. 以下所定的函數是否為 linear transformation?若是請證明; 若不是請舉例說明.
 - (a) $T_1: \mathbb{R}^3 \to \mathbb{R}^3, (x, y, z) \mapsto (|x|, -z, y).$
 - (b) 給定 $B \in M_n$, 令 $T_2: M_n \to M_n$, $A \mapsto AB^2 + BA$.
 - (c) 給定 $B \in M_n$, 令 $T_3: M_n \to M_n$, $A \mapsto AB + BA^2$.
 - (d) P_n 為次數小於 n+1 的多項式所成 vector space, 令 $T_4: P_n \to P_{n+1}$,

$$f(x) \mapsto f(0) + xf(x) + x^2 f'(x).$$

- 2. 考慮函數 $T: M_2 \rightarrow M_2$.
 - (a) 若已知 $T(A) = A^{t}$, $\forall A \in M_{2}$, 證明 T 為 linear transformation.
 - (b) 若已知 T 為 linear transformation 且满足

$$T(\begin{bmatrix}1 & 0 \\ 0 & 0\end{bmatrix}) = \begin{bmatrix}1 & 0 \\ 0 & 0\end{bmatrix}; T(\begin{bmatrix}0 & 1 \\ 0 & 0\end{bmatrix}) = \begin{bmatrix}0 & 0 \\ 1 & 0\end{bmatrix};$$

$$T(\begin{bmatrix}0 & 0\\1 & 0\end{bmatrix}) = \begin{bmatrix}0 & 1\\0 & 0\end{bmatrix}; T(\begin{bmatrix}0 & 0\\0 & 1\end{bmatrix}) = \begin{bmatrix}0 & 0\\0 & 1\end{bmatrix}.$$

證明 $T(A) = A^{t}, \forall A \in M_{2}.$

3. 考慮 \mathbb{R}^n 為 standard inner product space. 已知 $T: \mathbb{R}^n \to \mathbb{R}^n$ 滿足以下保距性質:

(1)
$$T(\mathbf{O}) = \mathbf{O}$$
; (2) $||T(\mathbf{v}) - T(\mathbf{w})|| = ||\mathbf{v} - \mathbf{w}||$.

(a) 證明 $||T(\mathbf{v})|| = ||\mathbf{v}||$ 以及 $\langle T(\mathbf{v}), T(\mathbf{w}) \rangle = \langle \mathbf{v}, \mathbf{w} \rangle, \, \forall \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$

(b) 考慮 standard basis $\mathbf{e}_1, \dots, \mathbf{e}_n$. 若已知 $T(\mathbf{e}_i) = \mathbf{u}_i, \forall i = 1, \dots, n$. 證明

$$T(c_1,\ldots,c_n)=\sum_{i=1}^n c_i\mathbf{u}_i.$$

- (c) 證明 T 為 linear transformation.
- 4. 考慮函數 $T: V \to W$, 其中 V, W 為 over \mathbb{F} 的 vector spaces 且 $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$, $\{\mathbf{w}_1, \mathbf{w}_2\}$ 分 別為 V, W 的一組 basis。已知存在固定的 $a, b \in \mathbb{F}$ 使得對任意 $c_1, c_2, c_3 \in \mathbb{F}$ 皆有

$$T(c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3) = (c_1 + a)\mathbf{w}_1 + (c_2 + c_3 + b)\mathbf{w}_2.$$

證明 T 為 linear 若且唯若 a=b=0.

- 5. 考慮 $T: V \to V$ 為 linear transformation.
 - (a) 若 $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \in V$ 皆為非零向量滿足 $T(\mathbf{v}_1) = -\mathbf{v}_1, T(\mathbf{v}_2) = 2\mathbf{v}_2, T(\mathbf{v}_3) = \mathbf{v}_3$. 證明 $\mathbf{v}_1, \mathbf{v}_2$ 為 linearly independent,再證明 $\mathbf{v}_3 \not\in \operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2)$ 並以此說明 $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ 為 linearly independent.
 - (b) 利用數學歸納法證明更一般的情形. 已知 $\mathbf{v}_1, \dots, \mathbf{v}_n \in V$ 皆為非零向量滿足 $T(\mathbf{v}_1) = c_1 \mathbf{v}_1, \dots, T(\mathbf{v}_n) = c_n \mathbf{v}_n$, 其中 c_1, \dots, c_n 兩兩相異. 證明 $\mathbf{v}_1, \dots, \mathbf{v}_n$ 為 linearly independent.
- 6. \mathbb{R}^2 上的一維子空間 L 皆可由一個非零向量所展成,因此可視為一個通過原點的直線 $L = \{(x,y) \mid ax + by = 0\}$.
 - (a) 設 $T:\mathbb{R}^2\to\mathbb{R}^2$ 定義為 T(x,y)=(x+y,x-y) 試利用 a,b 表達 T(L) 和 $T^{-1}(L)$ 為 怎樣的子空間。
 - (b) 設 $T:\mathbb{R}^2\to\mathbb{R}^2$ 定義為 T(x,y)=(x+y,x+y) 試利用 a,b 表達 T(L) 和 $T^{-1}(L)$ 為 怎樣的子空間。
- 7. 試找到以下 linear transformations 的 kernel 和 image 的 basis.
 - (a) $T_1: \mathbb{R}^5 \to \mathbb{R}^4$, 定義為

$$T_1(a,b,c,d,e) = (a-c+3d-e,a+2d-e,2a-c+5d-e,-c+d).$$

- (b) $T_2: P_2(\mathbb{R}) \to P_3(\mathbb{R})$, 定義為 $T_2(f(x)) = x^2 f'(x)$.
- 8. 考慮 linear transformations $T: V \to W, F: W \to U$.
 - (a) 證明 $R(F \circ T) \subseteq R(F)$ 且 $N(T) \subseteq N(F \circ T)$.
 - (b) 利用 dimension theorem, 即 $\operatorname{rank}(F \circ T) = \dim(V) \dim(N(F \circ T))$ 及 (a), 證明 $\operatorname{rank}(F \circ T) < \operatorname{rank}(T).$

(c) 假設 W' 為 W 的 subspace, 考慮 $F':W'\to U$ 為將 F 的定義域限制在 W' 的 linear transformation (即 $F'(\mathbf{w})=F(\mathbf{w}),\ \forall\,\mathbf{w}\in W'$). 證明 F'(W')=F(W') 且 $N(F')=N(F)\cap W',$ 並以此證明

$$\dim(N(F)) \ge \dim(W') - \dim(F(W')).$$

- (d) 考慮 (c) 中 W'=T(V) 的情況,利用 $\mathrm{rank}(F)=\dim(W)-\dim(N(F))$ 證明 $\mathrm{rank}(F)\leq \dim(W)-\mathrm{rank}(T)+\mathrm{rank}(F\circ T).$
- (e) 結合 (a),(b),(d) 說明

$$\operatorname{rank}(F) + \operatorname{rank}(T) - \dim(W) \leq \operatorname{rank}(F \circ T) \leq \min\{\operatorname{rank}(T), \operatorname{rank}(F)\}.$$

- 9. 當 $T:V\to W$ 為一對一且映成,由函數的性質我們知道存在唯一的 $T^{-1}:W\to V$ 為 T 的反函數,滿足對所有 $\mathbf{v}\in V$, $\mathbf{w}\in W$ 皆有 $T^{-1}\circ T(\mathbf{v})=\mathbf{v}$ 以及 $T\circ T^{-1}(\mathbf{w})=\mathbf{w}$. 在 講義 Theorem 6.4.3 我們證明了在一般的情況 (不限 V,W 為有限維),當 T 為 linear transformation,則 T^{-1} 亦為 linear transformation. 以下將對 V,W 為有限維的情形 證明此性質。
 - (a) 若 $\mathbf{v}_1, \dots, \mathbf{v}_n$ 為 V 的一組 basis 且令 $\mathbf{w}_i = T(\mathbf{v}_i), i = 1, \dots, n$. 證明 $\mathbf{w}_1, \dots, \mathbf{w}_n$ 為 W 的一組 basis.
 - (b) 利用 (a) 中 $\mathbf{w}_1, \dots, \mathbf{w}_n$ 建構出一個 linear transformation $F: W \to V$ 满足對所有 $\mathbf{v} \in V$, $\mathbf{w} \in W$ 皆有 $F \circ T(\mathbf{v}) = \mathbf{v}$ 以及 $T \circ F(\mathbf{w}) = \mathbf{w}$. 因此由反函數的唯一性證得 $F = T^{-1}$, 也因此 T^{-1} 亦為 linear transformation.
- 10. 考慮 linear transformation $T: P_2(\mathbb{R}) \to M_2(\mathbb{R})$ 定義為 $T(a+bx+cx^2) = \begin{bmatrix} b+c & a \\ b & c \end{bmatrix}$.
 - (a) 試求 $[T]^{\varepsilon'}_{\varepsilon}$, 其中 $\varepsilon, \varepsilon'$ 分別為 $P_2(\mathbb{R}), M_2(\mathbb{R})$ 的 standard ordered basis

$$\boldsymbol{\varepsilon} = (1, x, x^2), \boldsymbol{\varepsilon}' = (\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}).$$

(b) 試求 $[T]^{\gamma}_{\beta}$, 其中 β, γ 分別為 $P_2(\mathbb{R}), M_2(\mathbb{R})$ 的 ordered basis

$$\boldsymbol{\beta} = (1,x,1+x^2), \boldsymbol{\gamma} = (\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}).$$

- (c) 試分別利用 (a), (b) 的表現矩陣求 N(T) 和 R(T) 的一組 basis.
- 11. 假設 $\beta = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4)$ 為 V 的一組 ordered basis. 令

$$\mathbf{w}_1 = \mathbf{v}_1 - \mathbf{v}_2 + \mathbf{v}_3 + 3\mathbf{v}_4, \, \mathbf{w}_2 = -\mathbf{v}_1 - \mathbf{v}_2 + \mathbf{v}_3 + 2\mathbf{v}_4,$$

$$\mathbf{w}_3 = 5\mathbf{v}_1 - \mathbf{v}_2 + \mathbf{v}_3 + 5\mathbf{v}_4, \, \mathbf{w}_4 = \mathbf{v}_2 - \mathbf{v}_3 - 3\mathbf{v}_4, \, \mathbf{w}_5 = \mathbf{v}_1 + \mathbf{v}_2.$$

(a) 依照 \mathbf{w}_i 編號由小到大寫下 V 的一組 ordered basis $\boldsymbol{\beta}'$.

- (b) 假設 $T_{B'}$ 為用 β' 將 V 坐標化的函數, 試寫下 $T_{B'}(\mathbf{v}_i)$, i = 1, 2, 3, 4.
- (c) 說明方陣 $(T_{\beta}(\mathbf{w}_1), T_{\beta}(\mathbf{w}_2), T_{\beta}(\mathbf{w}_4), T_{\beta}(\mathbf{w}_5))$ 和 $(T_{\beta'}(\mathbf{v}_1), T_{\beta'}(\mathbf{v}_2), T_{\beta'}(\mathbf{v}_3), T_{\beta'}(\mathbf{v}_4))$ 的關係.
- 12. 考慮 linear transformation $T: V \to W$.
 - (a) 假設 T 為 isomorphism. 證明存在 V, W 的 ordered basis β, γ 使得 $[T]_{\beta}^{\gamma}$ 為 identity matrix.
 - (b) 假設 $\dim(V) = m$, $\dim(W) = n$ 且 $\operatorname{rank}(T) = k$. 證明存在 V, W 的 ordered basis β , γ 使得 $[T]_{\beta}^{\gamma} = (a_{ij})$ 為 $n \times m$ matrix 其中 $a_{ij} = \begin{cases} 1, & \text{if } i = j \text{ 且 } 1 \leq i \leq k; \\ 0, & \text{otherwise.} \end{cases}$
- 13. 本題是評量對線性映射矩陣表法的了解及應用。請完全按照題目要求作答。 考慮 $M_2(\mathbb{R})$ 上的兩組 ordered basis

$$\varepsilon = \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right);$$

$$\alpha = (\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right)).$$

令 T_1, T_2 分別為 $M_2(\mathbb{R})$ 到 $M_2(\mathbb{R})$ 的線性映射,其中 $T_1(A) = A, T_2(A) = A^t, \forall A \in M_2(\mathbb{R}).$

- (a) 試分別寫下 $[T_1]^{\alpha}_{\varepsilon}$, $[T_2]^{\alpha}_{\varepsilon}$, $[T_1]^{\varepsilon}_{\alpha}$ 以及 $[T_2]^{\varepsilon}_{\alpha}$ 。
- (b) 給定 $c \in \mathbb{R}$,直接利用 $T_1 + cT_2$ 函數的定義寫下 $[T_1 + cT_2]^{\alpha}_{\varepsilon}$ 說明並驗證其與 (1) 所求的哪些矩陣有什麼關係。
- (c) 利用 $[T_1+cT_2]^{\alpha}_{\varepsilon}$ 寫下 T_1+cT_2 為 isomorphism 的充要條件。
- (d) 試求矩陣 $[T_1-2T_2]^{lpha}_{\epsilon}$ 的反矩陣,並說明此反矩陣是哪一個線性映射(與 T_1-2T_2 有關)用哪兩組 ordered basis 的矩陣表示?
- (e) 試利用 (4) 所得的反矩陣求 $(T_1-2T_2)^{-1}(A)$, 其中 $A=\begin{pmatrix} 1 & -6 \\ 3 & 2 \end{pmatrix}$ 。
- (f) 利用合成函數的定義寫下 $[(T_1+2T_2)\circ (T_1-2T_2)]^{\varepsilon}_{\varepsilon}$ 並說明並驗證其為 $[T_1-2T_2]^{\alpha}_{\varepsilon}$ 左邊乘上哪一個線性映射用哪兩組 ordered basis 的矩陣表示。
- (g) 利用 (4) 與 (6) 所提到的矩陣表示,找到 $a,b\in\mathbb{R}$,使得 $(T_1-2T_2)^{-1}=aT_1+bT_2$ 。

7 Linear Operators

- 1. 考慮 linear operator $T: \mathbb{R}^3 \to \mathbb{R}^3$ 定義為 T(x,y,z) = (y,-x,z). 令 A 為 T 的 standard matrix representation.
 - (a) 令 β 為 \mathbb{R}^3 的 ordered basis (1,-1,1),(1,-2,2),(1,-2,1) 且令 B 為 T 的 matrix representation related to β . 試求 B,並寫出矩陣 P 使得 $A=P^{-1}BP$.

- (b) 令 $Q = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$. 試寫出 \mathbb{R}^3 的 ordered basis γ , 使得 T 的 matrix representation related to γ 是 $Q^{-1}AQ$.
- 2. 假設 A,B 為 similar 的 n 階方陣.
 - (a) 證明 A^t, B^t 也是 similar.
 - (b) 證明若 A 為 invertible, 則 B 亦為 invertible. 並證明此時對任意 $k \in \mathbb{N}$, A^{-k} 和 B^{-k} 為 similar.
- 3. 考慮 linear operator $T: V \to V$, 且 $\mathbf{v}_1, \mathbf{v}_2$ 為 T 的 eigenvectors 其對應的 eigenvalues 分別為 λ_1, λ_2 . 已知 $\lambda_1 \neq \lambda_2$.
 - (a) 證明 $\mathbf{v}_1, \mathbf{v}_2$ 為 linearly independent.
 - (b) 證明若 $c_1, c_2 \in \mathbb{F}$ 且 $c_1 \neq 0, c_2 \neq 0$, 則 $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2$ 不會是 T 的 eigenvector.
 - (c) 證明若存在 $c_1, c_2 \in \mathbb{F}$ 且 $c_1 \neq 0, c_2 \neq 0$ 使得 $c_1\mathbf{v}_1 + c_2\mathbf{v}_2$ 為 T^2 的 eigenvector, 則 $\lambda_1 = -\lambda_2$. 並說明對於 T^2 此 eigenvector $c_1\mathbf{v}_1 + c_2\mathbf{v}_2$ 的 eigenvalue 為何.
- 4. 考慮 $T: \mathbb{R}^3 \to \mathbb{R}^3$ 定義為 T(x,y,z) = (x+2y+z,y,x+3y+z). 令 $\mathbf{v}_1 = (-1,0,1), \mathbf{v}_2 = (3,-1,2), \mathbf{v}_3 = (1,0,1)$.
 - (a) 說明 $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ 皆為 T 的 eigenvector 並決定其對應的 eigenvalue.

 - (c) 考慮 ordered basis $\beta = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ 以及 standard ordered basis ϵ . 試寫下表現矩 陣 $[T]_{\epsilon}$ 以及 $[T]_{\beta}$.
 - (d) 試寫下將 $[T]_{\varepsilon}$ 對角化成 $[T]_{\beta}$ 之間的關係式, 即找出互為 inverse 的矩陣 P,Q 使得 $Q[T]_{\varepsilon}P=[T]_{\beta}$. 並驗證之.
- 5. 考慮 $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & -6 & 4 \\ -2 & -4 & 5 \\ -2 & -6 & 7 \end{bmatrix}.$
 - (a) 試分別求 A,B 的 characteristic polynomial.
 - (b) 試分別說明 A,B 的 eigenvalues 有哪些, 並計算每個 eigenvalue 的 algebraic multiplicity 和 geometric multiplicity.
- 6. 試找出 linear operators $T_1, T_2: P_3(\mathbb{R}) \to P_3(\mathbb{R})$ 的 eigenvalues 及其對應的 eigenspace 的 basis, 其中 $T_1(f(x)) = xf'(x)$; $T_2(f(x)) = x^2f''(x) xf'(x)$.
- 7. 假設 A 為方陣且 \mathbf{v} 為 A 的一個 eigenvalue 為 λ 的 eigenvector. 考慮多項式 f(x). 證明 \mathbf{v} 為矩陣 f(A) 的 eigenvector, 並說明其對應的 eigenvalue 為何.
- 8. 假設 $T:V \to V$ 為 isomorphism.
 - (a) 證明若 λ 為 T 的 eigenvalue, 則 $\lambda \neq 0$ 且 λ^{-1} 為 T^{-1} 的 eigenvalue.

- (b) 假設 f(x), g(x) 分別為 T 和 T^{-1} 的 characteristic polynomial. 證明 $\lambda \in \mathbb{F}$ 滿足 $f(\lambda) = 0$ 若且唯若 $g(\lambda^{-1}) = 0$.
- 9. 考慮 linear map $T: \mathbb{R}^4 \to \mathbb{R}^4$, 定義為 T(x,y,z,w) = (x+y+2z-w,y+w,2z-w,z+w). 令 $W = \{(x,y,0,0): x,y \in \mathbb{R}\}$.
 - (a) 證明 W 為 \mathbb{R}^4 中的一個 T-invariant subspace.
 - (b) 先找出 W 中的一組 ordered basis $\beta = (\mathbf{w}_1, \mathbf{w}_2)$ 再將其擴大成 \mathbb{R}^4 中的一組 ordered basis $\beta' = (\mathbf{w}_1, \mathbf{w}_2, \mathbf{v}_1, \mathbf{v}_2)$. 分別寫下 $T|_W: W \to W$ 以 β 所得的表現矩陣,以及 T 以 β' 所得的表現矩陣.
 - (c) 計算 $T|_W$ 以及 T 的 characteristic polynomials. 並說明它們的整除關係。
- 10. 考慮 $T_1: \mathbb{R}^4 \to \mathbb{R}^4$ 定義為 $T_1(a,b,c,d) = (a+b,b-c,a+c,a+d); T_2: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ 定義為 $T_2(A) = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} A$. 令 W_1, W_2 分別為 $\mathbf{e}_1 = (1,0,0,0), \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ 所產生的 T_1 -cyclic space 以及 T_2 -cyclic space.
 - (a) 試分別求 W_1, W_2 的一組 ordered basis.
 - (b) 試分別求 T_1, T_2 限制在 W_1, W_2 的 characteristic polynomial.

8 Diagonalizable Matrices and Their Applications

- 1. 考慮 $T: \mathbb{R}^2 \to \mathbb{R}^2$ 定義為 T(x,y) = (x+y, -x+3y).
 - (a) 試求 T 的 characteristic polynomial, 檢查並說明為何 $(T-2id_{\mathbb{R}^2})^2$ 為零函數.
 - (b) 試求 T 的所有可能的 eigenvector, 並說明 T 是否可對角化.
 - (c) 令 w 為 T 的 eigenvector, 試找出 \mathbf{v} 滿足 $(T-2\mathrm{id}_{\mathbb{R}^2})(\mathbf{v}) = \mathbf{w}$.
 - (d) 令 $T_0 = T 2id_{\mathbb{R}^2}$. 試寫下 v 所得的 T_0 -cyclic space $Span(\mathbf{v}, T_0\mathbf{v}, T_0^2\mathbf{v}, \dots)$ 的一組 ordered basis. 並用此 ordered basis 寫下 T 的表現矩陣.
- 2. 考慮二階方陣 A. 假設 λ 為 A 的一個 eigenvalue. 已知 λ 的 algebraic multiplicity 為 2 但 $A \neq \lambda I_{2}$. 令 $B = A \lambda I_{2}$.
 - (a) 說明 A 不可對角化.
 - (b) 利用 A 的 characteristic polynomial 説明 B^2 為何.
 - (c) 假設 \mathbf{w} 為 \mathbf{A} 的一個 eigenvector, 證明聯立方程組 $\mathbf{B}\mathbf{x} = \mathbf{w}$ 必有解.
 - (d) 令 $\mathbf{x} = \mathbf{v}$ 為 (c) 的一個解. 說明 $\mathrm{Span}(\mathbf{v}, B\mathbf{v}, B^2\mathbf{v}, \dots) = \mathbb{R}^2$.
 - (e) 試利用 (d) 中 $\operatorname{Span}(\mathbf{v},B\mathbf{v},B^2\mathbf{v},\dots)$ 所得的一組 basis, 說明存在 invertible matrix U 使得 $U^{-1}AU=\begin{bmatrix}\lambda&0\\1&\lambda\end{bmatrix}$.
- 3. 考慮 $T_1, T_2: \mathbb{R}^3 \to \mathbb{R}^3$ 分別為對平面 x-2y+z=0 的投影 (projection) 以及鏡射 (reflection) 的 linear operator.

- (a) 利用投影及鏡射的特性找出 \mathbb{R}^3 的一組 basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ 使其皆為 T_1, T_2 的 eigenvectors.
- (b) 令 β 為 ordered basis $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ 試寫下對角矩陣 $[T_1]_{\beta}$, $[T_2]_{\beta}$.
- (c) 利用 (b) 的結果寫出 T_1, T_2 在 standard ordered basis 之下的表現矩陣,並驗證 它們是對稱矩陣。
- 4. 假設 A,B 皆為 n 階方陣.
 - (a) 證明若 A,B 皆為 diagonalizable 且 A,B 有相同的 characteristic polynomial, 則 $A \to B$ 為 similar.
 - (b) 考慮 n=3 的情況,試找到矩陣 A,B 其 characteristic polynomial 皆為 $-x^3$ 但 $A \cap B$ 不是 similar.
- 5. 以下矩陣試說明那些矩陣可以在實數對角化, 那些不可以. 若矩陣 A 可對角化, 請找到可逆矩陣 U 以及對角矩陣 D 使得 $U^{-1}AU = D$.

$$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix}; \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}; \begin{bmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{bmatrix}.$$

- 6. 考慮矩陣 $A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & -1 \end{bmatrix}$.
 - (a) 試找到可逆矩陣 U 以及對角矩陣 D 使得 $A = UDU^{-1}$.
 - (b) 利用 $A = UDU^{-1}$ 計算 A^4 .
 - (c) 利用 Cayley-Hamilton Theorem 計算 A⁴.
 - (d) 利用 $A = UDU^{-1}$ 求 A^{-1} .
 - (e) 利用 Cayley-Hamilton Theorem 將 A^{-1} 寫成 A^2,A,I_3 的線性組合, 並以此寫出 A^{-1} .
 - (f) 利用 $A = UDU^{-1}$ 找到一矩陣 B 满足 $B^3 = A$.
- 7. 對以下的矩陣試找到將其對角化的 orthogonal matrix 並找到其對應的對角矩陣.

$$\begin{bmatrix} 3 & 2 & 2 \\ 2 & 2 & 0 \\ 2 & 0 & 4 \end{bmatrix}; \begin{bmatrix} 1 & -2 & 2 \\ -2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}; \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}.$$

- 8. 給定 $A \in M_n(\mathbb{R})$.
 - (a) 說明 A^tA is orthogonal diagonal diagonalizable 且其 eigenvalues 皆大於等於 0. (Hint: 利用矩陣乘法與內積的關係)
 - (b) 假設 A 為 symmetric, 證明若對任意 $\mathbf{v} \in \mathbb{R}^n$ 皆有 $\langle A\mathbf{v}, \mathbf{v} \rangle = 0$, 則 A 為零矩陣.

- (c) 試找到一個 2 階方陣 A 滿足 $\langle A\mathbf{v}, \mathbf{v} \rangle = 0, \forall \mathbf{v} \in \mathbb{R}^2$ 但 A 不是零矩陣.
- 9. 假設 W 為 \mathbb{R}^n 的 subspace 且 $0 < \dim W = k < n$. 令 $A \in M_n(\mathbb{R})$ 為 \mathbb{R}^n 中的向量對 W 的投影矩陣 (orthogonal projection matrix).
 - (a) 證明 A 的 eigenvalue 為 0,1 且滿足 $A^2 = A$.
 - (b) 證明 A 為 symmetric matrix.
- 10. 假設 $A \in M_n(\mathbb{R})$ 為 symmetric matrix 且满足 $A^2 = A$.
 - (a) 證明 0.1 是 A 唯一可能的 eigenvalue.
 - (b) 證明若對 A 來說 1 的 algebraic multiplicity 為 k, 則存在 W 為 \mathbb{R}^n 的 subspace 且 $\dim W = k$ 使得 A 為 \mathbb{R}^n 中的向量對 W 的投影矩陣.
- 11. 試利用 Spectral Theorem (即對稱矩陣皆可正交對角化) 回答以下問題。
 - (a) 給定 $k \in \mathbb{R}$ 試找到所有的實對稱矩陣 A 滿足 $\det A = k$ 且 $A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$.
 - (b) 假設 $T: \mathbb{R}^3 \to \mathbb{R}^3$ 以標準基底寫下的矩陣為實對稱矩陣. 已知 2,5 為 T 的 eigenvalues 且 (1,1,-1),(1,-1,0) 為 T 的兩個 eigenvalue 為 5 的 eigenvector. 試求 T(1,1,2).
 - (c) 找到對稱實矩陣 A 滿足僅有兩個 eigenvalues 1,2. 且 2 的 eigenspace 為 Span((1,1,1)).
- 12. 假設 $A,B \in M_n(\mathbb{R})$ 皆為對稱矩陣且滿足 AB = BA. 假設 λ 為 A 的 eigenvalue 且 $E_{\lambda}(A)$ 為其 eigenspace, 並設 $\dim(E_{\lambda}(A)) = k$.
 - (a) 證明 $E_{\lambda}(A)$ 為 B-invariant (亦即 $\forall \mathbf{v} \in E_{\lambda}(A)$, 皆有 $B\mathbf{v} \in E_{\lambda}(A)$).
 - (b) 令 $\mathbf{u}_1, \dots, \mathbf{u}_k$ 為 $E_{\lambda}(A)$ 的一組 orthonormal basis, 將其擴大加上 $\mathbf{u}_{k+1}, \dots, \mathbf{u}_n$ 使之成為 \mathbb{R}^n 的一組 orthonormal basis. 考慮 orthogonal matrix $U = (\mathbf{u}_1, \dots, \mathbf{u}_n)$. 證明 $U^tBU = \begin{bmatrix} B_1 & O \\ O & B_2 \end{bmatrix}$, 其中 O 為零矩陣且 B_1, B_2 分別為 k, n-k 階對稱矩陣.
 - (c) 利用 B_1 為對稱矩陣,說明存在分別為 k 和 n-k 階的 orthogonal matrices Q_1,Q_2 使得 $\begin{bmatrix} Q_1^t & O \\ O & Q_2^t \end{bmatrix} \begin{bmatrix} B_1 & O \\ O & B_2 \end{bmatrix} \begin{bmatrix} Q_1 & O \\ O & Q_2 \end{bmatrix} = \begin{bmatrix} D_1 & O \\ O & B_2 \end{bmatrix}$, 其中 D_1 為 k 階對角矩陣.
 - (d) 說明 $U\begin{bmatrix}Q_1 & O\\O & Q_2\end{bmatrix}$ 的前 k 個 column 形成 $E_{\lambda}(A)$ 的一組 orthonormal basis. 並利 用 (b)(c) 的結果說明 $E_{\lambda}(A)$ 中存在一組 orthonormal basis 其元素同時是 A 的 eigenvector 也是 B 的 eigenvector.
 - (e) 考慮 A 所有的 eigenspace, 利用 (d) 的結果, 說明存在一個 orthogonal matrix Q 使得 Q^tAQ 和 Q^tBQ 皆為對角矩陣. (稱 A,B 為 simultaneously diagonalizable)
- 13. 將以下的二元二次方程式經由坐標變換寫成標準式. 需寫下坐標如何變換. 並以新的坐標說明它們為何種二次曲線。以原來的坐標說明其中心 (若為橢圓、雙曲線)、頂點 (若是拋物線) 的位置。

- (a) $3x^2 2xy + 3y^2 = 4$.
- (b) $16x^2 + 24xy + 9y^2 3x + 4y = 5$.
- (c) $7x^2 + 12xy 2y^2 2x + 4y = 6$.
- 14. 套用上題的結果寫下以下的二元二次方程式的圖形之重要參數(自選加分題)。
 - (a) $3x^2 2xy + 3y^2 = 4$. 求 4 個頂點、2 個焦點之坐標,以及長軸、短軸所在的直線方程式。
 - (b) $16x^2 + 24xy + 9y^2 3x + 4y = 5$. 求頂點、焦點之坐標,以及對稱軸和準線的方程式。
 - (c) $7x^2 + 12xy 2y^2 2x + 4y = 6$. 求 2 個頂點、2 個焦點之坐標,以及貫軸、對稱軸所在的直線方程式,並寫下兩個漸近線方程式。
- 15. 設 $a,b \in \mathbb{R}$ 考慮二元二次方程式 $7x^2 + 12xy 2y^2 2ax + 4ay = b$ 的圖形.
 - (a) 請說明當 a=1 時, b 為多少時圖形會是退化的情形?在非退化情形, b 改變時漸近線, 貫軸, 對稱軸方程式是否改變?中心、焦點、頂點坐標是否改變?
 - (b) 固定 $b \in \mathbb{R}$, 請說明當 a 為多少時圖形會是退化的情形?在非退化情形,a 改變時焦距、貫軸長是否改變?中心、焦點、頂點坐標是否改變?漸近線,貫軸,對稱軸的斜率是否改變?
- 16. 設 $c,d \in \mathbb{R}$ 考慮二元二次方程式 $16x^2 + 24xy + 9y^2 + cx + 4y = d$ 的圖形.
 - (a) 試找到所有可能的 c 使得方程式的圖形為拋物線。
 - (b) 試求 c 使得圖形為退化情形,並說明此時 d 為多少時會使得圖形分別為兩平行直線、一直線和空集合。
- 17. 將以下的三元二次方程式經由坐標變換寫成標準式 (中心在原點). 需寫下坐標如何變換.
 - (a) $3x^2 + 2xy + 2xz + 4yz = 4$.
 - (b) $2x^2 + 2xy + 2xz + 2yz x + y + z = 1$.
 - (c) $3x^2 + 2xz y^2 + 3z^2 + 2y = 0$.
- 18. 套用上題的結果寫下以下的三元二次方程式的圖形之相關參數(自選加分題)。
 - (a) $3x^2 + 2xy + 2xz + 4yz = 4$. 說明此曲面之名稱。求中心軸的參數式,以及一組平面方程式使得圖形與平面之截痕為橢圓。
 - (b) $2x^2 + 2xy + 2xz + 2yz x + y + z = 1$. 說明此曲面之名稱。求鞍點坐標、以及平面方程式使得圖形與平面之截痕為兩直線。
 - (c) $3x^2 + 2xz y^2 + 3z^2 + 2y = 0$. 說明此曲面之名稱。求 2 個頂點之坐標,以及過頂點的切平面方程式。

19. 固定 $k \in \mathbb{N}$ 以及 $c_0, c_1, \ldots, c_{k-1} \in \mathbb{R}$. 令 V 為所有滿足遞迴關係

$$x_{n+k} = c_{k-1}x_{n+k-1} + c_{k-2}x_{n+k-2} + \dots + c_1x_{n+1} + c_0x_n$$

的遞迴數列 $\langle x_n \rangle_{n=0}^{\infty}$ 所成的集合。對於 $\langle x_n \rangle_{n=0}^{\infty}, \langle y_n \rangle_{n=0}^{\infty} \in V$ 以及 $r \in \mathbb{R}$ 定義

$$\langle x_n \rangle_{n=0}^{\infty} + r \langle y_n \rangle_{n=0}^{\infty} = \langle z_n \rangle_{n=0}^{\infty}, \ \ \not\perp \ \ \forall \ z_n = x_n + r y_n, \forall \ n = 0, 1, \dots$$

考慮函數 $T:V\to V$, 定義為

$$T(\langle x_n \rangle_{n=0}^{\infty}) = \langle y_n \rangle_{n=0}^{\infty}, \not \sqsubseteq \psi y_n = x_{n+1}, \forall n = 0, 1, \dots$$

- (a) 證明 V 為 vector space 且找到 V 的一組 basis 依此說明 V 的 dimension.
- (b) 說明 T 為 linear operator.
- (c) 試求 T 的 characteristic polynomial.
- (d) 假設 λ 為 T 的一個 eigenvalue 且 $\langle a_n \rangle_{n=0}^{\infty} \in V$ 為 λ 所對應的一個 eigenvector. 證明 $a_n = \lambda^n a_0$.
- 20. 考慮遞迴數列 $\langle z_n \rangle_{0=1}^{\infty}$ 滿足 $z_1 = 2, z_2 = 3$ 以及 $z_{n+1} = 3z_n 2z_{n-1}$ for $n \ge 2$. 試用習題 (1) 的 T 找到其表現矩陣 A 以及利用 A 的 eigenvectors 和其 eigenvalues 寫下 z_n 的 通式.
- 21. 考慮遞迴數列 $\langle z_n \rangle_{n=1}^{\infty}$ 满足 $z_1 = 0, z_2 = z_3 = 1$ 以及 $z_{n+1} = 2z_n + z_{n-1} 2z_{n-2}$ for $n \geq 3$. 試用習題 (1) 的 T 找到其表現矩陣 A 以及利用 A 的 eigenvectors 和其 eigenvalues 寫下 z_n 的通式.
- 22. 考慮函數 $S: \mathbb{R}^n \to \mathbb{R}$ 定義為 $S(a_1, \ldots, a_n) = \sum_{i=1}^n a_i$. 對 $A \in M_n(\mathbb{R})$ 令 $T_A: \mathbb{R}^n \to \mathbb{R}^n$, 定義為 $T_A(\mathbf{v}) = A\mathbf{v}$. 令 $\varepsilon, \varepsilon'$ 分別為 \mathbb{R}^n 和 \mathbb{R} 的 standard ordered basis.
 - (a) 試證明 S 為 linear map 且寫下 S 對 $\varepsilon, \varepsilon'$ 的表現矩陣 $[S]_{\varepsilon}^{\varepsilon'}$.
 - (b) 考慮合成函數 $S \circ T_A : \mathbb{R}^n \to \mathbb{R}$. 試說明 $[S \circ T_A]^{\epsilon'}_{\epsilon}$ 為何。
 - (c) 假設 A 的每個 entry 皆為非負實數。證明 A 為 stochastic matrix 若且唯若 $S \circ T_A = S$.
 - (d) 假設 A 為 stochastic matrix 且 $B \in M_n(\mathbb{R})$ 的每個 entry 皆為非負實數。利用函數合成的結合律 (即 $S \circ (T_A \circ T_B) = (S \circ T_A) \circ T_B$) 以及函數合成與矩陣乘法的關係證明 B 為 stochastic matrix 若且唯若 AB 為 stochastic matrix.
 - (e) 試找到 $A, B \in M_2(\mathbb{R})$ 其中 A 和 BA 為 stochastic matrix 但是 B 並不是 stochastic matrix.
- 23. 考慮 stochastic matrix $A = \begin{bmatrix} 0 & 0.5 & 0 \\ 0.5 & 0 & 1 \\ 0.5 & 0.5 & 0 \end{bmatrix}$.
 - (a) 說明 A 為 regular stochastic matrix. (利用連續平方,以及矩陣乘法用 column, row 來處理會比較快)

- (b) 說明 A 是否為 diagonalizable.
- (c) 試求 $\lim_{k\to\infty}A^k$.

(d) 給定
$$\mathbf{v} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$
, 已知 $a+b+c=r$. 試求 $\lim_{k \to \infty} A^k \mathbf{v}$.

- 24. 假設 A 為 invertible stochastic matrix.
 - (a) 利用 $(1,...,1)^t$ 為 A^t 的一個 eigenvalue 為 1 的 eigenvector, 證明 A^{-1} 的每一個 column vector 其 entry 之和為 1.
 - (b) 試證明若 A 為 regular, 則 A^{-1} 一定不是 stochastic matrix.
- 25. 已知 A 為 regular stochastic matrix.
 - (a) 證明若 v 為 A 的 eigenvector 且其 eigenvalue 為 1, 則 v 的每一個 entry 皆不等於 0.
 - (b) 假設 $A \in M_n(\mathbb{R})$ 為 diagonalizable 且 Q 為 invertible matrix 使得 $Q^{-1}AQ = D$, 其中 D 為 diagonal matrix 且其 (1,1)-entry 為 1. 利用 A^t 的 eigenvalue 為 1 的 $\lceil 1 \rceil$

eigenspace 為 Span(
$$\begin{bmatrix}1\\ \vdots\\1\end{bmatrix}$$
) 以及 $Q^tA^t(Q^{-1})^t=D$, 證明 Q^{-1} 的 1-st row 為 (r,\ldots,r)

其中
$$r$$
為非零實數。特別的若 Q 的 1-st column 為 $\begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$,則 $r=(c_1+\cdots+c_n)^{-1}$.

26. 考慮以下三個 stochastic matrices.

$$A_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0.5 \\ 0 & 1 & 0.5 \end{bmatrix}; \quad A_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0.5 \\ 0 & 0 & 0.5 \end{bmatrix}; \quad A_3 = \begin{bmatrix} 0 & 0.5 & 0.5 \\ 0 & 0.5 & 0 \\ 1 & 0 & 0.5 \end{bmatrix}.$$

- (a) 請分別利用 A_1, A_2, A_3 的 eigenvalues 和 eigenvectors 說明為何 A_i 都不是 regular.
- (b) 將 \mathbf{e}_2 分別寫成 A_i , i=1,2,3 的 eigenvectors 的線性組合, 並以此求 $\lim_{k\to\infty}A_i^k\mathbf{e}_2$.
- (c) 對任意的 probability vector v. 請回答以下問題並說明之。
 - i. 那個 A_i 會使得 $\lim_{k\to\infty} A_i^k \mathbf{v}$ 一定存在且不管 \mathbf{v} 為何都會趨近到同一個向量;
 - ii. 那個 A_i 會使得 $\lim_{k\to\infty}A_i^k\mathbf{v}$ 一定存在但 \mathbf{v} 改變會趨近於不同的向量;
 - iii. 那個 A_i 會使得 $\lim_{k\to\infty}A_i^k\mathbf{v}$ 不一定存在.