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Chapter 5

ÞgÝ Congruence
Equations

9×a�&Æ�Ý¥y�ÞgÝ congruence equation. &Æ���×�ÝÞg congruence

equation ��, Q¡XX;�W��Ý�P, t¡+Û quadratic reciprocity law. J�¼1
&ÆºÿÕ×Íb[¾½Þg congruence equation ÎÍb�Ý]°, �yub�A¢O
�µ�3ÍaÝD¡P�Ý. &Æ�T�½¥y.êA¢ãÃ;�ÝM».

5.1. Þg Congruence Equation Ý;�

XÛÞgÝ congruence equation, Ç�� m ∈ N, �Ê ax2 + bx + c ≡ 0 (mod m), Í�

a, b, c ∈ Z v m - a 9øÝ equation.

��:Õ9øÝ]�P, ´�º�Õàg]°¼�. ^ý, &ÆôÎ�àg]°. �Ä
9�b×F�©½¥�, µÎ&ÆKÎ3JóÝ�µ, X|6�¹àÕt°. »A����

ax2 + bx + c = 0 `, Ï×Í�ÕÝÎÞ x2 4Ý;ó a t�ÿ x2 + (b/a)x + (c/a) = 0. ã

y&Æ3� congruence equation, 94Pm�O
J;ó, 9Í]°µ��;Ý (t& a|b
v a|c). 	QÝ, 	 a õ m !²`D3 e ∈ Z ¸ÿ ae ≡ 1 (mod m), X|h`&Æ�|

Þ ax2 + bx + c ≡ 0 (mod m) Ë\¶î e �ÿ x2 + bex + ce ≡ 0 (mod m). �Ä9Í]°
�§×3 gcd(m, a) = 1 Ý��, �&Æ�"DÝÎ×��µ, X|&Æm�ð°�§. �

Ñ§ø
Ý¯94P
J;ó, &Æ��àtÝ]°, ��à¶Ý. X|
Ý¸àg]°&
Æ�|¯ x2 4;óW
��¿], ôµÎÞ ax2 + bx + c ≡ 0 (mod m) Ë\¶î a �ÿ

(ax)2 + abx + ac ≡ 0 (mod m). #½�§ x 4;ó, ãy��àtÝX|��Þ abx ¶W

2(ab/2)x, ¬àg]° x 4;óm�ó, .h?Ý]°ÎÞæPË\¶| 2. �Ä9ø×¼
êÓûÝæ� x2 4;ó
��¿]Ý?�, X|&Æ�9¶×Í 2 ¸ÿ x2 4;ó)

��¿].

ôµÎ1, 3� ax2 + bx + c ≡ 0 (mod m) `&Æ�|ÞË\¶î 4a ¸ÿæPW


4a2x2 + 4abx + 4ac = (2ax)2 + 2(2ax)b + 4ac ≡ 0 (mod m). #ì¼µ�àg]°ðàM
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56 5. ÞgÝ Congruence Equations

»ÞP�¶W (2ax + b)2 ≡ b2 − 4ac (mod m). .h&ÆÞ®Þ�;W� y2 ≡ b2 − 4ac

(mod m). *u^bJó k �� k2 ≡ b2 − 4ac (mod m), £�&Æ-áæ congruence

equation, ax2 + bx + c ≡ 0 (mod m) P�. u�0Õ k ∈ Z �� k2 ≡ b2 − 4ac (mod m),
£�&Æ-�µG«"D×gÝ congruence equation Ý]°� 2ax + b ≡ k (mod m), �

ÿÕ ax2 + bx + c ≡ 0 (mod m) ���µ.

À�,�Þg congruence equation, ax2+bx+c ≡ 0 (mod m)Ý®Þ,�;�W� y2 ≡ d

(mod m) Í� d = b2 − 4ac. .h&Æ#ì¼G"D x2 ≡ a (mod m) 9øÝ congruence

equation.

�' m = pn1
1 · · · pnr

t , Í�9° pi 
8²²ó. ã Corollary 4.4.3 á, x2 ≡ a (mod m)
b�uv°uEXbÝ pi, x2 ≡ a (mod pni

i ) b�. .h&ÆêÞ®Þ;�
O x2 ≡ a

(mod pn), Í� p 
²óv n ∈ N Ý��.

&Æ¼:×Íá)|î��Ý»�.

Example 5.1.1. &Æ�½� 29x2 +15x+1 ≡ 0 (mod 45). ´�ÞP�Ë\¶î 4×29,ÿ

(58x)2 +2× 58× 15x+116 ≡ 0 (mod 45). #½¿àg]°ÿ (58x+15)2 ≡ 109 (mod 45),
Ç (13x + 15)2 ≡ 19 (mod 45) (½�Ý 58x ≡ 13x (mod 45)).

#½.
 45 = 32×5,&Æ�|ÞP�»;W� (13x+15)2 ≡ 19 (mod 9)C (13x+15)2 ≡
19 (mod 5). ôµÎ15½� (4x+6)2 ≡ 1 (mod 9)|C (3x)2 ≡ 4 (mod 5). ãy y ≡ ±1

(mod 9) 
 y2 ≡ 1 (mod 9) ��, Æá 4x + 6 ≡ ±1 (mod 9), �ÿ x ≡ 1, 5 (mod 9) 


(13x + 15)2 ≡ 19 (mod 9) ��. ¨×]« y ≡ ±2 (mod 5) 
 y2 ≡ 4 (mod 5) ��, Æÿ

3x ≡ ±2 (mod 5), �ÿ x ≡ 1, 4 (mod 5) 
 (13x2 + 15)2 ≡ 19 (mod 5) ��.

t¡�� 29x2 + 15x + 1 ≡ 0 (mod 45), ãGá x mÐ):

(1)
{

x ≡ 1 (mod 9)
x ≡ 1 (mod 5)

, (2)
{

x ≡ 1 (mod 9)
x ≡ 4 (mod 5)

,

(3)
{

x ≡ 5 (mod 9)
x ≡ 1 (mod 5)

T (4)
{

x ≡ 5 (mod 9)
x ≡ 4 (mod 5)

.

.hOÿ x ≡ 1, 14, 19, 41 (mod 45) 
 29x2 + 15x + 1 ≡ 0 (mod 45) ��.

/Õ&ÆÝxÞ. &ÆÞ��×�ÞgÝ congruence equation;�W� x2 ≡ a (mod pn),
Í� p
²óv n ∈ NÝ��. &Æ�¼: aõ p�!²Ý��. �' pn|a�y� x2 ≡ 0

(mod pn), h`	Qb�. u a = pia′ Í� p - a′ v 1 ≤ i ≤ n− 1 §�ð? ¨�u i Î�

ó, &Æ�1�h` x2 ≡ pia′ (mod pn) P�. ub�v b 
 x2 ≡ pia′ (mod pn) �×�,
&ÆÞ b ¶W b = psb′, Í� p - b′. h`.�' b2 ≡ pia′ (mod pn), �ÿ pn|p2sb′2 − pia′.
ãy 2sÎ�ó� iÎ�ó, á 2s 6= i. A� 2s > i, J p2sb′2−pia′ = pi(p2s−ib′2−a′). ¬ã
y p|p2s−i v p - a′, &Æá p - p2s−ib′2−a′. ð�� pi+1 - p2sb′2−pia′. hõ pn|p2sb′2−pia′

v n ≥ i + 1 8ë;. !§, u 2s < i, &Æô�ÿë;Ý��. X|	 i < n vÎ�ó`

x2 ≡ pia′ (mod pn) P�.

	 a = pia′ Í� p - a′, 0 < i < n v i = 2k Î�ó`, u&ÆÞ x ¶W x = pkt, h`

� x2 ≡ a (mod pn) �!y� (pkt)2 ≡ p2ka′ (mod pn), ôµÎ� p2kt2 ≡ p2ka′ (mod pn).
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ãy 2k < n, Proposition 4.2.1 ×å&ÆhP�!y� t2 ≡ a′ (mod pn−2k). &ÆÞ|î
D¡¶W�¡.

Proposition 5.1.2. ��×²ó p C n ∈ N. �' a = pia′ Í� p - a′ v 1 ≤ i ≤ n− 1.

(1) u i Î�ó, J x2 ≡ a (mod pn) P�.

(2) u i Î�ó, J x2 ≡ a (mod pn) b�uv°u x2 ≡ a′ (mod pn−i) b�.

�|îÝD¡&Æá¼��×ÍÞgÝ congruence equation K�|�;Õ x2 ≡ a

(mod pn), Í� p - a Ý�µ. X||¡&ÆGÝ¥y x2 ≡ a (mod pn) Í� p - a Ý��.

5.2. � x2 ≡ a (mod pn)

3G×;�&Æá¼×ÍÞgÝ congruence equation �;�W x2 ≡ a (mod pn), Í� p


²ó, n ∈ N v p - a 9Ë�PÝ®Þ. �¥�h`ãy p - a, u x2 ≡ a (mod pn) b�,
JÍ�Äô� p !², ÍJºCW p|a �ë;. #½&Æµµ p = 2 õ p 
�²óËË�
�¼D¡ x2 ≡ a (mod pn) ���µ.

5.2.1. p = 2 Ý��. &Æ��Ê x2 ≡ a (mod 2n), Í� 2 - a Ý��. ãy a Î�ó,
X|ub�Í�Ä
�ó. ×��	QÎ�Ê n = 1 Ý��, h`. a Î�ó, ÿ a ≡ 1

(mod 2). X| x2 ≡ a (mod 2), Ç
 x2 ≡ 1 (mod 2), ÆÄb�v�
 x ≡ 1 (mod 2).

	 n = 2 `, .
 a ≡ 1, 3 (mod 4), &ÆG��Ê x2 ≡ 1 (mod 4) |C x2 ≡ 3

(mod 4) ËË congruence equations. ãy�Ä
�ó&Æ�|�' 2k + 1 
×�. .hã

(2k + 1)2 = 4k(k + 1) + 1 ≡ 1 (mod 8), &Æá x2 ≡ 3 (mod 4) P�. � x2 ≡ 1 (mod 4)
��
 x ≡ ±1 (mod 4) (ÇXb�ó).

ãî«D¡á	 n = 3 `, x2 ≡ 3, 5, 7 (mod 8) P�, � x2 ≡ 1 (mod 8) b�v�


x ≡ ±1,±3 (mod 8). n > 3 `, &Æá¼��Ah{®ì�, �|¿àó.hû°ÿÕ|
ì��.

Proposition 5.2.1. �' n ≥ 3 v a Î×Í�ó. J x2 ≡ a (mod 2n) b�uv°u

a ≡ 1 (mod 8).

Proof. u a ≡ 3, 5, 7 (mod 8), JãGá x2 ≡ a (mod 8) P�. .
 n ≥ 3, Æã Lemma

4.2.2 á x2 ≡ a (mod 2n) P�. .
 a 
�óÆGyì a ≡ 1 (mod 8) Ý��ÎD¡. X

|&Æ©�J� a ≡ 1 (mod 8) ` x2 ≡ a (mod 2n) b�.

�á n = 3 `Wñ. �' n = k − 1 (k ≥ 4) `Wñ, Ç	 a ≡ 1 (mod 8) `, x2 ≡ a

(mod 2k−1) b�. �' c ∈ Z Î x2 ≡ a (mod 2k−1) Ý×Í� (Ç 2k−1|c2 − a), ôµÎ1

c2 = a + 2k−1b, Í� b ∈ Z. &Æ�¿à c 0Õ x2 ≡ a (mod 2k) ��. u c2 = a + 2k−1b

Í� b 
�ó, J�Q 2k|c2 − a, ÿ c 
 x2 ≡ a (mod 2k) �×�. u b 
�ó, J�Ê

c′ = c + 2k−2. h` c′2 = c2 + 2k−1c + 22k−4 = a + 2k−1(b + c) + 22k−4. ãy b õ c /
�

óá 2|b + c, �v 2k − 4 = k + k − 4 ≥ k (. k ≥ 4), Æÿ c′2 ≡ a (mod 2k). ÿJ x2 ≡ a

(mod 2k) b�. ¤
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&Æ�á x2 ≡ a (mod 2n) ¢`b�¢`P�. ub�`, Í3 modulo 2n �ìºb9
K�÷? &ÆµQàËÍ�� Ýn;¼"D.

Proposition 5.2.2. �' n ≥ 3v a ≡ 1 (mod 8). u x ≡ c (mod 2n)Î x2 ≡ a (mod 2n)
Ý×Í�, J x ≡ c, c + 2n−1,−c,−c + 2n−1 (mod 2n) 
 x2 ≡ a (mod 2n) XbÝ�.

Proof. u c′ ∈ Z ù
×�, J 2n|c2 − c′2, Ç 2n|(c− c′)(c + c′). �¥�.
 c õ c′ /

�ó, &Æ�|b c ≡ ±1 (mod 4) õ c′ ≡ ±1 (mod 4), °Ë��. �Ä�ÑÎø×Ë�
� c− c′ õ c + c′ ��Äb×Í(vGb×Í)��� 4 Jt (¬)
�ó). »A3 c ≡ 1

(mod 4) C c′ ≡ −1 (mod 4) Ý�µ, &Æb c + c ≡ 0 (mod 4) ¬ c− c′ ≡ 2 (mod 4). Ç

2|c− c′ ¬ 4 - c− c′. &Æ��Ê 4 - c + c′ 9Ë��. h` c + c′ = 2λ, Í� λ 
�ó. .

hãG«�á 2n|(c− c′)(c + c′), ÿ 2n|2λ(c− c′), Ç 2n−1|λ(c− c′). ¨ãy gcd(2, λ) = 1,
Æã Proposition 1.2.7(1) ÿ 2n−1|c− c′. !§u 4 - c− c′, Já 2n−1|c + c′.

À�¼1, u c′ Î x2 ≡ a (mod 2n) �×�, JD3 t ∈ Z ¸ÿ c′ = c + t2n−1 T

c′ = −c + t2n−1. D�u c′ = c + 2n−1, J c′2 = c2 + 2nct + 22n−2t2. ãy 2n− 2 ≥ n + 1,
ÿ c′2 ≡ c2 ≡ a (mod 2n). Æá c′ 
 x2 ≡ a (mod 2n) ���. !§ c′ = −c + t2n−1 ù


 x2 ≡ a (mod 2n) ���. Q�	 t Î�ó` c′ = c + t2n−1 ≡ c + 2n−1 (mod 2n) v

c′ = −c + t2n−1 ≡ −c + 2n−1 (mod 2n). �	 t Î�ó` c′ = c + t2n−1 ≡ c (mod 2n)
v c′ = −c + t2n−1 ≡ −c (mod 2n). Æÿá3 modulo 2n �ì x2 ≡ a (mod 2n) �b

x ≡ c, c+2n−1,−c+2n−1,−c (mod 2n) 9 4 Íq (¥�. c 
�ó, X|9°ó3 modulo

2n �ì/8²). ¤

&Æ¼:Í»�.

Example 5.2.3. � x2 ≡ 17 (mod 32). ãy 17 ≡ 1 (mod 8), ã Proposition 5.2.1 á

Äb�. &Æ¿à Proposition 5.2.1 J��XàÝ]°¼0�×Í�. ´�� x2 ≡ 17

(mod 25−1), Ç x2 ≡ 1 (mod 16). �á x = 1 
 x2 ≡ 17 (mod 16) �×�. ¬ãy

12 − 17 = 24 × (−1) v −1 Î�ó, Æ¿à Proposition 5.2.1 ÝJ�á 1 + 2(5−2) = 9

 x2 ≡ 17 (mod 32) �×�. 0Õ×�¡, t¡¿à Proposition 5.2.2 á x ≡ 9, 25, 7, 23

(mod 32) 
 x2 ≡ 17 (mod 32) XbÝ�.

5.2.2. p 
�²óÝ��. 	 p Î�²ó`, &Æ	Q��A p = 2 Ý��D¡. �Äã

Lemma 4.2.2 &Æáu x2 ≡ a (mod p) P�, JE�� n ∈ N, x2 ≡ a (mod pn) ùP�.
&Æ�àó.hû°J�u x2 ≡ a (mod p) b�, JE�� n ∈ N, x2 ≡ a (mod pn) ù

b�.

Proposition 5.2.4. �' p 
×�²óv p - a. J x2 ≡ a mod p b�uv°uE��

n ∈ N, x2 ≡ a (mod pn) b�.

Proof. &ÆG�J�u x2 ≡ a (mod p) b�J x2 ≡ a (mod pn) ùb�.

u c 
 x2 ≡ a (mod p) �×�, ÇD3 λ ∈ Z ¸ÿ c2 = a + λp. ¨�Ê c′ = c + tp.
ãy c′2 = c2 + 2ctp + t2p2 = a + (2ct + λ)p + t2p2. u� c′2 ≡ a (mod p2), Jm0Õ t ∈ Z
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¸ÿ 2ct ≡ −λ (mod p). Q�ãy 2c õ p !², Theorem 4.3.3 ×å&Æ9øÝ t ×�D
3. Æh`u� c′ = c + tp, J x ≡ c′ (mod p2) 
 x2 ≡ a (mod p2) �×�.

¨¿àó.hû°�' n = k − 1 (k ≥ 2) ` x2 ≡ a (mod pk−1) b�, v�' x ≡ c

(mod pk−1)
Í×�. &Æ�¿à c0Õx2 ≡ a (mod pk)Ý�. ãyD3 λ ∈ Z¸ÿ c2−a =

λpk−1,&Æ�Ê c′ = c+tpk−1. h` c′2 = c2+2ctpk−1+t2p2k−2 = a+(2ct+λ)pk−1+t2p2k−2.
ãy 2k − 2 = k + k − 2 ≥ k (. k ≥ 2) &Æÿ c′2 ≡ a + (2ct + λ)pk−1 (mod pk). ê.


2c õ p !², ÆD3 t′ ∈ Z ¸ÿ 2ct′ + λ ≡ 0 (mod p). h`u� c′ = c + t′p, J x ≡ c′

(mod pk) 
 x2 ≡ a (mod pk) �×�. ¤

A� x2 ≡ a (mod pn) b�, &Æ	Qb·¶á¼3 modulo pn �ì, x2 ≡ a (mod pn)
Í�ÝÍó.

Proposition 5.2.5. �' p 
×�²ó, p - a v n ∈ N. u x2 ≡ a mod pn b�v x ≡ c

(mod pn) 
Í×�, J x ≡ ±c (mod pn) 
 x2 ≡ a (mod pn) XbÝ�.

Proof. �' c′ 
 x2 ≡ a (mod pn) �¨×�, á pn|c2 − c′2. ãy c õ c′ /� p !²,

c + c′ õ c− c′ á�Äb×Í� p !², ÍJã p|c + c′ C p|c− c′ �ÿ p|2c, �ê p 6= 2,
�ÿ p|c �ë;. ¨�' c + c′ � p !², h` gcd(c + c′, pn) = 1, Æã pn|(c + c′)(c− c′)
C Proposition 1.2.7(1), ÿá pn|c− c′, Ç c′ ≡ c (mod pn). !§, u c− c′ � p !², �ÿ

c′ ≡ −c (mod pn).

¨×]«, ã c2 ≡ a (mod pn) á (−c)2 = c2 ≡ a (mod pn), Æá x ≡ ±c (mod pn) 


x2 ≡ a (mod pn) XbÝ�. ¤

&Æ�¼:Í»�.

Example 5.2.6. � x2 ≡ 14 (mod 125). ãy x2 ≡ 14 ≡ 4 (mod 5) b� (x = 2 
×�),
ã Proposition 5.2.4á x2 ≡ 14 (mod 125)Äb�. &Æ¿à Proposition 5.2.4J��Xà
Ý]°¼0�×Í�. ´�0� x2 ≡ 14 (mod 25) ��Í�. ¿à 2 
 x2 ≡ 14 (mod 5)
�×�, �Ê (2 + 5t)2 = 4 + 20t + 25t2. .h (2 + 5t)2− 14 ≡ −10 + 20t (mod 25). ôµÎ
1m�� t ∈ Z ¸ÿ 20t ≡ 10 (mod 25), Ç� 4t ≡ 2 (mod 5). �ÿ t = 3 
×�, Æñá

2 + 5t ÿ x = 17 
 x2 ≡ 14 (mod 25) �×�. ¨�¿à 17 O x2 ≡ 14 (mod 125) �×
�. �Ê (17 + 25t)2 = 289 + 850t + 625t2. .h (17 + 25t)2 − 14 ≡ 275 + 850t ≡ 25 + 100t

(mod 125). ôµÎ1m�� t ∈ Z ¸ÿ 100t ≡ −25 (mod 125), Ç� 4t ≡ −1 (mod 5). �

ÿ t = 1 
×�, Æñá 17 + 25t ÿ x = 42 
 x2 ≡ 14 (mod 125) �×�. 0Õ×�¡,
t¡¿à Proposition 5.2.2 á x ≡ ±42 (mod 125) 
 x2 ≡ 14 (mod 125) XbÝ�.

&Æ���Ý� x2 ≡ a (mod 2n) Ý�Ý�µ. �	 p Î�²ó`, E�� n ∈ N,

x2 ≡ a (mod pn) (Í� p - a) Ý�Ý�µ��ãXy x2 ≡ a (mod p) Ý�Ý�µ. X||

¡&ÆGÝ¥y x2 ≡ a (mod p) Í� p 
�²óv p - a Ý��.
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5.3. The Legendre Symbol

&Æ�B.�×�ÝÞg congruence equation ×M×MÝ;�Õ� x2 ≡ a (mod p), Í�

p 
�²óv p - a Ý��. 9�&ÆÞ"D¢` x2 ≡ a (mod p) b�. �yub�A¢
0�, &Æº�ì×a.ê?9]°¡��§.

ãy&Æ©n¥ x2 ≡ a (mod p) ¢`b�, ¢`P�, &Æ+Û×ÍÐrÌ (Legendre

symbol) ¼�îÍb�TP�.

Definition 5.3.1. ���²ó p |C a ∈ Z �� p - a. u x2 ≡ a (mod p) b�, &ÆÌ

a Î×Í quadratic residue modulo p ¬|
(

a

p

)
= 1 �î�. D�, u x2 ≡ a (mod p) P

�, &ÆÌ a Î×Í quadratic nonresidue modulo p ¬|
(

a

p

)
= −1 �î�.

´��¥�ÝÎ Legendre symbol ��õ5ó¢�. 3ÍýL�Ý5óAë5�ÞÝ

¿]&Æºà (
2
3
)2 T (2/3)2 9ËË]°�î, Àrf´�. � Legendre symbol

(
2
3

)
Ý

Àrf´�. ¨²µ�L Legendre symbol Ý5Ò×�Î×Í�²óv5�×�õ5Ò!

² (bÝh!��!, 9�
Ý�¯!.¢�&Æ�}Ah!�). »A3ÍýL�
(

5
6

)

T
(

6
3

)
9øÝÐrÎ^�LÝ .

#ì¼&Æ¼: Legedre symbol à#µ�LXÿ�P².

Lemma 5.3.2. �' p Î×Í�²óv a ∈ Z �� p - a.

(1)
(

a2

p

)
= 1.

(2) u b ∈ Z �� b ≡ a (mod p), J
(

a

p

)
=

(
b

p

)
.

Proof. (1) �¾\ a2 ÎÍ
 quadratic residue modulo p, ôµÎ�¾\ x2 ≡ a2 (mod p)

ÎÍb�. Q���|á¼ x = a Î x2 ≡ a2 (mod p) Ý�, Æá
(

a2

p

)
= 1.

(2) �¾\ b ÎÍ
 quadratic residue modulo p, ôµÎ�¾\ x2 ≡ b (mod p) ÎÍ

b�. Q�µ�' b ≡ a (mod p) Æ�� x2 ≡ b (mod p) µ�!y� x2 ≡ a (mod p). Æ

á
(

b

p

)
=

(
a

p

)
. ¤

Í@ x2 ≡ a (mod p) ��Qb���QµP�. X|uGÞ Legendre symbol :W©

Î×ÍÐr�îb�P�µH�:¸Ý. u��Ðr, &Æô�|Þb��
 1 P��


0, TÍ�8²ÝËÍó, 
¢�Þb��
 1 P��
 −1 ÷? 1@�uG�àËÍóC
¼�îb�TP�Ý�µ, £ËÝÎ§��ÂK�|, Q�Ah×¼9øÝÐrc9G¯
&Æ]-�¾b�TP�Ý�µ, ^b%�H�Ý�L. Legendre symbol �X|�Þb�
�
 1 P��
 −1, x�Î&Æ�|Þ¸Æ:WJóÝ 1 õ −1 ¼�¶°ºÕ. Íæ.µ
Îì«9×Í�§.
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Theorem 5.3.3 (Euler’s Criterion). �' p Î×Í�²óv a ∈ Z �� p - a.

(1) u x2 ≡ a (mod p) b�, J a(p−1)/2 ≡ 1 (mod p).

(2) u x2 ≡ a (mod p) P�, J a(p−1)/2 ≡ −1 (mod p).

Proof. (1) u x2 ≡ a (mod p) b�v x = c 
Í×�, Ç c2 ≡ a (mod p). h`

a
p−1
2 ≡ (c2)

p−1
2 ≡ cp−1 (mod p).

ãy a õ p !², X| x2 ≡ a (mod p) �� c ù� p !². .h¿à Fermat’s Little

Theorem (3.3.4) á cp−1 ≡ 1 (mod p), ÆÿJ a(p−1)/2 ≡ 1 (mod p).

(2) �Ê S = {1, 2, . . . , p− 1} 9×Í reduced residue system modulo p. E�� i ∈ S,
ãy i õ p !², Æã Theorem 4.3.3 á ix ≡ a (mod p) 3 modulo p �ìb°×�. ã

y a õ p !², ÆáÍ�Äô� p !². ð­�1, �� i ∈ S ÄD3°×Ý j ∈ S �
� ij ≡ a (mod p). �¥�h` j 6= i, ÍJºÿÕ i2 ≡ a (mod p), ôµÎ1 x = i Î

x2 ≡ a (mod p) Ý×Í�, h� x2 ≡ a (mod p) P�Ý�'8ë;. ¨×]«ô�¥�.

 jx ≡ a (mod p) 3 modulo p �ìÍ�°×v�á x = i 
Í×�, X|���0Õ
¨×Í i′ ∈ S ¸ÿ i′j ≡ a (mod p). .hEy S �Ý-ô, &Æ�|Þ�ËËgE, ô
µÎE�� i ∈ S Þ i õ�� ij ≡ a (mod p) °×Ý j ∈ S 8gE. Ah×¼&Æ�b

(p− 1)/2 E. ãyN×E8¶3 modulo p �ìõ a congruent, Æ�ÿ

(p− 1)! = 1 · 2 · · · p− 1 ≡ a
p−1
2 (mod p).

�Ä Wilson’s Theorem (3.4.3) ×å&Æ (p − 1)! ≡ −1 (mod p), ÆÿJ a(p−1)/2 ≡ −1

(mod p). ¤

A������Ý�, 	�3J� Wilson’s Theorem &ÆÎÞ S = {1, . . . , p− 1} ��
-ôµ ij ≡ 1 (mod p) ¼gE. X| Wilson’s Theorem õ Euler’s Criterion ÝJ�b²
`!��ú.

	 p - a ` a(p−1)/2 3 modulo p �ì�Â�Î 1 µÎ −1. 9Î.
u� b = a(p−1)/2,
J b2 = ap−1 ≡ 1 (mod p), ôµÎ1 x = b 
 x2 ≡ 1 (mod p) �×q. .hã Lemma

3.4.2 á b ≡ ±1 (mod p). .h, �� a ∈ Z �� p - a, &Æ�|ã a(p−1)/2 modulo p 
 1

T −1 ¼¾\ x2 ≡ a (mod p) ÎÍb�. »A, u a(p−1)/2 ≡ 1 (mod p) �ê
(

a

p

)
= −1,

J. x2 ≡ a (mod p) P�ã Theorem 5.3.3 á a(p−1)/2 ≡ −1 (mod p). 9ºCW 1 ≡ −1

(mod p) Ç p|2 Ýë;. .h&Æá, u a(p−1)/2 ≡ 1 (mod p), J
(

a

p

)
= 1. !§, u

a(p−1)/2 ≡ −1 (mod p), J
(

a

p

)
= −1. 9µÎ Legendre symbol ã 1 õ −1 
ÂÝ§ã.

&Æb|ì��¡.

Corollary 5.3.4. �' p Î×Í�²óv a ∈ Z �� p - a. J
(

a

p

)
≡ a

p−1
2 (mod p).
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X|*¡&Æ�á¼ x2 ≡ a (mod p) b�TP�, ©��Õ a(p−1)/2 t| p ÝõóÎ

1 T p− 1. uõóÎ 1 Jb�, uõóÎ p− 1 JP�. �Ä9Í]°3@jÏµì)�
ð¯, .
��Õ a(p−1)/2 ×�¼1	 p ��`)��jì. �Ä9Í criterion 3J�×
�héÝ�§`µ�ÑàÝ. &Æb|ìbn Legendre symbol Ý¥�P².

Proposition 5.3.5. �' p Î×Í�²óv a, b ∈ Z �� p - a v p - b. J
(

ab

p

)
=

(
a

p

) (
b

p

)
.

Proof. ã Corollary 5.3.4 á
(

ab

p

)
≡ (ab)

p−1
2 = a

p−1
2 b

p−1
2 ≡

(
a

p

)(
b

p

)
(mod p).

ãy
(

ab

p

)
õ

(
a

p

)(
b

p

)
�Â��Î 1 µÎ −1, X|�Æ3 modulo p �ì!õ�îÄ

8�(ÍJêºÿ p|2 �ë;). Æÿ
(

ab

p

)
=

(
a

p

)(
b

p

)
. ¤

Proposition 5.3.5 �|.���ß*�Ý��. »A�' x2 ≡ a (mod a) õ x2 ≡ b

(mod p) /b�v' x = c õ x = c′ 5½
Í×�. £�&Æ��|.ÿ x2 ≡ ab (mod p)
Äb�. .
 x = cc′ µÎÍ��×�. �Äu x2 ≡ a (mod a) õ x2 ≡ b (mod p) Í

�b×ÍP�TÎ/P�, £Æ&Æµ�p¿à�]�PÝ]°¼�§ x2 ≡ ab (mod p)
ÎÍb�Ý. �Äu¿à Proposition 5.3.5, &Æ�"Ý-áu x2 ≡ a (mod p) b�¬

x2 ≡ b (mod p) P� (Ç
(

a

p

)
= 1,

(
b

p

)
= −1), J x2 ≡ ab (mod p) -P� (.
h`

(
ab

p

)
= 1× (−1) = −1). ?�ß#²ÝÎu x2 ≡ a (mod p) õ x2 ≡ b (mod p) /P�,

&Æ�|á x2 ≡ ab (mod p) Äb� (.
h`
(

ab

p

)
= (−1)× (−1) = 1). 9Í��Î�

pàb�P�9øÝ��¼¾\Ý.

Proposition 5.3.5 ¨×Í?�ÎE��Jó a &Æ�|5�W a = (−1)m2n0qn1
1 · · · qnr

r ,
Í� qi 
�²ó (v p 6= qi . p - a), m ∈ {0, 1}, ni ≥ 0. .h�ÿ

(
a

p

)
=

(−1
p

)m (
2
p

)n0
(

q1

p

)n1

· · ·
(

qr

p

)nr

.

ôµÎ1��×�²ó p, &Æ©�á¼
(−1

p

)
,
(

2
p

)
õ

(
q

p

)
(q 
��� p 8²Ý�

²ó) �Â, £�E��� p !²ÝJó a, µ�|Õ�
(

a

p

)
�ÂÝ.

&Æ�æ¼�Ý�×�ÞgÝ congruence equation �Ý��, ×­;�Õ¨3©�Ý
� x2 ≡ −1 (mod p), x2 ≡ 2 (mod p) õ x2 ≡ q (mod p) (Í� q Î� p 8²Ý�²ó), 9
ëË���PÝ��. 9µÎ�Xó.®ÞðÂÕÝãÃ;�ÝÄ�, Âÿ��ÞÞ�ºÍ
�Ý�;. ¨×�b¶ÝÎ Legendre symbol õ Euler’s Criterion QÃ&ÆÞ×ÍæÍ�
Þg congruence equation Ý®ÞðW¨²×Íõ�]�P��PnÝ]°¼�§. #ì¼
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&ÆµÎ�¿à9øÝ]P¼�§
(−1

p

)
,
(

2
p

)
õ

(
q

p

)
, ���à#"D x2 ≡ −1, 2, q

(mod p) b�TÎP�.

5.4. Quadratic Reciprocity Law

&ÆGyì�D¡
(−1

p

)
,
(

2
p

)
õ

(
q

p

)
�Â. 39;� p õ q ÕG�îË8²�²ó,

&Æµ�¨�1�Ý.

5.4.1. O
(−1

p

)
. &Æ´�"D

(−1
p

)
ÝãÂ��. T&��º¶É	 a Î×Í�

Jó`, ×��|0Õ×ÑJó b ¸ÿ a ≡ b (mod p), .h¿à Lemma 5.3.2(2) &Æb(
a

p

)
=

(
b

p

)
, X|©�"DÑJóÝ�µµ?Ý
¢���Ê�Ý�µ÷? ^ý, ×�

¼1&Æ©�á¼ÑJóÝ��µ�ÈÝ, �Ä�Ê�JóôbÍ]-P. »A&Æ�O(
97
101

)
. .
 97 ≡ −4 = (−1)× 22 (mod 101), ¿à Lemma 5.3.2 |C Proposition 5.3.5

yî�ÿ
(

97
101

)
=

( −1
101

)
. ¨×]«3 modulo p �ìÎÍb-ô	�ó�Ý i ×ø�

� i2 = −1 æÍôµÎ×Íb¶Ý®Þ. X|Ý�
(−1

p

)
�Â¯@îÎÄ�Ý.

Euler’s Criterion 4Q3Õ×�Ý
(

a

p

)
�Î�?à, �Ä3Õ

(−1
p

)
µ�?àÝ.

Theorem 5.4.1. �' p Î�²ó, J
(−1

p

)
=

{
1, 	 p ≡ 1 (mod 4);
−1, 	 p ≡ −1 (mod 4).

Proof. ¿à Corollary 5.3.4 &Æá
(−1

p

)
≡ (−1)

p−1
2 (mod p).

u p ≡ 1 (mod 4), �îD3 k ∈ N ¸ÿ p = 4k + 1, Æÿ (−1)(p−1)/2 = (−1)2k = 1.

.hÿJ
(−1

p

)
= 1. u p ≡ −1 (mod 4), �îD3 k ∈ N ¸ÿ p = 4k − 1, Æÿ

(−1)(p−1)/2 = (−1)2k−1 = −1. .hÿJ
(−1

p

)
= −1. ¤

�¥�ãy p Î�²ó, .h p 3 modulo 4 �ì��Qõ 1 !õ��Qµõ −1 !õ,

X| Theorem 5.4.1 �Ý
(−1

p

)
�JÝ�n. *¡&Æ�á¼ x2 ≡ −1 (mod p) ÎÍb�

`, ©�: p3 modulo 4���µ�|á¼�n. »Aâ�&Æ�á¼ x2 ≡ 97 (mod 101)

ÎÍb�, ã
(

97
101

)
=

( −1
101

)
|C 101 ≡ 1 (mod 4) yîá¼ x2 ≡ 97 (mod 101) Îb

�Ý.
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5.4.2. O
(

2
p

)
. #ì¼&Æ�"D

(
2
p

)
ÝãÂ��. ºÞ 2 õ×�Ý�²ó5�D

¡Ýæ.Î.
 2 Î°×Ý�²ó, Í�¨3�9ÏµÎõ�²ó�!Ý, ¯@î&Æ3
G«�B:Õ&93 2 Ý�µõ×��²ób���!Ý��»A x2 ≡ a (mod 2n) õ

x2 ≡ a (mod pn) 9ËË congruence equation Í�Ý�Vµ���!.

&Æ�Î�à Euler’s criterion ÝÞß¼O
(

2
p

)
��Îà#"D x2 ≡ 2 (mod p) ¢

`b�. Q� Euler’s criterion ¬��à#�à¼O
(

2
p

)
, x�æ.Î&Æ9�Ý p Î×

�Ý�²ó��Î©�Ý�²ó, X|qÍP°£� 2(p−1)/2 3 modulo p �ì
 1 T −1.
&ÆÄ6.0�¨²Ý]°�|QÃ&ÆO 2(p−1)/2 3 modulo p ���.

Lemma 5.4.2 (Gauss’s Lemma). �' p Î�²óv a ∈ Z �� p - a. �Ê/) S =

{a, 2a, . . . ,
p− 1

2
a}. u S ��b n Í-ôÍt| p Ýõó�y (p− 1)/2, J

a
p−1
2 ≡ (−1)n (mod p).

Proof. &ÆÞ S �Ý-ôt| p Ýõó5W r1, . . . , rn C s1, . . . , sm ËI	, Í� ri Î�

y (p− 1)/2 ÝI	, � sj ��y�y (p− 1)/2 ÝI	. ãy S �Ý-ô/� p !², X

|EXbÝ i ∈ {1, . . . , n} õ j ∈ {1, . . . , m} µ ri, sj Ý�L&ÆáD3 1 ≤ ni ≤ (p− 1)/2
¸ÿ nia t| p Ýõó
 ri v (p + 1)/2 ≤ ri ≤ p− 1, ¨×]«D3 1 ≤ mj ≤ (p− 1)/2
¸ÿ mja t| p Ýõó
 sj v 1 ≤ sj ≤ (p− 1)/2. �¥�h` n + m = (p− 1)/2, ¨�

Ê T = {p− r1, . . . , p− rn, s1, . . . , sm}, &Æ�J� T = {1, 2, . . . , (p− 1)/2}.
�J� T = {1, 2, . . . , (p− 1)/2}. &Æ�J� T ⊆ {1, 2, . . . , (p− 1)/2}. Q�E��Ý

i ∈ {1, . . . , n} &Æb p− ri ≤ p− (p + 1)/2 = (p− 1)/2 v p− ri ≥ p− (p− 1) = 1, Æá

p− ri ∈ {1, 2, . . . , (p− 1)/2}. ¨×]«E�� j ∈ {1, . . . ,m} �á 1 ≤ sj ≤ (p− 1)/2 Æ

ÿJ T ⊆ {1, 2, . . . , (p− 1)/2}.
#ì¼&ÆJ� p − ri, i ∈ {1, . . . , n} õ sj , j ∈ {1, . . . , m} 9 n + m (Ç (p − 1)/2)

Í-ô/8², -�ÿJ T = {1, 2, . . . , (p − 1)/2}. X|&Æ�J� (1): 1 ≤ i 6= i′ ≤ n

`, p − ri 6= p − ri′ ; (2): 1 ≤ j 6= j′ ≤ m `, sj 6= sj′ |C (3): E�� i ∈ {1, . . . , n},
j ∈ {1, . . . , m}, p− ri 6= sj .

	 1 ≤ i 6= i′ ≤ n`,u p−ri = p−ri′ �î ri = ri′ ,µ�LÇ niaõ ni′at| pÝõó
8!,ôµÎ1 nia ≡ ni′a (mod p). Q���' aõ p!²Æã Corollary 3.2.4á ni ≡ ni′

(mod p). ¬h� 1 ≤ ni 6= ni′ ≤ (p− 1)/2 Ý�'ë;, ÆÿJ p− ri 6= p− ri′ , Ç (1) ÎE
Ý. !§�Jÿ (2) ÎEÝ. �y (3), u p− ri = sj , �î ri + sj = p, �ÿ nia + mja ≡ 0

(mod p). Æ�ã Corollary 3.2.4 ÿ ni + mj ≡ 0 (mod p). Q� 1 ≤ ni,mj ≤ (p− 1)/2, ÿ

2 ≤ ni + mj ≤ p− 1, ����� p|ni + mj , ÆÿJ p− ri 6= sj .

ÉQ T = {1, 2, . . . , (p− 1)/2}, &Æÿ
p− 1

2
! = (p− r1) · · · (p− rn) · s1 · · · sm ≡ (−1)nr1 · · · rn · s1 · · · sm (mod p).
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¨×]« S = {a, 2a, . . . ,
p− 1

2
a}�-ôt| pÝõóXWÝ/)
 {r1, . . . , rn, s1, . . . , sm},

Æÿ

r1 · · · rn · s1 · · · sm ≡ a · 2a · · · p− 1
2

a =
p− 1

2
! · a p−1

2 (mod p).

õîPJ§ÿ
p− 1

2
! ≡ (−1)n p− 1

2
! · a p−1

2 (mod p).

.

p− 1

2
! õ p !², Æã Corollary 3.2.4 á

1 ≡ (−1)na
p−1
2 (mod p),

Ç

a
p−1
2 ≡ (−1)n (mod p).

¤

u {a, 2a, . . . ,
p− 1

2
a} ��b n Í-ôt| p Ýõó�y (p − 1)/2, Jã Corollary

5.3.4 |C Lemma 5.4.2 á (
a

p

)
≡ a

p−1
2 ≡ (−1)n (mod p).

Æã
(

a

p

)
ÝãÂ
 ±1, ÿ

(
a

p

)
= (−1)n.

Gauss’s Lemma ÞÃ� a(p−1)/2 Ý�ÕðW�Õ {a, 2a, . . . ,
p− 1

2
a} �b9KÍt| p

Ýõó�y (p− 1)/2, @@Þ®Þ�;Ý. &Æ�|¿à¸¼�Õ
(

2
p

)
.

Theorem 5.4.3. �' p Î�²ó, J
(

2
p

)
=

{
1, 	 p ≡ ±1 (mod 8);
−1, 	 p ≡ ±3 (mod 8).

Proof. �Ê S = {2, 2× 2, . . . ,
p− 1

2
× 2}, &Æÿ S = {2, 4, . . . , p− 1}. ôµÎ1 S �Ý

-ót| p XÿõóXWÝ/)ª
 S, Ç�y p ÝÑ�óXW�/). ãy p Î�ó,
&ÆÞ�5W p ≡ ±1,±3 (mod 8) °Ë��¼D¡. :: S �b9K-ô�y (p− 1)/2.

	 p = 8k + 1 (Ç p ≡ 1 (mod 8)) `, (p− 1)/2 = 4k. .h S ��y (p− 1)/2 Ý-ô

ÍóÇ
�y�y p− 1 = 8k v�y 4k Ý�ó�Íó. áÍ�b (8k− 4k)/2 = 2k. Æã

Corollary 5.3.4 |C Lemma 5.4.2 á
(

2
p

)
= (−1)2k = 1.

	 p = 8k−1 (Ç p ≡ −1 (mod 8)) ,̀ (p−1)/2 = 4k−1. .h S��y (p−1)/2Ý-ôÍ

óÇ
�y�y p−1 = 8k−2v�y 4k−1Ý�ó�Íó. áÍ�b (8k−2−(4k−2))/2 = 2k.
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Æã Corollary 5.3.4 |C Lemma 5.4.2 á
(

2
p

)
= (−1)2k = 1.

	 p = 8k+3 (Ç p ≡ 3 (mod 8)) ,̀ (p−1)/2 = 4k+1. .h S ��y (p−1)/2Ý-ôÍ

óÇ
�y�y p−1 = 8k+2v�y 4k+1Ý�ó�Íó. áÍ�b (8k+2−4k)/2 = 2k+1.
Æã Corollary 5.3.4 |C Lemma 5.4.2 á

(
2
p

)
= (−1)2k+1 = −1.

	 p = 8k−3 (Ç p ≡ −3 (mod 8)) ,̀ (p−1)/2 = 4k−2. .h S ��y (p−1)/2Ý-ô

ÍóÇ
�y�y p−1 = 8k−4v�y 4k−2Ý�ó�Íó. áÍ�b (8k−4−(4k−2))/2 =

2k − 1. Æã Corollary 5.3.4 |C Lemma 5.4.2 á
(

2
p

)
= (−1)2k−1 = −1.

¤

bÝ Theorem 5.4.3, ��×�²ó p, &ÆÞ��|á¼ x2 ≡ 2 (mod p) ÎÍb�.
»A.
 101 ≡ 5 ≡ −3 (mod 8), Æá x2 ≡ 2 (mod 101) P�. � 23 ≡ −1 (mod 8) Æ

á x2 ≡ 2 (mod 23) b�. ¯@î 52 ≡ 2 (mod 23), Æá x ≡ ±5 (mod 23) 
 x2 ≡ 2

(mod 23) ��.

5.4.3. O
(

q

p

)
. t¡&Æ¼"D p, q 
8²�²óÝ��. u��Ý p õ q &Æ	Q

µ�|¿à Gauss’s Lemma O
(

q

p

)
, �Ä¨3�D¡ÝÎ×�Ý p õ q, &ÆÄ6�Ê

½Ý]°.

3 Gauss’s Lemma �&Æm�Õ� {a, 2a, . . . ,
p− 1

2
a} �b9K-ôÍt| p Ýõó

�y (p− 1)/2. uÍÍó
 n, J
(

a

p

)
= (−1)n. ãy (−1)n ÝãÂ��ãXy n Î�

óT�ó, X|&Æ¬�mÞ@2Õ� n 
9K, ©m@-Í
�óT�óÇ�. |ì&

ÆÞ+Û×Í¾½ n 
�T�Ý]°, �Äãy&Æ��ÊÝ
(

q

p

)
Í� q 
�²ó, X

|9ìÝ]°�&ÆG�Ê a 
�óÝ�µ.


Ý]-&Æ�+Û×ÍÐr. ��×@ó r, &Æ� [r] �î�y�y r ÝJó�t
�ÝJó. »Au π �iø£, J [π] = 3. ê»A [−5.2] = −6. �¥�	 m,n ÎÑJó
` [m/n] Ç
 m t| n Ý¤.

Lemma 5.4.4. ��×�²ó p C×�ó a �� p - a. u� n �î/) {a, 2a, . . . ,
p− 1

2
a}

�t| p õó�y (p− 1)/2 Ý-ôÍó, J

n ≡
(p−1)/2∑

k=1

[
ka

p

]
(mod 2).
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Proof. �' ka t| p Ýõó
 r, Jµ�L&Æb ka = p[ka/p] + r. Æuµ Lemma

5.4.2ÝJ�&ÆÞ {a, 2a, · · · ,
p− 1

2
a}�Ý-ôt| pÝõó5W r1, . . . , rn C s1, . . . , sm

ËI	, Í� ri Î�y (p− 1)/2 ÝI	, � sj ��y�y (p− 1)/2 ÝI	, J

(p−1)/2∑

k=1

ka =
(p−1)/2∑

k=1

p

[
ka

p

]
+

n∑

i=1

ri +
m∑

j=1

sj .

ãy&ÆG3{�T�, X|��ÊîP3 modulo 2 Ý�µ, Æ¿à a õ p /
�ó (Ç

a ≡ p ≡ 1 (mod 2)) &Æÿ
(p−1)/2∑

k=1

k ≡
(p−1)/2∑

k=1

[
ka

p

]
+

n∑

i=1

ri +
m∑

j=1

sj (mod 2). (5.1)

¨×]«3 Lemma 5.4.2 ÝJ��&ÆJÿ

{p− r1, . . . , p− rn, s1, . . . , sm} = {1, 2, . . . , (p− 1)/2}.
Æÿ

(p−1)/2∑

k=1

k =
n∑

i=1

(p− ri) +
m∑

j=1

sj = np−
n∑

i=1

ri +
m∑

j=1

sj .

�¿à p ≡ 1 (mod 2) ÿ
(p−1)/2∑

k=1

k ≡ n−
n∑

i=1

ri +
m∑

j=1

sj (mod 2). (5.2)

)¿P� (5.1) õ (5.2) ÿJ

n ≡
(p−1)/2∑

k=1

[
ka

p

]
+ 2

n∑

i=1

ri ≡
(p−1)/2∑

k=1

[
ka

p

]
(mod 2).

¤

�gú�3 Lemma 5.4.4 ÝJ��&ÆàÕ a Î�ó (Ç a ≡ 1 (mod 2)) Ý�', X

|h��GÊày a 
�óÝ�µ, û0½àh°¼Õ
(

2
p

)
.

¿à Corollary 5.3.4 |C Lemma 5.4.2, Lemma 5.4.4, &Æá��×�²ó p, ��Õ

×Í�ó a Í
(

a

p

)
�Â, &Æ©��Õ

∑(p−1)/2
k=1 [ka/p] �ÂÇ�. uÍÂ
 N , Jÿ

(
a

p

)
= (−1)N .»A�O

(
5
11

)
,&Æ©��Õ [5/11]+[10/11]+[15/11]+[20/11]+[25/11].

Õ�ÍÂ
 4, Æá
(

5
11

)
= (−1)4 = 1.

#½&Æ�¿à Lemma 5.4.4 ¼�Õ
(

q

p

)
. ��|§�Õ

(
q

p

)
�cõ p bnôõ

q bn, X|&Æ�"D
(

q

p

)
õ

(
p

q

)
Ýn;. ãy p, q /
�²ó, &ÆK�|¿à

Lemma 5.4.4 ¼�Õ
(

q

p

)
õ

(
p

q

)
. .h&Æ�"D

∑(p−1)/2
k=1 [kq/p] õ

∑(q−1)/2
l=1 [lp/q] �

 Ýn;.
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3"Dh®ÞG, &Æ��¨×Í��¼: [r] 9ÍJó. 	 r ÎÑÝ@ó`, [r] �Â

µÎXb�� 0 ≤ n ≤ r ÝÑJó n ÝÍó. 32ý xy-¿«î, &ÆÌ x-�C y-�2ý
/
ÑJóÝF
“Ñ}�F”. µh:°, 	 k ÎÑJó`, [kq/p] �ÂµÎàa x = k

3 0 ≤ y ≤ kq/p � ÝÑ}�FÍó. �	 l ÎÑJó`, [lp/q] �ÂµÎàa y = l 3

0 ≤ x ≤ lp/q � ÝÑ}�FÍó. ¿à9ËÌF, &Æb|ì���.

Lemma 5.4.5. �' p õ q 
8²�²ó. J

(p−1)/2∑

k=1

[
kq

p

]
+

(q−1)/2∑

l=1

[
lp

q

]
=

p− 1
2

q − 1
2

.

Proof. 3 xy-¿«î, �Ê| (0, 0), (p/2, 0), (p/2, q/2) |C (0, q/2) °F
cFÝ�]�
 ½ T , ¬|àa L : y = (q/p)x Þh ½5W T1 õ T2 ËI	. Í� T1 �àa L ì]
ÝI	, � T2 �àa L î]ÝI	, Aì%.

-

6 L : y = (q/p)x

(p/2, 0)

(p/2, q/2)(0, q/2)

(k, 0)

(0, l)
T1

T2

3 T �Ý��Ñ}�F (m,n),µ�Lm�� m,n ∈ Nv 0 ≤ m ≤ p/2C 0 ≤ n ≤ q/2.

.hã p, q 
�óá3 T �ÝÑ}�FÍó

p− 1

2
q − 1

2
.

¨×]«3 T1 �ÝÑ}�F (k, s), µ�Lm�� k, s ∈ N v 0 ≤ k ≤ p/2 C

0 ≤ s ≤ kq/p. ôµÎ1 k ∈ N m�� 1 ≤ k ≤ (p− 1)/2, v�� k, J 0 ≤ s ≤ kq/p. ð
­�1��Õ3 T1 �Ý}�F, �y3�Õ�� k ∈ N v 1 ≤ k ≤ (p− 1)/2 `ºb9K

s ∈ N �� 0 ≤ s ≤ kq/p, �ÞXb k XÕÿ����R¼. Q�E��ÝÑJó k Ð)

0 ≤ s ≤ kq/p ÝÑJó s ÝÍó
 [kq/p]. X|3 T1 �ÝÑ}�Fó

∑(p−1)/2

k=1 [kq/p].
!§3 T2 �ÝÑ}�Fó


∑(q−1)/2
l=1 [lp/q].

3 T1 õ T2 Ýø&, Ç�� y = (q/p)x v 0 ≤ x ≤ p/2 Ýaðîº�ºbÑ}�F÷?
u (m, n) 
Íî��Ñ}�F, J&Æb pn = qm v 1 ≤ m ≤ (p− 1)/2. Q�ã pn = qm

�ÿ p|qm, �. p, q 
8²²óÆã Proposition 1.2.7(1) á p|m, hõ 1 ≤ m ≤ (p− 1)/2
8ë;. Æá3 T1 õ T2 ø&ÝaðîPÑ}�F. .h3 T1 õ T2 îÝÑ}�Fó�
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õª
3 T îÝÑ}�Fó, ÆÿJ
(p−1)/2∑

k=1

[
kq

p

]
+

(q−1)/2∑

l=1

[
lp

q

]
=

p− 1
2

q − 1
2

.

¤

	 p, q 
8²�²ó, u M =
∑(p−1)/2

k=1 [kq/p] v N =
∑(q−1)/2

l=1 [lp/q] ã Lemma 5.4.4

á
(

q

p

)
= (−1)M v

(
p

q

)
= (−1)N . � Lemma 5.4.5×å&ÆM +N = (p−1)(q−1)/4,

Æÿ (
q

p

)(
p

q

)
= (−1)M+N = (−1)

p−1
2

q−1
2 .

.h&Æb|ì���.

Theorem 5.4.6 (Quadratic Reciprocity Law). �' p õ q 
8²�²ó. J

(
q

p

)
=





−
(

p

q

)
, u p ≡ q ≡ −1 (mod 4);

(
p

q

)
, Í���.

Proof. ãy p, q /
�ó, &Æµ p ≡ ±1 (mod 4) |C q ≡ ±1 (mod 4) °Ë��¼D
¡.

�' p = 4k − 1 v q = 4k′ − 1 Í� k, k′ ∈ N (Ç p ≡ q ≡ −1 (mod 4)). J

(p− 1)/2 = 2k − 1 v (q − 1)/2 = 2k′ − 1, Æÿ(
q

p

)(
p

q

)
= (−1)(2k−1)(2k′−1) = −1.

ôµÎ1
(

q

p

)
= −

(
p

q

)
.

yìÝ�µ
 p õ q ��Kb×Í3 modulo 4 �¡õ 1. �´×�Pµ�' p ≡ 1

(mod 4). h` p = 4k + 1, Í� k ∈ N, Æÿ (p− 1)/2 = 2k. � (q − 1)/2 Ä
JóÆá(
q

p

)(
p

q

)
= (−1)(2k) q−1

2 = 1
q−1
2 = 1.

ôµÎ1
(

q

p

)
=

(
p

q

)
. ¤

�¥� Theorem 5.4.6 �3 p, q 
8²�²ó`�Êà, ÍJu q �Î�²ó,
(

p

q

)

9ÍÐrÎ^b�LÝ. 4Q Theorem 5.4.6 ¬^b�@×å&Æ
(

q

p

)
�Â
¢, ¬

Î�¿à
(

p

q

)
�Â¼Oÿ

(
q

p

)
. ×�¼1Þ

(
q

p

)
Ý®ÞD»W

(
p

q

)
Ý®Þµ	

�»8t°×ø, �|">ÝÞ®Þ�;. 9Î.
×�¼1¿à Lemma 5.3.2(2), �O(
q

p

)
`, ��' q < p, X|×D»W

(
p

q

)
`&Æ�Þ×Í modulo f´�Ý p Ý®

Þ�;W×Í modulo f´�Ý q Ý®Þ. »AO
(

7
101

)
, ãy 101 ≡ 1 (mod 4), Æÿ
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(
7

101

)
=

(
101
7

)
. X|yîÞ modulo 101 Ý®Þ»W modulo 7 Ý®Þ, �Q�ÿ�

�. ¯@î
(

101
7

)
=

(
3
7

)
, �yî�Já

(
3
7

)
= −1 (T�à×g Theorem 5.4.6 ÿ

(
3
7

)
= −

(
7
3

)
= −

(
1
3

)
= −1). X|ÿá

(
7

101

)
= −1. À���, Ey×�Ý8²

�²ó p, q, &Æ^bð°ã p õ q yîÿá
(

q

p

)
�Â. ¬Î¿à Theorem 5.4.6, &Æ

�|�">ÝÞ®Þ;��O�ÍÂ. t¡&Æ¼:×Í»�J)9×;�.ÕÝ]°.

Example 5.4.7. �ÊÞg congruence equation x2 ≡ 539 (mod 631) ÎÍb�. �¥�u
�à Legendre symbol �§, ´��lã 631 ÎÍ
²ó. &Æ�|¿à ° (Proposition

1.4.6) lã�y
√

631 Ý²óÎÍ�Jt 631. ãy�õ 25 Ý²ó/��Jt 631, X|

Proposition 1.4.6 ×å&Æ 631 Î²ó. .h&ÆµÎ��Õ
(

539
631

)
�Â. ãy 539 õ

631 q�, &Æ¿à 539 ≡ −92 (mod 631) |C Lemma 5.3.2(2) á
(

539
631

)
=

(−92
631

)
#

½Þ 92 ®².ó5�ÿ 92 = 22 × 23. Æ¿à Proposition 5.3.5 á(
539
631

)
=

(−92
631

)
=

( −1
631

)(
4

631

)(
23
631

)
.

ãy 631 ≡ 3 ≡ −1 (mod 4),Æã Theorem 5.4.1á
( −1

631

)
= −1. � 4 = 22,Æã Lemma

5.3.2(1) á
(

4
631

)
= 1, .hÿ

(
539
631

)
= −

(
23
631

)
. ãy 631 ≡ 23 ≡ 3 (mod 4), Æã

Theorem 5.4.6 á
(

23
631

)
= −

(
631
23

)
. êã 631 ≡ 10 (mod 23) .há

(
539
631

)
= −

(
23
631

)
=

(
631
23

)
=

(
10
23

)
=

(
2
23

)(
5
23

)
.

.
 23 ≡ 7 ≡ −1 (mod 8), Æã Theorem 5.4.3 á
(

2
23

)
= 1. ê. 5 ≡ 1 (mod 4),

Æã Theorem 5.4.6 á
(

5
23

)
=

(
23
5

)
. .hÿ

(
539
631

)
=

(
2
23

)(
5
23

)
=

(
23
5

)
. �

ã 23 ≡ 3 (mod 5) |C 5 ≡ 1 (mod 4) á
(

23
5

)
=

(
3
5

)
=

(
5
3

)
=

(
2
3

)
. X|á

(
539
631

)
=

(
2
3

)
= −1. ôµÎ1 x2 ≡ 539 (mod 631) P�.

	QÝ	�u:� 539 = 72× 11, Jyîÿ
(

539
631

)
=

(
72

631

)(
11
631

)
=

(
11
631

)
. �

. 631 ≡ 11 ≡ 3 (mod 4) |C 631 ≡ 4 (mod 11) á(
539
631

)
=

(
11
631

)
= −

(
631
11

)
= −

(
4
11

)
= −1.

X|�ÑàøË:°©��à Legendre symbolvÑ@2¸à quadratic reciprocity law (B
ÿ©b�²ó��Hy Legendre symbolÝì]), -�">vÑ@ÝO� Legendre symbol
�Â.




