Example 1.5.10. 當 X 為 topological space, X_1, X_2 為 X 的 open set. 考慮 $X_1 \cup X_2$ 為 X 的 subspace (使用 subspace topology). 我們也可考慮 X_1, X_2 的 disjoint union $X_1 \coprod X_2$, 考慮其 disjoint union topology. 我們有函數 $f_1: X_1 \to X_1 \cup X_2$, 定義為 $f_1(x) = x$, $\forall x \in X_1$. 我們還有函數 $f_2: X_2 \to X_1 \cup X_2$, 定義為 $f_2(x) = x$, $\forall x \in X_2$. 由於 f_1, f_2 皆為 continuous, 由Proposition 1.4.7,我們得到一個連續函數 $f: X_1 \coprod X_2 \to X_1 \cup X_2$, 滿足 $f|_{X_1} = f_1$, $f|_{X_2} = f_2$. 函數 f 事實上也會是 open map, 這是因為 $X_1 \coprod X_2$ 的 open set 可表為 $U_1 \coprod U_2$, 其中 U_1, U_2 分別為 X_1, X_2 的 open set. 因此由 $f(U_1 \coprod U_2) = U_1 \cup U_2$, 知 $f(U_1 \coprod U_2)$ 為 $X_1 \cup X_2$ 的 open set.

現考慮 $X_1 \coprod X_2$ 上的一個 equivalence relation \sim , 其定義為對任意 $i, j \in \{1, 2\}, (x, i) \sim (y, j)$ 若且唯若 x = y. 也就是說一般來說若 $x \in X_1$ (resp. $x \in X_2$) 則有 $(x, 1) \sim (x, 1)$ (resp. $(x, 2) \sim (x, 2)$). 而若 $x \in X_1 \cap X_2$, 則除了 $(x, 1) \sim (x, 1)$ 且 $(x, 2) \sim (x, 2)$ 外,還有 $(x, 1) \sim (x, 2)$. 很容易驗證這是 $X_1 \coprod X_2$ 的一個 equivalence relation. 現考慮 quotient space $(X_1 \coprod X_2)/\sim$. 由於當 $(x, i) \sim (x, j)$ 時,我們有 f(x, i) = f(x, j) = x, 故由 f 是 continuous 以及 Proposition 1.5.8,我們得到一函數 $h: ((X_1 \coprod X_2)/\sim) \to X_1 \cup X_2$ 滿足 $f = h \circ q$, 其中 h 為 continuous. 又因 f 是 open map,故由 Exercise 1.19 知 h 亦為 open map.最後我們很容易檢查 h 為 one-to-one 以及 onto,得知 $X_1 \cup X_2$ 和 $(X_1 \coprod X_2)/\sim$ 這兩個 topological space 事實上是 homeomorphic.

Question 1.39. 假設 X, Y 為 topological space, X_1, X_2 為 X 的 open set. 對於 X_1, X_2 的 disjoint union $X_1 \coprod X_2$, 考慮其 disjoint union topology. 今有兩連續函數 $f_1: X_1 \to Y$, $f_2: X_2 \to Y$ 滿足 $f_1(x) = f_2(x)$, $\forall x \in X_1 \cap X_2$. 試找到 $X_1 \coprod X_2$ 上的 equivalence relation \sim , 以及一函數 $f: ((X_1 \coprod X_2)/\sim) \to Y$ 滿足 $f(\overline{(x,i)}) = f_i(x)$, $\forall i \in \{1,2\}, x \in X_i$, 並證明 f 為 continuous, 其中 $(X_1 \coprod X_2)/\sim$ 使用 quotient space topology. 試說明此結果與 Proposition 1.4.4 的關係.

內部, 外部以及邊界

給定一個 topological space X 後, 我們知道 X 的 open sets 和 closed sets 有哪些, 還能再談論甚麼呢? 事實上有了 topology 後, 對於一個既非 open 也非 closed 的子集合, 仍然有許多有趣的性質可以討論. 在這一章, 我們主要的便是探討何謂一個集合的內部, 外部以及邊界. 本章內容雖然大部分都是一些名詞, 不過希望大家能著重於了解這些名詞的意義. 以便將來遇見這些名詞時能掌握其特性, 進而能運用這些名詞處理一些拓樸的性質.

2.1. The Interior of a Set

Interior 是內部的意思. 在這節中, 我們將說明一個 topological space 中的子集合, 何謂其內部, 以及其相關的性質. 我們也會介紹何謂一個集合的外部, 及其相關性質. 希望大家對這些名詞的定義與性質, 有較直觀的看法, 而不是單純的記憶.

在 \mathbb{R} 上使用 standard topology, 何謂閉區間 [1,2] 內部呢? 直覺上, 我們會認為是開區間 (1,2). 這是因為若 $a\in(1,2)$, 表示 a "旁邊" 的點都在 [1,2] 中, 所以感覺 a 在 [1,2] 的內部, 然而若 a=1 或 a=2, 則 a 的 "旁邊" 有些點不在 [1,2] 中, 所以它們不該算 [1,2] 的內部. 這裡的 "旁邊" 指的是甚麼呢? 事實上若 $a\in(1,2)$, 即 1<a<2, 若令 $\varepsilon=\min\{a-1,2-a\}>0$, 則 $a\in(a-\varepsilon,a+\varepsilon)$ 且 $(a-\varepsilon,a+\varepsilon)\subseteq[1,2]$. 這裡 $(a-\varepsilon,a+\varepsilon)$ 上的點就是我們說 a 點的附近, 也就是 a 的一個 open neighbor hood. 當然了這個 open neighborhood 可大可小, 不過若找到一個 a 的 open neighborhood 包含於 [1,2], 則比它小的 open neighborhood 也會包含於 [1,2]. 所以我們可以這樣說: 在 [1,2] 中的點如果可以找到一個 open neighborhood 包含於 [1,2] 就稱為 [1,2] 的 "內點".

現在我們回到一般的 topological space X. 我們曾經提到, 若 $a \in X$, 且 U 是包含 a 的 open set, 便稱 U 為 a 的 open neighborhood. 基於以上的看法, 我們有以下的定義.

Definition 2.1.1. 假設 X 為 topological space, $S \subseteq X$. 對於 $a \in S$, 若存在 a 的一個 open neighborhood U 滿足 $U \subseteq S$, 則稱 a 為 S 的一個 *interior point*. 所有 S 的 interior points 所成的集合稱之為 S 的 *interior*, 我們用 int(S) 來表示 (有的書用 \mathring{S} 來表示).

要注意即使 $S \neq \emptyset$, $\operatorname{int}(S)$ 有可能會是 \emptyset . 例如在 \mathbb{R} 考慮 standard topology 時, 當 $a \in \mathbb{R}$, $S = \{a\}$ 時, $\operatorname{int}(S)$ 就是 \emptyset . 又若 X 考慮 indiscrete topology, 則因 X 是唯一非空的 open set, 所以任何不等於 X 的子集合 S 其 interior 皆為空集合. 另外要注意若 X' 是 X 的 subspace 且 $S \subseteq X'$ 則 S 看成 X 的子集合的 interior 和看成 X' 的子集合的 interior 有可能不同. 例 如 [1,2] 用 \mathbb{R} 的 subspace topology 來看 [1,2] 的 interior 就是 [1,2] 而不是 (1,2). 所以在 討論 interior 時需說明清楚所在的 topological space 為何.

Question 2.1. 考慮 \mathbb{R} 的 standard topology. $S \subseteq \mathbb{R}$ 為 finite set. 試問 $\operatorname{int}(S)$ 為何? 又 $\operatorname{int}(\mathbb{N})$ 為何?

接下來我們看一些有關 interior 的簡單性質.

Lemma 2.1.2. 考慮 topological space X 以及 S,T 為 X 子集合, 我們有以下的性質.

- (1) 假設 S 為 X 的 open set, 則 $\operatorname{int}(S) = S$. 特別地, 我們有 $\operatorname{int}(X) = X$ 以及 $\operatorname{int}(\emptyset) = \emptyset$.
- (2) 若 $S \subseteq T$, 則 $int(S) \subseteq int(T)$.
- (3) 假設 S 為 X 的 open set, 則 $S \subseteq T$ 若且唯若 $S \subseteq \operatorname{int}(T)$.

Proof. 首先注意, 依 interior 的定義, 我們知道 $int(S) \subseteq S$.

- (1) 要證明 $\operatorname{int}(S) = S$, 我們僅要說明 $S \subseteq \operatorname{int}(S)$, 即可. 現依假設 $S \triangleq X$ 的 open set. 對任意 $a \in S$, S 皆為 a 的 open neighborhood 且满足 $S \subseteq S$, 故依定義 $a \triangleq S$ 的 一個 interior point, 得 $a \in \operatorname{int}(S)$. 得證 $S = \operatorname{int}(S)$. 又因 $X \triangleq X$ 的 open set, 故 得 $\operatorname{int}(X) = X$. 同理 $\operatorname{int}(\emptyset) = \emptyset$.
- (2) 假設 $S \subseteq T$. 現任取 $a \in \text{int}(S)$, 即存在 a 的 open neighborhood U 满足 $U \subseteq S$. 因 $S \subseteq T$, 故得 $U \subseteq T$. 因此得證 a 亦為 T 的 interior point, 即 $a \in \text{int}(T)$. 得證 $\text{int}(S) \subseteq \text{int}(T)$.
- (3) 已知 S 為 X 的 open set. 現若 $S \subseteq T$ 由 (1), (2) 知 $S = \operatorname{int}(S) \subseteq \operatorname{int}(T)$. 反之若 $S \subseteq \operatorname{int}(T)$, 則因 $\operatorname{int}(T) \subseteq T$, 得證 $S \subseteq T$.

Question 2.2. Lemma 2.1.2 (3) 中的若且唯若,哪一個方向不需用到 S 為 X 的 open set 這個假設?

Lemma 2.1.2 (1) 告訴我們當 S 是 open 時 $\operatorname{int}(S) = S$, 因此此時 $\operatorname{int}(S)$ 會是 X 的 open set. 然而在一般的情形 $\operatorname{int}(S)$ 會是 open 嗎? 要回答這個問題, 我們必需看看 $\operatorname{int}(S)$ 可否 寫成一些 X 的 open sets 的聯集. 然而對任意 $X \in \operatorname{int}(S)$, 皆存在 X 的 open set U_X 滿足 $U_X \subseteq S$. 因此我們自然會考慮這些 U_X 的聯集, 即考慮

$$U = \bigcup_{x \in \text{int}(S)} U_x.$$

因為對任意 $x \in \text{int}(S)$ 皆有 $x \in U_x$, 故知 $\text{int}(S) \subseteq U$. 另一方面對任意 $x \in \text{int}(S)$ 皆有 $U_x \subseteq S$, 故知 $U \subseteq S$. 也因此由 U 為 open 以及 Lemma 2.1.2 (3) 得知 $U \subseteq \text{int}(S)$. 我們證得了 U = int(S), 故得 int(S) 是 X 的 open set. 事實上我們有以下關於 interior 的等價性質.

Theorem 2.1.3. 假設 X 為以 \mathcal{T} 為 topology 的 $topological\ space$ 且 S 為 X 子集合.

(1) int(S) 是所有包含於 S 的 open sets 的聯集. 亦即

$$\operatorname{int}(S) = \bigcup_{\{U \in \mathcal{T} | U \subseteq S\}} U.$$

(2) $\operatorname{int}(S)$ 是所有包含於 S 的 open sets 裡最大的 open set. 亦即 $\operatorname{int}(S) \in \mathcal{T}$ 且若 $U \in \mathcal{T}$ 滿足 $U \subseteq S$, 則 $U \subseteq \operatorname{int}(S)$.

Proof. 為了方便起見我們令 $V = \bigcup_{\{U \in \mathcal{T} | U \subseteq S\}} U$. 現若 $x \in \operatorname{int}(S)$, 表示存在 $U \in \mathcal{T}$ 滿足 $x \in U$ 且 $U \subseteq S$, 故 $x \in V$. 證得 $\operatorname{int}(S) \subseteq V$. 反之, 若 $x \in V$, 表示存在 $U \in \mathcal{T}$ 滿足 $U \subseteq S$ 使得 $x \in U$. 因此知 $x \in \operatorname{int}(S)$. 因此 $V \subseteq \operatorname{int}(S)$. 證明了 $V = \operatorname{int}(S)$, 即 (1) 成立.

至於 (2), 由 (1) 我們知 $\operatorname{int}(S)$ 為 open set. 又已知 $\operatorname{int}(S) \subseteq S$. 也就是說 $\operatorname{int}(S)$ 是一個包含於 S 的 open set. 現若 $U \subseteq S$, 且為 open set, 則由 (1) 得 $U \subseteq \operatorname{int}(S)$.

注意 Theorem 2.1.3 也告訴我們若 W 為 X 的 open set 滿足 $W \subseteq S$ 且對任意滿足 $U \subseteq S$ 的 open set 皆有 $U \subseteq W$,則 $W = \operatorname{int}(S)$. 這是因為 $\operatorname{int}(S)$ 為滿足 $\operatorname{int}(S) \subseteq S$ 的 open set, 故 $\operatorname{int}(S) \subseteq W$. 反之,W 亦為滿足 $W \subseteq S$ 的 open set, 故由 Theorem 2.1.3 (2) 知 $W \subseteq \operatorname{int}(S)$. 因此得證 $W = \operatorname{int}(S)$.

當 S 為 open 時, 當然 S 本身是包含於 S 最大的 open set, 故由 Theorem 2.1.3, 我們知道此時 $S=\operatorname{int}(S)$. 反之, 若 $S=\operatorname{int}(S)$, 則由於 $\operatorname{int}(S)$ 為 open set, 故得 S 為 open set. 也就是說 S 為 open 等價於 $S=\operatorname{int}(S)$. 至於對於一般的集合 S, 因為 $\operatorname{int}(S)$ 為 open, 故依此結果可得 $\operatorname{int}(\operatorname{int}(S))=\operatorname{int}(S)$. 我們證得了以下結果.

Corollary 2.1.4. 假設 X 為 topological space 且 S 為 X 子集合.

- (1) $S \in X$ 的 open set 若且唯若 S = int(S).
- (2) int(int(S)) = int(S).

談論了內部, 我們當然也可談何謂外部. 依定義, 一個集合外部的點應該是和該集合不相交的, 而且它"附近"的點也和該集合不相交. 因此我們有以下的定義.

Definition 2.1.5. 假設 X 為 topological space, $S \subseteq X$. 對於 $a \notin S$, 若存在 a 的一個 open neighborhood U 满足 $U \cap S = \emptyset$, 則稱 a 為 S 的一個 exterior point. 所有 S 的 exterior points 所成的集合稱之為 S 的 exterior, 我們用 ext(S) 來表示.

依 exterior 的定義, $x \in \text{ext}(S)$ 的點皆須滿足 $x \notin S$, 即 $x \in S^c$, 所以我們知 $\text{ext}(S) \subseteq S^c$. 另外對於任意 $x \in \text{ext}(S)$, 皆存在 x 的 open neighborhood U 滿足 $U \cap S = \emptyset$, 即 $U \subseteq S^c$.

所以 S 的 exterior 其實就是 S^c 的 interior. 也就是說

$$\operatorname{ext}(S) = \operatorname{int}(S^c). \tag{2.1}$$

因此利用 interior 的性質, 我們有以下之結果.

Proposition 2.1.6. 假設 X 為以 \mathcal{T} 為 topological space 且 <math>S,T 為 X 子集合.

- (1) S 是 closed 若且唯若 $ext(S) = S^c$.
- (2) 若 $S \subseteq T$, 則 $ext(T) \subseteq ext(S)$.
- (3) ext(S) 是所有與S 不相交的 open sets 的聯集. 亦即

$$\operatorname{ext}(S) = \bigcup_{\{U \in \mathcal{T} | U \cap S = \emptyset\}} U.$$

(4) ext(S) 是所有與 S 不相交的 open sets 裡最大的 open set. 亦即 ext $(S) \in \mathcal{T}$ 且若 $U \in \mathcal{T}$ 滿足 $U \cap S = \emptyset$, 則 $U \subseteq \text{ext}(S)$.

Question 2.3. 試證明 Proposition 2.1.6.

要注意, 雖然 $\operatorname{int}(\operatorname{int}(S)) = \operatorname{int}(S)$ 但是 $\operatorname{ext}(\operatorname{ext}(S))$ 並不會等於 $\operatorname{ext}(S)$. 事實上由於 $\operatorname{ext}(S) \subseteq S^c$, 所以由 Proposition 2.1.6 (2), 我們有 $\operatorname{ext}(S^c) \subseteq \operatorname{ext}(\operatorname{ext}(S))$. 再由式子 (2.1), 知 $\operatorname{ext}(S^c) = \operatorname{int}((S^c)^c) = \operatorname{int}(S)$, 因此推得

$$int(S) \subseteq ext(ext(S)).$$
 (2.2)

或許你會認為外部的外部等於內部,即 $\operatorname{ext}(\operatorname{ext}(S)) = \operatorname{int}(S)$,不過這是錯的. 這是因為雖然 $\operatorname{ext}(\operatorname{ext}(S))$ 是 open set,但是一般來說 $\operatorname{ext}(\operatorname{ext}(S))$ 不一定會包含於 S (參見以下 Question 2.4),所以我們無法得到 $\operatorname{ext}(\operatorname{ext}(S)) \subseteq \operatorname{int}(S)$,也就是說 $\operatorname{int}(S)$ 未必會等於 $\operatorname{ext}(\operatorname{ext}(S))$.

Question 2.4. 考慮 \mathbb{R} 上的 standard topology. 利用 Question 2.1 以及任意非空的 open interval (r,s) 必有有理數及無理數在其中, 證明 $\operatorname{int}(\mathbb{Q}) = \emptyset$. 又試問甚麼會是 $\operatorname{ext}(\mathbb{Q})$ 呢? 依此結論說明 $\operatorname{ext}(\operatorname{ext}(\mathbb{Q})) \neq \operatorname{int}(\mathbb{Q})$.

Excecise 2.1. 假設 \mathcal{B} 是 topological space X 的一個 basis. 若 $S \subseteq X$. 試證明 $a \in \operatorname{int}(S)$ 若且唯若存在 $B \in \mathcal{B}$ 滿足 $a \in B$ 且 $B \subseteq S$. 並依此證明

$$\operatorname{int}(S) = \bigcup_{\{B \in \mathcal{B} | B \subseteq S\}} B.$$

Excecise 2.2. 假設 X 為 topological space 且 $X' \subseteq X$. 考慮 X' 上的 topology 為 X 的 subspace topology. 假設 $S \subseteq X'$, 我們令 $\operatorname{int}_X(S)$ 為 S 使用 X 的 topology 所得的 interior, 而令 $\operatorname{int}_{X'}(S)$ 為 S 使用 X' 的 topology 所得的 interior.

- (1) 證明 $\operatorname{int}_X(S) \subseteq \operatorname{int}_{X'}(S)$.
- (2) 試找到一個例子說明 $int_X(S) = int_{X'}(S)$ 未必成立.

03 November, 2017