FACTORIZATION IN COMMUTATIVE RINGS

HUA-CHIEH LI

In this note, our ring is always a commutative ring. In other words, suppose that R is a
ring. Then there exist two binary operations + and - such that:

(1) (R,+) is an abelian group;

(2) (a-b)-c=a-(b-c) foralla,b, c€ R,
B)a-(b+c)=a-b+a-cforalla,b,ceR;
(4) a-b="b-aforall a, b€ R.

Moreover, we say R is an integral domain if R satisfies the following extra conditions:

e there exists 1 € Rsuch that 1-a=a-1=a for all a € R,
eifa#0and b#0in R, then a-b # 0.

1. EUCLIDEAN DOMAIN

Let N be the set of nonnegative integers and R a ring. We say that R is a Fuclidean Ring
if there is a function ¢ : R\ {0} — N such that: if a, b € R and b # 0, then there exist ¢,
r € R such that a = bq + r with either r = 0 or ¢(r) < ¢(b).

A Euclidean ring which is an integral domain is called a Fuclidean domain.

Example 1.1. The Ring Z of integers with ¢(n) = |n| is a Euclidean domain.

Proof. For x € Q, denote [z] the greatest integer less than or equal to z. Given a, b € Z, we
claim that there exist ¢, r € Z such that a = bg + r with » =0 or |r| < |b|.

We first consider the case that b > 0. Let ¢ = [a/b] and r = a — ba/b]. Then a = bq + 7.
It remains to show that 0 < r < b. We have that

1< [f <5

Multiplying all terms of this inequality by —b, we obtain
b—a>—b[%} > —a

and hence
a

Oga—bh

}<b,

which is precisely 0 < r < b as desired.

For the case b < 0, use the similar argument above for a and —b. We find that there exist
q and r € Z such that a = (=b)q + r with r = 0 or r < |b|] = —b; so —q and r have the
desired properties. O

Example 1.2. If F' is a field, then the ring of polynomials in one variable F'[z] is a Euclidean
domain with ¢(f) = deg(f).
1
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Proof. Given f, g € F[z| with g # 0, if deg(f) < deg(g), then let ¢ = 0 and r = f. If
deg(f) > deg(g), then we proceed by induction on deg(f).

If deg(f) = 0, then deg(g) = 0. Thus f and g are in F. Let ¢ = f-¢g ' and r = 0. We
have f = gq 4 r with r = 0 as desired.

Assume now that the property for Euclidean domain is true for polynomials of degree less
than n = deg(f). Suppose

f= Zaixi, g= Zbixi, with a,, # 0,b,, # 0.
i=0 i=0

Let fi = f — (anb,!a™ ™)g. It is clear that deg(f;) < n — 1. By the induction hypothesis
there are polynomials ¢; and ry such that fi = gg1 + 1 with r, = 0 or deg(r;) < deg(g).
Therefore, let ¢ = a,b,,'x" ™™ + ¢’ and r = 1. Then

f= i+ (anby 2™ ) g = g(q + andy, 2™ ") + 11 = gg + 7
with 7 = 0 or deg(r) < deg(g) as desired. O

Recall that the set of complex numbers C consists of elements of the form x + yi, with
x, y € R where i satisfies i> = —1. For a = z + yi € C, we define the norm of a by
N(a) = 2?+y* Given a = x+yi and 3 = u+vi, we have that a3 = (zu—yv) + (xv +yu)i
and

N(afB) = (zu —yv)* + (zv + yu)* = (2* + y*)(u® + v*) = N(a) N (D).

Example 1.3. Let Z[i] = {a + bi|a,b € Z} be a subset of complex numbers. Z[i] is an
integral domain called the domain of Gaussian integers. Moreover, Z[i] is a Euclidean domain
with ¢(a + bi) = N(a + bi) = a® + V*.

Proof. 7Z[i] is clearly closed under addition and substraction. Moreover, if a+bi, c+di € Z]i],
then

(a+bi)(c+ di) = (ac — bd) + (ad + be)i € Zi].

Thus Z[i] is closed under multiplication and is a ring. Since Z][i] is contained in the complex
numbers it is an integral domain.

It is clear that the norm defines a map from Z[i] to N. Let o = a + bi, f = ¢ + di € Z[i]
and suppose that 5 # 0. Consider

a_a+bi_ac+bd bc — ad .

= s+ t1.

= = + i
6 c+di A+d> AH4d?

Choose integers m, n € Z such that |s —m| < 1/2 and |t —n| < 1/2. Set 6 = m + ni and
v =a— (4. Then 0, v € Z[i] and either v =0 or

00) = 6B = 8)) = 6(9)o(5 = 8)) = (B) (s = m)? + (¢ =) < 50(8) < o(9).

O

Exercise 1. Let w = (=1 ++/—3)/2 and Z|w] = {a + bw |a,b € Z}. Show that Z|w] is a
Euclidean domain.

Example 1.4. Let 6§ = (1 ++/—19)/2 and Z[f] = {a + b0 |a,b € Z}. Z[0] is an integral

domain but is not a Euclidean domain.
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Proof. Z[6)] is clearly closed under addition and substraction. Moreover, 62 = 6 — 5. Hence,
if a4 00, ¢ + df € Z[0], then

(a4 b0)(c+ df) = ac+ (ad + be)d + bdh? = (ac — 5bd) + (ad + be + bd)f € Z[d).

Thus Z[f] is closed under multiplication and is a ring. Since Z[6] is contained in the complex
numbers it is an integral domain.

Suppose that Z[f] is a Euclidean domain with ¢ : Z[f] \ {0} — N satisfies the Euclidean
domain property. Let o € Z[f] be an element such that

d(a) = min{p(N\) | A #0,1,—1, X € Z[0]}.

By the Euclidean domain property, there exist d, v € Z[f] such that 2 = ad + v with vy =0
or ¢(7) < ¢(a)). However, by the definition of «, this implies that v =0, 1 or —1. In other
words, ad =1, 2 or 3.

Recall that if 8 = a+bf € Z[0], then N(3) = a®+ ab+ 5b*> € N. Moreover, suppose 3 # 0,
1or —1. If a = 0 then N(3) =5b* > 5 and if b = 0 then N(3) = a* > 4. If ab > 0, then

N(B) = a® + ab+ 5b% = (a — b)? + 4b* + 3ab > 4b> + 3ab > 7
and if ab < 0, then
N(B) = a® + ab+ 5b* = (a + b)* + 4b* — ab > 46° — ab > 5.

In conclusion, if 8 € Z[A] \ {0,1,—1} then N(8) € N and N(8) > 4.

Since N(ad) = 1, 4 or 9, and N(ad) = N(a)N(5), we have that N(a)|1, N(a)|4 or
N(a)|9. The discussion above shows that N(a) # 1,2,3. Hence we have that N(a) =4 or
N(a) =09.

The Euclidean domain property shows that there exist ¢’ and 7 € Z[f] such that § =
ad’ 4+~ with either v/ = 0 or ¢(7') < ¢(a). Again, the definition of v implies that «ad’ = 6,
6 —1or +1. Taking norms, we have N(«)|N (), N(«)|N(#—1) or N(c)|N(6+1). However,
N(@) =5, N0 —1) =5 and N(# + 1) = 7. Neither one of them can be divided by 4 or 9.
We get a contradiction. Hence Z[6] is not a Euclidean domain. O

Definition 1.5. A nonzero element a of a ring R is said to divide an element b € R (notation:
a|b) if there exists x € R such that b = az. Elements a, b of R are said to be associates
(notation: a ~ b) if a|b and b|a.

Let S be a nonempty subset of R. An element d € R is a greatest common divisor of .S
provided:

(1) d|a for all a € S;
(2) if ¢|a for all @ € S, then c|d.

In general, greatest common divisors do not always exist. For example, in the ring 27Z
of even integers, 2 has no divisor at all, whence 2,4 has no greatest common divisor. Even
when a greatest common divisor exists, it need not be unique. However, any two greatest
common divisors of S are clearly associates by property (2). Furthermore any associate of a
greatest common divisor of S is easily seen to be a greatest common divisor of S.

In the following we provide some basic properties of greatest common divisor.

Lemma 1.6. Let R be a ring and a,b,c € R. Suppose that d is a greatest common divisor
of a,b.
(1) Suppose that ¢ = aq+b for some g € R. Then d is a greatest common divisor of a,c.
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(2) Suppose that d' is a greatest common divisor of d,c. Then d’ is a greatest common
divisor of a,b, c.

Proof. (proof of (1)) We first show that d divides a and ¢. We know d divides a by definition.
Since d|a and d|b, we have a = dz and b = dy for some z,y € R. Hence ¢ = dxq + dy =
d(xq + y). This shows that d|ec.

Suppose e € R such that e|a and e|c. Then there exist u,v € R such that a = eu and
¢ =ev. Hence b = ¢ — aq = e(v — uq). This shows that e|b. Since e divides a and b, by the
definition of greatest common divisors, we have e | d. O

Exercise 2. Prove (2) of Lemma 1.6.

Example 1.7 (The Euclidean Algorithm). Let a,b € Z. By Example 1.1, there exist ¢,
r1 € Z such that
a:bql—i-rl, 0§T1<|b|.
If r1 > 0, there exist g9, 9 € Z such that
b:7"1QQ+T2, 0<ry <ry.
If ro > 0, there exist g3, r3 € Z such that
ry=1roq3+ 13, 013 <ro.

Continue this process. Then r,, = 0 for some n € N. If n > 1 then r,_; is a greatest common
divisor of a,b. If n = 1, then b is a greatest common divisor of a, b.

Proof. Note that ry > ro > .... If r, # 0 for all n € N, then ry,ry,7r3,... is an infinite,
strictly decreasing sequence of positive integers, which is impossible. So r, = 0 for some n.

If ry = 0, then a = bg;. So b|a and of course b|b. If ¢ divides both a and b, then of course
c|b. Hence b is a greatest common divisor of a, b.

Now suppose 1, = 0 for n > 1. Then r, o = r,_1¢, (we set rg = b). By the argument
above, we have that r,_; is a greatest common divisor of r,_ 9,7, 1. However, r, 3 =
Tnoqn-1 + "1 (we set r_1 = a). By Lemma 1.6 (1), we have r,_; is a greatest common
divisor of r,_9,7,_3. Continue this argument inductively. We have that r,_; is a greatest
common divisor of a, b. O

Exercise 3. Suppose R is a Euclidean domain and ay, . ..,a, € R. Show that there exists a
greatest common divisor of ay, ..., ay.
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2. PrINCIPLE IDEAL DOMAIN

Given a ring R, a subring [ of R is an ideal provided rz € [ forr € R, x € I. A principal
ideal Ting is a ring in which every ideal is principle. In other words, for every ideal I of R,
there exists « € [ such that if A € I, A = rz for some r € R. A principle ideal ring which is
an integral domain is called a principle ideal domain

Example 2.1. Z is a principle ideal domain.
Proof. Given a nonzero ideal I of Z. Consider n € Z such that
In| =min{|z| : z € I\ {0}}.

Given a € I, by Example 1.1, there exist h,r € Z such that a = nh 4 r with either r = 0 or
|r| < |n|. Since r = a — nh € I, by the definition of n, we conclude that r = 0 and hence
a = nh. In other words, I = (n). O

Using similar argument we can show the following;:
Theorem 2.2. Fvery Euclidean ring is a principle ideal ring.
Exercise 4. Prove Theorem 2.2.

From Theorem 2.2, the polynomial ring F[z] in Example 1.2 and the Gaussian integers
Z[i] in Example 1.3 are principle ideal domains.

In general, to prove a ring is a principle ideal ring is not easy. We can imitate the proof
of Theorem 2.2 to show certain rings are principle ideal rings.

Theorem 2.3. Let R be a ring. Suppose that there is a function ¢ : R\ {0} — N such that
gwen o, 3 € R, B #0, if B does not divide « then there exist 7,0 € R such that vy — 36 # 0
and

¢lay — #6) < ¢(F).

Then R 1s a principle ideal ring.
Proof. Let I be a nonzero ideal of R. Let § € I be an element with the property that

¢(B) = min{p(z) : x € I\ {0}}.
We claim that I = (). Given a € I, suppose that 5 does not divide a.. By the hypothesis,
there exist §,7 € R such that ay — 3§ # 0 and ¢(ay — 39) < ¢(3). Since ay — 3§ € I and

ay — (30 # 0, this contradicts the assumption of 3. Therefore § divides every element of
1. O

Example 2.4. Let = (14++/—19)/2 and Z[f] = {a+ 00 |a,b € Z}. Z[0)] is a principle ideal
domain.

Proof. Let ¢(a) = N(«) for all a € Z[#] \ {0} . We will show that Z[#)] satisfies the condition
in Theorem 2.3.

Given «, 5 € Z[0] with 8 # 0, if § does not divide a then a case by case consideration will
lead to elements 7,0 € Z[f] such that

(8]
O<N|=v—0]) <1,
(5” )

whence ay — 36 # 0 and N(ay — 35) < N(5).
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Write o

B =s+th, with s, teQ.

(1) t € Z: In this case, s ¢ Z. Let n € Z such that |s —n| < 1/2 and take v = 1,
0 =n+t. Now,

0<N(%7—5) =N(s—n)<-<1.

Ny

(2) s € Z:
(a) 5t € Z: Let m € Z such that |t —m| < 1/2. In fact, because 5t € Z, we have
|t —m| <2/5. Take y =1 and § = s + mf. Now

0<N(%7—5> :N((t—m)H)S%x5<1.

(b) 5t ¢ Z: Consider
(s +t0)(1—0) =5— 50 +t0 —t0* =5 — 50 + 10 — t0 + 5t = s + 5t — 50.
Let n € Z such that |s 4+ 5t — n| < 1/2 and take vy =1—0, § = n — sf. Now,
1
0<N(%7—5) :N(S+5t—n)§1<1.
(3) s, t & Zt
(a) 2s, 2t € Z: Consider
(s +10)0 = s0 +th — 5t = —5t + (s + 1)6.
Since s+t € Z, letting n € Z such that |—5t — n| < 1/2, we can take v = # and
d =n+(s+1t)0. Now,

0<N(%7—5>:N(—5t—n)§ <1
(b) 2s & Z and 2t € Z: Let n € Z such that |2s —n| < 1/2. Take v = 2 and

0 =n+ 2t0. Now,

e

(07 1

(¢) 2s € Z and 2t ¢ 7Z: When 10t € Z, let m € Z such that |2t — m| < 1/2. In fact,
because 5 x 2t € Z, we have |2t —m| < 2/5. Take v = 2 and 0 = 2s + m#f. Now

0<N(%’y—5) :N((Qt—m)9)§;—5><5<1.

If 10t ¢ Z, then consider
(s +t0)(2 — 20) = 25 — 250 + 2t — 2t0* = 2s + 10t — 2s0.

Let n € Z such that |2s + 10t — n| < 1/2 (note that 10¢ ¢ Z) and take 7y = 2—20,
0 =n — 2sf. Now,

1
O<N<%’y—5) :N(2S—|—1Ot—n)<1<1.
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(d) 2s ¢ Z and 2t ¢ Z: Let m € Z such that |t — m| < 1/2. If [t — m| < 1/3, letting
n € Z such that |s — n| < 1/2, then we can take v =1 and 6 = n + mf. Now,

4 6 9 36

If 1/3 < |t—m| < 1/2, then 2/3 < |2t —2m| < 1. Let m’ € Z such that
|2t — m/| < 1/2. Then we have |2t — m/| < 1/3. Let n’ € Z such that |2s — n/| <
1/2. Take v =2 and § = n' + m'f. Now,

O<N(%fy—5>:N((s—n)+(z€—m)9)<1+1+1 xh=22 1.

1 1 1 35
O<N<%’y—5)IN((2S—7”L/)+(2t—mI)9><Z+6+§X5I%<1

O

Remark 2.5. The converse of Theorem 2.2 is false since Z[f] is a principle ideal domain that
is not a Euclidean domain (Example 1.4).

Example 2.6. Let Z[x] be the ring of polynomials over Z. Then Z[z| is an integral domain
but is not a principle ideal domain.

Proof. Considering the leading coefficients of f(z) and g(z), we can easily conclude that if
f(z) # 0 and g(x) # 0 in Z|[x], then f(x)g(z) # 0.

To show that Z[x] is not a principle ideal domain, we consider the ideal I generated by 2
and z (i.e. I = (2,x)). We first claim that I # Z[z]. Otherwise there exist u(z),v(z) € Z|x]
such that 1 = 2u(z) + xv(z). Substitute x = 0 into the identity. We have that 1 = 2u(0)
which is absurd because u(0) € Z.

Now, suppose that there exists f(x) € Z[z] such that (f(x)) = I. In other words, there
exist g(z) € Z[x] and h(z) € Z|x] such that 2 = g(z)f(z) and x = h(z)f(z). From
2 = g(z)f(x), we conclude that f(x) € Z. Because I # Z[x], f(z) can not be a unit, whence
f(z) = £2. On the other hand, by x = h(z)f(x), we have h(z) = ax + b for some a,b € Z.
Since +2a # 1 for all a € Z, we get a contradiction. O

Exercise 5. Suppose that R is an integral domain. Suppose further that there exists a € R
such that a # 0 and a is not a unit in R. Prove that R|x] the polynomial ring over R is an
integral domain but is not a Euclidean domain.

Finally we provide some basic properties of principle ideal rings.
Proposition 2.7. Every principle ideal ring is a ring with identity.

Proof. Since R itself is an ideal of R, R = (a) for some a € R. Consequently, a € R,
so a = ea = ae for some e € R. If b € R, then b = za for some x € R. Therefore,
be = (za)e = z(ae) = xa = b, whence e is the identity of R. O

Exercise 6. Prove that every Euclidean ring is a ring with identity without using the fact
that every Euclidean ring is a principle ideal ring.

Proposition 2.8. If R is a principle ideal ring, given ay, ..., a, € R, then a greatest common
divisor of {a1,...,a,} exists.

Proof. Consider I = (ay,...,a,) the ideal generated by ai,...,a,. Since R is a principle
ideal ring, there exists d € R such that I = (d). We claim that d is a greatest common
divisor of {ay,...,a,}.
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First, since a; € I = (d), there exist 7; € R such that a; = r;d fori =1,...,n. Hence d| a;
fori=1,...,n.

Second, since (ay, ..., a,) = (d), there exist \; € R such that d = > | A\;a;. Suppose that
cla; for i = 1,...,n. There exist v; € R such that a; = ;¢ for i = 1,...,n. This implies
that d = > (A\iv:)c, whence c¢|d. O

Recall that a ring is Noetherian if it satisfies the ascending chain condition on ideals. It
can be proved that R is Noetherian if and only if every ideal of R is finitely generated. We
do not need this fact here. However, we can show that a principle ideal ring is Noetherian.

Lemma 2.9. If R is a principle ideal ring and
LCLC---CL,C---
is a chain of ideals in R, then for somen € N, I; = I, for all 7 > n.

Proof. Let I = U;enI;. We claim that [ is an ideal of R. If b,c € I, then we have b € I; and
c € I for some 7,5 € N. Without loss of generality, we can assume that i > j. Consequently
I; C I;, and hence b,c € I;. Therefore, b —c € I; C I. Similarly, if r € R and b € I, then
b € I; for some 7 € N, whence rb € I; C I. Therefore, I is an ideal of R. By hypothesis
I is principle, say I = (a). Since a € I, we have a € I, for some n € N. Hence (a) C I,.
Therefore, for every j > n,
(a) S 1, C I, C (),
whence I; = I,. U

Exercise 7. Suppose that R is a principle ideal ring. Let ay, ..., ay,, ... be (infinitely many)
elements in R. Prove that there exists a greatest common divisor of {ay,...,an,...}.
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3. UNIQUE FACTORIZATION DOMAIN

3.1. General Properties. The Fundamental Theorem of Arithmetic says that any positive
integer n > 1 can be written uniquely in the form n = pi{'---pl", where p; < --- < p, are
primes and ¢; > 0 for all 7. In this section we study those integral domains in which an
analogue of the fundamental theorem of arithmetic holds.
In Z, a prime number p has the following properties:

(1) If p = ab then a or b is a unit.

(2) If p|ab then p|a or p|b.
For arbitrary ring, these are two different properties.

Definition 3.1. Let R be a ring with identity. An element 7 € R is irreducible provided
that 7 is not a unit and if 7 = ab for some a,b € R then a or b is a unit.
An element p € R is prime provided that p is not a unit and if p|ab then p|a or p|b.

Example 3.2. In the ring Z/6Z = {0, 1,2,3,4,5}, 2 is prime but it is not irreducible.

Proof. 2 does not divide 1-1=5-5=1,1-3=3-3=3-5=3,and 1-5 = 5. Hence 2
is prime. On the other hand, 2 is not irreducible because 2 = 2 - 4 and neither 2 nor 4 are
units in Z/6Z. O

Example 3.3. In the ring Z[v10] = {a+bv10:a,b € Z}, 2 is irreducible but it is not
prime.

Proof. Recall that the map N : Z[v/10] — Z given by N(a + byv/10) = a®> — 10b* has the
properties that N'(aB3) = N (a)N(B) for all a, 3 € Z[v/10] and N'(a) = 1 if and only if o
1s a unit.

Suppose that there exist o and (3 in Z[\/E] which are not units such that 2 = 3. Then we
have 4 = N'(2) = N(a)N(B). Since a = a+bv/10 is not a unit, we have NV'(a) = a® — 106* =
+2. This shows that a*> = +2 (mod 5). However, neither 2 nor —2 is a quadratic residue
modulo 5. We get a contradiction. Hence 2 is irreducible.

On the other hand, since 2:3 = 6 = (441/10)(4—+/10), we have that 2| (44+/10)(4—/10).
Suppose that 2| (4 + /10) or 2| (4 — v/10). By taking N/, we have that 4|6 in Z, which is
absurd. Hence 2 is not prime in Z[v/10]. O

From examples above, we know that in general prime elements and irreducible elements
are distinct. However in some cases, they are related.

Lemma 3.4. Let R be an integral domain. Then every prime element of R is irreducible.

Proof. Suppose that p is prime. If p = ab, then either p|a or p|b; say p|a. Thus there exist
x € R such that a = pz. Therefore, p = ab = pxb, and hence p(1 — xb) = 0. Since R is an
integral domain, this implies that 1 = xb. Therefore, b is a unit. Hence p is irreducible. [

We include an important property for irreducible elements of an integral domain which is
familiar for the integer ring Z.

Lemma 3.5. Let R be an integral domain. The only divisors of an irreducible element of R
are its associates and the units of R.

Proof. If 7 is irreducible and d |7, then because m = dz for some = € R, this implies that
either d or z is a unit. The second case implies that d and 7 are associates. O
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Exercise 8. Let R be an integral domain. Suppose that a,b € R are associates.

(1) Prove that there exists an unit u € R such that a = ub.
(2) Prove that a is irreducible if and only if b is irreducible.
(3) Prove that a is prime if and only if b is prime.

Definition 3.6. An integral domain R is a unique factorization domain provided that:

(1) Every nonzero element a € R which is not a unit can be written as a = a3 ---a,
with «; irreducible.

2)Ifa=ay-a, = B1--- By with «;, §; irreducible, then n = m and for some
permutation o of {1,2,...,n}, o; and B,(; are associates for every i.

Remark 3.7. From the definition, every irreducible element in a unique factorization domain
is necessary prime. Consequently, prime elements and irreducible elements coincide in a
unique factorization domain by Lemma 3.4.

Example 3.8. The polynomial ring F[z] over a field F' is a unique factorization domain.

Proof. Because every nonzero constant is a unit, we show first that every nonconstant poly-
nomial can be written as a product of finitely many irreducible polynomial. It is to see
that polynomials of degree 1 are irreducible. assume that we have proved the result for all
polynomials of degree less than n and that deg(f) = n. If f is irreducible, we are done.
Otherwise f = gh where 1 < deg(g),deg(h) < n. By the induction assumption both g and
h can be written as products of finitely many irreducible polynomials. Thus so is f.

Next, we show that every irreducible polynomial is prime. Suppose that 7 is an irreducible
polynomial and 7 |fg. Consider the ideal (f, 7). Since F[z] is a principle ideal domain (c.f.
Theorem 2.2), we have (f,7) = (d) for some d € F[z|. = € (d) implies that d|=, and hence
by Lemma 3.5, (f,7) = (1) or (). If (f,m) = (7), then = | f. If (f,7) =1, then there exist
l,h € F[z] such that I +hf = 1. Thus lrg+ hfg = g. Since 7 divides the left-hand side of
this equation, 7 must divide g.

Finally if f =7y ---m, = p1 - - - P, With 7;, p; irreducible, then since 7 is prime, m; divides
some p;; say pi. On the other hand, since p; is irreducible and 7; is not a unit, by Lemma 3.5
m and p; are associates; say um; = p; for some unit u of R. Hence my - -7, = (up2) - - * pim-
By Exercise 8, up, is also irreducible, the proof of uniqueness is now completed by a routine
inductive argument. 0

Exercise 9. Let R be an integral domain.

(1) Prove that p is a prime element in R if and only if (p) is a prime ideal of R.

(2) Suppose that R is a principle ideal domain. Prove that w is irreducible in R if and
only if () is a mazximal ideal of R.

(3) Suppose that R is a principle ideal domain. Prove that an element in R is prime if
and only if it is irreducible.

(4) Show that Z[\/10] is not a principle ideal domain.

In general, to show a ring is a unique factorization domain we only have to show the
following;:

(1) using the irreducibility to show that in the specific ring every nonzero element which
is not a unit can be written as a product of finitely many irreducible elements;

(2) show that in the specific ring every irreducible element is prime. Then the proof
of uniqueness can be completed by a routine inductive argument as in the proof of
Example 3.8.
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Theorem 3.9. Fvery principle ideal domain is a unique factorization domain.

Proof. Suppose that R is a principle ideal domain. We claim first that if a € R, a # 0 and
a is not a unit, then a can be written as a product of finitely many irreducible elements.
If a can not be written as a product of finitely many irreducible elements, then a is not
irreducible and hence a = a1b; for some ay, by € R which are not units. By assumption, one
of the a; or b; can not be written as a product of finitely many irreducible elements; say
ai. Then a; = asby for some as, by € R which are not units and as can not be written as a
product of finitely many irreducible elements. Continuing in this way, we construct infinitely
many a; with a; = a;11b;1+1 where all the a; and b; € R are not units. Since a = a1b; and by
is not a unit, we have that (a) € (a;). Similarly, we have (a;) € (a;+1). In other words we

= =

have a nonstop ascending chain of ideals

(@) (@) G- G la) &-ov

= =

contradicting Lemma 2.9.
For the uniqueness, exercise 9 says that every irreducible element of R is prime. This

completes the proof.
O

Exercise 10. Suppose that R is a unique factorization domain. Let S be a set of primes
in R such that every prime in R is associate to a prime in S and no two primes in S are
associate.

(1) Ifa € R, a # 0, show that we can uniquely write
a=1Uu Hpvp(a)7
peS

where u is a unit and v,(a) are nonnegative integers which are positive only for finitely

many p € S.
(2) Prove that v,(ab) = vy(a) + vy(b) for allp € S and a,b € R.
(3) Given ay,...,a, € R, prove that there exists a greatest common divisor of ay,. .., a,.

By Theorem 3.9, we know that Z[i] and Z[**=] are unique factorization domains. The
converse of Theorem 3.9 is not always true. For example, we know that Z[z] is not a principle
ideal domain (c.f. Example 2.6), but we will show later that Z[z] is a unique factorization
domain.

3.2. Factorization in Polynomial Rings. In the rest of this section, we devote entirely
to show that if R is a unique factorization domain, then R[z], the polynomial ring over R is
also a unique factorization domain.

Let F' be the quotient field of R. In other words, every element of F' can be written as
a/b for some a,b € R with b # 0. Our strategy is using the fact that F[z] is a unique
factorization domain to show that R[z] is a unique factorization domain.

Let f = > ,a;z" be a nonzero polynomial in R[z]. Since R is a unique factorization
domain, by Exercise 10 (3), a greatest common divisor of the coefficients ag, a1, . . . , a, exists.
We call it a content of f and denotes it by C(f). Strictly speaking, C'(f) is ambiguous since
greatest common divisors are not unique. But any two contents of are necessarily associates.
We shall write b = ¢ whenever b and ¢ are associates in R. If f € R[x] and C(f) is a unit in
R, then f is said to be primitive.
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Lemma 3.10. Let R be a unique factorization domain. a € R and f,g € R[x].

(1) Claf) = aC(f). In particular, f = C(f)f1 with f; primitive in R[z].
(2) (Gauss) C(fg) = C(f)C(g). In particular, the product of primitive polynomials in
R]x] is also primitive.

Proof. (1) Suppose that f ="  a;z" and d = C(f) which is a greatest common divisor of
g, a1, ..., a,. Thenaf ="  aa;x’ and ad is a greatest common divisor of aag, aay, . . . , aa,.
On the other hand, let b; = a;/d € R. The greatest common divisor of by, by, ..., b, is a unit.
Hence f=dY )" jbix' = C(f)fi with f; = > 1, bz’ primitive.

(2) f = C(f)fi and g = C(g)g1 with f;, g1 primitive, by (1). Consequently C(fg) ~
C(f)C(g)C(f1g91). Hence it suffices to prove that if f and g are primitive then fg is primitive
(ie. C(fg)is aunit). If f =37 jaa’ and g = Y7 bal, then fg = Y707 cea® with
¢k =D iy jp @ibj. I C(fg) is not a unit, then since R is a unique factorization domain, there
exists a prime element p € R such that p|C(fg). That is, p| ¢, for all k. Since C(f) is a
unit, p 1 C(f). Hence there is an integer s such that p|a; for i < s and p { a,. Similarly
there is an integer ¢ such that p|b; for j < ¢ and p 1 b;. Consider

Csyt = Agbsyy + A1bsy—1 + -+ + as_1b1 + ashy + aspibi_1 + - + asqbo.

p divides every term on the right-hand side of the equation except the term ayb;. Hence
p 1 csye. This is a contradiction. Therefore fg is primitive. 0

Now for study the irreducible elements in R[z], we first notice that if a € R is irreducible
in R, then « is also irreducible in R[x]. Indeed, if o = f1 f5 for f1, f> € R|x], then comparing
the degrees of both side we have fi, fo € R. Since « is irreducible in R, either f; or f; is a
unit in R and hence a unit in R[z].

Next, we compare elements in R[z] and elements in F[x]. Suppose f =Y "  a;z" € Flx].
We can write a; = ozzﬂi_l for some «;,0; € R and 3; # 0. Let § = H?:o B;. We have
Ba; = a;y; for some v; € R and hence ff = > ja;vx' € Rlz]. In other word, every
f € F[x] can always be written as f = ab™~'f; with a,b € R, b # 0 and f; primitive in R[z].

Lemma 3.11. Let f be a primitive polynomial in R[x] and g € R[x]. Then f divides g in
Rlx] if and only if [ divides g in F[z].

Proof. If f|g in R[z], then g = fh for some h € R[z] C F[z]. Hence f|g in F[z].

On the other hand, if f|g in Flz], then g = fh for some h € F[z]. Because h = ab™'h;
with a,b € R, b # 0 and hy primitive in R[z], we have that bg = afh,. Taking contents on
both side, by Lemma 3.10 we have

bC(g) = C(bg) = Clafh) = aC(f)C (M) ~ a,

because C(f) and C(hy) are units in R. Hence ab~! € R. In other words, h = ab~'h; € R[z]
and hence f|g in Rz]. O

Lemma 3.12. Let f be a primitive polynomial in R|x]. Then f is irreducible in R[z] if and
only if f is irreducible in F[z].

Proof. Suppose f is irreducible in F|z] and f = gh with g, h € R[z]. Then one of g and h is
a unit in F[z|; say ¢ and hence g is a constant. Thus C(f) =~ gC(h). Since C(f) is a unit in
R, g must be a unit in R and hence in R[z]. Therefore, f is irreducible in R[z].
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Conversely, if f is irreducible in R[z] and f = gh with g, h € F[z]. We can write g = ab™'¢g;
with a,b € R, b # 0 and g; primitive in R[z] and h = cd'h; with ¢,d € R, d # 0 and h;
primitive in R[z]. Consequently, bdf = acgih;. Since f and g;hy are primitive,

bd =~ bdC(f) =~ C(bdf) =~ C(acg1hy) = acC(g1h1) =~ ac.

Thus bd and ac are associates and this implies that acb™'d™' = a € R is a unit. Hence
f = agihy in R[z]. By hypothesis, one of g;,hy is a unit in R[z|; say ¢;. Hence g; is a
constant and so is ¢ = ab~'g;. This implies that f is irreducible in F[x]. O

Exercise 11. Let f be a primitive polynomial in R[x]. Prove that f is prime in R[z] if and
only if f is prime in F[z].

Theorem 3.13. If R is a unique factorization domain, then the polynomial ring R[z] is also
a unique factorization domain.

Proof. Given f € R[z], we can write f as f = C(f)f; with f; primitive in R[z]. Since
C(f) € R and R is a unique factorization domain, if C'(f) is not a unit, we can write C(f)
as a product of finitely many irreducible elements in R. Theses elements are also irreducible
in R[x|. Hence it is sufficient to show that every primitive polynomial of positive degree in
R[x] can be written as a product of finitely many irreducible elements in R[z]. Suppose f is a
primitive polynomial in R[z]. Since F[z] is a unique factorization domain (c.f. Example 3.8)
which contains R[z], f = p1 - - - p, with each p; irreducible in F[x]. Writing p; = a;b; '¢; with
a;,b; € R, b; # 0 and ¢; primitive in R[z]. Clearly each ¢; is irreducible in F'|x] and hence is
irreducible in R[z] by Lemma 3.12. Let a =ay---a, and b =0y ---b,. Then bf = aq - - - q,-
Because C(f) and C(q ---¢,) are units in R, it follows that a and b are associates in R.
Thus a = bu with u a unit in R. Therefore f = uq, - - - ¢, with ug; and ¢, ..., g, irreducible
in R[z].

To show the uniqueness, as in the proof of Theorem 3.9, we only have to show that every
irreducible polynomial in R[z] is prime. Suppose f is irreducible in R[z]. If f € R, then
by R is a unique factorization domain, f is prime in R. If f|gh for some g,h € R[z], then
lf = gh for some [ € R[x]. By Lemma 3.10, we have

fC() = C(1f) = C(gh) = C(g)C(h).

This implies that f|C(g)C(h) in R and hence f|C(g) or f|C(h). Therefore, f|gor f|hin
R|x]. Therefore, f is prime in R[x]. Now suppose that f is a polynomial of positive degree
in R[z]. f is irreducible in R[z] implies that f is a primitive polynomial in R[z]. Lemma
3.12 says that f is irreducible in F[z] and hence f is prime in F[z]| because F[x] is a unique
factorization domain. By Exercise 11, f is prime in R[z]. U

Corollary 3.14. If R is a unique factorization domain, then the polynomial ring over R in
n indeterminates, R[xy,...,x,] is also a unique factorization domain.

Proof. By Theorem 3.13, R[z] is a unique factorization domain. Since R|xy,...,z,| =
Rlzy, ...,z 1]]x,], the proof is now completed by a routine inductive argument. O
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