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Chapter 1

General Properties on
Linear Representations
of Finite Groups

All groups we consider in this chapter are finite group.

1.1. Basic Definitions

Let V be a finite dimensional vector space over C and let Aut(V') be the group of automorphisms of
V onto itself. A linear representation of a finite group G on V is a homomorphism p : G — Aut(V)
from G to the group Aut(V). In this way we have the equalities

p(s-t)=p(s)op(t) Vs, t € G, p(1)=1 and p(s~") = p(s)"".
We will also frequently write p; instead of p(s).

When V' is given, we say that V' is a representation space of GG, denoted V), and also say that G
acts on V through p. The dimension of V is called the dimension of p, denoted dim(p). If we have
p(s) equals to the identity map for all s € G, the representation is called the trivial representation.

Example 1.1.1. Let g be the order of G and let V' be the vector space of dimension g with a basis
(v)tec indexed by the elements ¢ of G. For s, t € G, let ps be the linear map of V' into V' such that
ps(vr) = vg; this defines a linear representation, which is called the regular representation of G. Note
that if e is the identity of GG, the orbit of v, form a basis of V.

Let p and p' be two representations of the same group G in V and V’, respectively. These
representations are said to be isomorphic if there exists a linear isomorphism 7 : V' — V'’ such that
Top(s)=p'(s)or for all s € G. We shall usually identify isomorphic representations.

1.2. Subrepresentations and Irreducible
Representations

Let p: G — Aut(V) be a linear representation and let W be a subspace of V. Suppose that w € W
implies ps(w) € W for all s € G. The restriction ps| of ps to W is then an automorphism of W and
we have pg|w = ps|lw © pelw. Thus W is stable under the action of G and plw : G — Aut(W) is a
linear representation of G in W; W is said to be a subrepresentation of V.

There are some important subrepresentations. Let p and p’ be representations of G into V and W
respectively. A G-linear map from V to W is a linear map ¢ : V. — W such that ¢(ps(v)) = pl(¢(v))

5



6 1. Linear Representations of Finite Groups

for all s € G and v € V. We denote the space of all G-linear maps from V' to W by Homg(V, W).
It is easy to check that for a given ¢ € Homg(V, W), the space Ker(¢) = {v € V| ¢(v) = 0} gives
a subrepresentation of G in V and the space Im(¢) = {w € W|w = ¢(v) for some v € V} gives a
subrepresentation of G in W.

A representation of G in V is called irreducible if there is no proper nonzero subrepresentation of
V.

Lemma 1.2.1. Let p: G — Aut(V) and p' : G — Aut(W) be two representations of G. Suppose that
¢ € Homg(V, W) is not the zero map. Then we have the following:

(1) If V is an irreducible representation of G, then ¢ is injective.
(2) If W is an irreducible representation of G, then ¢ is surjective.

In particular, if both V. and W are irreducible representations of G, then V and W are isomorphic.

Proof. Since ¢ is not zero, we have Ker(¢) # V and Im(¢) # {0}. Therefore, V' is irreducible implies
Ker(¢) = {0} and W is irreducible implies Im(¢) = W. O

Corollary 1.2.2. Let V and W be two representations of G where V' is irreducible and let ¢1, ¢pa €
Homg (V, W). Suppose that there exist v # 0 in V such that ¢1(v) = ¢a2(v). Then ¢1 = ¢s.

Proof. The assumption says that ¢; — ¢ is not injective. Since ¢1 — ¢o € Homg(V, W), it implies
that ¢1 — ¢9 is the zero mapping by Lemma 1.2.1. O

1.3. Schur’s Lemma and Its Applications

For each n x n matrix A, since it is over C which is algebraically closed, there exist eigenvalues of A.
By this, we can derive that there exists a unitary matriz U (i.e. U U= I) such that U A-Uis
a upper triangular matrix. This is what called Schur’s Theorem in Linear Algebra [1, Section 6.5].
Here, by using similar argument, we have the following:

Proposition 1.3.1 (Schur’s Lemma). Let p : G — Aut(V) be an irreducible representation of G and
let f be a linear mapping of V into V' such that pso f = fops for all s € G. Then f is a homothety
(i.e. f =M for some XA € C where I is the identity map of V).

Proof. Because f is an endomorphism of V, there exists an eigenvalue A with eigenvector v € V.
Thus f(v) = M (v). By Corollary 1.2.2, f is equal to AI. O

Let G be a finite abelian group and let p : G — Aut(V') be a representation of G. It is easy to
show that for every s € G, ps is a G-linear mapping of V into V. Hence by Schur’s Lemma, we have
the following:

Corollary 1.3.2. Let G be a finite abelian group and let p : G — Aut(V') be an irreducible represen-
tation of G. Then we have that dim(V') = 1.

We will see latter that there are many applications for Schur’s Lemma. Here we give some impor-
tant ones which are very useful for developing character theory.

Corollary 1.3.3. Let p: G — Aut(V) and p' : G — Aut(W) be two irreducible representations of G
and let g be the order of G. Let h be a linear mapping of V' into W (note: h may not be a G-linear

mapping). Put
1 _
ho = *Z(P;) Yohop.
9 teG
Then:

(1) If p and p' are not isomorphic, then we have h° = 0.
(2) If V=W and p = p/, then h° is a homothety of ratio (1/n)Tr(h), where n = dim(V).



1.5. Complete Reducibility 7

Proof. We have p.h? = h%p, for all s € G. Applying Lemma 1.2.1 and Schur’s Lemma with f = h°,
we see in case (1) that h? = 0 and in case (2) that h® = A for some A € C. For the value of \, we

have nA = Tr(A) = (1/9) > Te((pe) "t hpt) = Tr(h). O

Now we rewrite Corollary 1.3.3 in matrix form. Suppose that dim(W') = m and the linear mapping
h is defined by an m x n matrix (hy;) and likewise h° is defined by (hY j). Assume p and p’ are given
in matrix form py = (745(t)), 1 < 4,5 < n and p; = (r},;(t)), 1 <k, < m respectively. We have by the

definition of hY: .
hy; = = > e (E71) < by - i ().

teG,1<l<m,1<i<n
Since h is any linear mapping, we choose h with matrix form Ej;, the matrix which is 1 in the (I,17)-
place and 0 everywhere else. Notice that Tr(Ej;) = d;; (0;; denotes the Kronecker symbol, equal to 1
if i = j and 0 otherwise). Whence:

Corollary 1.3.4. Keeping the hypothesis and notation of Corollary 1.3.3, we have:
(1) If p and p' are not isomorphic, then

—Zrklt_ rij(t) =0, V1 <k1<m,1<i,j<n.
tEG

(2) If V=W and p = p/, then

1/n  if i=l and k=j,
- Z Tkl sz .

9= 0 otherwise.

1.4. Direct Sum and Tensor Product

There are many ways to construct new representations from old ones. Here we introduce direct
sum and tensor product. Let p : G — Aut(V) and p/ : G — Aut(W) be linear representations
of G in V and W, respectively. Define a linear representation p & p’ of G in V; & V5 by setting
(p @ p)s(v®w) = ps(v) ® pl(w), for all s € G, v € V and w € W. p @ p is called direct sum
representation of the given p and p’. The direct sum of an arbitrary finite number of representations
is defined similarly.

The tensor product representation p ® p' of G in V @ W of the given representations p of G in V
and p’ in W is defined by the condition (p ® p')s(v @ w) = ps(v) ® pl(w), for all s € G, v € V and
w € W. The tensor product of an arbitrary finite number of representations is defined similarly.

We can easily see that

dim(p @ p') = dim(p) + dim(p’) and dim(p ® p’) = dim(p) - dim(p’) .

1.5. Complete Reducibility

As in any study, before we begin our attempt to classify the representations of a finite group in earnest
we should try to simplify life by restricting our search somewhat. The key to all this is

Proposition 1.5.1. Let p be a linear representation of G in V and let W be a subrepresentation of
G in V. Then there exists a complement WO of W in V which is stable under G.

Proof. Choose W’ an arbitrary complement of W in V, and let p : V' — W be the corresponding
projection of V onto W (i.e. writing v € V uniquely as v = w + w’ with w € W and v’ € W/,
p(v) = w). Define

1 _
P’ == (pr) " opop,

g teG



8 1. Linear Representations of Finite Groups

where ¢ is the order of G. Since p maps V into W and p; preserves W for all ¢ € G, we see that
p® maps V into W. Furthermore, because p(w) = w and p; '(w) = p;-1(w) € W for all w € W,
it implies that p°(w) = w for all w € W. Thus p" is a projection of V onto W, corresponding to
some complement W = Ker(p®) of W. We have moreover p, o p°® = p° o p, for all s € G. Hence
Y o ps(w?) = ps 0 p°(w®) = 0 for w® € W° and s € G, which shows that W© is stable under G and
complete the proof. O

This proposition says that for any subrepresentation W of G in V, there exists another subrep-
resentation W0 of G in V such that V = W @ W is a direct sum representation of W and WP.
Therefore, an irreducible representation is equivalent to saying that it is not the direct sum of two
representations. We have the following complete reducibility property.

Theorem 1.5.2. FEvery representation is a direct sum of irreducible representations.

Proof. We proceed by induction on the dimension of representation. If the representation is irre-
ducible, there is nothing to prove. Otherwise, because of Proposition 1.5.1, it can be decomposed into
a direct sum of subrepresentations with smaller dimensions. By the induction hypothesis, these sub-
representations are direct sum of irreducible representations and so is our original representation. [J

Remark . This property is not always true for representations of infinite group or over a field other
than C. For example, the additive group R does not have this property. Note also that the argument
of Proposition 1.5.1 would fail if the vector space was over a field of finite characteristic.

We can ask if this decomposition of V' is unique. The case where all the ps are equal to identity
shows that this is not true in general (in this case the irreducible representations are lines, and we
have an infinity of ways to decompose a vector space into a direct sum of lines). Nevertheless, we
have a decomposition of V' which is “coarser” than the decomposition into irreducible representations,
but which has the advantage of being unique. It is obtained as follows. First decompose V into
direct sum of irreducible representations V = W; @ - - - @ W}, and then collect together the isomorphic
representations. A representation is said to be isotypic if it is a direct sum of isomorphic irreducible
representation. Thus, we have V =V; @ - - @V}, where every Vj is isotypic. This will be the canonical
decomposition we have in mind.

There is another concept for the proof of Proposition 1.5.1 which is very useful.

Let T be a linear mapping of V into V', where V' is endowed with an inner product (, ). Suppose
that (T'(v),T(w)) = (v, w) for all v,w € V and suppose further that U is the matrix representation of
T with respect to an orthonormal basis of V. Then U is unitary (i.e. T v=U.T" = I). We say
that an n x n matrix A is normalif A - A=A-A" (so a unitary matrix is normal). Using Schur’s
theorem we can prove the spectral theorem which says that if A is normal, then there exists a unitary
matrix U such that U - A-U is a diagonal matrix. This amounts to saying that A is normal if and
only if A possesses a orthonormal basis which are eigenvectors.

Let p: G — Aut(V) be a linear representation where V' is endowed with an inner product ( , ).
Consider the product ((u,v)) := > ,c(pi(u), ps(v)). Then ((u,v)) is an inner product with the
property ((ps(u), ps(v))) = ((u,v)) for all s € G. We can deduce from this that there exists a basis of
V such that the matrix form of ps; with respect to this basis is a unitary matrix for every s € GG. Now,
if W is a subrepresentation of G in V, then with respect to the inner product ({u,v)), the orthogonal
complement W+ of W in V is stable under G; another proof of Proposition 1.5.1 is thus obtained.

1.6. Characters for Representations

Let p: G — Aut(V) be a linear representation of G in V. Since the trace of the linear mapping ps
does not depend on the choice of basis of V', we put:

Xp(s) = Tr(ps) for each s € G.
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The complex valued function ), on G thus obtained is called the character of the representation p.
We remark that if two representations p and p’ are isomorphic, then x, = x,.

Suppose that dim(p) = n. We have Tr(I) = n, and so x,(e) = n where e is the identity of G.
Recall that from 1.5, the matrix form of p, is normal, and hence diagonalizable. Thus for s € (G, a basis
(v1,...,vn) of V can be chosen such that ps(v;) = Ajv; with A; € C*, and so x,(s) = > i1 i Also note
that s € G has finite order, the values \; are roots of unity; in particular we have \; = A; . Because

ps-1 = p; ', we have x,(s 1) = YA =2 A and Tr(pg-1) = Tr(propsop, ') = TT( 5)-
We can summarize what we have shown so far in

Proposition 1.6.1. If x, is the character of a dimension n representation p : G — Aut(V') of G in
V', we have:

(1) xp(e) =n.

(2) x,(s71) = m for s € G.

(3) xp(tst™h) = x,(s) for s, t € G.
Proposition 1.6.2. Let p and p' be two linear representations of G in'V and W, and let x, and X
be their characters, respectively. Then:

(1) The character of the direct sum representation p @ p' is equal to X, + X, -

(2) The character of the tensor product representation p & p' is equal to X, - X, -

Proof. This is a consequence of followings. Suppose that {v;} and {w;} are bases of V' and W which
are eigenvectors of p; and p, with eigenvalues {\;} and {\}}, respectively. Then {v; ® Ow, Oy ©® w;}
and {v; ® w;} are eigenvectors of (p ® p')s and (p ® p')s with eigenvalues {A;, \}} and {\; - \}},
respectively. U

1.7. Orthogonality Relations for Characters

Let G be a group of order g. If ¢ and ¢ are two complex valued functions on G, we put:
-3 ats
SEG
This is an inner product.
Theorem 1.7.1. Let p and p’ be two irreducible representations of G with characters x, and X,
respectively.
(1) If p and p’ are not isomorphic, then we have (x,, x,) = 0.
(2) If p and p’ are isomorphic, then we have (xp, Xy) = 1.

Proof. Because the character dose not depend on the choices of basis, without lose of generality by
suitable choice of basis, we suppose that the matrix form (r;;(s)) of ps and (r},(s)) of p are unitary
matrices. Thus (r;;(s))™" = (ri;(s))” and (r},(s)) ™ = (rkl( s))T. We have then r;;j(s™!) = rj;(s) and
r,(s7h) = 1], (s). Suppose dim(p) = n and dim(p’) = m. By definition, x,(s) = Y7 ri(s) and
Xor(5) = 1, ri(5). and hence

—1
vaXp E E m,rkk and r”,rkk g rii(s rkk E ri(s rkk .

k=1 i=1 seG sEG

If p is not isomorphic to p/, then by Corollary 1.3.4, we have (ry;,7),) = 0, and hence (x,, x,/) = 0. If
p is isomorphic to p/, then n = m and x, = x,/. By Corollary 1.3.4, we have (ry, rgx) = dir/n, and
hence <Xp’Xp’> = (Xps Xp) = ZZ}g:l dik/n = 1. u

Theorem 1.7.1 says that in terms of the inner product defined above, the characters of irreducible
representations of G are orthonormal. There are many applications of these orthogonality relations.
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Corollary 1.7.2. Let p be a representation of G in 'V with character x, and suppose V' decomposes into
a direct sum of irreducible representations: V. =W & ---® Wy. Let 0 be an irreducible representation
of G in W with character xg. Then the number of W; which is isomorphic to W is equal to (X, Xs)-

Proof. Let y; be the character of the irreducible representation of G in W;. By Proposition 1.6.2, we

have x = x1+4- -+ x&- Thus (x,, Xx0) = (x1,X0) + - - + (x> X)- By Theorem 1.7.1, (xi, xo) is equal
to 1 (resp. 0) if W is (resp. is not) isomorphic to W. The result follows. ]

Since (x,,xs) does not depend on the decomposition of V', this result says that the number of
irreducible representations in any decomposition of V' which are isomorphic to W is the same. This
shows the fact that the canonical decomposition of V' is unique (¢f. Section 1.5). This number is
called the multiplicity of W occurs in V. If Wy, ... W}, are the distinct non-isomorphic irreducible
representations occur in W with multiplicities my, ..., mp respectively, and x1,..., xn denote corre-
sponding characters, then V' is isomorphic to miWy @ - - - & m; W}, and the character x, of V' is equal
to mix1 + - + mpxp with m; = (X,, xi). Whence:

Corollary 1.7.3. Two representations have the same character if and only if they are isomorphic.

The above results reduce the study of representations to that of their characters. In particular,
we have:

Corollary 1.7.4. If x, is the character of a representation p of G in V, then (X,, X,) s a positive
integer. Furthermore, we have (xp, Xp) = 1 if and only if V is irreducible.

Proof. Suppose that x, = mix1 + --- + mpxn where x; are irreducible characters of G. The orthog-
onality relations among the x; imply (x,, X,) = 2?21 m?. Furthermore, Z?Zl m? = 1 if only one of
the m; is equal to 1. Our result follows. g

1.8. The Space of Class Functions on G

A Complex valued function f on G is called a class function if f(tst™!) = f(s) for all s,t € G. By
Proposition 1.6.1, all characters of a representation of G are class functions. Recall that two elements
s and s’ in G are said to be conjugate if there exists t € G such that s’ = tst~!; this is an equivalence
relation, which partitions G into conjugacy classes. Let Cq,...,Cy be the distinct conjugacy classes
of G. To say that a function f on G is a class function is equivalent to saying that f is constant on

each of C,...,C}.

We introduce now the space H of class functions on . This is an inner product space endowed
with the inner product defined in 1.7. The dimension of H is equal to the number of conjugacy classes
of G.

Given a linear representation p : G — Aut(V) of G in V, for f € H, we define a linear mapping
pr:V —V by:
pr() =Y ft)pi(v), forveV.

teG
Because f is a class function on G, we have

pstoprops =Y fOpsies =D flsus pu=>_ f(u)pu = ps.
teG uedG ueG
Hence, py is a G-linear mapping of V into V.
Lemma 1.8.1. Let G be a group of order g and let f be a class function on G. Suppose that p :

G — Aut(V) is an irreducible linear representation of G of dimension n and character x. Then
pf = e f(t)pt is a homothety of ratio X given by:

=23 fn = Lrw.

teG
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Proof. Since py € Homg(V,V) and V is irreducible, by Schur’s lemma (Proposition 1.3.1), py = AI.
Because dim(V') = n, we have

An = Tr(\]) = = fOTr(p) =D F(t)x(t)
teG teG
The proof is complete. O

Theorem 1.7.1 show that the characters of the irreducible representations of G are orthonormal in
‘H. Therefore, they are linearly independent over C. This amounts to saying that the number of the
irreducible representations of G is less than or equal to the number of conjugacy classes of G. In fact,
they generate H.

Theorem 1.8.2. The characters of irreducible representations of G form an orthonormal basis of the
space of class functions on G.

Proof. Suppose that x1,...,xn are the distinct characters of the irreducible representations of G.
We know that Y,...,X) are also characters of G, and since (x;,X;) = (xi,xi) = 1, they are also
irreducible. Therefore, we only have to show that the orthogonal complement of W =span(Xxy,- .-, Xx)

in H is {0}. Let f € W and for any representation p of G, put py = >, f(t)pi. Since (f,%;) = 0,
Lemma 1.8.1 above shows that p; is the zero mapping so long as p is irreducible. However, by Theorem
1.5.2, every representation is a direct sum of irreducible representations. We conclude that for any
representation p, py is always the zero mapping.

Now let p be the regular representation of G (¢f. Example 1.1.1) in the vector space of dimension
g with a basis (v¢)icq. Let e be the identity of G. Computing the image of v. under ps, we have

pr(ve) = Y e f(W)pt(ve) = D e f(t)ve = 0. Since (vt)ieq is linearly independent, f(t) = 0 for all
t € GG and the proof is complete. O

This theorem says that the number of irreducible representations of G' (up to isomorphic) is equal
to the number of conjugacy classes of G. We have another consequence of Theorem 1.8.2:

Proposition 1.8.3. Let x1,...,Xxn be the distinct characters of irreducibles representations of G. Let
g be the order of G and for s € G, let ¢(s) be the number of elements in the conjugacy class of s. Then
we have:

h o % if t is conjugate to s ,
0 otherwise.

Proof. Let f; : G — C be the function on G such that fs(¢t) = 1 if ¢ is conjugate to s and fs(t) =0
otherwise. Since fs € H, by Theorem 1.8.2, it can be written as f; = Z?Zl Ai xi. Because x1,...,Xn
are orthonormal,

Ai = fsaXz = Zfs Xz = Xz(s)-
tEG g
We then have for each t € G,

Our proof is complete by evaluating fs. O

Let e be the identity of G. Then c(e) =1 and x;(e) equals to the dimension of the corresponding
irreducible representation of y;. Hence, we have the following:

Corollary 1.8.4. Let G be a group of order g. Let x1,...,Xxn be all the distinct characters of the
irreducible representations of G and let ny,...,np be the dimensions of their corresponding represen-
tations. Then Z?:l n? =g and if s # e then Z?:l n; xi(s) = 0.
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In Corollary 1.3.2, we know that every irreducible representation of an abelian group has dimension
1. In fact, the converse is also true.

Corollary 1.8.5. G is abelian if and only if all the irreducible representations of G have dimension
1.

Proof. Suppose that W1, ..., W), are distinct irreducible representations of G of dimension nq,...,ny
respectively, where h is the number of conjugacy classes of G. Suppose that g is the order of G. By
Corollary 1.8.4, n? +--- +n? = g. Since G is abelian if and only if h = g, which is equivalent to all
the n; are equal to 1, our claim follows. O

1.9. Characters of a Group

A representation of G of dimension 1 is a homomorphism of G into the multiplicative group C* and is
called a character of GG. In particular, we call the trivial 1-dimensional representation of G, the unit
character of G.

Let p be a representation of G. Suppose that u is a character of G for which there exists a non-zero
v € V), such that ps(v) = u(s)v for every s € G. Then p is said to be an eigenvalue of G with respective
to p and v is said to be an eigenvector of G that belongs to pu.

Let A be a finite abelian group. Then Proposition 1.8.3 says that the irreducible representation
of A are of dimension 1 and that their number is equal to |A|. Hence, in this case, the number
of characters of A is equal to the number of A. Furthermore, the set of characters of A forms a
multiplicative group A which is isomorphic to A.

For arbitrary group, the subgroup of G generated by the set {sts™'t~! | s,t € G} is called the
commutator subgroup of G and denoted G'. G’ is the smallest normal subgroup of G such that G/G’
is abelian. We can deduce that, G has [G : G'] characters. The following properties for characters are
useful.

Lemma 1.9.1 (Orthogonality). If x is not the unit character of G, then Y .- x(s) = 0.

Proof. Since x is not the unit character, there exists t € G such that x(t) # 1. We have > __~ x(s) =
Y scc X(t)x(s). Subtracting both side by > .. x(s), we obtain (x(t) —1)> ..o x(s) = 0. Since

x(t) # 1, our proof is complete. O
Lemma 1.9.2 (Artin’s Lemma). If x1,...,Xxn are distinct characters of G, then the only elements
at,...,an in C such that > | a;xi(s) =0 for all s € G are a; = --- = ap = 0.

Proof. We prove the result by induction. We may assume that every a; # 0. Since x1 # X2, there
exists ¢ € G such that x1(t) # x2(t). We have >, a;xi(t)xi(s) = 0 and >, a;x1(t)xi(s) = 0.
Subtracting these two relations we obtain Y. 5 a;(x1(t) — xi(1))xi(s) = 0 for all s € G. Since
az(x1(t) — x2(t)) # 0, this contradicts the validity of the result for n — 1 and complete the proof. O

Remark . Suppose G is abelian. Then G is canonically isomorphic to the dual G of G. Hence the
dual of these two lemmas is also true.

1.10. Restricted Representation

If H C G is a subgroup, any representation p of G in V restricts a representation of H in V', denoted
pu (or ResG (V).

Suppose that W is a subrepresentation of pgr, that is, a vector subspace of V stable under p;, for
t € H. Let s € G; the vector space psW depends only on the left coset sH of s; indeed, if t € H,
we have pg (W) = pspi(W) = ps(W) because p,(W) = W. Hence, if 7 is a left coset of H in G, we
can thus define a subspace W, of V' to be p;W for any s € 7. Because the set of left cosets of H are
permuted among themselves by multiplying an element s € G on the left, it is clear that the W, are
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permuted among themselves by the p,, s € G. Their sum ) __~ JH W, is thus a subrepresentation of
V.

We are interested in the case that G' has an abelian subgroup.

Proposition 1.10.1. Let G be a group of order g and let A be an abelian subgroup of G of order a.
Then each irreducible representation of G has dimension < g/a.

Proof. Let p be an irreducible representation of G in V' and p4 be the restriction to A. Suppose that
W C V is an irreducible subrepresentation of p4. By Corollary 1.8.5, we have dim(W) = 1. Since
V' = Y orea /A W, is thus a subrepresentation of V and V is irreducible, we have that V' = V', and
hence dim(V) < g/a. O

1.11. Induced Representations

Let H be a subgroup of G and let W be a subspace of V' which is stable under H. We say that the
representation p of G in V is induced by the representation 6§ of H in W, if V is equal to the direct
sum of the Wr, 7 € G/H (thus, if V. = €D, cq/y Wr). Recall that if 7 is a left coset of H in G, W
of V'is psW for any s € 7. Therefore, we have dim(V) = > ./ dim(W;) = [G : H] - dim(W),
where [G : H] is the number of left cosets of H in G, i.e. the index of H in G. Later (Theorem
1.11.4) we will see that given a linear representation 6 : H — Aut(W), there exists a unique (up to
isomorphic) representation p : G — Aut(V') such that p in V is induced by € in W. In this case we
write V = Ind%(W) and p = Ind%(6).
From the definition, it is easy to see that Ind% (W @& W’) = Ind% (W) @ Ind% (W").

Example 1.11.1. Take for p the regular representation of G in V; V has a basis (v;)ieq such that
ps(vr) = vg. Let W be the subspace of V' with basis (v;)icg. The representation 6 of H in W is the
regular representation of H and it is clear that p is induced by 6.

Now we show the existence and uniqueness of induced representations.

Lemma 1.11.2. If the representation p : G — Aut(V) is induced by 6 : H — Aut(W), and if W' is
a subspace of W which is stable under H, then the subspace V' = ZTGG/H W, of V is stable under G
and the representation of G in V' is induced by the representation of H in W'.

Proof. Let 7 € G/H and t € 7. Then we have W = p;(W’) C p(W) = W;. Since V = B, cq/y Wr,
it implies that V' = @, e/ W7 O

By using the lemma above, we can prove the existence of induced representation of 0 : H —
Aut(W). Because IndG (W @ W') = Ind§ (W) & Ind§(W’), we may assume the  is irreducible. In
this case, (using Corollary 1.7.2) 6 is isomorphic to a subrepresentation of the regular representation
of H and the regular representation of H induces the regular representation of G (c¢f. the example
above). Applying Lemma 1.11.2, there exists a subrepresentation of the regular representation of G
which is induced by 6.

In next section, we will give a concrete construction for the induced representation.

Lemma 1.11.3. Suppose that the representation p : G — Aut(V) is induced by 6 : H — Aut(W).
Let p/ : G — Aut(V') be a linear representation of G and let f : W — V' be a H-linear map (i.e.
f(6iw) = p, f(w) for allt € H and w € W). Then there exists a unique linear map F : V. — V' which
extends [ (i.e. F(w) = f(w) for all w € W) and satisfies F o ps = pl, o F for all s € G.

Proof. Let 7 € G/H. If F satisfies these conditions, for s € 7 and w € W, we have F(ps(w)) =
ps(F(w)) = pi(f(w)). This determines F' on ps(W) = W-: and hence on V because V =@, cq/y W
This proves the uniqueness of F'.
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For the existence of F'; if v = ps(w) € W, we define F(v) = pl(f(w)). This definition does not
depend on the choice of s in 7 and w in W. If pg(w’) = ps(w) for some ¢ € H and w' € W, then we
have py(1w') = 0y (w') = w. Hence, ply(f(w')) = pl(ph(F(w))) = pL(F(Bu(w'))) = p,(f(w)). Again, since
V=B, JH W, by linearity, there exists a unique linear map F : V — V' which extends the partial
mappings thus defined on every W.. One easily checks that F o py = p/, o F for all s’ € G. In fact, if
0 = pu(w) € Wi, then F o py(py(w)) = Flpgs(w)) = gy (£()) = (s () = gLy © Flps(w)). O
Theorem 1.11.4. Let H be a subgroup of G and let 6 : H — Aut(W) be a linear representation of

H in W. Then there exists a unique (up to isomorphic) representation p : G — Aut(V') such that p
in V is induced by 0 in W.

Proof. Because we have proved the existence, we only have to prove the uniqueness. Suppose that
p: G — Aut(V) and p : G — Aut(V') are two representations of G induced by 6 : H — Aut(W).
Considering ¢ : W < V’ the injection of W into V', by Lemma 1.11.3 there exists a unique linear map
F : V — V' which is identity on W and satisfies Fops = p.oF for all s € G. For every p’,(w) € p,(W),
we have F(ps(w)) = pl(F(w)) = pl(w). Hence the image of F contains all the p/, (W) and thus F is
onto. Since V and V' have the same dimension [G : H]dim(W), we see that F' is an isomorphism
which proves the uniqueness. ]

1.12. A Concrete Construction for Induced
Representation

Let G be a finite group and let H be a subgroup of G. Let 6 : H — Aut(W) be a linear representation
of H. Define a vector space V to be the set of all functions f : G — W that satisfy

f(ts) =6,(f(s)) Vt€ H, s € G.

Thus, an element f € V is uniquely decided by its values on a system of representatives H\G of the
right cosets of H in G. Define an action of G on V' by

ps(f)(r)=f(r-s)¥Vr,s€ Gand feV.
It is easy to check that p gives a linear representation of G with representation space V.
We embed W into V by mapping each w € W onto the function f,, : G — W defined by

fls) = {95(10) if s € H,

0 otherwise.

Clearly we have that pi(fy,) = fet(w) for all t € H and W is isomorphic onto the subspace of V
consisting of functions which vanish off H.
Let now R be a system of representatives of the left cosets G/H. For every f € V and r € R, we
define a function f, € V by
f(s) ifse Hr 1,
fr(s) = .
0 otherwise.
Then f =3, cppr(pyt(f)) and pt(fr) = p—1(fr) belongs to W (after identifying W with its image
in V). Thus V = @, gy Wr and hence V = IndF (W).
There is another point of view of induced representation. Let p be a linear representation of
G. Then V, can be also considered as a module over the group-ring C[G]. Using this form, if p is
another representation of G, then we write (p, p’) = dim Homg(g(V,, V). The form (p, p) is clearly
symmetric and bilinear. In fact, decomposing V, and V,; into direct sum of irreducible representations,
by Theorem 1.7.1 we have that
(Xos Xp) = (00 -
From this point of view, for induced representation, we obtain also a canonical isomorphism

Ind (W) = C[G] ®@cim W -
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This characterization of induced representation makes it obvious that the induced representation
exists and is unique. On the other hand, given a C|[G]-module V' which is a direct sum V = @;c;W;
of vector space permuted transitively by G. Choose ig € I and W = W;, and let H be the subgroup
H ={seG|sW = W}. Then it is clear that the C[G]-module V is induced by the C[H]-module W.

This form of induced representation is convenient to prove the following fundamental properties,
by using elementary property of tensor product.

Proposition 1.12.1. Let J be a subgroup of H and H be a subgroup of G.
(1) (Lemma 1.11.3) Let W be a C[H]-module and let E be a C[G]|-module. Then we have
Homc s (W, E) = Homgyg) (Indf (W), E) .
(2) Let U be a C[J]-module. Then
md§ (U) = Ind%(Ind (1)) .

1.13. Characters of Induced Representations

Let p: G — Aut(V) be a linear representation of G which is induced by the representation 6 : H —
Aut(W) and let x, and x4 be the corresponding characters. Since by the uniqueness, § determines p
up to isomorphic, we ought to be able to compute x, from xjg.

Theorem 1.13.1. Let p : G — Aut(V) be a linear representation of G which is induced by the
representation 6 : H — Aut(W) and let x, and xg be the corresponding characters. Let h be the order
of H. For each s € G, we have

1 _
Xp(s) = 7 Z xo(rtsr).
r*giv‘GEH

Proof. Choose R being a system of representatives of G/H, so V = @,.cppr(W). For s € G and
r € R, we have that sr = 't with v € R and t € H. We see that ps sends p,(W) into p, (W). We
choose a basis of V' which is the union of bases of p,(W), r € R. The indices r such that r # r’ give
zero diagonal terms, and for the indices r such that r =/, p,.(W) is stable under ps (because W is
stable under p; = 6y, for t € H). Observe that r = ' if and only if r~'sr = ¢t € H. We thus only have
to compute the trace of the restriction of ps on p,(W) for those 7 € R such that »~'sr € H. Note
that in this case ps o p, = pr o pr = pr 0 0 and p, defines an isomorphism of W into p,(W). Hence
the restriction of ps on p,.(W) is equal to p.0:p, ! and thus its trace is equal to that of 6;, that is, to
xo(t) = xo(r~1sr). Our formula follows from the fact that if r~!'sr € H , then every element u € rH
has the property u='su € H and yg(u~'su) = xo(r~'sr). d

Let H be a subgroup of G. For a linear representation of p : G — Aut(V) with character x,,
we denote by Resg(xp) the character of the restricted representation py of G on H. For a linear
representation of § : H — Aut(W) with character x4, we denote by Ind%(xs) the character of the
representation of G induced by 6.

Theorem 1.13.2 (Frobenius Reciprocity). Let H be a subgroup of G. Let p : G — Aut(V) be a linear
representation of G with character x, and let 0 : H — Aut(W) be a linear representation of H with
character xg. Then we have

{Xp, Indf (x0))c = (Resf (xp), xo) 11,
where ( , Yo and (, )g denote the inner products of the spaces of class functions on G and H defined
i 1.7,

Proof. Observe first that if p and p’ are linear representations of G in V and V'’ with characters x and
X', respectively, then (x, xX')¢ is equal to dim(Homg(V,V’)). Lemma 1.11.3 shows that every H-linear
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mapping from W into RestV can be uniquely extended to a G-linear mapping from Ind% (W) into
V. Therefore,

Homg (Ind% (W), V) ~ Homp (W, Res% V)

and our theorem follows. O

Remark . Let p be an irreducible representation of G in V' and let 6 be an irreducible representation
of H in W. Frobenius reciprocity says that the number of times that W occurs in ResgV is equal to
the number of times that V occurs in Ind% (W).

1.14. Restrictions of Induced Representations

Let H and J be two subgroups of G, and let § : H — Aut(W) be a linear representation of H, and
let V = Ind%(W). We shall determine the restriction Res§ (V) of V' to J.

First choose a set of representatives S for the double cosets J\G/H; this means that G is the
disjoint union of the JsH for s € S. Given s € S, let H, = sHs~' N .J, which is a subgroup of
J. Define a homomorphism 6% : Hy — Aut(W) by setting 0°(z) = (s~ 'xs), for x € H,. This is a
linear representation of Hg. Though, the representation space for 6° is also W, to distinguish it with
the representation 6 we denote it by W,. Since Hg is a subgroup of J, the induced representation
Ind{; (W) is defined.

Proposition 1.14.1. Let H and J be two subgroups of G and S be a representatives for the double
cosets J\G/H. The representation ResG (Ind$(W)) is isomorphic to the direct sum of the represen-
tations IndI‘]{s(Ws), forseS.

Proof. Let p = Ind%(#) and for s € S let V(s) be the subspace of V = Ind% (V') generated by p, (W),
for all z € JsH. V(s) is a C[J]-module and the space is a direct sum of the V(s). It remains to
claim that V(s) is C[J]-isomorphic to Ind}; (W;). V(s) is the direct sum of p,(ps(W)), = € J/H,
and the subgroup of J consisting of the elements = such that p,(ps(W)) = ps(W) is equal to Hs.
Therefore, V(s) = Indl‘]{s (ps(W)). Consider the map f: Wy — ps(W) given by f(w) = ps(w). This is
a C[H;l]-isomorphism, because f((6%),(w)) = ps(0s-145(w)) = ps(ps—145(w)) = pz(ps(w)), for € Hy.
Our claim follows. O

We apply Proposition 1.14.1 to the case J = H; the representation 6 of H defines a representation
ResgS(H) of Hs which should not be confused with the representation 6° defined above.

Proposition 1.14.2 (Mackey’s irreducibility criterion). The induced representation p = Ind$(6) is
irreducible if and only the following two conditions are satisfied:

(1) 0 is irreducible.
(2) For each s € G — H, (Resgs(ﬁ), 0%) = 0, as representations for Hs.

Proof. From Proposition 1.14.1, we have Res% (p) = @SeH\G/HIndgs (6°). Applying Frobenius reci-
procity (Theorem 1.13.2), we obtain

(p.p) = (O.Resfi(p)) = > (0.Indff (0°) = > (Resl (0),6°) .
s€eH\G/H s€eH\G/H

Since p is irreducible if and only if (p, p) = 1, our proof is complete. O

Corollary 1.14.3. Suppose that H is a normal subgroup of G. In order that Indfl(ﬁ) 1s 1rreducible,
it is necessary and sufficient that 6 is irreducible and not isomorphic to any of its conjugates 0°, for
s¢ H.

Proof. Indeed, we have then H; = H and Resgs 0)=20. O



1.15. Method of Little Group 17

1.15. Method of Little Group

The principle of the method of little group is to show that the irreducible presentations of G can be
constructed from those of certain subgroups of G.

Proposition 1.15.1. Let A be a normal subgroup of G, and let p be an irreducible presentation of G.
Then:

(1) either there exists a subgroup H, A C H C G, and an irreducible representation 6 of H such
that p is induced by 0;

(2) or else the restriction of p to A is isotypic.

Proof. Let V, = @V, be the canonical decomposition of Resg(p) into a direct sum of isotypic rep-
resentations. Because A is normal in G, for s € G we see that p(s) permutes the V; and since V is
irreducible, G permutes them transitively. Let V;, be one of these. If V;; =V, we have case (2). Oth-
erwise, let H be the subgroup consisting of those s € G such that p(s)(V;,) = V;,. wehave AC H C G
and p is induced by the nature representation of H in Vj,, which is irreducible by (1) of Proposition
1.14.2. O

Let J and H be two subgroup of G, with J normal. We say that G is the semidirect product of H
by J,if G=J-H and HNJ = {1}. Suppose that J is abelian and G is the semidirect product of H
by J. We are going to show that the irreducible representations of G can be constructed from those
of certain subgroups of H (this is the method of “little group” of Wigner and Mackey).

X Since J is abelian, its irreducible representations are of dimension 1 and form the character group
J of J. The group G act on J by

(sx1p)(j) = (s js), forse G, e J,jel.
Given ¢ € J, the subset of J consisting of all elements ¢ x1) with ¢t € H is denoted by Ht and is called
the orbit of ¢ under H.

Let X be a system of representatives for the orbits of J under H. For each ¢ € X, let Hy be
a subgroup of H consisting of those elements h such that h * 1 = 1, and let Gy, = J - Hy, be the
corresponding subgroup of G. We can extend 1 to a function of G, by setting

$(jh) = 1(j) for j € J and h € Hy.

Because J is normal and Hy, fixes ¢, we have that ¥ ((jh)(j'h)) = ¥ (j(hi’h1)hR') = (j(hj'h 1)) =
P()(G") = (Gh)y (') for j, 5/ € J and h, K € Hy. Hence, v is a character of Gy. Now let § be an
irreducible representation of Hy. By composing with the canonical projection G, — Hy, we obtain
an irreducible representation 6 of Gy. The tensor product ¥ ® 6 is also an irreducible representation
of Gy. Let pyg = IndG (¢ @ 0).

Proposition 1.15.2. Let X be a system representatives of the orbits ofj under H. For € X and let
6 be an irreducible representation of G.y. Then py g is an irreducible representation of G. Furthermore,
given an irreducible representation p of G, there exist 1 € X and 6 such that p is isomorphic to py.g.

Proof. We prove the irreducibility of py¢ by using Mackey’s criterion (Proposition 1.14.2). For
s ¢ Gy, Let Gy = Gy N sGys™1. We only have to claim that

(4 @ 0)*, Resg” (4 @ 0)) = 0.
Since A C Gy, it is enough to check for the restrictions of theses representations to J. The restriction
of (¢ ® 0)° to J is s x 1) and the restriction of (¢ ® 0) to J is 9. Since s ¢ Gy = J - H;, we have
s* 1 # 1. Our claim follows.

Finally, let p be an irreducible representation of G. Let V, = Dye 7Wy be the canonical decompo-
sition of Res§ (p) (Wy is the space of vectors w in V, such that p;(w) = 9 (j)w for j € J). If s € G
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and w € Wy, we have p;(ps(w)) = pu(pe-rje(w)) = ps((s~jshw) = (s + ¥)(j)(ps(w)). Hence, p,
transforms Wy, into Wyy. Thus, if Wy, is nonzero, then Wy, is nonzero for every ¢’ in the orbit of
1 under H. Suppose ¥ € X such that Wy, is nonzero. H, maps W into itself and hence Wy, is a
C[Hy]-module. Choose an irreducible sub-C[Hy]-module Uy, of Wy, and let § be the corresponding

representation of Hy. It is clear that the corresponding representation of Resg . (p) on Uy is isomorphic
to 1 @ 6. Hence (Resgw (p), v ® ) > 1. By Proposition 1.13.2, we have (p,Indgw(Q/) ®6)) > 1. Since
both p and Ind$ . (Y ®0) = py o are irreducible, this implies they are isomorphic. O

Remark . Let X be a system representatives of the orbits of J under H. Let 1, " € X and suppose
that py g is isomorphic to pys ¢/. From the proof above, we know that the restriction of py ¢ involves
only characters belonging to the orbit of ¢ under H. Hence, we have ¢ = ¢//. Further, the space Wy,
is stable under Hy, and one checks immediately that 6 is isomorphic to #’. This says that given an
irreducible presentation p of G, the ¥ and § we find in (2) of Proposition 1.15.2 is in fact uniquely
determined by p.

1.16. The Schur Algebra

Given a representation p of G, Homgg)(V), V) is an algebra over C called the Schur algebra.

If p is irreducible, then Homgg)(Vip, Vap) is isomorphic to M,(C), the algebra of all n x n
matrices over C. If p = @ n;p; is the canonical decomposition of p, then, by Schur’s lemma,
Homg ) (Vp, Vp) = @ Mn,(C). Tt follows that p has no multiple components, i.e. n; = 1 for all
i, if and only if Homg(g(V,, V) is commutative.

Proposition 1.16.1. Let H and J be subgroup of G and let 0 and o be representations of H and
J, respectively. Then Homg|g (Ind%(Vg),Ind?(Vg)) 18 1somorphic to the vector space of all functions
F : G — Homc (Vy, V,,) satisfying

(%) F(jsh) =00 F(s)o foralljeJ,sec G and he H.

Proof. Let § = Ind%(0), 6 = Ind§(o) and n = [G : H|. Let V; and V5 be the representation

spaces we constructed in 1.12 for 6 and 0, respectively. Denote by F the space of all functions
F : G — Homg(Vp, V5 ) satisfying (x). For every F' € F, denote by T the element of Homc(Vy, Va)
defined by

1
Tr(f)(s) = — > F(sr")(f(r)), for f€V;andseG.
reG
We remark that Tr(f) € Vs for f € Vj because F(js) = o; 0 F(s) for j € J. Moreover, the map
F — Tp is a homomorphism F — Homg(q(Vj, Vi) since clearly

Te((1)(s) = 7 3 Flsr (1) = = S Flstr™ (7)) = ouTr (1) (5)

reG reG
We have to show that this is in fact an isomorphism.
It is injective. Indeed, suppose that Tp = 0. Givent € G and v € Vp, we define a function f, € Vj
by
{Hh(v) if s = ht for some h € H,
frw(s) = .
0 if s ¢ Ht.
Then we have that 0 = Tr(fi0)(s) = 23, oy F(st™1)(v) = F(st™')(v) (here, we use the fact that
F(sh) = F(s) 0 y). Hence F(st™!) =0 for all s,t € G, i.e. F =0.
To show the map is surjective, we first remark that dim(F) is not equal to |J\G/H|dim(6) dim(o).

In fact, though it suffices to give values of F' € F on a system of representatives of J\G/H, we need
an extra condition. Because it is possible that there exist 7 # 7/ in J and h # A’ in H such that
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jsh = j'sh/. Hence for s € J\G/H, if jsh = j'sh/ for j,j’ € J and h,l/ € H, in order to have F € F
(i.e. satisfies the relation (%)) we need:

(*/) F(S) = O'jflj/ o F(S) o eh’h*1 .

Let = j~'j' € sHs~' N J. Recall in section 1.14, we define a representation of H, = sHs~' N J by
setting 05 = 0,-1,, for x € H,. The relation () is just saying that F(s) € Homgyy, (HS,ResI”QS (0)).
Observe that dim(Homgg (Ind$(Vy), Ind$ (V,))) = (6,6). According to Frobenius reciprocity, we
have (8,5) = (ResG (), o). However, from Proposition 1.14.1 we have ResG (f) = @SEJ\G/HIndiIS (6%).
Once more applying the Frobenius reciprocity, we obtain:
(é7&) = Z (657 Resés (U)) :
seJ\G/H

This proves that the dimension of F is equal to the dimension of HomC[G](Vé, Vs) and hence proves
the surjectivity. O

Corollary 1.16.2. Let H and J be subgroup of G and let 0 and o be representations of H and J,
respectively. We have (Ind%(6), Ind$ (o)) < |J\G/H| dim(8) dim(o).

The most interesting conclusion of Proposition 1.16.1 arises in the special case where H = J and
§ = 0. In this case, Proposition 1.16.1 turns F into the Schur algebra of Ind%(6) and the product
between two elements F) and F, of F is given by

(Fy - Fy)(s) = ﬁ gFl(sr—l)F2(r)

which can be easily verified from the basic relation Tr, o Tg, = Tp,.F, -






Chapter 2

The Group GL(2,F)
and Its Subgroups

In this chapter F, is a finite field with ¢ elements, where ¢ > 2.

2.1. Notational Conventions

We denote by G the group GL(2,F,) of all 2 x 2 invertible matrices with entries in F,. We further
reserve some letters for distinguished subgroups of G that will concern us in the sequel.

The letter B stands for the Borel subgroup of G consisting of all upper triangular matrices

B:{(‘S‘ ?)\ a,8 € F; BEFQ} .

B contains the normal abelian subgroup

o {(s ) nen)

The quotient group B/U is isomorphic to the Cartan group

— «Q 0 X
b {(3 %) wses;)

Another important subgroup of B is

P:{(f)‘ f)y aeF;,ﬂqu}.

A complement of U in P is the group
0) | a€ F;} .

-
{6 1 oess)

o R
—

The center of G is

The idempotent matrix

will play an important role in the sequel.



22 2. The Group GL(2,F,)

2.2. The Subgroups U and P

U is a normal abelian subgroup of B which contains all unipotent upper triangular matrices. This
group is isomorphic to the additive group F ;r of the field IF,. Indeed

076 7)=6"")

We shall sometimes identify an element 3 of F, with the corresponding matrix of U.

P is another important subgroup of B. It is of order (¢ — 1)g. Note that U is contained in P. In
fact, U is also the commutator subgroup of P.

A is a complement of U in P and is isomorphic to Fy. Thus P is the semidirect product of A by
U. The action of A on U by conjugation corresponds to the action of F; on IF';r by multiplication

GG D6

We use the method of little groups of Wigner and Mackey (cf. Section 1.15) in order to determine
the representations of P.

We consider first all the irreducible representations of U. Fix a non-unit character ¢ of U (we
consider it also as a character of F). For every s € G, we define an action s % ¢(u) = ¢(s  us).

Consider the orbit of 1 under A. For a,a’ € A, we have that a x ¢ = a’ x4 if and only if a = d’.

Indeed, if
(a0 , (a0 (1 B
a-(o 1>, a-(o 1> and u-(o 1),

then a * 1 (u) = ¥(a13), and a * 1) = a’ * b implies that ¥((a — o/)3) = 1 for all B € F,. Since 1 is
non-unit, this implies that & = o/ and hence a = a/. We thus get ¢ — 1 distinct representations of U.
These together with the unit representation of U, are all the irreducible representations of U, since
|UI=U|=q

From the discussion above, we know that the non-unit character ) and the unit character 1 is a
system of representatives of the orbits of U under A. We also know that Ay ={aeAlaxyp =
1} = {1}. The only representation of Ay is the trivial representation and Py, = U - Ay = U. Hence,
by Proposition 1.15.2 we have py 1 = Indf; (1) is an irreducible representation of P. For the unit
character 1 of U, it is clear that Ay = A and P, = U - A; = P. Every irreducible representation 6 of
Ay, i.e. every character of A, can be lifted to a character  of P defined by 0(ua) = 6(a), for u € U
and a € A (this is p1 ¢ in Proposition 1.15.2). Notice that the ¢ — 1 characters § of P obtained in this
way are all the characters of P since [P : P'] = [P : U] = ¢ — 1. Using Proposition 1.15.2 again, we
obtain all the irreducible representations of P. We have therefore proved the following:

Theorem 2.2.1. The group P has q irreducible representations:

(1) ¢ — 1 of them are 1-dimensional representations which are the lifting of the characters of A;
and

(2) one (q — 1)-dimensional representation which is Indf; (1), where ¢ is any non-unit character

of U.

Remark . The (¢ — 1)-dimensional irreducible representation of P is independent of the choice of
non-unit character ¢ of U. We fix for the rest of this note a non-unit character ¥ of U and let

7 = Ind5 () .

We would like to show more directly that 7 is independent of the choice of ¥. Consider first
RestIndf (1) = @ ax .

a€A
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This can be proved by applying Proposition 1.14.1 to the case G = P, J = H = U and U is normal
in P (so that Us = U and 9*® = s x ). We can also construct this direct sum concretely. For every
a € A, we define a function f, € Indng by

e r o1
fa(d) = {1 ?fa ~ % 0 Where d € A.
0 ifa #a!

Then we can see that f, is an eigenvector of U that belongs to the eigenvalue a x 1, i.e. m,(fq)(p) =
fa(pu) = (ax)(u) fo(p) for every p € P and u € U. Thus, the vector f, generates the one-dimensional
space Vg If we let a vary, we get ¢ — 1 linearly independent vector f, of the (¢ — 1)-dimensional
vector space Indg(Vw). Hence we have the direct sum decomposition. From this we can show again
that Ind?;(¢) is an irreducible representation of P (this can also be seen by using Corollary 1.14.3).
Indeed, by Frobenius reciprocity

(Indf} (), Indf; () = (b, P axv) = (,axy)=1.

a€A acA

Now for any non-unit character 1)’ of U, we have ¢/ = a * 1) for some a’ € A. Hence

Res/Indf (¢/) = @a * (a' * ) = @a * ) .
acA acA
and as before Ind5 (¢') is irreducible. Therefore, by Frobenius reciprocity again, (IndIUD(qp), Indg(w’ ) =
1. Thus, 7 = Ind%(¢) = Ind5 (¥).
Once we know that 7 is an irreducible representation of P, combining with the ¢ — 1 characters
of P, Theorem 2.2.1 can also be proved by using Corollary 1.8.4 to show that there is no additional
representation of P. In fact, we have that (¢ —1)-12+ (¢ —1)2 =q(¢— 1) =| P |.

We can also show that there is no additional representation of P without using the counting
method (Corollary 1.8.4). Let o be an arbitrary irreducible representation of P. If there exists a
non-unit character ¢ of U such that (Res?;(c),v) > 0, then we have (o,7) = (Resf;(¢),1) > 0. Hence
o = 7. Otherwise, Res;(c) is a multiple of the unit character of U, i.e., o,(v) = v for every v € V.
Since A is abelian, there exists 0 # v € V,, and a character 6 of A such that o,(v) = 6(a)v for every
a € A. Hence, if u € U, then 04, (v) = 04(04(v)) = 0(a)v. It follows that o = 6.

2.3. The Borel Subgroup B

The Borel subgroup B consists of all upper triangular matrices in GL(2,F,). Clearly, | B |= (¢—1)%q.

B is a solvable group. (One says that a group G is solvable if there exists a sequence {1} = Gy C
Gy C --- C G, = G with G;_1 normal in G; and G;/G;_1 abelian.) Indeed, B contains the normal
abelian subgroup U. The quotient group B/U is isomorphic to the Cartan group D of all invertible
diagonal matrices. Clearly, U N D = {1} and B = U - D. Hence B is the semidirect product of D by
U. Direct computation shows that U is the commutator subgroup of B, if | F, |# 2. In particular, it
follows that B has exactly (¢ — 1)? characters.

P is another important normal subgroup of B and is of index ¢ — 1. The center Z is also contained
in B. Clearly, ZN P = {1} and B = Z - P. Hence B is also the semidirect product of P by Z.

We use the method of little groups of Wigner and Mackey again in order to determine the repre-
sentations of P.

First, consider B is the semidirect product of D by U. In last section, we know that for a nonunit
character 1 of U, the orbit of 1) under A is the set of all nonunit character of U. Since A C D, we
have that v and 1 is a representatives of the orbit of U under D.

For the unit character 1 of U, we know that D; = {d € D | d+*1 = 1} = D and hence By =
U - D1 = B. The extension of 1 to By = B is also a unit character of B. Now let 8 be an irreducible
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representation of D1 = D. It is a character of D because D is abelian. In fact, every pair (u1, p2) of
characters of F defines a unique character 6 of D by the formula

0
0 (g 5) = w1 ()p2(6), for a,d € Fy .

By composing with the canonical projection By = B — Dy = D, we obtain a character 8 of B, i.e.

0 (‘g §> = p1()p2(6), for a,d € Ty .

From this, by the notation of Section 1.15, p; ¢ = Indgl(l ® ) ~ 6. Recall that the commutator of
B is U, so B has exactly (g — 1)? characters. Thus the (¢ — 1)? characters of B given here are all the
characters of B.

By Proposition 1.15.2, another kind of irreducible representation comes from . It is easy to see
that Dy, = {d € D | d*v¢ =1} = Z. We know that the method of little groups will involve the group
By =U-Dy = U -Z which we have not studied yet. Therefore, we move to another form of semidirect
product, B =7 - P.

Recall that the abelian group Z is isomorphic to Fy and has ¢ — 1 characters. For each of the
character x of Z, since Z is the center of B, B acts trivially on ¥, i.e., b* x(2) = x(b~12b) = x(2)
for every b € B and z € Z. Hence, we have the the orbit of x under P is y itself and P, = {p € P |
pxx = x} = P. We can extend x to a character of B, = Z- P, = B by setting x(zp) = x(z) for z € Z
and p € P. Now let § be an irreducible representation of P, = P. By composing with the canonical
projection B, = B — P, = P, we obtain an irreducible representation 6 of B. By Proposition 1.15.2,
X ® 6 is an irreducible representation of B and every irreducible representation of B is isomorphic to
X ® 0 for some y € Z and irreducible representation 6 of P. From Theorem 2.2.1, we know that 6 is
either a character of P or § = 7. If § is a character of P, then Y ®0 is a character of B (which we have
already found above). If § = 7, then ¥ ® 7 is an irreducible (¢ — 1)-dimensional representation of B.
Varying x on all the characters of Z, we get ¢ — 1 of (¢ — 1)-dimensional irreducible representations of
B. These, together with the (¢ — 1)? characters of B, are all the irreducible representations of B (this
can also be seen by computing (¢ —1)2-12+ (¢ —1)- (a —1)> =q(q¢ — 1)? =| B|).

We sum up our results in the following:

Theorem 2.3.1. The group B has q(q — 1) irreducible representations:

(1) (¢ — 1)? of them are 1-dimensional representations which are lifting of the characters of D;
and

(2) ¢—1 of them are (q — 1)-dimensional irreducible representation isomorphic to x @ T for some
X € Z.

2.4. The Group GL(2,F,)

We denote by G the group GL(2,F,). Straightforward calculations show that the matrices

0 1 10
w—<1 0> and <”y 1>,7€Fq

form a system of representatives for the left classes of G modulo B. Hence [G : B] = ¢+ 1 and thus
|G |=(g—1)%qlg +1).

On the other hand, we have the Bruhat’s decomposition of G, namely G = B U BwU. Notice that
BN BwU = (. Indeed, if v # 0, then

G5 Y6
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We need a description of GL(2,FF,) by generators and relations for an explicit presentation of the

representations of GL(2,F,).
, (0 1 (11
w —<_1 0> and u—<0 1>.

Let
Then we have the following relations between w’ and the elements of B:

e 0 -1 _ 6 O 2 —1 O / 3 ]. O
w<0 5>w —<0 a),w —(0 _1),and(wu)—<0 1).

Proposition 2.4.1. GL(2,F,) is the free group generated by B and W with the following as the defining
relations.

G962
@) = (3 1)

0 = (5 1)

Proof. Let G be the free group generated by B and w with the above defining relations. Then there
exists a unique epimorphism 6 : G — G which is the identity on B and maps w onto w’. We have to
prove that its kernel consists of 1.

We first show that in é, for every b € B — D, there exist by,bs € B such that wbw = bywWbs.

Indeed, if 8 # 0, then
a 0 1 0 11 a 0 /.
=5 5= ) (6 1) 6 5) -

1 1

also by(3), wuw = v~ v~ tu™1; hence

by (2). It follows that
Wb = (wd' ™) wud(w d ) = bbby,

where
-1 0

(o1, —1
by = (wd'w™ " )u (0 1

are in B because of (1).

Next note that if d € D, then wdi = (wdiw1)w? € B by (1) and (2).
Now let g # 1 be in the kernel of . Then g # B; hence by using

. {b ifbe D,
wbw =

> and by = u~ (0 d"w)

b1wbs ifbe B — D,

_ a/ ﬁ/ _ Q 6 , ,
9—<0 5,>w<0 6) where a, o', 6,8 # 0.

—da o§— 33
B

to 1. Hence §’a = 0, which is a contradiction. ]

g can be written as

The right-hand side is mapped by 6 to the element ( > of GL(2,F,). But g is mapped
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2.5. Inducing Characters from B to G

As a first step toward the determination of the irreducible representations of GG, we investigate those
that appear as components of Indg (1) where p is a character of B. In order to shorten the notation,
we make the convention

fi = Ind ()
and stick to it for the rest of this note. The dimension of /i is [G : B] = ¢+ 1. Our task in this section
is to determine the connection between p and ji.

Proposition 2.5.1. Let u be a character of B and let ji = Indg(,u). Then either [i is irreducible, or
[ decomposes into a direct sum of two non-isomorphic irreducible representations.

Proof. Bruhat’s decomposition of G implies that | B\G/B |= 2. Hence, by Corollary 1.16.2 (j, 1) <
2. Thus, we have either (i, 1) =1 or (fi, 1) = 2. Our proof is complete. O

Now we shall determine the restriction Resg(ﬂ). Bruhat’s decomposition of G also tells us that
{1,w} is a representatives for the double cosets B\G/B. We have that B; = B, u! = p and B, =
wBw™ N B =D, p¥(z) = p(w™taw) for x € D. By Proposition 1.14.1,

Res% () = p @ IndB (u").

Moreover, Mackey’s irreducible criterion (Proposition 1.14.2) tell us that f is irreducible if and only
if (ResB (1), 1) = 0 as representations for D. Notice that since both Res? (1) and u® are characters
of D, we have that (Res3(u), u) = 0 if and only if ResB (1) # p®. Recall that every character p of
B is given by

a B\
u(5 ) =mlanao),
for some pu; and pg characters of F. Hence ResB () = p® if and only if py = po.
Lemma 2.5.2. If i is a character of B and pu = u", then o has a 1-dimensional component.
Proof. The assumption implies that p(b) = p1(det(b)) for every b € B, where 1y is a character of F;.
Consider the character ji = p1 o det of G. We have that (ji, 1) = (Res (1), p) > 1. O
We summarize our results as the following:

Theorem 2.5.3. Let p be a character of B given by
@
” (O §> = (@) (),

for some p1 and po characters of Fy and let fi = Indg(u). Then
(1) If py # peo, then fu is an irreducible (q + 1)-dimensional representation of G.

(2) If p1 = peo, then i decomposes into a direct sum of a 1-dimensional representation and a
q-dimensional representation.

w

Lemma 2.5.4. Let u and p' be two distinct characters of B. Then ji = /;’ if and only if ResB (') = p®.

Proof. Applying Frobenius reciprocity twice, we obtain
(s ) = (1, ResG(R) = (', ) + (1, IndB (")) = (', 1) + (Resp (i), 1),
Our lemma follows easily. O
We shall now calculate the number of irreducible representation of G which are components of

induced representations of the form Indg(u). Suppose that p corresponds to the pair of characters
(p1, p2) of Ty By Theorem 2.5.3, we have two possibilities:
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(1) w1 = po. In this case we denote by p’( the corresponding one-dimensional irreducible

H1541)
component and p(,, ,,) the corresponding g-dimensional irreducible component of /i, respec-

tively. F; has ¢ — 1 characters; hence, we obtain ¢ — 1 irreducible representations of G of
each type.

(2) p1 # p2. In this case fi is an irreducible representation of dimension ¢ + 1 and we denote
it By p(uy,us)- Then number of these u is equal to the number of characters of B minus the
number of characters of type (1), i.e. (¢ —1)? — (¢ —1). Hence, by Lemma 2.5.4, we obtain
in this way (¢ — 1)(¢ — 2)/2 irreducible representations of G of dimension ¢ + 1.

We have therefore proved:

Theorem 2.5.5. The irreducible representations of G, which are components of induced representa-
tions of the form Indg(u) where p is a character of B, split up into the following cases:

1 q 1 7(2271 (25137’“&(11%0”8 /) 0 rmension OnC,
/(}Ll lu‘l) d
2 1 € €ese tat (] ( 1 1) d 3

(3) 3(q—1)(q — 2) representations p with py # po of dimension q + 1.

ILLIHLL2)

Corollary 2.5.6. The group GL(2,F,) has exactly ¢ — 1 characters.

Proof. If y is a character of G, then ¥ is a component of Ind%(Res%(x)). It follows by Theorem 2.5.5
(1) that G has exactly ¢ — 1 characters. O

Remark . Given a character v of F 5, the composite map vodet : G — C, s — v(det(s)) is a character
of G. By Corollary 2.5.6, these are all the characters for G.

Corollary 2.5.7. The subgroup SL(2,F,) = {g € GL(2,F,) | det(g) = 1} is the commutator subgroup
of GL(2,Fy).

Proof. SL(2,F,) is normal and GL(2,F,)/SL(2,F,) = F ) which is abelian. Hence SL(2,[F,;) contains
the commmutator subgroup of GL(2,F,). By Corollary 2.5.6, [G : G'] = ¢ — 1 and hence SL(2,F,) =
G O

2.6. The Jacquet Module of a Representation of
GL(2,F,)

In Section 1.12, we give a concrete construction of induced representation. We ought to use this
construction to get some information about induced representation. In this section, we introduce the
Jacquet module and provide another approach of last section.

We define the Jacquet Module of a representation p of G as
J(V,) ={veV,| pu(v) =v forevery uec U}.
The fact that U is normal in B implies that B acts on J(V,). Indeed, if v € J(V,), b€ B and u € U,
then b~'ub € U; hence
pu(ps(v)) = po(pp-1u6(v)) = py(v)-
It is also clear that if p; and ps are representations of GG, then
J(‘/Pl @ sz) = J(‘/PI) ©® J(sz)'
The importance of the Jacquet modules for our investigation lies in the following:

Lemma 2.6.1. Let p be a representation of G. Then J(V,) # 0 if and only if there exists a character
w of B such that (p, 1) # 0.
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Proof. Suppose that J(V,) # 0. Then J(V,) can be considered as a non-trivial C[B/U]-module via p.
Since B/U is abelian, it follows that there exists a character x of B and a non-zero element v € J(V,)
such that py(v) = u(b)v for every b € B. Hence (Res%(p),n) # 0. By the Frobenius reciprocity
(p, ir) # 0 and half of the lemma is thus proved.

Now suppose that (p, 1) # 0. By Frobenius reciprocity there exists a non-zero element v € V,
such that py(v) = u(b)v for every b € B. Since U is the commutator subgroup of B, p is trivial on U.
Hence v € J(V,). O

We now investigate J(V};).
Lemma 2.6.2. If u is a character of B, then dim(J(Vj)) = 2.

Proof. By definition, J(V}) consists of all the functions f : G — C that satisfy
f(bs) = u(b)f(s) and f(bu) = i, (f)(b) = f(b) forallbe B, s€ Gand u e U.
In particular
f(0) =pd) f(1) and f(bwu)= u(b)f(w) for allbe B and u € U.

Using the Bruhat decomposition, this implies that f is determined by its values in 1 and w, where it
can be arbitrary. It follows that dim(J(V})) = 2. O

Corollary 2.6.3 (c¢f. Proposition 2.5.1). If u is a character of B, then i has at most two irreducible
components.

Proof. Let i = p1 @ --- @ p, be a decomposition of fi into irreducible components. then J(V}
J(Vp)®---®J(V,,). By Lemma 2.6.1, dim(J(V,,)) > 1fori=1...7. On other hand dim(J(V})) =
Hence r» < 2.

O™

Now we can easily get the restriction of i to the subgroup P, which in some cense is more
complicated by using the method in Section 1.14.

Proposition 2.6.4. If i is a character of B, then
Res@ (V) = ResB(J (V) @ Vi

Proof. J(V};) is a C[B]-module and hence is a C[P]-module. Let V' be a C[P]-complement to J(V}) in
Vi Then dim(V') = ¢—1, since dim(J(V};)) = 2. Further, V has no one-dimensional C[P]-submodule;
indeed otherwise, there would exist a non-zero element v € V and a character x of P such that
fiv = x(p)v, for every p € P. In particular, we would have that fi,(v) = v for every u € U, since U
is the commutator subgroup of P. Thus v € J(V}), which is a contradiction. Therefore, by Theorem
2.2.1, V is isomorphic to the unique irreducible C[P]-module V. of dimension ¢ — 1. O

A canonical basis for J(V}) is the two functions fi, fo € V}; satisfying

A1) =1 fi(w) =
B =0 flw)=1"

For f1, we have fi,(f1)(1) = f1(b) = wu(b)f1(1). Also by teh Bruhat decomposition there exists
for every b € B elements by € B and u € U such that wb = bywu. Hence f(f1)(w) = fi(bw) =
fi(biwu) = p(by) fi(w) = 0. Therefore, fi,(f1) = p(b) f1 for every b € B.

For fo, we have fi(f2)(1) = fa(b) = p(b)f2(1) = 0. Since f; and fo generate J(V},), for every

b € B there exist ay(b), aa(b) € C such that
fip(f2) = a1 (b) f1 + a2(D) fa.

Evaluate at 1 we get a1(b) = 0 for all b € B; hence [ip(f2) = aa(b) f2 for all b € B. It follows that aq is
a character of B. In particular, if d € D, then [i4(f2)(w) = fa(wdww) = p(wdw) fo(w). This implies
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that as(d) = p(wdw) = p*(d) for all d € D. Recall that every character of D can be extend uniquely

to a character of B, i.e. if
(o B (a0
b_<0 6> and d—<0 5),

then ap(b) = aa(d). Hence fiy(f2)(w) = aa(b) fo(w) = az(d) fa(w) = p*(d) fa(w) = p*(b) fa(w) (here,
we extend the character u* of D to the corresponding character of B). We summary our results as
the following:

Lemma 2.6.5. If i is a character of B, then
fi(f1) = p(b)fr and fi(f2) = p*(b) fa.

The following lemmas give the exact information about the components of ji.

Lemma 2.6.6 (Lemma 2.5.2). If u is a character of B and pu = p", then i has a 1-dimensional
component.

Proof. The assumption implies that x(b) = p1(det(b)) for every b € B, where p; is a character of F.
Now define a function f : G — C by f(s) = pi(det(s)), for s € G. It is easy to see that f € V; and f
is an eigenvector of G that belongs to the eigenvalue up o det. O

Lemma 2.6.7. If i is a character of B, then ji has at most one 1-dimensional component.

Proof. Assume that i has two 1-dimensional components. Then by Corollary 2.6.3 they are all the
components of fi. It follows that ¢ + 1 = dim(/1) = 2, which is a contradiction. O

Lemma 2.6.8. If pu is a character of B and [i is reducible, then i has a 1-dimensional component.
Furthermore, = p*.

Proof. Since fi is reducible, by Corollary 2.6.3 we have that V;, = V @& V' where V and V' are non-
trivial irreducible C[G]-module. These are also C[P]-modules and hence by Proposition 2.6.4 we can
assume, without loss of generality, that V; € V. On the other hand, 0 # J(V) € J(V;) N'V. Hence
Ve C V. It follows that dim(V) > ¢ and hence dim(V’) = 1.

We have proved that there exists a character x of G and a non-zero function f : G — C in V}
such that fis(f) = x(s)f for all s € G. In particular, we have f(1) # 0; indeed otherwise, because
there exists a positive integer n such that s” = 1 for all s, we would have 0 = f(1) = f(s-s""!) =
fign-1(f)(s) = x(s"" 1) f(s). Tt follows that f(s) = 0 since x(s"!) # 0. This is a contradiction. Let
d € D. Then u(d)f(1) = f(d) = x(d)f(1). Hence u(d) = x(d) for every d € D. It follows that
u?(d) = p(wdw) = x(wdw) = x(d) = p(d), for every d € D. Hence p = p*. O

Summing up the Lemmas 2.5.2-2.6.8, we can obtain Theorem 2.5.3.

2.7. The conjugacy Classes of GL(2,F,)

Before we start to investigate the irreducible representations of G, we would like to compute their
number. By Theorem 1.8.2, this number is equal to the number of the conjugacy classes of G. Now,
we give explicitly a representative for each of the conjugacy classes.

An element g of G has two eigenvalues. All the elements in the conjugacy class of g have the same
eigenvalues. There are therefore four cases:

e The eigenvalues of g belong to F,.
In this case g is conjugate over [, to a unique matrix in a canonical Jordan form. If both
eigenvalues are equal to the same element a of Fy, then we have:
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(1) g is diagonalizable. Hence the Jordan form is

er(a) = (‘8‘ 2) .

There are g — 1 classes of the form ¢ («).

(2) g is not diagonalizable. In this case for any v € Fg which is not an eigenvector of g, we
have that g(v) — awv is an eigenvector of g (by the Cayley-Hamilton theorem). Hence
v, g(v) — aw form a basis of Fg over [F, and so the Jordan form is

ea(a) = (00‘ i) .

There are g — 1 classes of the form ca(a).
If the eigenvalues are a, 8 € Fy and a # (3, then

(3) the Jordan form is
0
C3(C¥,ﬁ) - <g 6) :
1

Since c3(, ) and c3(8, ) are in the same conjugacy class, there are 5(q — 1)(q — 2)
classes of the form c3(a, 3).
e The eigenvalues of g do not belong to F,
In this case the two eigenvalues A and X belong to the unique quadratic extension F, of Fy
and \, \ are conjugate over F,. Let v be a nonzero vector in Fg. then v, g(v) form a basis of
Fg over F,. By Cayley-Hamilton theorem, when consider g as a linear operator on ]Fg with

respect to the basis v, g(v),
0 —AX

(4) g is conjugate in G to
Since c4()) is conjugate to c4(7y) if and only if A = v or A =7, there are %(q2 —q) classes
of the form c4(N).



Chapter 3

The Representations of
GL(2,F)

3.1. Cuspidal Representations

Irreducible representations of G that are not components of ji, with p a character of B, are said to be
cuspidal. By Lemma 2.6.1, an irreducible representation p of G is cuspidal if and only if J(V,) = 0.
Comparing Theorem 2.5.5 with the results in Section 2.7, we find that G has %(q2 — q) cuspidal
representations, exactly as the number of conjugacy classes of the form c4(A).

Lemma 3.1.1. Let p be a cuspidal representation of G. Then Resg(p) = r7 for some positive integer
r.

Proof. Ifv € Resg(Vp) is an eigenvector, then using the similar argument as in the proof of Proposition
2.6.4, we have that v € J(V,); thus J(V,) # 0, contrary to the assumption that p is cuspidal. Hence
Res%(V,) cannot have 1-dimensional component and hence Res%(p) must be a multiple of . O

Lemma 3.1.2. Let ¢ be a non-unit character of U. Then # = Ind%(n) = Ind$ () has no multiple
component.

Proof. Recall that by Proposition 1.16.1, Homg(q(Vz, V) is isomorphic to the algebra A of all func-
tions F : G — C satisfying

F(uisug) = ¢¥(urug)F(s) for uj,ug € U and s € G,

and where multiplication between Fi, Fy € A is given by the formula

1
P F)(s) = ——= Y Fi(st 1) F(t).
(F1 - F2)(s) [G:U]Z 1(st™ ) Fa ()
teG
We shall show that A is abelian. This implies that 7 has no multiple components (cf. Section 1.16).

We start by defining an involution s — s' = (wsw)” on G, i.e.

_Ozﬁ /_5ﬁ
5_<v 5)HS_(7 a)

It is obvious that (s152)" = s5s} and v/ = u for every s1,s2 € G and u € U. We continue by defining
for an element F' € A a function F’ : G — C by F'(s) = F(s') for every s € G. It is easy to check
that F" € A and (Fy - F»)' = F} - Fy. we shall show that F = F’. Hence Fy - F» = Fy - F}. O

31
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In order to prove that F' = F’, it suffices to prove that F' and F’ coincide on representatives of
the double cosets U\G/U. Indeed, by Bruhat’s decomposition and B = UD, we have that the above
representatives are of the following two forms

0 (D) (Y

We only have to check for those of the form (b) with « # §. Indeed, acting with F' on both sides of
1 B\ (a 0 [a 0)[(1 a'ép
0 1 6)  \0 §)\0 1 ’

W(B)F (?j 2) =F (g 2) b(a50).

Since a # § and 1 is a non-unit character, we have that 1(8) # 1(a~163) for some 3 € F,. This
implies that F' vanishes on matrices of the form (b) with a # § and so is F’.

o

we have

Proposition 3.1.3. Let p be a representation of G. Then p is cuspidal if and only if Resg(p) =T.

Proof. If p is cuspidal, then Lemma 3.1.2, (Res%(p), 7) = (p,Ind%(7)) = 1. Hence ResG(p) = 7, by
Lemma 3.1.1.

On the other hand, if Resg(p) = 7, then since 7 is irreducible, p is also irreducible. By Theorem
2.5.3, the components of i have the only possible dimensions 1, ¢, or ¢ + 1. However, dim(p) = ¢ — 1;
hence, p is cuspidal. ]

Remark . By Theorem 2.5.3 and Lemma 3.1.1, we can use the fact that the number of cuspidal

representations is %(q2 — q) to calculate directly that every cuspidal form has dimension ¢ — 1.

3.2. Characters of IFQXQ

[F,2 is the only quadratic extension of F,. If A is an element of F2, then A denotes its unique conjugate

over IF,. Since the Galois group Gal(F 2 /F,) of F 2 over I, is generated by the Frobenius automorphism
A — A9, we have in fact A = \9.

The function N(A) = AX is the norm map from Fp to Fq. It is multiplicative, i.e. N(AX) =
NA)N(N).

Lemma 3.2.1. The kernel of the norm map from I[*’;2 to Ty consists of ¢+ 1 elements. Furthermore,
the norm map from Fg to Fy is surjective.

Proof. The restriction of N to FZQ is a homomorphism into F}¢. Since N(A) = A*?, the kernel of this

homomorphism consists of elements satisfying 9t! — 1 = 0, which has at most ¢ + 1 elements. Hence,
the image of N consists of at least (¢ —1)/(¢+1) = ¢ — 1 elements. Therefore, it must be F). [
Corollary 3.2.2 (Hilbert’s Satz 90). If ¢ is an element of IFqXQ such that N(¢) = 1, then there exists
ale FqXZ such that AN+ = C.

Proof. The set E = {\ € FZQ | N(\) = 1}, has exactly g + 1 element. Consider the map h : IF(;Q — F

defined by h(\) = AN Tts kernel is F. Hence the image of h has (¢ —1)/(¢ —1) = ¢+ 1 elements,
exactly as many as E has. O

X

¢ » We obtain a

Let x be a character of F;. Composing x with the norm mp N from FZQ to F

character x of F’:
q
R0 = X(N(), A€ F%,
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If v is a character of qug, then 7 denotes its conjugate over Fg, i.e.

7(A\) =v(\), A€ IFqX2.
A character v of FZQ is said to be decomposable if v = x for some character x of F.

Lemma 3.2.3. A character v of IFqXQ 18 decomposable if and only if v = 7.

Proof. If v is decomposable, then since N(A) = N()), certainly we have v(\) = v(A\) = 7()\). Con-
versely, if v = 7, then we define a map x : N(FZQ) — C by x(N(A)) = v(A). By Corollary 3.2.2, we
can check that y is well defined. The fact that N is surjective now extends the domain of x to F.
Hence, x is a character of qu and v is therefore decomposable. ]

Lemma 3.2.4. If v is a non-decomposable character of F;;, then

Z v(z) =0 for every a € Fy.
N(z)=«

Proof. By Lemma 3.2.3, there exists ¢ € IFQXQ such that v(¢) # v(¢). Let A = ¢/C. Then
Yoovl@= Y v =v() > (),
N(z)=«a N(z)=«
and our claim follows. g
We shall need the analogue to Lemma 3.2.3 for the characters of additive group IF;;. The trace
function Tr : F;rz — T is defined by Tr(A) = X + A

Lemma 3.2.5. The kernel of the trace map from Fy2 to ¥y consists of q elements. Furthermore, the
trace map from F2 to ¥y is surjective.

Proof. The trace function is additive and its kernel consists of elements in F 2 satisfying 2742 = 0. [

Corollary 3.2.6. If \ € IFqXQ, then for every o € Fy there exists an x € Fg2 such that A\x + AT = a.

Proof. There exists a ¢ € F2 such that Tr(¢) = a. Choose z = (/X will do. O

3.3. The Small Weil Group

Let F/E be a finite Galois extension. Its Galois group G(F/E) acts on the multiple group F'* of F.
Denote by W(F/E) = G(F/E)-F*, the semi-direct product of G(E/F') by F*. It consists of all pairs
(z,0) where x € F* and o € G(F/E). Multiplication is given by the formula

(z,0) - (y,7) = (- 0(y),07).

It is easy to check that the identity is (1,1) and the inverse is given by (z,0)~! = (¢7!(z),071). The
map z — (x,1) is an embedding of F* in W(F/FE). We identify F'* with its image. F'* is normal in
The group W (F/E) is in general not abelian. A typical commutator is

(z,0)(y,7)(z,0) "y, 7) " = (@ 0(y)-oro @) -oro Iy ), ora Y.
In particular, if G(F/FE) is abelian, then we simply have

(xa U)(ya T)(xv J)_l(yv T)_l = (l’ ’ U(y) ’ T(x_l) : y_17 1)'
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We now restrict our attention to the case where E' = F, and F' = F2. In this case, W(F2/F,)
is called the small Weil group of the extension F 2 /F,. It is a finite group having 2(¢> — 1) elements,
and it can be described as the free group generated by FqXQ and ¢ (the conjugation) with the relations

©? =1, and r-o=p- -p(r)=p- T, foracGF:Q.
(Here, we identify ¢ by (1,¢).)
We would like to establish a correspondence between the representations of W (F,/F,) and the

characters of F’;,. We remark that since W (F 2 /F,) contains the abelian normal subgroup Fqﬁ of index
2, by Proposition 1.15.2 its irreducible representations are of dimension < 2.

The commutator subgroup W (F 2 /Fy)" of W(F 2 /F,) is the set {2/Z | z € IFqXZ}, which by Corollary
3.2.2 is equal to {z € FqXQ | N(x) = 1}. Hence by Lemma 3.2.1, we have proved:

Lemma 3.3.1. W (F,2/F,) has 2(q — 1) characters.

Remark . If 7 is a character of W(F,/F,), then 7(x) = 7(%) for every = € IFqXQ because z/T €
W(Fp2/F,). On the other hand, starting from a character p of X, we define characters 71, 72 of

W (F,2/Fq) by 7i(z) = u(N(x)) and 7;(p) = (—1)". These are all the characters of W (F 2 /F,).

Consider now a 2-dimensional representation 7 of W (F,2/F,). Its restriction to IFqXQ decomposes
into a direct sum of two characters. Let v be one of them. By construction, there exists a vector
0 # v € V; such that 7,(v) = v(x)v, for every = € F(IXQ. Let v/ = 7,(v). Then the relation z-p = ¢ - T

implies 7, (v') = v(ZT)V', for every x € IFqXZ. Hence, 7 is also a component of the restriction of 7 to IF;.
There are two possibilities.
(1) v # 7. In this case, v and v are linearly independent and we have

Resl?:xz (r)=var.

In this case we also have that 7 is irreducible; indeed, otherwise v must be equal to the
restriction of one of the 1-dimensional component of 7 to ]F;Q, which we already knew is
decomposable.

(2) v = 7. In this case, either v’ is a multiple of v or v' and v are linearly independent. In the
first case v is an eigenvector of W (F,2/F,). This implies that 7 is reducible. In the second
case, v and v’ generate V,. Hence 7,(w) = v(z)w for every w € V;. Let w be an eigenvector
of 7,. Then w is an eigenvector of W (F 2 /F,), This implies again that 7 is reducible.

We have thus proved:

Lemma 3.3.2. Let 7 be a two dimensional representation of W (F 2 /Fy) and let v be a component of
its restriction to FZQ. Then v is non-decomposable if and only if T is irreducible.

Remark . Let v be a non-decomposable character of IF‘qXQ. Define a 2-dimensional representation 7,

of W (F2/F,) by
(9 ,5) w o-( D)

7, is irreducible and 7, = 7, if and only if v/ = v or v/ = ©. Theses are all the %(q2 —q) two-dimensional
representations of W(IF2/F,).

3.4. Constructing Cuspidal Representations
from Non-decomposable Characters

Let v be a non-decomposable character. We are going to define a representation p that will turn out
being a cuspidal representation. In order to define p on G, it suffices to define p as a map from BU{w'}
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into the automorphism group of an appropriate vector space V such that the restriction of p to B is
a homomorphism and such that p preserves the relations (1), (2) and (3) of Proposition 2.4.1.

The dimension of p should be ¢ — 1. Hence it is convenient to take V as the vector space of all
functions f : F' — C. On the other hand, Res%(p) = m = Ind¥;(¢), by the construction of induced
representation, we only have to give values on a system of representatives of P/U = A. Identifying A
with F, and using the identity

z 0\ (fa B\ _ (oax pz\ (1 Bz\  fax 0
0 1/\o 1) \o 1) \0o 1 0 1
we are led to the following definition:

o5 1) 0] @ = v saa)

Further, we would like to have p coincides with v on Z:

o5 §) 0] @=vore.

It follows that we must define p on B by

o5 D=5 §) ("% PT)0)] @ =,

A straightforward calculation shows that p is indeed a homomorphism of B into Aut(V).

In order to define p(w’), we define a function j : F* — C by
. -1
j@y=— Y wT)rK),

q
N(V)=r, AeF,

and for an f € V define p(w')(f) by
() (H)(x) = D vy "ilzy)f(y)-
yeFy

Our task now is to prove that p(w’) together with the definition of p on B is compatible with the
relations (1), (2) and (3) of Proposition 2.4.1. We remark the once we prove the identity (2) is true,
we have p(w’) € Aut(V) automatically.

In order to prove that p preserve identity (1) of Proposition 2.4.1, we compute for every f € V:
[ (a0 1 B e .

o(w (5 9)) 0] 0= X vt i@,

] ) y€EFY

and

o((5 5)w) ] @ =) X vl ita e

z€Fy
Changing variables by z = ad 'y, we will see that they are equal.

In order to prove that p preserve identity (2) of Proposition 2.4.1, we compute for every f € V:
(") (p(w (M) = D vy i) (D v(z")ily2)f(2))
yeFy z€Fg

= > (e ()] wR)ileyv(z "y ™),

z€Fg yeFy
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We can get
o)D) =1 @) = o (3 0) ()] @)
by using the following:

Lemma 3.4.1. Given any x € F;, then

()i (2 (L) — v(=1) if z ==,
y%k;;y(y )j(zy)v(zy ™) {0 freto

Proof. We start from the left-hand side:

> i)y y ) = —Z > (Te(t +)v(tse 'y

FX F N®=Z (zv)
yErq ve N(s)=zy

=z Z E w( (t+s))v(t/s) (using N is onto)
SEFX N(t)=ZN(s
- Ly Z B(Te(s(1+ 1) (by letting A = /5)

TN=e ser,

For a fixed ), the map s — 9(Tr(s(1 + )))) is a character of ]F;LQ. Since the map s +— Tr(s(1 + \))
maps [F2 onto Fy if A # —1 and 1 is not the unit character, it follows that

Z P(Tr(s(1+ X)) = {_1 if A # -1,

’ -1 ifx=-1
sEFq2

We now distinguish between two cases and suppose first that z = z. Then

> iiaay ) = 5 LS Zw<Tr<s<1+X>>>+q%u<—1><q2—1)
y€eFy IﬁA 1 SEF;
e 1 )
= LY s+ su-eE - 1)
T C
1 1 )
=z v(— 1)—1—?1/(—1)((] -1) (by Lemma 3.2.4)
— (1)

Now suppose that z # x. Then N(\) = z/x implies that A # —1. Hence, in this case by Lemma
3.2.4,

Y i@y = Y vy =0
yeFy N(\)=z/z

O

Finally we have to prove that p preserves relation (3) of Proposition 2.4.1. We compute for every
fev:

(v (5 1)) 0] @ = et ieembw)

yery

= > vy i) (Y v(ziye)f(2)

y€eFy 2€Fy
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and

(GG ) wfer = emealo(w o 7))ol

= v(=Dy(=x) Y v(z"j(z2)((=2)f(2))

ZEF;
In order to prove that these two equalities are equal, we need the following:

Lemma 3.4.2. Given any x,z € F;, we have that

D vy Niley)iyz)v(y) = v(=1)j(z2)Y(—2)p(—2).

yelFy
Proof. We start from the left-hand side.

> vy iey)ily 7 Z Z (Tr(s +1) + y)v(sty™)

y€eFy yefy N N() oy

Let A = sty~!. Then N(¢) = xy and N(s) = yz imply that N(\) = xz. Using
Tr(s4+t) +y=2"'"N(s+ 24+ ) — 2N(1 +z71N),

we have that

> vy i) = 5 S N4 A Y b NG+ 2 4 ).
yeFRy 9 N(\)=zz SEF:
However,
Y (TN +242) = > W 'N(@)
sse]FqX2 r€F 25 r#z+A
= D WwETNE) + 1 -z 'N(z + 1)
ref’%,

= (q+1) > #(z"'a) +1-9(z"'N(z+1))  (by Lemma 3.2.1)

aEF;
= —q- w(z_lN(z + A)).

Therefore, we have that

Z v(y™)i(zy)i(yz)y(y) = q—12 b(—2N(1+ 27" A)v(A) (=g — (27 'N(z + N)))
yery N(A\)=zz
_ ! Z Y(—2N(1 + 27 ']A)r(\) — i2 Z P(=2N(1 + 27N + 27 IN(z 4+ N)r(N)
q N(A\)=zz 1 N(\)=zz

Note that under the assumption N(\) = xz, we have that

—N(14 2N =-2—2-Tr(\) and —2N1+2zN)+2"INz+)) =0
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Hence, we may continue the chain of equalities by

S vy ian)i)by) = ql e —2) Z ST — = 5 ()

yely q N(A\)=zz
= pca—n 3 w0 (by Lemma 3.2.4)
q N(\)=zz
= _—1¢(_$ —2)v(-1) Z Y(Tr(N))v(N)  (by letting A = —)\')
q N(\)=z=z
= v(=1)j(@2)(—z)(=2).
O
For later references let us also describe the action of p on the element
s = <: ?) , Y#0.
We use the identity
a B\ _ (B-ay i —a 0 1\ /1 716
G- 2 )6 )
For f:F; —C
) = winetar™a) oo (5 7)) (] (68 - ar o)) )
-1
= venplar ) X vl Nitad - 2 [o (3 7, 0) (0] @)
€Fy
= ey Yy e i) Y e )
1 yeFy N(3)=y~2ay det(s)
= Y (e Y I | S Getting ¥ = 1)
¢ = ¥ v y

We have therefore proved:

Proposition 3.4.3. Let s = (: ?) € GL(2,F,) with v # 0. Then we have
() (NN(x) = Y k(w,y;8)f(y),
yelFy
where 5
bais) = o) Y w-Imym)

v N(A\)=zy—! det(s)

3.5. The Correspondence between Cuspidal
Representations and Non-decomposable
Characters

In last section, given a non-decomposable character v of F*, we associate a cuspidal representation.

To distinguish its dependence with v, we denote such a representation by p,.
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Proposition 3.5.1. If v and nu’ are non-decomposable characters of FqXQ, then py, is isomorphic to
pv if and only if v is conjugate to v over Fy.

Proof. Let p = pyu, p' = p,» and let j = j,, ' = j,» be the corresponding j function, respectively. If
V' =7, then we have /(a) = v(«a) for a € F;\. Hence, p = p’ on B. Further,

' -1 -1 — o~ —1 .

() = " Y TN = o o (TN = — D B(Tr(W)w(A) = j(x).
NQ)=z N =z N(A)==

Hence p/(w') = p(w'). We conclude that p = p'.

Conversely, suppose that p’ is isomorphic to p. Then there exists an § € Aut(V) such that
p'(s) o8 =0op(s), for all s € G. However Res®(p) = m = Res®(p') and 7 is irreducible. By Schur’s
lemma (Proposition 1.3.1), € is a homothety. Hence, p'(s) = p(s) for every s € G. In particular, p and
¢’ are equal on B. Hence, v(a) = V/(«) for every a € F)X. Further, p(w') = p'(w’); hence

> vy Vitey) fy) = D Vi (@) f ),

yelFy y€eFy
for every x € F and every f € V (recall that V is the space of functions f : F* — C). This implies
that j(«) = j'(«) for every o € Fy, i.e.

Yo Ty = Y (T (A).

N(A\) =« N(\)=«a

For any x € F, we also have that j(2?«) = j'(2%a). Cancelling v(x), we obtain

Z P(axTr(N))v(A) = Z Y(xTr(N)v' (N), for beingevery o,z € Fy'.
N(A)=a NA)=«

Now choose a generator A\g of the cyclic group IFZQ. For any y € Fy, there exists A € F 2 such that
Tr(\) =y and N(A) = N(\o) (we use the fact that F2 is the unique quadratic extension of ;). The

other solution is obvious A. Let a, = v(\) + v(X) — v/(\) — V/(X). and let 1, be the character of Fr
defined by ¥y (x) = ¥ (2y). Then we have that

Z aytpy = 0.

y€Fq
Notice that if y # 3/, then 1, # 1¥,,. Hence by Artin’s lemma (Lemma 1.9.2), we have that a, = 0 for
every y € F,. In particular, we have

V()\o) + V()\_()) = I//()\o) + I//(/\_()).

Combining with o B
v(Ao)v(Aog) = I/(N()\(i) =V(N(X\o)) = V' (Ao)V (No),

we have either 1/(A\g) = v(A\g) or v/(\g) = v(Ao). This implies that v/ = v or v/ = 7, since g is the
generator of FZQ.

O

Remark . There are totally ¢ — ¢ non-decomposable characters of F;z and there are %(q2 —q) cuspidal
representations of GL(2,F,). From Proposition 3.5.1, we know that every cuspidal representation of
the form p,, for some non-decomposable character v.

At this point, we would like to indicate an interesting duality between conjugacy classes of GL(2,F,)
and characters of F;E. For example, the elements A € F 2 — F, correspond to the conjugacy classes

ca(A) (cf. Section 2.7), whereas the characters v of Fy2x that do not come from characters of F (i.e.

non-decomposable characters) correspond to the cuspidal representations p, of G. In both sets there

are (% — q).
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We summarize these data in the following table.

Elmt. of FZQ Conj. CL. | No. of Elmt. | Dim. | Irr. Rep. | Char. of IF;2

aeFy c1 (o) qg—1 1 p/(mvm) w1 € Fy
(@) q—1 4| Plup)
a#BeFy | c3(a) |5g=1)(q—2) | a+1]| pluuy | # p2 €FS
)\GF(IXZ—IE‘qX ca(N) H(d*—q) qg—1 Pu Z/EF;Q —Fy

3.6. Whittakers Models

Recall that we have fixed a non-unit character ¢ of IF;, identified it with a character of U and found
that 7 = Ind/(¢) is a (¢ — 1)-dimensional irreducible representation of P.

If x is a character of GG, then by Frobenius reciprocity

(x: Indi (1)) = (x, Ind%(m)) = (ResB(x), ) = 0.

Hence all irreducible components of 7 = Indg(w) are of dimension > 1 and each of them appears in
multiplicity 1 by Lemma 3.1.2.

Lemma 3.6.1. Let p be an irreducible representation of GL(2,F,) of dimension > 1. Then

Res3(Vy) = Res3(J(V,)) @ Vi

Proof. This has been prove when dim(p) = ¢—1 (Lemma 3.1.1) and when dim(p) = ¢+ 1 (Proposition
2.6.4). If dim(p) = ¢, then there exists a character u of B and a character p’ of G such that fi =
Ind% (1) = o/ @ p. Further, by Proposition 2.6.4 we have Res@ (V) = Res&(J(V;)) ® V. Hence

Res$(Vy) @ ResG(V,) = ResG(J (V) @ ResG(J(V,)) @ V.

However, since J(V,;) # 0 by Lemma 2.6.1, we have Res%(V,/) = Res%(.J(V,y)), and hence the lemma.
(|

Theorem 3.6.2. Indg(w) is the direct sum of all higher dimensional (> 1) irreducible representations
of G, each of multiplicity 1.

Proof. For any higher dimensional irreducible representation p, since Res%(J(V,)) is either 0 or
decomposes into a direct sum of 1-dimensional C[P]-submodules, by Lemma 3.6.1 we have

(p. Indg (1)) = (p, Ind§ () = (ResE(p), @) = L.
OJ

If now p is an irreducible higher dimensional representation of G, the V, can be embedded in
Indg(V¢). Thus, for every v € V,, there exists a unique function W, : G — C in Indg(Vw) called a
Whittaker function of p such that the following rules hold:

(1) W, =0 if and only if v = 0; Weyi ey = W, + Wy, for ¢, € C.
(2) Wy(us) = (u)Wy(s), for u € U and s € G.

(3) Wy, ()(r) = Wy(rs), for r,s € G.

The set of all function W, form a C[G]-submodule W (p) of Ind{}(V;) called the Whittaker model of p.
By Theorem 3.6.2, this submodule is uniquely determined within Indg(Vw). Moreover, if p’ is another
higher dimensional irreducible representation of G, then W (p) N W (p') = {0}.
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3.7. The I'-function of a representation of GG

Let p be a higher dimensional irreducible representation of G. The P-decomposition V, = J(V,) & V;
is also an A-decomposition, because A is a subgroup of P. We study the action of A through p on
J(V,) and V.

If p = peuypus)>, Where py and pg are characters of Fy, then by Lemma 2.6.5 p; and g are
eigenvalues of A on J(V,) (here, we identify A with Fy). In this case, we call prt and pyt the
exceptional characters for p. We remark that if p is cuspidal, then there is no exceptional character.
In any case, if the inverse of a character v of F is not exceptional, then v is not an eigenvalue of A
operating on J(V,) through p.

By the definition of V;, every f € V; is uniquely determined by its value on the representative
P/U = A. Hence Res(V;) is isomorphic to the space of all functions f : F7 — C, and A acts on this
space by the formula

[p (g‘ ?) ( f)] (z) = f(za),  for a,z € FY.

Lemma 3.7.1. Let p be a higher dimensional irreducible representation of G. If a character v of F}
is not an exceptional character of p, then any two linear mappings 1, lz : V, — C satisfying

Li(p (g (1)) (v)) = v} )l (v) for every x € ¥ and v €'V,

are linearly dependent.

Proof. Let ¢ be a generator of the cyclic group F; and define the linear map 7': V, — V,, by

10 =p(§ 1) 0=

Then

Ker(T)={veV,|p <g ?) (v)=v ' (a)v forallze€F)},

i.e. the space of eigenvectors of A belonging to the eigenvalue v~!. Since v is non-exceptional,
1

v~ is not the eigenvalue of A operating on J(V,) through p. By Lemma 3.6.1, we conclude that
Ker(T) C Res{(V;). However, any function f : Fy — C satisfying

raa) =[o (5 1) 0] @ =@

is uniquely defined by the value of f(1); indeed, we have f(a) = v~ () f(1), for all v € F. This
implies that dim Ker(7") = 1, and hence dimT'(V,) = dim(V,) — 1.

Now, suppose 1 and [y are not zero mapping. Clearly, T'(V,) C Ker(l;) and dim Ker(l;) = dim(V,)—
1. Therefore Ker(l;) = T'(V,) = Ker(ly). This follows that {1 and Iy are linearly dependent. O

Theorem 3.7.2. Let p be a higher dimensional irreducible representation of G and let v be a character
of ¥ which is not exceptional for p. Then there exists a complex number I',(v) such that for every
Whittaker function Wy, of p, we have

z 0 0 1
To(v) > W, (0 1) v(z)= > W, <x 0) v(z).
xEF; xGF;
Proof. Define the linear mappings [y, I3 : V, — C by

li(v) = Z W <wi (5 2)) v(z) fori=1,2and v € V.

z€Fy
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Then
wfy Yo = T )6 D) T (7 )
- U(a—l)gé W, <wi (”8 ?)) v(z) =v Ha)i(v) VYaeF),Vve,

l2 is not a zero mapping; indeed by the proof of Lemma 3.7.1, there exists a nonzero v € Resi(VW)
such that v is a eigenvector of A belonging to v~!. Hence

z 0 B 1 O o 1 0 y
W, (0 1> = Wu—l(:c)v <0 1> =v (CC)WU <0 1> for every x € Fq,

This implies that for this v, la(v) = (¢—1)W,(1) # 0. It follows from Lemma 3.7.1 that /; is a multiple
of I3 by a constant denoted by I',(v). O

The complex valued function I'y(v) defined for every non-exceptional character v of Fy for p will
play an important role in the computation of the character table of GL(2,F,).

3.8. Determination of p by T',

Let p be a higher dimensional irreducible representation of G. For every v € V,, let W, be the
corresponding Whittaker function of p and let F'(F;,C) be the space of all functions f : Fy — C.
Consider the homomorphism R : V, — F(F;,C) defined by R(v) = Wy|a (here, we identify A with
7). If we define an operation of F,* on F(F,C) by (a* f)(r) = f(za) and identify A with F), then
R is an A-homomorphism.

Lemma 3.8.1. The homomorphism R is surjective and Ker(R) = J(V},).

Proof. We start by determining Ker(R). Let v € J(V,). Then for every a € F, we choose a 3 € F,

such that ¢ (af) # 1 (because 1 is non-unit). Since u = <(1) f) € U, we have p,(v) = v. Hence

w5 )= (5 9) = (6 ) = (6 V) () =t (5 3),

a 0
0 1

To prove that Ker(R) C J(V,), we remark first that Ker(R) is a C[P]-module; indeed, since
P = AU and U is normal in P, for any a € A, p € P, there exist @’ € A and u € U such that
ap = ua’. Hence, if v € Ker(R), then W, (,)(a) = Wy(ap) = ¢(u)W,(a’) = 0. This implies that the
C[P]-submodule V; NKer(R) is either {0} or V;, since V; is P-irreducible. Assume V; NKer(R) = V;.
Then J(V,) € Ker(R) and V, = J(V,) @ V, implies that R is a zero mapping. In particular, we have
Wy (1) = 0 for all v € V,,. Hence for every v € V,,, Wy, (s) = W, ()(1) = 0, for every s € G. Thus v = 0,
which is absurd. We conclude that V; NKer(R) = {0}. Hence Ker(R) = J(V,). This fact implies that
dim(R(V,)) = dim(V;) = ¢ — 1 = dim(F(F;, C)). O

This shows that W, ( > =0, for every a € F. Hence, v € Ker(R).

The center Z of G consists of the scalar matrices and is therefore canonical isomorphic to F. The
restriction of p to Z can therefore be identified with a character v, of F, called the central character
of p.

Theorem 3.8.2. A cuspidal representation p of G is uniquely determined by its I'-function and its
central character.
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Proof. Let p and p’ be two cuspidal representation of G. Suppose that p and p’ coincide on Z. Then
since Res%(p) = m = Res%@(p’) and B = ZP, we conclude that p and p’ coincide on B. Suppose in
addition that I', = I',y. Because of Bruhat decomposition G = BU BwU, in order to prove that p and
p' are isomorphic, it suffices to show that p,, and p/, coincide.

What we have now is that there exists an isomorphism 6 : V, — V}; such that 6(ps(v)) = p,(6(v))
for every v € V, and s € B. Since J(V,) = J(V,y) = {0}, by Lemma 3.8.1 the maps R : V, — F/(F,C)
and R’ : V; — F(Fy,C) are C[A]-isomorphisms. Given any character v of A, we know that there
exist v € V), such that p,(v) = v(a)v for every a € A. Therefore, Wy(a) = W, (1) = v(a)W,(1)
and similarly because p,(6(v)) = v(a)0(v), Wy (a) = v(a)Wy)(1). Multiplying a suitable constant,
we can assume that W, (a) = Wy(,)(a) for every a € A. Since V), is a direct sum of eigenvectors of A
belonging to characters of A, without loss of generality, we can assume that W,|4 = Wy ,)|a for every
veV,

Therefore, by Theorem 3.7.2 the assumption I'y = I';y implies that for every character v of Fj
(there is no exceptional character for cuspidal representation),

Z W (2 (1)> v(z) = Z Wo(w) (2 (1)> v(z).

z€Fy z€Fy

This implies by Artin’s lemma that
0 1 0 1
W, (x 0) = W) (x O) , for every x € 5, v € V),

z 0
0 =z

z 0 z 0 0 1\ /0 1 0 1
W (1) = (G )G 0) =7 (G o) G 0) = (o)
0 1 0 1 z 0
= We<pz<v>>( - 0>=ng<e<v>> <x—1 0>=Wp;,<e<v>> <0 1>
This shows that

R'(0(pw(0))) = W, () la =Wy, )4 =Wy, o) la =R'(p,(6(0))).

Since R’ is an isomorphism, we conclude 6(p.,(v)) = pl,(0(v)).

Hence for every z € F let z = ( > € Z, and we have

3.9. The Bessel Function of a representation

Let p be a higher dimensional irreducible representation of G. Then for ¢ > 3, we have dim(V,) >
g—1>2 > dim(J(V,)), and for ¢ = 3 and dim(V,) = 2, p is cuspidal and hence J(V,) = {0}.
Therefore, V, # J(V},) in all cases.

As U is abelian, Res{(p) decomposes into a direct sum of characters. Since V, # J(V,), one of
the characters must be non-unit. Fix a non-unit character ¢ of ]F?IL. Recall that for another non-unit
character ¢’ of [, there exists an a € F, such that ¢'(x) = ¢(ax) for all x € Fy. Suppose that ' is
an eigenvalue of U through p with an eigenvector v’ € V,,, i.e.

((1) f) (W) =¥/ (B, VBEF,

Replacing v' by v = p <g (1)> (v'), we get that for every 5 € Fy,

oo D @=o(3 Voo V)@= m(5 ) o =ven
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Hence, v is an eigenvalue of U through p with eigenvector v. Using similar method and using dim(V,)—
dim(J(V,)) = ¢ — 1, we conclude that every non-unit character of Ft‘; appears exactly once as an
eigenvalue of U through p. On the other hand, the Whittaker model W (p) of p is considered as a
C[G]-submodule of Ind{;Vy, for the fixed 1 (cf. Section 3.6 condition (2)). It follows that if o € Fr,

then for all 8 € Fy since p <(1) f) (v) = ¥(B)v, we have

s (50 = w5 )= (3 0 (5 9)
(6 )G ) =rem i 9)

g (1)> = 0. Further, since v # J(V},), Wy|a # 0 by Lemma

3.8.1 and therefore W, (1) # 0. The vector is said to be a Bessel vector for p.

Let us sum up the results in the following:

If a # 1, then we may conclude that W,

Lemma 3.9.1. Let p be a higher dimensional irreducible representation of G. Then for a given non-
unit character ¢ of U, we have (1, Res§(p)) = 1. A Bessel vector for p is an eigenvector v of A
belonging to ¥ which is unique up to a scalar multiple and satisfying

Wy(a 0) =0 ifa#1and acFy,
0 1) 140 ifa=1.

We use Bessel vector v to define the Bessel function J, : G — C of p by
Wi(s)
P(s) - Wv(l)

Clearly J,(s) does not depend on which Bessel vector v is used. Note that J, is also a Whittaker
function for p. We have

Jp(su) = W‘;;v(g;) = Wlfl;jz)l()S) = Tﬁ(;i%)(s) =(u)Jp(s) = Jy(us), forueU andseG.

for every s € G.

Also
0 ifa#1landacA,
Jp(a)_ {1 .
ifa=1.

Therefore, if a character v of F is not exceptional for p, we have by Theorem 3.7.2 that

rw) =% J, <2 (1)) ().

xEF;

One can use this formula to define I',(v) also for the exceptional character v.

3.10. The Computation of I',(v) for a
Non-cuspidal p

Let p be a higher dimensional irreducible representation of G which is not cuspidal. Then p is a
component of ji = Indg (1), where p is a character of B which corresponds to the pair of characters
(p1, p2) of Fif. We may consider therefore V, as an irreducible C[G]-submodule of nd%(V,). Every
element of Vp appears then as a function f : G — C such that

f(bs) = u(b)f(s), Vbe B, se(.
The action of G on V), is given by p,(f)(s) = f(sr) for s,r € G.
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We shall use this description of V, in order to give a concrete Whittaker model for p in the space
Ind{}(Vy,). Thus, we shall define an injective C[G]-linear map from V,, into Ind$ (Vy,). For every f € V,,
let Wy : G — C be the function defined by

uelU
It is easy to check that
Wy (us) Z f (wu'us) Z f(wu”s) ¥(u” u )T = uw)Wy(s), foruelU,seG
u'eU u'elU
and
W, ()(s Z pr(f) (wus) Z f (wusr) = Wy(sr), forrsed.
uelU uelU

Therefore, the map f + W defines a C[G]-linear map from V,, into Ind§(V;,). Since p is irreducible,
V, is the C[G]-span of any non-zero f € V,. We show the map is injective by constructing a specific
non-zero function f € V), such that Wy # 0.

Using Bruhat’s decomposition G = B U BwU, we define f by
f(b)=0 and f(bwu)= p(b)y(u), forbe B,uel.
Then f is a non-zero element of Ind%(V,,) and it satisfies
(%) f(su) =(u)f(s) for u e U and s € G.
Computing Wy(u) for v € U, we find

= > flwdu) p() = v () ) = gi(w).
u' el u'eU
Hence Wy # 0. Now we only need to prove that f € V,.

If dim(p) = ¢ + 1, then V, = Ind%(V},), and there is nothing to prove. We can therefore assume
that dim(p) = ¢ — 1. In this case Ind%(V,,) = Vy @V, where p’ is a 1-dimensional representation
of G. We can therefore write f = f1 + fo, where f; € Vy and fo € V,,. Since p’ is a 1-dimensional
representation of G, for every s € G, we have f1(s) = pl(f1)(1) = p1(det(s))fi1(1) (¢f. Lemma 2.5.2).
In particular, we have fi(u) = fi(1) for every u € U. Now for every u € U, by definition fi,(f1) and
¥ (u) f1 both belong to V,; and similarly fi,(f2) and ¥ (u) f2 both belong to V,,. Since by the equality (x),
b (f) = ¥(u) f, we have that f,(f1) + f(f2) = ¥(u)fi + ¢¥(u) fo. By the direct sum decomposition,
we conclude that fi,,(f1) = ¥ (u)fi. In particular, we have fi(u) = f1,(f1)(1) = ¥(u)f1(1), for every
u € U. It follows from fi(u) = fi(1) that fi(1) = 0. Since fi(s) = pi(det(s))fi(1), we have f; =0
and our contention is proved.

Note that (%) implies that f is an eigenvector belonging to . Hence, f is a Bessel vector for p.
In order to compute I',(v), we now have to compute

w2 o) =20 0) o 1) (o)

y€ly

Since

z 0 .
ify =0,
<0 1)(1 y><0 1>_ 0 1)
1 0/)\0 1)\z 0) g1 -1
4 . 01 L (y2) otherwise,
0 YT 1 0 0 1

we have that

Wi (0 ) = X mleu el i) = 3 mle) () i+ 5)

yeFy af=—1/z
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Also

D)= flow)pw) ™ = (u)pp(u) " =

uelU uelU
Hence

S (@) () e+ Bu()
af=—1/z

S (@) pa(B) (@b (Bu(—a )

X apf=—1/z

»er—* | =
g WM

>t
.—l'ﬁ
N—

= (7 Z 1 () " to(a) Tt (a) Z 12(8) " o(B) " (B).

q
a€Fy BeFy

Now recall that for a character x of F; and a non-unit character ¢ of IF+, one define the Gauss
sum
Glx.9) = Y x(@)é(x).
z€Fy
We have therefore proved the following:

Theorem 3.10.1. Let uy and pg be characters of Fy and let p = p be the corresponding irre-

ducible representation of G. If v is a character of IE‘X then

v(—1)
q

11,42)

FP(U): G( ! _law) ( lﬂﬁ)-

Remark . It is well known that | G(x, ¢) |= /g. Hence | I',(v) |= 1.

If ¥’ is another non-unit character of I}, then there exists an a € F,* such that ¢'(x) = (ax).
It follows that G(x,v¢") = x(a)"'G(x, ). Hence, if we denote by F’p the I-function of p obtained by
using ¢/, then

I, (v) = v(a)*pr(a)uz(a)T,(v).
3.11. The Computation of I',(v) for a Cuspidal p

Let v be a non-decomposable character of IFqXQ and let p = p, be the corresponding cuspidal represen-

tation of Gi. Recall that we consider V), as the space of all functions f : F; — C. We define the action
of p as the following.

{ (3 §> Y >] (2) = v(O)W(B5™"2) f(ad ™" 2)

and

N(V)=r, AeF,

We shall use this description of V, in order to give a concrete Whittaker Model W (p) in Indg(V¢).
We define a function  : G — C in W (p) as the following.

if y=0and a # 4,
n @ b = JW(a™16) ify=0and a=¢
v 4 ’

v(a
(D) T y—ass U )p(A) iy £ 0.
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We need to check that 7 is in Ind{} (V). Indeed, by ((1] g) (: g) — <a ‘;C”Y 5‘2(5) we have

0 if y=0and a # 9,
n ((é i) (: ?)) = qv(@)Pa™'B+() if y=0and a =4,
_le(aTM +€) 2N =as—v8 ¢(—T1;()‘))1/(/\) if v £ 0.

Thus, n(us) = ¥(u)n(s), for all w € U and s € G. Let W(n) be the C[G]-submodule of Ind§(Vy)
spanned by 7. Define a map ¢ : W(n) — V, by

o(h)(z) = h <‘S ?) , for h e W(n) and € FJ.

We are going to show that ¢ is a C[G]-linear map. Since both W (n) and V), are irreducible, this implies
that ¢ is a C[G]-isomorphism.

We only have to check ¢(75(n))(z) = ps(¢(n))(x) for the cases s € B and s = w'. For s = <a ﬁ),

0 ¢
we have
A A (A ) O I P o
and

piso@ = [o(5 F) @] @ =vorwe nemiesa)

— 1 ad 0)_ 0 if x # a4,
= O x)n< 0 1 _{y(5)¢(a—1ﬁ) if 2 = o 10.

o (%) 1)
srm@ = ((5 ) (5 o) =n(5 ) =% X emowe = i)

and

pu8()(a) = 3 vy Diten)otn) = 3 vl itena (§ 1) =i

yGF; yeF;

We have thus proved that W (n) is the Whittaker model of p. In fact, the homomorphism ¢ is the
same as the homomorphism R defined in Section refsec:R. If we define an operation of G' on F(F;,C)
by p then R is an G-isomorphism.

Lemma 3.11.1. The Wittaker function n for p is the Bessel function.
Proof. This is true because J,(1) = n(1) =1 and J,(a) =n(a) =0 for a € A and a # 0. O

Now for every f € V, = F(Fy,C), let Wy : G — C be the function defined by

Wis) = 3 fly)m (s <y01 (1))) . forallseG.

y€eFy
Then W is the Witakker function for p corresponding to f; indeed, we have R(Wy) = f.

In order to compute I‘p(v), we now have to compute

00 o) =% X =T

4 NA)=—z
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Hence, if v is a character of F, then

Lo = 22 Y s 0@ = T w3 e X e
B ey ’ L ey
= 2 T O ) = o) X uNO) T )Y

AeF, AEF 7,

Theorem 3.11.2. Let v be a non-decomposable character of ]’F;2 and let p = p, be the corresponding
cuspidal representation of G. Then

) = —o(=1) 3 oNO) I )) = —o(-DGr (v (0o N) b o Ty

q
>\61F52
X
for every character v of F .

Remark . Gf , is the Gauss sum for Fg. As in the non cuspidal case, | I',(v) |= 1, since | GF,» |=gq.
Also if ¢/ () = () is another character of F}, then I",(v) = v(a) 'v(a)*T,(v).

3.12. The Characters Table of GL(2,F,)
We conclude our exposition on the representations of GL(2,F,) with a computation of its characters

table.

(A). Though # = Ind$%(7) = Ind%(¢)) is not irreducible, it is the direct sum of all higher dimensional
irreducible representations. We compute it first. By Theorem 1.13.1, we have

1 _
Xﬁ(s):m Z Y(rLsr).

reG
r—lsreU

The only eigenvalue of elements of U is 1. It follows that the only conjugacy class on which y; may
not vanish are ¢;(1) and c(1). Clearly, xx(1) = [G : U] = (¢ — 1)*(¢ + 1). In order to compute y; at

c(1) = <(1) 1), we need:

Lemma 3.12.1.

s(x 1)8_1€B<:>S€B
0 «x

s
)

~v = 0. The lemma follows therefore from:
a B\ (xz 1\ [(d [\ [(a B 330+01 o N\ (z+ay ad’
v 6)\0 )\ &) \yv ¢ 0 = 00 vo8 ) vy 1+~
Lemma 3.12.1 implies that

o D g (6 D 5 e

seB a,06€Fy

/ /
Proof. Let s = be an element of G and let s~ = (?;, ?,

>. Then s € B if and only if

O

(B). Let o be a character of B which is defined by the pair of characters (1, u2) of Fy. Let
fi = Ind$ (1) and compute
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First,

(o m) |B,r€G < 1< )T):[GrB]gu(g 2>=(q+1)u1(m)u2(x).

For ca(x), we use Lemma 3.12.1 again;
v 1y _ 1 1 fz 1 . q r ad”t\
XM <O $) __|l3‘ }E:LL<T <O $) T> _'|13| j{: 1% (0 T —-M1($)M2($)
a,0€Fy
In order to compute the value of x; at c3(x,y), we need the following.

Lemma 3.12.2. Forz # vy

-1
(: ?) (g 2) (i ?) €EB<«<—=y=0 or =0

-1 VY,
Proof. Let <: ?) = <3, g,) it is easy to check that if v # 0 then o/ = 0 if and only if § = 0.

Our lemma follows therefore from:

GGG -6 0)-Gatm 5

Since <‘;‘ ,(@)) _ <§ 3) <(1’ é),we have
(0 y> |B] ZM( - ( > ) B Z“( - <0 x) 7“) = pr(@)pa(y) + pa (y)pa(x).

Finally, because the eigenvalues of elements c4(\) do not belong to Fy, x4(ca(X)) = 0.

(B1). If p1 # po, then fi is irreducible. Its character has therefore been computed.

(B2). If g = pa, then x = p@®p’, where p’ is a 1-dimensional character given by p'(s) = pq(det(s))
(cf. Lemma 2.5.2). Hence x,(s) = xu(s) — p1(det(s)).

(C). Let v be a non-decomposable character of IFqXQ and let p, be the corresponding cuspidal

representation. Let W (p) be the Whittaker model for p. We know that elements in W (p) are uniquely
determined by their values on A. For v € F, define d, : G — C be the unique element in W (p) such

that
<;1; O> 1 ifz=aq,
Ou =
0 1 0 otherwise.

-1
0

AN R IC) E s

{0a | € F} is a basis of W(p). We have

p6) = Sl (5 Vo= X [we () Dl (G 1)e

z€Fy z€Fy

- (9 )

z€Fy

The Bessel function 7 = 61 and §, = p (a (1)> (n); indeed, we have
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For c4(z), we h
0 —N(2)\ _ a 0\ (0 —=N(2)\ [a™" 0)) _ 0 —aN(z)
(i we) - 2@ D0 =) (0 D) -2l 5
= X SETE) Y eaTr)e)
acF¥ N(X\)=N(z)
= Y ) Y wleTi() - aTr(Y)
T NONG) Ry
Since N(A) = N(2), if A = z or A =7, then Tr(A) = Tr(z); hence 3, _ x P(aTr(z) — aTr(N) = ¢ — 1.

If A # z and A # Z, then Tr(\) # Tr(z); hence ZaeF; P(aTr(z) — Tr]F()\)) = —1. It follows that
o] mG) = Fla-veee- X

A#£2,Z

)=N

-1

Rep. c1(x) co(x) cs(z,y) ca(z)

Py (¢ — Dv(z) —v(z) 0 —v(z) —v(z)
Pui,u1) qlu’l(x)2 0 M1 (wy) —H1 <23>
Plnps) | @+ D)’ [ p(@)pe() | m(@)pe(y) + p(y)pe(e) 0
Indg(¢) (q - 1)2(61 + 1)61,m (1 - Q)(sl,x 0 0
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