
FACTORIZATION IN COMMUTATIVE RINGS

HUA-CHIEH LI

In this note, our ring is always a commutative ring. In other words, suppose that R is a
ring. Then there exist two binary operations + and · such that:

(1) (R, +) is an abelian group;
(2) (a · b) · c = a · (b · c) for all a, b, c ∈ R;
(3) a · (b + c) = a · b + a · c for all a, b, c ∈ R;
(4) a · b = b · a for all a, b ∈ R.

Moreover, we say R is an integral domain if R satisfies the following extra conditions:

• there exists 1 ∈ R such that 1 · a = a · 1 = a for all a ∈ R;
• if a �= 0 and b �= 0 in R, then a · b �= 0.

1. Euclidean Domain

Let N be the set of nonnegative integers and R a ring. We say that R is a Euclidean Ring
if there is a function φ : R \ {0} → N such that: if a, b ∈ R and b �= 0, then there exist q,
r ∈ R such that a = bq + r with either r = 0 or φ(r) < φ(b).

A Euclidean ring which is an integral domain is called a Euclidean domain.

Example 1.1. The Ring Z of integers with φ(n) = |n| is a Euclidean domain.

Proof. For x ∈ Q, denote [x] the greatest integer less than or equal to x. Given a, b ∈ Z, we
claim that there exist q, r ∈ Z such that a = bq + r with r = 0 or |r| < |b|.

We first consider the case that b > 0. Let q = [a/b] and r = a − b[a/b]. Then a = bq + r.
It remains to show that 0 ≤ r < b. We have that

a

b
− 1 <

[a

b

]
≤ a

b
.

Multiplying all terms of this inequality by −b, we obtain

b − a > −b
[a

b

]
≥ −a

and hence

0 ≤ a − b
[a

b

]
< b ,

which is precisely 0 ≤ r < b as desired.
For the case b < 0, use the similar argument above for a and −b. We find that there exist

q and r ∈ Z such that a = (−b)q + r with r = 0 or r < |b| = −b; so −q and r have the
desired properties. �

Example 1.2. If F is a field, then the ring of polynomials in one variable F [x] is a Euclidean
domain with φ(f) = deg(f).
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Proof. Given f , g ∈ F [x] with g �= 0, if deg(f) < deg(g), then let q = 0 and r = f . If
deg(f) ≥ deg(g), then we proceed by induction on deg(f).

If deg(f) = 0, then deg(g) = 0. Thus f and g are in F . Let q = f · g−1 and r = 0. We
have f = gq + r with r = 0 as desired.

Assume now that the property for Euclidean domain is true for polynomials of degree less
than n = deg(f). Suppose

f =
n∑

i=0

aix
i, g =

m∑
i=0

bix
i, with an �= 0, bm �= 0.

Let f1 = f − (anb−1
m xm−n)g. It is clear that deg(f1) ≤ n − 1. By the induction hypothesis

there are polynomials q1 and r1 such that f1 = gq1 + r1 with r1 = 0 or deg(r1) < deg(g).
Therefore, let q = anb−1

m xn−m + q′ and r = r1. Then

f = f1 + (anb−1
m xm−n)g = g(q1 + anb−1

m xm−n) + r1 = gq + r

with r = 0 or deg(r) < deg(g) as desired. �

Recall that the set of complex numbers C consists of elements of the form x + yi, with
x, y ∈ R where i satisfies i2 = −1. For α = x + yi ∈ C, we define the norm of α by
N(α) = x2 + y2. Given α = x+ yi and β = u+ vi, we have that αβ = (xu− yv)+ (xv + yu)i
and

N(αβ) = (xu − yv)2 + (xv + yu)2 = (x2 + y2)(u2 + v2) = N(α)N(β).

Example 1.3. Let Z[i] = {a + bi | a, b ∈ Z} be a subset of complex numbers. Z[i] is an
integral domain called the domain of Gaussian integers. Moreover, Z[i] is a Euclidean domain
with φ(a + bi) = N(a + bi) = a2 + b2.

Proof. Z[i] is clearly closed under addition and substraction. Moreover, if a+bi, c+di ∈ Z[i],
then

(a + bi)(c + di) = (ac − bd) + (ad + bc)i ∈ Z[i].

Thus Z[i] is closed under multiplication and is a ring. Since Z[i] is contained in the complex
numbers it is an integral domain.

It is clear that the norm defines a map from Z[i] to N. Let α = a + bi, β = c + di ∈ Z[i]
and suppose that β �= 0. Consider

α

β
=

a + bi

c + di
=

ac + bd

c2 + d2
+

bc − ad

c2 + d2
i = s + ti.

Choose integers m, n ∈ Z such that |s − m| ≤ 1/2 and |t − n| ≤ 1/2. Set δ = m + ni and
γ = α − βδ. Then δ, γ ∈ Z[i] and either γ = 0 or

φ(γ) = φ(β(
α

β
− δ)) = φ(β)φ(

α

β
− δ)) = φ(β)((s − m)2 + (t − n)2) ≤ 1

2
φ(β) < φ(β).

�

Exercise 1. Let ω = (−1 +
√−3)/2 and Z[ω] = {a + bω | a, b ∈ Z}. Show that Z[ω] is a

Euclidean domain.

Example 1.4. Let θ = (1 +
√−19)/2 and Z[θ] = {a + bθ | a, b ∈ Z}. Z[θ] is an integral

domain but is not a Euclidean domain.
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Proof. Z[θ] is clearly closed under addition and substraction. Moreover, θ2 = θ − 5. Hence,
if a + bθ, c + dθ ∈ Z[θ], then

(a + bθ)(c + dθ) = ac + (ad + bc)θ + bdθ2 = (ac − 5bd) + (ad + bc + bd)θ ∈ Z[θ].

Thus Z[θ] is closed under multiplication and is a ring. Since Z[θ] is contained in the complex
numbers it is an integral domain.

Suppose that Z[θ] is a Euclidean domain with φ : Z[θ] \ {0} → N satisfies the Euclidean
domain property. Let α ∈ Z[θ] be an element such that

φ(α) = min{φ(λ) |λ �= 0, 1,−1, λ ∈ Z[θ]}.
By the Euclidean domain property, there exist δ, γ ∈ Z[θ] such that 2 = αδ + γ with γ = 0
or φ(γ) < φ(α). However, by the definition of α, this implies that γ = 0, 1 or −1. In other
words, αδ = 1, 2 or 3.

Recall that if β = a+ bθ ∈ Z[θ], then N(β) = a2 +ab+5b2 ∈ N. Moreover, suppose β �= 0,
1 or −1. If a = 0 then N(β) = 5b2 ≥ 5 and if b = 0 then N(β) = a2 ≥ 4. If ab > 0, then

N(β) = a2 + ab + 5b2 = (a − b)2 + 4b2 + 3ab ≥ 4b2 + 3ab ≥ 7

and if ab < 0, then

N(β) = a2 + ab + 5b2 = (a + b)2 + 4b2 − ab ≥ 4b2 − ab ≥ 5.

In conclusion, if β ∈ Z[θ] \ {0, 1,−1} then N(β) ∈ N and N(β) ≥ 4.
Since N(αδ) = 1, 4 or 9, and N(αδ) = N(α)N(δ), we have that N(α)| 1, N(α)| 4 or

N(α)| 9. The discussion above shows that N(α) �= 1, 2, 3. Hence we have that N(α) = 4 or
N(α) = 9.

The Euclidean domain property shows that there exist δ′ and γ′ ∈ Z[θ] such that θ =
αδ′ + γ′ with either γ′ = 0 or φ(γ′) < φ(α). Again, the definition of α implies that αδ′ = θ,
θ−1 or θ+1. Taking norms, we have N(α)|N(θ), N(α)|N(θ−1) or N(α)|N(θ+1). However,
N(θ) = 5, N(θ − 1) = 5 and N(θ + 1) = 7. Neither one of them can be divided by 4 or 9.
We get a contradiction. Hence Z[θ] is not a Euclidean domain. �
Definition 1.5. A nonzero element a of a ring R is said to divide an element b ∈ R (notation:
a | b) if there exists x ∈ R such that b = ax. Elements a, b of R are said to be associates
(notation: a ≈ b) if a | b and b | a.

Let S be a nonempty subset of R. An element d ∈ R is a greatest common divisor of S
provided:

(1) d | a for all a ∈ S;
(2) if c | a for all a ∈ S, then c | d.

In general, greatest common divisors do not always exist. For example, in the ring 2Z
of even integers, 2 has no divisor at all, whence 2, 4 has no greatest common divisor. Even
when a greatest common divisor exists, it need not be unique. However, any two greatest
common divisors of S are clearly associates by property (2). Furthermore any associate of a
greatest common divisor of S is easily seen to be a greatest common divisor of S.

In the following we provide some basic properties of greatest common divisor.

Lemma 1.6. Let R be a ring and a, b, c ∈ R. Suppose that d is a greatest common divisor
of a, b.

(1) Suppose that c = aq + b for some q ∈ R. Then d is a greatest common divisor of a, c.
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(2) Suppose that d′ is a greatest common divisor of d, c. Then d′ is a greatest common
divisor of a, b, c.

Proof. (proof of (1)) We first show that d divides a and c. We know d divides a by definition.
Since d | a and d | b, we have a = dx and b = dy for some x, y ∈ R. Hence c = dxq + dy =
d(xq + y). This shows that d | c.

Suppose e ∈ R such that e | a and e | c. Then there exist u, v ∈ R such that a = eu and
c = ev. Hence b = c − aq = e(v − uq). This shows that e | b. Since e divides a and b, by the
definition of greatest common divisors, we have e | d. �
Exercise 2. Prove (2) of Lemma 1.6.

Example 1.7 (The Euclidean Algorithm). Let a, b ∈ Z. By Example 1.1, there exist q1,
r1 ∈ Z such that

a = bq1 + r1, 0 ≤ r1 < |b| .
If r1 > 0, there exist q2, r2 ∈ Z such that

b = r1q2 + r2, 0 ≤ r2 < r1.

If r2 > 0, there exist q3, r3 ∈ Z such that

r1 = r2q3 + r3, 0 ≤ r3 < r2.

Continue this process. Then rn = 0 for some n ∈ N. If n > 1 then rn−1 is a greatest common
divisor of a, b. If n = 1, then b is a greatest common divisor of a, b.

Proof. Note that r1 > r2 > . . . . If rn �= 0 for all n ∈ N, then r1, r2, r3, . . . is an infinite,
strictly decreasing sequence of positive integers, which is impossible. So rn = 0 for some n.

If r1 = 0, then a = bq1. So b | a and of course b | b. If c divides both a and b, then of course
c | b. Hence b is a greatest common divisor of a, b.

Now suppose rn = 0 for n > 1. Then rn−2 = rn−1qn (we set r0 = b). By the argument
above, we have that rn−1 is a greatest common divisor of rn−2, rn−1. However, rn−3 =
rn−2qn−1 + rn−1 (we set r−1 = a). By Lemma 1.6 (1), we have rn−1 is a greatest common
divisor of rn−2, rn−3. Continue this argument inductively. We have that rn−1 is a greatest
common divisor of a, b. �
Exercise 3. Suppose R is a Euclidean domain and a1, . . . , an ∈ R. Show that there exists a
greatest common divisor of a1, . . . , an.
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2. Principle Ideal Domain

Given a ring R, a subring I of R is an ideal provided rx ∈ I for r ∈ R, x ∈ I. A principal
ideal ring is a ring in which every ideal is principle. In other words, for every ideal I of R,
there exists x ∈ I such that if λ ∈ I, λ = rx for some r ∈ R. A principle ideal ring which is
an integral domain is called a principle ideal domain

Example 2.1. Z is a principle ideal domain.

Proof. Given a nonzero ideal I of Z. Consider n ∈ Z such that

|n| = min {|x| : x ∈ I \ {0}} .

Given a ∈ I, by Example 1.1, there exist h, r ∈ Z such that a = nh + r with either r = 0 or
|r| < |n|. Since r = a − nh ∈ I, by the definition of n, we conclude that r = 0 and hence
a = nh. In other words, I = (n). �

Using similar argument we can show the following:

Theorem 2.2. Every Euclidean ring is a principle ideal ring.

Exercise 4. Prove Theorem 2.2.

From Theorem 2.2, the polynomial ring F [x] in Example 1.2 and the Gaussian integers
Z[i] in Example 1.3 are principle ideal domains.

In general, to prove a ring is a principle ideal ring is not easy. We can imitate the proof
of Theorem 2.2 to show certain rings are principle ideal rings.

Theorem 2.3. Let R be a ring. Suppose that there is a function φ : R \ {0} → N such that
given α, β ∈ R, β �= 0, if β does not divide α then there exist γ, δ ∈ R such that αγ−βδ �= 0
and

φ(αγ − βδ) < φ(β).

Then R is a principle ideal ring.

Proof. Let I be a nonzero ideal of R. Let β ∈ I be an element with the property that

φ(β) = min {φ(x) : x ∈ I \ {0}} .

We claim that I = (β). Given α ∈ I, suppose that β does not divide α. By the hypothesis,
there exist δ, γ ∈ R such that αγ − βδ �= 0 and φ(αγ − βδ) < φ(β). Since αγ − βδ ∈ I and
αγ − βδ �= 0, this contradicts the assumption of β. Therefore β divides every element of
I. �
Example 2.4. Let θ = (1+

√−19)/2 and Z[θ] = {a+ bθ | a, b ∈ Z}. Z[θ] is a principle ideal
domain.

Proof. Let φ(α) = N(α) for all α ∈ Z[θ] \ {0} . We will show that Z[θ] satisfies the condition
in Theorem 2.3.

Given α, β ∈ Z[θ] with β �= 0, if β does not divide α then a case by case consideration will
lead to elements γ, δ ∈ Z[θ] such that

0 < N

(
α

β
γ − δ

)
< 1,

whence αγ − βδ �= 0 and N(αγ − βδ) < N(β).
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Write
α

β
= s + tθ, with s, t ∈ Q.

(1) t ∈ Z: In this case, s �∈ Z. Let n ∈ Z such that |s − n| ≤ 1/2 and take γ = 1,
δ = n + tθ. Now,

0 < N

(
α

β
γ − δ

)
= N(s − n) ≤ 1

4
< 1.

(2) s ∈ Z:
(a) 5t ∈ Z: Let m ∈ Z such that |t − m| ≤ 1/2. In fact, because 5t ∈ Z, we have

|t − m| ≤ 2/5. Take γ = 1 and δ = s + mθ. Now

0 < N

(
α

β
γ − δ

)
= N((t − m)θ) ≤ 4

25
× 5 < 1.

(b) 5t �∈ Z: Consider

(s + tθ)(1 − θ) = s − sθ + tθ − tθ2 = s − sθ + tθ − tθ + 5t = s + 5t − sθ.

Let n ∈ Z such that |s + 5t − n| ≤ 1/2 and take γ = 1 − θ, δ = n − sθ. Now,

0 < N

(
α

β
γ − δ

)
= N(s + 5t − n) ≤ 1

4
< 1.

(3) s, t �∈ Z:
(a) 2s, 2t ∈ Z: Consider

(s + tθ)θ = sθ + tθ − 5t = −5t + (s + t)θ.

Since s + t ∈ Z, letting n ∈ Z such that |−5t − n| ≤ 1/2, we can take γ = θ and
δ = n + (s + t)θ. Now,

0 < N

(
α

β
γ − δ

)
= N(−5t − n) ≤ 1

4
< 1.

(b) 2s �∈ Z and 2t ∈ Z: Let n ∈ Z such that |2s − n| ≤ 1/2. Take γ = 2 and
δ = n + 2tθ. Now,

0 < N

(
α

β
γ − δ

)
= N(2s − n) ≤ 1

4
< 1.

(c) 2s ∈ Z and 2t �∈ Z: When 10t ∈ Z, let m ∈ Z such that |2t − m| ≤ 1/2. In fact,
because 5× 2t ∈ Z, we have |2t − m| ≤ 2/5. Take γ = 2 and δ = 2s + mθ. Now

0 < N

(
α

β
γ − δ

)
= N((2t − m)θ) ≤ 4

25
× 5 < 1.

If 10t �∈ Z, then consider

(s + tθ)(2 − 2θ) = 2s − 2sθ + 2tθ − 2tθ2 = 2s + 10t − 2sθ.

Let n ∈ Z such that |2s + 10t − n| ≤ 1/2 (note that 10t �∈ Z) and take γ = 2−2θ,
δ = n − 2sθ. Now,

0 < N

(
α

β
γ − δ

)
= N(2s + 10t − n) ≤ 1

4
< 1.
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(d) 2s �∈ Z and 2t �∈ Z: Let m ∈ Z such that |t − m| ≤ 1/2. If |t − m| ≤ 1/3, letting
n ∈ Z such that |s − n| ≤ 1/2, then we can take γ = 1 and δ = n + mθ. Now,

0 < N

(
α

β
γ − δ

)
= N((s − n) + (t − m)θ) ≤ 1

4
+

1

6
+

1

9
× 5 =

35

36
< 1.

If 1/3 < |t − m| < 1/2, then 2/3 < |2t − 2m| < 1. Let m′ ∈ Z such that
|2t − m′| ≤ 1/2. Then we have |2t − m′| < 1/3. Let n′ ∈ Z such that |2s − n′| ≤
1/2. Take γ = 2 and δ = n′ + m′θ. Now,

0 < N

(
α

β
γ − δ

)
= N((2s − n′) + (2t − m′)θ) <

1

4
+

1

6
+

1

9
× 5 =

35

36
< 1.

�
Remark 2.5. The converse of Theorem 2.2 is false since Z[θ] is a principle ideal domain that
is not a Euclidean domain (Example 1.4).

Example 2.6. Let Z[x] be the ring of polynomials over Z. Then Z[x] is an integral domain
but is not a principle ideal domain.

Proof. Considering the leading coefficients of f(x) and g(x), we can easily conclude that if
f(x) �= 0 and g(x) �= 0 in Z[x], then f(x)g(x) �= 0.

To show that Z[x] is not a principle ideal domain, we consider the ideal I generated by 2
and x (i.e. I = (2, x)). We first claim that I �= Z[x]. Otherwise there exist u(x), v(x) ∈ Z[x]
such that 1 = 2u(x) + xv(x). Substitute x = 0 into the identity. We have that 1 = 2u(0)
which is absurd because u(0) ∈ Z.

Now, suppose that there exists f(x) ∈ Z[x] such that (f(x)) = I. In other words, there
exist g(x) ∈ Z[x] and h(x) ∈ Z[x] such that 2 = g(x)f(x) and x = h(x)f(x). From
2 = g(x)f(x), we conclude that f(x) ∈ Z. Because I �= Z[x], f(x) can not be a unit, whence
f(x) = ±2. On the other hand, by x = h(x)f(x), we have h(x) = ax + b for some a, b ∈ Z.
Since ±2a �= 1 for all a ∈ Z, we get a contradiction. �
Exercise 5. Suppose that R is an integral domain. Suppose further that there exists a ∈ R
such that a �= 0 and a is not a unit in R. Prove that R[x] the polynomial ring over R is an
integral domain but is not a Euclidean domain.

Finally we provide some basic properties of principle ideal rings.

Proposition 2.7. Every principle ideal ring is a ring with identity.

Proof. Since R itself is an ideal of R, R = (a) for some a ∈ R. Consequently, a ∈ R,
so a = ea = ae for some e ∈ R. If b ∈ R, then b = xa for some x ∈ R. Therefore,
be = (xa)e = x(ae) = xa = b, whence e is the identity of R. �
Exercise 6. Prove that every Euclidean ring is a ring with identity without using the fact
that every Euclidean ring is a principle ideal ring.

Proposition 2.8. If R is a principle ideal ring, given a1, . . . , an ∈ R, then a greatest common
divisor of {a1, . . . , an} exists.

Proof. Consider I = (a1, . . . , an) the ideal generated by a1, . . . , an. Since R is a principle
ideal ring, there exists d ∈ R such that I = (d). We claim that d is a greatest common
divisor of {a1, . . . , an}.
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First, since ai ∈ I = (d), there exist ri ∈ R such that ai = rid for i = 1, . . . , n. Hence d | ai

for i = 1, . . . , n.
Second, since (a1, . . . , an) = (d), there exist λi ∈ R such that d =

∑n
i=1 λiai. Suppose that

c | ai for i = 1, . . . , n. There exist γi ∈ R such that ai = γic for i = 1, . . . , n. This implies
that d =

∑n
i=1(λiγi)c, whence c | d. �

Recall that a ring is Noetherian if it satisfies the ascending chain condition on ideals. It
can be proved that R is Noetherian if and only if every ideal of R is finitely generated. We
do not need this fact here. However, we can show that a principle ideal ring is Noetherian.

Lemma 2.9. If R is a principle ideal ring and

I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · ·
is a chain of ideals in R, then for some n ∈ N, Ij = In for all j ≥ n.

Proof. Let I = ∪i∈NIi. We claim that I is an ideal of R. If b, c ∈ I, then we have b ∈ Ii and
c ∈ Ij for some i, j ∈ N. Without loss of generality, we can assume that i ≥ j. Consequently
Ij ⊆ Ii, and hence b, c ∈ Ii. Therefore, b − c ∈ Ii ⊆ I. Similarly, if r ∈ R and b ∈ I, then
b ∈ Ii for some i ∈ N, whence rb ∈ Ii ⊆ I. Therefore, I is an ideal of R. By hypothesis
I is principle, say I = (a). Since a ∈ I, we have a ∈ In for some n ∈ N. Hence (a) ⊆ In.
Therefore, for every j ≥ n,

(a) ⊆ In ⊆ Ij ⊆ (a),

whence Ij = In. �
Exercise 7. Suppose that R is a principle ideal ring. Let a1, . . . , an, . . . be (infinitely many)
elements in R. Prove that there exists a greatest common divisor of {a1, . . . , an, . . . } .
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3. Unique Factorization Domain

3.1. General Properties. The Fundamental Theorem of Arithmetic says that any positive
integer n > 1 can be written uniquely in the form n = pt1

1 · · · ptr
r , where p1 < · · · < pr are

primes and ti > 0 for all i. In this section we study those integral domains in which an
analogue of the fundamental theorem of arithmetic holds.

In Z, a prime number p has the following properties:

(1) If p = ab then a or b is a unit.
(2) If p | ab then p | a or p | b.

For arbitrary ring, these are two different properties.

Definition 3.1. Let R be a ring with identity. An element π ∈ R is irreducible provided
that π is not a unit and if π = ab for some a, b ∈ R then a or b is a unit.

An element p ∈ R is prime provided that p is not a unit and if p | ab then p | a or p | b.
Example 3.2. In the ring Z/6Z = {0̄, 1̄, 2̄, 3̄, 4̄, 5̄}, 2̄ is prime but it is not irreducible.

Proof. 2̄ does not divide 1̄ · 1̄ = 5̄ · 5̄ = 1̄, 1̄ · 3̄ = 3̄ · 3̄ = 3̄ · 5̄ = 3̄, and 1̄ · 5̄ = 5̄. Hence 2̄
is prime. On the other hand, 2̄ is not irreducible because 2̄ = 2̄ · 4̄ and neither 2̄ nor 4̄ are
units in Z/6Z. �
Example 3.3. In the ring Z[

√
10] =

{
a + b

√
10 : a, b ∈ Z

}
, 2 is irreducible but it is not

prime.

Proof. Recall that the map N : Z[
√

10] → Z given by N (a + b
√

10) = a2 − 10b2 has the
properties that N (αβ) = N (α)N (β) for all α, β ∈ Z[

√
10] and N (α) = ±1 if and only if α

is a unit.
Suppose that there exist α and β in Z[

√
10] which are not units such that 2 = αβ. Then we

have 4 = N (2) = N (α)N (β). Since α = a+b
√

10 is not a unit, we have N (α) = a2−10b2 =
±2. This shows that a2 ≡ ±2 (mod 5). However, neither 2 nor −2 is a quadratic residue
modulo 5. We get a contradiction. Hence 2 is irreducible.

On the other hand, since 2·3 = 6 = (4+
√

10)(4−√
10), we have that 2 | (4+

√
10)(4−√

10).
Suppose that 2 | (4 +

√
10) or 2 | (4 −√

10). By taking N , we have that 4 | 6 in Z, which is
absurd. Hence 2 is not prime in Z[

√
10]. �

From examples above, we know that in general prime elements and irreducible elements
are distinct. However in some cases, they are related.

Lemma 3.4. Let R be an integral domain. Then every prime element of R is irreducible.

Proof. Suppose that p is prime. If p = ab, then either p | a or p | b; say p | a. Thus there exist
x ∈ R such that a = px. Therefore, p = ab = pxb, and hence p(1 − xb) = 0. Since R is an
integral domain, this implies that 1 = xb. Therefore, b is a unit. Hence p is irreducible. �

We include an important property for irreducible elements of an integral domain which is
familiar for the integer ring Z.

Lemma 3.5. Let R be an integral domain. The only divisors of an irreducible element of R
are its associates and the units of R.

Proof. If π is irreducible and d |π, then because π = dx for some x ∈ R, this implies that
either d or x is a unit. The second case implies that d and π are associates. �
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Exercise 8. Let R be an integral domain. Suppose that a, b ∈ R are associates.

(1) Prove that there exists an unit u ∈ R such that a = ub.
(2) Prove that a is irreducible if and only if b is irreducible.
(3) Prove that a is prime if and only if b is prime.

Definition 3.6. An integral domain R is a unique factorization domain provided that:

(1) Every nonzero element a ∈ R which is not a unit can be written as a = α1 · · ·αn

with αi irreducible.
(2) If a = α1 · · ·αn = β1 · · · βm with αi, βj irreducible, then n = m and for some

permutation σ of {1, 2, . . . , n}, αi and βσ(i) are associates for every i.

Remark 3.7. From the definition, every irreducible element in a unique factorization domain
is necessary prime. Consequently, prime elements and irreducible elements coincide in a
unique factorization domain by Lemma 3.4.

Example 3.8. The polynomial ring F [x] over a field F is a unique factorization domain.

Proof. Because every nonzero constant is a unit, we show first that every nonconstant poly-
nomial can be written as a product of finitely many irreducible polynomial. It is to see
that polynomials of degree 1 are irreducible. assume that we have proved the result for all
polynomials of degree less than n and that deg(f) = n. If f is irreducible, we are done.
Otherwise f = gh where 1 ≤ deg(g), deg(h) < n. By the induction assumption both g and
h can be written as products of finitely many irreducible polynomials. Thus so is f .

Next, we show that every irreducible polynomial is prime. Suppose that π is an irreducible
polynomial and π |fg. Consider the ideal (f, π). Since F [x] is a principle ideal domain (c.f.
Theorem 2.2), we have (f, π) = (d) for some d ∈ F [x]. π ∈ (d) implies that d |π, and hence
by Lemma 3.5, (f, π) = (1) or (π). If (f, π) = (π), then π | f . If (f, π) = 1, then there exist
l, h ∈ F [x] such that lπ + hf = 1. Thus lπg + hfg = g. Since π divides the left-hand side of
this equation, π must divide g.

Finally if f = π1 · · ·πn = p1 · · · pm with πi, pj irreducible, then since π1 is prime, π1 divides
some pj; say p1. On the other hand, since p1 is irreducible and π1 is not a unit, by Lemma 3.5
π1 and p1 are associates; say uπ1 = p1 for some unit u of R. Hence π2 · · ·πn = (up2) · · · pm.
By Exercise 8, up2 is also irreducible, the proof of uniqueness is now completed by a routine
inductive argument. �
Exercise 9. Let R be an integral domain.

(1) Prove that p is a prime element in R if and only if (p) is a prime ideal of R.
(2) Suppose that R is a principle ideal domain. Prove that π is irreducible in R if and

only if (π) is a maximal ideal of R.
(3) Suppose that R is a principle ideal domain. Prove that an element in R is prime if

and only if it is irreducible.
(4) Show that Z[

√
10] is not a principle ideal domain.

In general, to show a ring is a unique factorization domain we only have to show the
following:

(1) using the irreducibility to show that in the specific ring every nonzero element which
is not a unit can be written as a product of finitely many irreducible elements;

(2) show that in the specific ring every irreducible element is prime. Then the proof
of uniqueness can be completed by a routine inductive argument as in the proof of
Example 3.8.
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Theorem 3.9. Every principle ideal domain is a unique factorization domain.

Proof. Suppose that R is a principle ideal domain. We claim first that if a ∈ R, a �= 0 and
a is not a unit, then a can be written as a product of finitely many irreducible elements.
If a can not be written as a product of finitely many irreducible elements, then a is not
irreducible and hence a = a1b1 for some a1, b1 ∈ R which are not units. By assumption, one
of the a1 or b1 can not be written as a product of finitely many irreducible elements; say
a1. Then a1 = a2b2 for some a2, b2 ∈ R which are not units and a2 can not be written as a
product of finitely many irreducible elements. Continuing in this way, we construct infinitely
many ai with ai = ai+1bi+1 where all the ai and bi ∈ R are not units. Since a = a1b1 and b1

is not a unit, we have that (a) � (a1). Similarly, we have (ai) � (ai+1). In other words we
have a nonstop ascending chain of ideals

(a) � (a1) � · · · � (ai) � · · · ,

contradicting Lemma 2.9.
For the uniqueness, exercise 9 says that every irreducible element of R is prime. This

completes the proof.
�

Exercise 10. Suppose that R is a unique factorization domain. Let S be a set of primes
in R such that every prime in R is associate to a prime in S and no two primes in S are
associate.

(1) If a ∈ R, a �= 0, show that we can uniquely write

a = u
∏
p∈S

pvp(a),

where u is a unit and vp(a) are nonnegative integers which are positive only for finitely
many p ∈ S.

(2) Prove that vp(ab) = vp(a) + vp(b) for all p ∈ S and a, b ∈ R.
(3) Given a1, . . . , an ∈ R, prove that there exists a greatest common divisor of a1, . . . , an.

By Theorem 3.9, we know that Z[i] and Z[1+
√−19
2

] are unique factorization domains. The
converse of Theorem 3.9 is not always true. For example, we know that Z[x] is not a principle
ideal domain (c.f. Example 2.6), but we will show later that Z[x] is a unique factorization
domain.

3.2. Factorization in Polynomial Rings. In the rest of this section, we devote entirely
to show that if R is a unique factorization domain, then R[x], the polynomial ring over R is
also a unique factorization domain.

Let F be the quotient field of R. In other words, every element of F can be written as
a/b for some a, b ∈ R with b �= 0. Our strategy is using the fact that F [x] is a unique
factorization domain to show that R[x] is a unique factorization domain.

Let f =
∑n

i=0 aix
i be a nonzero polynomial in R[x]. Since R is a unique factorization

domain, by Exercise 10 (3), a greatest common divisor of the coefficients a0, a1, . . . , an exists.
We call it a content of f and denotes it by C(f). Strictly speaking, C(f) is ambiguous since
greatest common divisors are not unique. But any two contents of are necessarily associates.
We shall write b ≈ c whenever b and c are associates in R. If f ∈ R[x] and C(f) is a unit in
R, then f is said to be primitive.
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Lemma 3.10. Let R be a unique factorization domain. a ∈ R and f, g ∈ R[x].

(1) C(af) ≈ aC(f). In particular, f = C(f)f1 with f1 primitive in R[x].
(2) (Gauss) C(fg) ≈ C(f)C(g). In particular, the product of primitive polynomials in

R[x] is also primitive.

Proof. (1) Suppose that f =
∑n

i=0 aix
i and d = C(f) which is a greatest common divisor of

a0, a1, . . . , an. Then af =
∑n

i=0 aaix
i and ad is a greatest common divisor of aa0, aa1, . . . , aan.

On the other hand, let bi = ai/d ∈ R. The greatest common divisor of b0, b1, . . . , bn is a unit.
Hence f = d

∑n
i=0 bix

i = C(f)f1 with f1 =
∑n

i=0 bix
i primitive.

(2) f = C(f)f1 and g = C(g)g1 with f1, g1 primitive, by (1). Consequently C(fg) ≈
C(f)C(g)C(f1g1). Hence it suffices to prove that if f and g are primitive then fg is primitive
(i.e. C(fg) is a unit). If f =

∑n
i=0 aix

i and g =
∑m

j=0 bjx
j, then fg =

∑n+m
k=0 ckx

k with

ck =
∑

i+j=k aibj. If C(fg) is not a unit, then since R is a unique factorization domain, there

exists a prime element p ∈ R such that p |C(fg). That is, p | ck for all k. Since C(f) is a
unit, p � C(f). Hence there is an integer s such that p | ai for i < s and p � as. Similarly
there is an integer t such that p | bj for j < t and p � bt. Consider

cs+t = a0bs+t + a1bs+t−1 + · · · + as−1bt+1 + asbt + as+1bt−1 + · · · + as+tb0.

p divides every term on the right-hand side of the equation except the term asbt. Hence
p � cs+t. This is a contradiction. Therefore fg is primitive. �

Now for study the irreducible elements in R[x], we first notice that if α ∈ R is irreducible
in R, then α is also irreducible in R[x]. Indeed, if α = f1f2 for f1, f2 ∈ R[x], then comparing
the degrees of both side we have f1, f2 ∈ R. Since α is irreducible in R, either f1 or f2 is a
unit in R and hence a unit in R[x].

Next, we compare elements in R[x] and elements in F [x]. Suppose f =
∑n

i=0 aix
i ∈ F [x].

We can write ai = αiβ
−1
i for some αi, βi ∈ R and βi �= 0. Let β =

∏n
i=0 βi. We have

βai = αiγi for some γi ∈ R and hence βf =
∑n

i=0 αiγix
i ∈ R[x]. In other word, every

f ∈ F [x] can always be written as f = ab−1f1 with a, b ∈ R, b �= 0 and f1 primitive in R[x].

Lemma 3.11. Let f be a primitive polynomial in R[x] and g ∈ R[x]. Then f divides g in
R[x] if and only if f divides g in F [x].

Proof. If f | g in R[x], then g = fh for some h ∈ R[x] ⊆ F [x]. Hence f | g in F [x].
On the other hand, if f | g in F [x], then g = fh for some h ∈ F [x]. Because h = ab−1h1

with a, b ∈ R, b �= 0 and h1 primitive in R[x], we have that bg = afh1. Taking contents on
both side, by Lemma 3.10 we have

bC(g) ≈ C(bg) ≈ C(afh1) ≈ aC(f)C(h1) ≈ a,

because C(f) and C(h1) are units in R. Hence ab−1 ∈ R. In other words, h = ab−1h1 ∈ R[x]
and hence f | g in R[x]. �

Lemma 3.12. Let f be a primitive polynomial in R[x]. Then f is irreducible in R[x] if and
only if f is irreducible in F [x].

Proof. Suppose f is irreducible in F [x] and f = gh with g, h ∈ R[x]. Then one of g and h is
a unit in F [x]; say g and hence g is a constant. Thus C(f) ≈ gC(h). Since C(f) is a unit in
R, g must be a unit in R and hence in R[x]. Therefore, f is irreducible in R[x].
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Conversely, if f is irreducible in R[x] and f = gh with g, h ∈ F [x]. We can write g = ab−1g1

with a, b ∈ R, b �= 0 and g1 primitive in R[x] and h = cd−1h1 with c, d ∈ R, d �= 0 and h1

primitive in R[x]. Consequently, bdf = acg1h1. Since f and g1h1 are primitive,

bd ≈ bdC(f) ≈ C(bdf) ≈ C(acg1h1) ≈ acC(g1h1) ≈ ac.

Thus bd and ac are associates and this implies that acb−1d−1 = α ∈ R is a unit. Hence
f = αg1h1 in R[x]. By hypothesis, one of g1, h1 is a unit in R[x]; say g1. Hence g1 is a
constant and so is g = ab−1g1. This implies that f is irreducible in F [x]. �
Exercise 11. Let f be a primitive polynomial in R[x]. Prove that f is prime in R[x] if and
only if f is prime in F [x].

Theorem 3.13. If R is a unique factorization domain, then the polynomial ring R[x] is also
a unique factorization domain.

Proof. Given f ∈ R[x], we can write f as f = C(f)f1 with f1 primitive in R[x]. Since
C(f) ∈ R and R is a unique factorization domain, if C(f) is not a unit, we can write C(f)
as a product of finitely many irreducible elements in R. Theses elements are also irreducible
in R[x]. Hence it is sufficient to show that every primitive polynomial of positive degree in
R[x] can be written as a product of finitely many irreducible elements in R[x]. Suppose f is a
primitive polynomial in R[x]. Since F [x] is a unique factorization domain (c.f. Example 3.8)
which contains R[x], f = p1 · · · pn with each pi irreducible in F [x]. Writing pi = aib

−1
i qi with

ai, bi ∈ R, bi �= 0 and qi primitive in R[x]. Clearly each qi is irreducible in F [x] and hence is
irreducible in R[x] by Lemma 3.12. Let a = a1 · · · an and b = b1 · · · bn. Then bf = aq1 · · · qn.
Because C(f) and C(q1 · · · qn) are units in R, it follows that a and b are associates in R.
Thus a = bu with u a unit in R. Therefore f = uq1 · · · qn with uq1 and q2, . . . , qn irreducible
in R[x].

To show the uniqueness, as in the proof of Theorem 3.9, we only have to show that every
irreducible polynomial in R[x] is prime. Suppose f is irreducible in R[x]. If f ∈ R, then
by R is a unique factorization domain, f is prime in R. If f | gh for some g, h ∈ R[x], then
lf = gh for some l ∈ R[x]. By Lemma 3.10, we have

fC(l) ≈ C(lf) ≈ C(gh) ≈ C(g)C(h).

This implies that f |C(g)C(h) in R and hence f |C(g) or f |C(h). Therefore, f | g or f |h in
R[x]. Therefore, f is prime in R[x]. Now suppose that f is a polynomial of positive degree
in R[x]. f is irreducible in R[x] implies that f is a primitive polynomial in R[x]. Lemma
3.12 says that f is irreducible in F [x] and hence f is prime in F [x] because F [x] is a unique
factorization domain. By Exercise 11, f is prime in R[x]. �
Corollary 3.14. If R is a unique factorization domain, then the polynomial ring over R in
n indeterminates, R[x1, . . . , xn] is also a unique factorization domain.

Proof. By Theorem 3.13, R[x1] is a unique factorization domain. Since R[x1, . . . , xn] =
R[x1, . . . , xn−1][xn], the proof is now completed by a routine inductive argument. �
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