QUADRATIC FORMS OVER Q, AND OVER Q

HUA-CHIEH LI

INTRODUCTION

In this very short note, we will study general properties of quadratic forms over fields.
Our objective is to classify quadratic forms over the field of rational numbers, i.e., the
Hasse-Minkowski theorem.

We begin with a brief review of some basic properties of bilinear and quadratic forms. We
also include some properties of Hilbert symbol which are needed. Finally we study quadratic
forms over Q, and then over Q.

For reading this note some basic knowledge of linear algebra [1] is needed and the reader is
also required to have an elementary knowledge of the p-adic rational numbers Q,. Our main
reference is Serre [3, Chapter 4]. However, we recommend Kitaoka [2] for further reading.

1. BILINEAR AND QUADRATIC FORMS
1.1. Bilinear Forms. First recall the general notion of a bilinear form.

Definition 1.1. Let V' be a vector space over a field k. A function from the set V x V to k
is called a bilinear form on V if

(1) H(cvy 4 vo, w) = c¢H (vy,w) + H (v, w) for vy, ve,w € V and ¢ € k.

(2) H(v,cwy +wy) = cH(v,w) + H(v, wy) for v,wy,ws € V and ¢ € k.

We now list several properties possessed by all bilinear forms:

(1) For any fixed w € V, functions L, R, : V — k defined by L, (v) = H(w,v) and
Ry, (v) = H(v,w) are linear.

(2) H(0,v) = H(v,0) =0, for all v € V.

(3) If V1, V2, W1, Wy € V, then

H(vi + vg, wy + we) = H(vy,wy) + H(v1,wy) + H(ve,wy) + H(vg, ws).

Let V' be an n-dimensional vector space with basis = {vy,vs,...,v,}. For any bilinear
form H on V we can associate with H an n X n matrix A whose entry in row ¢ column j is
defined by a;; = H(v;, v;).

The matrix A above is called the matriz representation of H with respect to the basis 3.

Fixing a basis for V', we can therefore define a one-to-one correspondence between the set
of bilinear forms on V' to the set of n x n matrices with entries in k.

Let v be another basis of V' and let U be the change of coordinate matrix changing -
coordinates to 3-coordinates. Then it is easy to check that U' AU is the matrix representation
of H with respect to the basis . Therefore, we have the following definition:

Definition 1.2. Two matrices A and B are said to be congruent if there exists an invertible
matrix U such that B = U'AU.

It is easily seen that congruence is an equivalence relation.
1
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1.2. Symmetric Bilinear Forms.

Definition 1.3. A bilinear form H on a vector space V is called symmetric if H(v,w) =
H(w,v) for all v,w € V.

As the name suggests, symmetric bilinear forms corresponds to symmetric matrices.

Given two symmetric bilinear forms H; and Hs on vector spaces V; and V5, respectively,
a linear map h : Vi — V5 such that Hy(h(v), h(w)) = Hy(v,w) for all v,w € V; is called a
metric morphism of (Vi, Hy) into (Va, Hs).

Like the diagonalization problem for linear operators, there is an analogous diagonalization
problem for bilinear forms.

Definition 1.4. A bilinear form H on V is called diagonalizable if there exists a basis 3 for
V' such the matrix representation of H with respect to the basis § is a diagonal matrix.

It is clear that a diagonalizable bilinear form is symmetric. Unfortunately, the converse is
not true, as illustrated by the following example.

Example 1.5. Let £ = F, and V = F3 with the standard basis 8. Let H : V x V — F, be
the symmetric bilinear form represented by the matrix

=1 o)

with respect to 5. We will assume that H is diagonalizable and obtain a contradiction.
Suppose that H is diagonalizable. Then there exists an invertible matrix U such that
B = U'AU is a diagonal matrix. Since U is invertible, rank(A) = rank(B) = 2. Thus,

10
5=(5 1)
a b
U_<c d)'
1 0\ _f(a ¢\ (0 1\ [{a b\ _ (ac+ac bc+ ad
0 1) \b d/\1 0)/\c d) \bc+ad bd+bd)"

However, ac + ac = bd + bd = 0 in F;. We conclude that 1 = 0 in F,, a contradiction.
Consequently, H is not diagonalizable.

Suppose that

We have

The bilinear form of Example 1.5 is an anomaly. Its failure to be diagonalizable stems
from the fact that the scalar field Fy is of characteristic 2. As we will see, for the field of
characteristic other than 2, the diagonalizable bilinear forms are those that are symmetric.
Prior to prove this, we must establish the following lemma.

Lemma 1.6. Let H be a nontrivial symmetric bilinear form on a vector space V' over a field
k not of characteristic 2. Then there exists an element v € V' such that H(v,v) # 0.

Proof. Since H is nontrivial, there exist u,w € V such that H(u,w) # 0. If H(u,u) # 0 or
H(w,w) # 0, there is nothing to prove. Otherwise, suppose that H(u,u) = H(w,w) = 0.
Setting v = u + w, we have H(v,v) = 2H (u, w) # 0. O

Definition 1.7. An element v of a symmetric bilinear form H on V is called isotropic if
H(v,v) = 0. A subspace W of V is called a isotropic subspace if all its elements are isotropic.
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Lemma 1.6 above, tell us that for a nontrivial symmetric bilinear form on a vector space
over a filed not of characteristic 2, there must exist a non-isotropic element.

Theorem 1.8. Let V be a finite dimensional vector space over a field k not of characteristic
2. Then every symmetric bilinear form on V is diagonalizable.

Proof. We use mathematical induction on n = dim(V). If n = 1, then every bilinear form
is diagonalizable. Suppose that the theorem is valid for vector spaces of dimension less
than n for some fixed integer n > 1. If H is the trivial bilinear form, then certainly H is
diagonalizable. Suppose then H is nontrivial and symmetric. By Lemma 1.6, there exists an
element v € V such that H(v,v) # 0. Consider the linear map L : V — k, L(w) = H(v,w),
for all w € V. Since L is nontrivial (L(v) = H(v,v) # 0), we have dim(ker(L)) = n — 1.
The restriction of H to ker(L) is obviously a symmetric bilinear form on a vector space of
dimension n — 1. thus by the induction hypothesis there exists a basis {v1,ve,...,v, 1} for
ker(L) such that H(v;,v;) =0 for1 <i# j <n—1. Set v, =v. Then {vy,vs,...,v,} is a
basis for V. In addition H(v;,v,) = H(v,,v;) =0 fori=1,2...,n —1. We conclude that
H is diagonalizable. O

1.3. Quadratic Forms. Associated with symmetric bilinear forms are functions called qua-
dratic forms.

Definition 1.9. Let V be a vector space over a field k. A function @) : V — k is called a
quadratic form on V if:

(1) Q(cv) = *Q(v), forc € k and v € V.

(2) The function (v, w) — Qv +w) — Q(v) — Q(w) is a bilinear form.
Such a pair (V, Q) is called a quadratic space.

If the field & is not of characteristic 2, there is a one-to-one correspondence between
symmetric bilinear forms and quadratic forms. In this case, for a given symmetric bilinear
form H, we get a quadratic form @ given by Q(v) = H (v, v) and for a given quadratic form
@, we have a bilinear form H defined by

H(v,0) = 3 (@0 -+ ) — Q) — Q)
In the rest of this note, we limit ourselves to the case where k is not of characteristic 2,
unless we specify. Also, for a given quadratic form (), we will write H for the correspondent
symmetric bilinear form without any further comment, and vice versa.

The determinant of the matrix representation of H is determined up to multiplication by
an element of £*2; it is called the discriminant of @ and denoted by disc(Q).

Let B = {vy,v2,...,v,} be a basis of V and let A = (a;;) be the matrix representation of
H with respect to 8. If v =) x;v;, then

Q(v) = H(v,v) = Z i,
i,J

which shows that () is a quadratic form in zq,...,x, in the usual sense. Conversely, let
flz) =" ae?+2 ZK]. a;;x;x; be a quadratic form in n variables over k; we put a;; = a;;
if i > j so that the matrix A = (a;;) is symmetric. We can consider f as a quadratic form
on the space k™. As before, we have the following definition:

Definition 1.10. Two quadratic forms f; and f, are called equivalent if the corresponding
matrix are congruent. In this case, we write f; ~ fs.
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2. ORTHOGONALITY AND WITT’S THEOREM

2.1. Orthogonality. Let () be a quadratic form on V. Two elements v, w € V are called
orthogonal (denoted v L w) if H(v,w) = 0. The set of elements in V' orthogonal to a
subset S of V is denoted by S*; it is a vector subspace of V. Two subspace V; and V;
of V are said to be orthogonal if V; C V2L. In this case, if v; € V; and vy € V5, we have

Qv +v2) = Q(v1) + Q(va) + 2H (v1,v2) = Q(v1) + Q(v2).

Definition 2.1. Let V;,...,V,, be vector subspace of V. One says that V' is the orthogonal
direct sum of the V; if they are pairwise orthogonal and if V' is the direct sum of them. One
writes then:

V=Vi#---8V,.

Suppose that V is the orthogonal direct sum of the V;. If v € V has for components
v; € V;, by the argument above, we have

Q) = Qv+ +vm) = Q1) + -+ Q).

Conversely if (); is a family of quadratic forms on V;, the formula above endows V' = V; &
-+ -®V,, with a quadratic form @, call the direct sum of the Q;, and one has V' = ViH- - -HV/,.

Let f(x1,...,2,) and g(x1,...,2,) be two quadratic forms; we will denote fH g the qua-
dratic form f(z1,...,2,)+9(Tni1,- .-, Tnem) in n+m variables. This operation corresponds
to that of orthogonal sum. We write similarly f B ¢ for f H (—g). Using this notation, we
can rewrite Theorem 1.8 as the following theorem:

Theorem 2.2. Let f be a quadratic forms in n variables. There exists ai,...,a, € k such
that f ~ a1x3 + -+ + a,x2.

For a subspace W of V', the orthogonal complement of W itself is called the radical of
W and denoted by rad(W); i.e., rad(W) = W N W+, In particular, rad(V) = V+. Its
codimension is called the rank of Q. If V* = 0 we say that @Q is nondegenerate; this is
equivalent to saying that the discriminant of () is not 0.

Let W be a vector subspace of V' and let W* = Homy (W, k). For each v € V', we associate
to a linear form H, : W — k by H,(w) = H(v,w) for all w € W. This gives us a linear
map qw : V — W* (v — H,). The kernel of gy is W*. In particular we see that Q is
nondegenerate if and only if ¢,y : V' — V* is an isomorphism.

Proposition 2.3. Suppose that (V,Q) is nondegenerate. Then:

(1) All metric isomorphisms of V' into a quadratic space (V', Q') are injective.
(2) For all vector subspace W of V', we have

WHE=w, dimW +dimW* =dimV, rad(W)=rad(W™).

In particular, the quadratic module W is nondegenerate if and only if W+ is nonde-
generate, in which case V. =W BW=.

(3) If V is the orthogonal direct sum of two subspaces, they are nondegenerate and each
of them is orthogonal to the other.

Proof. (1) If h : V. — V' is a metric morphism and if hA(v) = 0, we have H(v,w) =
H'(h(v), h(w)) = 0 for all w € V; this implies that v = 0 because (V, Q) is nonde-
generate.
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(2) Composing the isomorphism ¢y : V' — V* with the canonical surjection V* — W*,
the homomorphism ¢y : V' — W* is surjective with kernel equal to W+*. Hence
dimV = dimW* + dim W+ = dimW + dim W+, Similarly, dimV = dimW* +
dim(W)+L; since W is contained in (W), we have W = (W)L, Because rad(W) =
W N W, this implies that rad(W) = rad(WW') and the last assertion of (2) follows
easily.

(3) If V. =W, W, then W; C Wt and W, C Wit. By (2), we have dim W, = dim W3-
and hence W; = W3 and similarly Wy = Wi, This implies that rad(W;) = W; N
Wi =W, N W, =0 and similarly rad(W,) = 0.

0]

We remark that in Proposition 2.3, the nondegenerate assumption of (V, Q) is essential.
Recall that an element v of V' is called isotropic if Q(v) = 0. Suppose that vg is not isotropic.
In the induction process for proving Theorem 1.8, we use the fact that V' = kvo HW, where
W is the orthogonal complement of kvy. When (V,Q) is degenerate, though dim(W) =
dim(V) — 1, we have W C (W+)+ and (W, Q) is degenerate, even (kvy, Q) is nondegenerate.

2.2. Witt’s Theorem. Let (V,Q)and (V', Q') be two nondegenerate quadratic spaces; let
W be a subspace of V, and let s : W — V' be an injective metric morphism of W into V.
we try to extend s to a subspace larger than W and if possible to all of V. We begin with
the case where W is degenerate.

Lemma 2.4. Let (V,Q)and (V',Q') be two nondegenerate quadratic spaces; let W be a
subspace of V', and let s : W — V' be an injective metric morphism of W into V'. If W
is degenerate, we can extend s to an injective metric morphism s; : Wi — V' where Wy
contains W as a hyperplane.

Proof. Since W is degenerate, there exists 0 # wq € rad(W). Let [ be a linear map on W
such that [(wp) = 1. We can extend [ to a linear map on V' and since V' is nondegenerate,
there exists vy € V such that I[(w) = H(vo, w) for all w € W. Let w; = vy — Q(vo)wo. We
also have 1
H(wy, w) = H(vo, w) — iQ(Uo)H(woaw) =l(w), Vw e W.

Since, H (w1, wy) = l(wp) = 1 # 0, we have that wy ¢ W. Moreover, we have

H(wl, wl) = H('UU, ’UU) — Q(Uo)H('UU, wo) = Q(Uo) — Q(Uo)l(wU) =0.
The space Wi = W & kw; contains W as a hyperplane.

On the other hand, let W' = s(W), wy = s(wp) and I = [ o s '. We have that wf, €
rad(W'). By the same argument above, there exists w| € V' \ W’ such that H'(w},w]) =0
and I'(w') = H'(w},w"), for all w" € W'. The linear map s; : W; — V' which coincides with
s on W and carries w;, onto w] is an injective metric morphism because

H'(s1(w1),51(w)) =los (s(w)) =l(w) = Hwy,w), YweW
and
H'(s1(wy), s1(wy)) = H(wy, w)) =0 = H(wy, wy).
0
Theorem 2.5 (Witt). If (V, Q) and (V', Q") are metric isomorphic and nondegenerate, every

injective metric morphism s : W — V' of a subspace W of V' can be extended to a metric
isomorphism of V' onto V.
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Proof. By applying Lemma 2.4, we are reduced to the case where W is nondegenerate. we
argue then by induction on dim W.

Let ¢ : V. — V' be an metric isomorphism. If dimW = 1, W is generated by a non-
isotropic element w and hence s(w) is also non-isotropic. One can choose £ = +1 such that
w + e (s(w)) is not isotropic; otherwise, we would have

Qw1 (s(w))) = Q(w)+2H (w, 1" (s(w))) +Q(¢ ™ (s(w))) = 2Q(w)+2H (w, 1" (s(w))) = 0

and

Qw—1""(s(w))) = Q(w)=2H (w, 1" (s())) +Q(¢ " (s(w))) = 2Q(w) —2H (w, 1" (s(w))) = 0

which would imply Q(w) = 0. Choose such an ¢ and let wy = w + 7" (s(w)). Since ¢ is a
metric homomorphism, ¢(wy) is also not isotropic. Let W; be the orthogonal complement of
wp; we have V = kwy B W, and V' = ku(wo) B o(W1). Let 0 : V- — V' be the isomorphism
which maps wg to e.(wg) and maps w; to —ei(wy) for all wy; € Wy. It is clear that o is a
metric isomorphism. Since

H(w — ™ (s(w)), w + ™ (s(w))) = Q(w) — Qer™ (s(w))) = Q(w) — Q(w) =0,
w — ev”(s(w)) is contained in Wi and we have
o(w— et (s(w))) = —ev(w — ev H(s(w))) = —ev(w) + s(w)
and
o(w+ e (s(w))) = e(w+ e (s(w))) = er(w) + s(w).

This implies that o(w) = s(w); thus o extends s.

If dim W > 1, we decompose W in the form W; HW,, with Wy, W5 # 0. By the inductive
hypothesis, the restriction s; of s to W; extends to an metric isomorphism o; : V. — V.
Note that V = W, B Wit and V' = s(W,;) B s(W;)t. The restriction of oy to Wit gives
a metric isomorphism from Wi to s(W;)t and the metric morphism s carries W5 into the
orthogonal complement s(W;)* of s(W;) in V’; by induction hypothesis, because Wy C Wi,
the restriction of s to W, extends to a metric isomorphism oy : Wit — s(W;)+. The
isomorphism o : V' — V' which is oy on W; and oy on I/VlL is a metric isomorphism and
hence has the desired property. 0]

Given two metric isomorphic subspaces of a nondegenerate quadratic space, one extends
a metric isomorphism between the two subspaces to an automorphism of the space and
restricts it to the orthogonal complements. Hence these two isomorphic subspaces have
metric isomorphic orthogonal complements. Therefore, Witt’s theorem gives the following
cancellation theorem:

Theorem 2.6. Let fi = gy Hhy and fo = g H hy be two nondegenerate quadratic forms. If
fi~ fo and g1 ~ go, one has hy ~ ho.

2.3. Representation of an Element of k. We say that a form f(z1,...,x,) represents an
element a of k if there exists (¢1,...,¢,) € k™, (¢1,...,¢,) # 0, such that f(cy,...,¢,) = a.
In particular f represents 0 if and only if the corresponding quadratic space contains a non-
zero isotropic element. We also remark that if f ~ g, then f represents a if and only if ¢
represents a.
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Definition 2.7. A 2-dimensional quadratic space having a basis formed of two isotropic
element v; and vy such that H(vy,vs) # 0 is called a hyperbolic plane.
Equivalently, a quadratic form f(x;,z5) in two variables is called hyperbolic if we have

[~ zis.
After multiplying vy by 1/H (v, v3), we can suppose that H(vy,vy) = 1. Hence the matrix

0 1)\ . L .
1 o) its discriminant is —1.
In particular, it is nondegenerate. A hyperbolic quadratic form is important because it
represents every element of k. In fact, if a € k, then

representation of the hyperbolic quadratic form is simply

2
Q(Ul + %7)2) = Q(Ul) + aH(vl, 7)2) + GIZQ('UQ) = Q.

Proposition 2.8. Let v be a non-zero isotropic element of a nondegenerate quadratic space
(V,Q). Then there exists a subspace W of V' which contains v and which is a hyperbolic
plane. Moreover, one has Q(V') = k.

Proof. Since V' is nondegenerate, there exists v’ € V' such that H(v,v") = 1. Consider the
element w = v’ — 2Q(v')v. We have

Q) = Q) ~ QW) H(v,) + 1QU)Q() =0
and
Hv,w) = H(v,v') — %Q(v')Q(v) —1

The subspace W = kv @ kw has the desired property. Since V = W B W (Proposition 2.3
(2)) and W is hyperbolic, we have Q(V') = k. O

Corollary 2.9. If f is nondegenerate, then f ~ g B ---H g, B h where g; are hyperbolic
and h does not represent 0. This decomposition is unique up to equivalence.

Proof. Tf f represents 0, by Proposition 2.8 one has f ~ ¢; g where g; is hyperbolic. Since
hyperbolic quadratic form is nondegenerate, by Proposition 2.3 (2) ¢ is also nondegenerate.

Using this process inductively, the existence is proved. The uniqueness follows from Theorem
2.6. O

Corollary 2.10. Let g(xq,...,2,_1) be a nondegenerate quadratic form and let a € k*. The
following properties are equivalent:

(1) g represents a.
(2) One has g ~ h(zy,..., Ty o) +az? |.
(3) The form f(z1,...,2,) = g(x1,...,Tp_1) — az? represents 0.

Proof. If g represents a, the quadratic space V' corresponding to ¢ contains an element v
such that Q(v) = a # 0; if W is the orthogonal complement to v, we have V = kv B W,
hence g ~ h B az? where h denotes the quadratic form attached to a basis of W. Hence
(1) = (2).

The implication (2) = (3) follows from the fact that f ~ hBaz?Bay?, and h(0,...,0) +
a-1>—a-12=0.

Finally, if the form g(cy,...,¢, 1) — ac? = 0 with (cy,...,¢,) # 0, we have either ¢, = 0
in which case g represents 0 and hence by Proposition 2.8 also represents a, or ¢, # 0 in
which case g(c1/cp, ..., en-1/cy) = a. Hence (3) = (1).



8 HUA-CHIEH LI

OJ

Corollary 2.11. Let g and h be two nondegenerate forms of rank > 1, and let f = g &H h.
the following properties are equivalent:

(1) f represents 0.
(2) There exists a € k* which is represented by g and by h.
(3) There exists a € k* such that g 3 ax? and h B ax? represent 0.

Proof. Let us first show (1) = (2). f represents 0 is equivalent to a = g(ci,...,¢,) =
h(dy,...,dpy) with (¢1,...,¢pydy, ..., dy) # 0. If @ # 0, then (2) is verified. If @ = 0, then
either (c1,...,¢,) #0or (dy,...,dn) # 0. Let us say (ci,...,¢,) # 0 for example. Then g
represents 0, thus all elements of k& (Proposition 2.8). In particular, all non-zero values taken
by h can be represented by g.

(2) = (3) followsfrom Corollary 2.10 ((1) = (3)).

Suppose that g B az? and h B az? represent 0. Then by Corollary 2.10 ((3) = (1)), there
exist (¢1,...,¢,) # 0 and (dy,...,dy,) # 0 such that g(c¢i,...,¢,) = h(dy,...,dn) = a.
Hence f(ci,..., ¢y, dy,...,dy) = 0. This shows (3) = (1). O

2.4. Orthogonal Basis. We already know that every quadratic space has an orthogonal
basis. Given two orthogonal bases , there is a special chain of orthogonal bases relating these
two bases.

Definition 2.12. Two orthogonal bases e = {vy,...,v,} and e = {v],...,v.} of V are

called contiguous if there exist ¢ and j such that v; = v}.

Theorem 2.13. Let (V,Q) be a nondegenerate quadratic space of dimension > 3, and let
e = {v,...,u,} and € = {v},..., v} be two orthogonal bases of V. There exists a finite
sequence €9, eV . e™ of orthogonal bases of V such that e® =e, e =€’ and e is
contiguous with e for 0 <i < m.

Proof. We show first the case that there exist v; € e and v; € €' such that the plane
P = kv; + kv} is nondegenerate. Let us say for example v; = v; and v; = vj. Since P
is nondegenerate and vy, v] are non-isotropic, there exist wy and wi € V such that P =
kv B kwy = kv B kw), and V = P B Pt (see Proposition 2.3). Let v%,...,v be an
orthogonal basis of P+. One can then relate e to € by means of the chain

" " ! ! " n /
e — (vy,we,v3,...,0,) = (v, Wy, v, ...,0,) — €,

hence the theorem in this case.

We now proceed to the case that kv; + kv} is degenerate for all 7, 7. In this case, we show
first that there exists € k* such that v = v] + xv} is non-isotropic and generates with v; a
nondegenerate plane.

We have Q(v) = Q(v]) + z2Q(vh); we must take z? # —Q(v})/Q(vh). Moreover, for v
to generate with v; a nondegenerate plane, it is necessary and sufficient that Q(v1)Q(v) —
H(vi,v)? # 0; by the hypothesis that kv, + kv] for i = 1,2 is degenerate (i.e., Q(v1)Q(v}) —
H(vy,v})? =0 for ¢ = 1,2) this is equivalent to —2zH (v1, v})H (vi,vh) # 0. Because Q(vy),
Q(v]) and Q(vh) are not 0, we have that H(vy,v}) # 0 and H (v1,v}) # 0. Combining this, we
see that we must have z # 0 and 2% # —Q(v})/Q(v}). This eliminates at most three values
of x; if k has at least 4 elements, we can find one such x. There remains the case k = ;.
But, then, all non-zero squares are equal to 1 and H (vq,v}) # 0 implies that Q(v}) = Q(v}).
Hence it is sufficient to take z = 1.
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This being so, let us choose such a v. Since v € kv] + kvl is not isotropic, there exists w
such that kv| + kvl = kvBkw. Let us put e’ = (v, w, v, ..., v)); it is an orthogonal basis of
V. Since kv + kv is nondegenerate, the proof of the first case shows that one can relate e to

e” by a chain of contiguous bases; since €” and € are contiguous, the theorem follows. [

3. EXAMPLES

In this section, we introduce some examples of symmetric bilinear forms. It only serves as
a brief review of some preliminary results. Most results are just mentioned without proof.
For detail we refer to [3, Chapters 1-3].

3.1. Hilbert Symbol. In this subsection, £ denotes either R or Q,.
Let a,b € k*. We put:

2 — ax?® — by? represents 0,

1 if the quadratic form z
(aa b) = .
—1 otherwise.

The number (a,b) = =£1 is called the Hilbert symbol of a and b relative to k. It is clear
that (a,b) does not change when a and b are multiplied by squares; thus the Hilbert symbol
defined a map from k*/k*? x k*/k** into {1, —1}.

We list some basic formulas of (a, b).

Proposition 3.1. The Hilbert symbol satisfies the formulas:
(1) (a,b) = (b,a) and (a,c?) = 1.
(2) (a,—a) =1 and (a,1 —a) =1.
) (a,b) = (a,—ab) = (a, (1 — a)b). In particular, (a,a) = (a,—1).
) (ad',b) = (a,b)(d’,b).
)

If a and b are p-adic units, we have

(a.8) = {1 ifp#2,

A~~~
Ot = W

(1)@ DE-D/A ey — 9,

We can consider k*/kz*2 as a vector space over [Fy. Proposition 3.1 tell us that the Hilbert
symbol is a symmetric bilinear form on k*/k*Z.

Theorem 3.2. The Hilbert symbol is a nondegenerate bilinear form on the Fy-vector space
k*/k*Z

When k = Q,, recall that the number of elements in the F, vector space k*/k** is 2" with

3 ifp=2,
r =
2 otherwise.
Ifa€k*/k* and e = 1, let H. = {x € k*/k** | (v,a) = ¢}.

Proposition 3.3. For k = Q,, H; has the following properties:
(1) If a = 1 in k*/k**, H! has 2" elements and H;' = &. Ifa # 1 in k*/k**, H: has
271 elements.
(2) Let a,a’ € k*/k** and e,¢' = +1; assume that H: and HS, are nonempty. For

He N HE = @, it is necessary and sufficient that a = o' and e = —¢'.
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Proof. The case a = 1 is trivial; of the case a # 1 in k*/k*, by Theorem 3.2, the homomor-
phism b+ (a, b) carries k*/k** onto {1, —1}. Hence its kernel H! has dimension r — 1, thus
2"~1 elements; its complement H, ' has 2" — 21 = 2! elements.

Finally, if H,; and HZ,' are nonempty and disjoint, we must have a,a’ # 1 in k*/k*2.
Therefore, they have necessarily 2"~! elements each and are complementary to one another.
Since 1 € H! N H),, we have H! = H},, thus (z,a) = (v,d’) for all x € k*/k**. Again, by
Theorem 3.2, this implies that « = @’ and hence ¢ = —¢’. The converse is trivial. 0]

The field Q embeds as a subfield into each of the fields (@, and R. We denote by V the
union of the set of prime numbers and the symbol oo, and we put Q,, = R. Hence Q is
dense in Q, for all v € V.

Ifa,b € Q, (a,b), denotes the Hilbert symbol of their images in Q,. We have the following
important global property of Hilbert symbol, which is essentially equivalent to the quadratic
reciprocity law.

Theorem 3.4 (Hilbert Product Formula). If a,b € Q*, we have (a,b), = 1 for almost all

veVand
[](b), =1
vey
Conversely, given a € Q" and (¢,),¢y with ¢, = +1. Suppose that almost all the ¢, = 1,

[I,cpev = 1 and for every v € V there exists z, € Q such that (a,2,), = €,. Then there
exists b € Q* such that (a,b), = &,. Moreover, we have the following theorem.

Theorem 3.5. Let ay, ..., a, be elements in Q" and let (€1,)vev, - -, (Emy)vey be a family
of numbers equal to £1. In order that there exists b € Q° such that (a;,b), = i, for
1 =1,...,m and v € V, it is necessary and sufficient that the following conditions be
satisfied:

(1) Almost all the ;,, = 1.
(2) Fori=1,...,m, we have ],y i, = 1.
(3) Forv €V there exists x, € Q such that (a;,x,), = ¢€;, foralli=1,...,m.

3.2. The Norms and Quadratic Forms over Finite Fields. Let K be a quadratic
extension of k; then the norm N and the trace Tr from K to k are defined by N(a) = aa
and Tr(a) = o + @, where @ denotes the conjugate of v over k.

For o, € K,

Tr(ef) = N(a + ) — N(a) — N(B)
is clear. If N(a) = 0 for @ € K, then o = 0 holds; hence every nonzero elements is non-
isotropic. Moreover, if a # 0, then Tr(a@) = 2N(a) # 0 (char(k) # 2); thus, N is a
nondegenerate quadratic form on K.

We remark that for o, 8 € K, N(af) = N(«a)N(5). This property is very useful. For
example, if a is not a square in k, considering the field K = k(y/a), then b is represented by
the form f = x? — ay? if and only if b € N(K). Hence, if b and ¢ € k* are represented by f,
then bc and b/c both are represented by f.

Now, we restrict to the case k is a finite field. In this case, K is the unique quadratic
extension of k£ and it is well known that the norm and the trace from K to k are surjective.
Hence, we know that (K, N) is a nondegenerate quadratic space which represents k* (even
when char(k) = 2). Though K is of dimension 2 over £, it is important to know that (K, N)
is not a hyperbolic plane, since there is no nonzero isotropic element.
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Proposition 3.6. Let (V,Q) be a 2-dimensional quadratic space over a finite field k without
any nonzero isotropic element. Then (V, Q) is metric isomorphic to (K,N), and hence (V, Q)
18 nondegenerate and represents k*.

Proof. Given a basis vy, vs of V', we have
Q(zv; +v2) = Q(v1)2® + H(vy,v)x + Q(v2) #0, Va €k,
Hence, there exists o € K \ k such that
Q(v1)x? + H (v, vo)1122 + Q(v2)25 = Q(v1) (21 — amy) (11 — @xy) = Q(v1)N(z) — amy).
By the ontoness, there exists f € K such that N(3) = Q(v;). The mapping h : V — K
sending vy + 2ovy to B(x; — axs) is a metric isomorphism because
N(h(z1v1 + x22v2)) = N(B(21 — axs)) = N(B)N(z1 — axs) = Q(z1v1 + 22v3).
U

Corollary 3.7. A nondegenerate 2-dimensional quadratic space over a finite field k is metric
isomorphic to a hyperbolic plane or to (K,N).

Proof. If there exists a nonzero isotropic element, then Proposition 2.8 implies that it is a
hyperbolic plane. Hence, Proposition 3.6 yields the corollary. 0]

We have proved that every nontrivial quadratic space over a field of characteristic not
equal to 2 has a non-isotropic element. Our next corollary is interesting and is true even for
the case char(k) = 2.

Corollary 3.8. A quadratic space (V,Q) over a finite field of rank > 2 has a nonzero
1sotropic element.

Proof. Suppose that there is no nonzero isotropic element. Take a 2-dimensional subspace
W; then by Proposition 3.6, (W, Q) is metric isomorphic to (K,N). Thus, (W, Q) is non-
degenerate and @ represents k* in W. By Proposition 2.3, we have W+ # {0} (because
dim(W*) > 3 — 2); thus, there exists a nonzero v € W+. Since v is not isotropic, Q(v) € k*

and hence, there exists w € W such that Q(w) = —Q(v). Thus Q(v+w) = Q(v)+Q(w) = 0.
Since (W, Q) is nondegenerate, W N W+ = {0}. Thus v + w is a nonzero isotropic element
which contradicts to our assumption. O

From this corollary, a quadratic form over a finite field k£ of rank > 3 must represents 0.
Also from Propositions 2.8 and 3.6, a rank 2 quadratic form over a finite field k represents
all elements of k*.

Proposition 3.9. Let k be a finite field and let a denote an element of k* which is not a
square. Fvery nondegenerate quadratic form of rank n over k is equivalent to

2 2 2 2 2 2
nw+- -tz _+x, or xzi+---+x,_,+ax,,

depending on whether its discriminant is a square or not.

Proof. This is clear if n = 1. If n > 2, then the argument above shows that the form f
represents 1. This is thus equivalent to 22 H g where ¢ is a form of rank n — 1 (c.f. Corollary
2.10). One applies the inductive hypothesis to g. O

Corollary 3.10. For two nondegenerate quadratic forms over a finite field k to be equivalent,
it s necessary and sufficient that they have same rank and same discriminant in k*/k*Z.
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4. QUADRATIC FORMS OVER LocAL FIELDS

In this section, we discuss quadratic forms over the field Q, of p-adic numbers and the
field R of real numbers.

4.1. Quadratic Forms over Q,. In this subsection, all quadratic forms are nondegenerate.
Let (V, @) be a quadratic space of rank n. Recall that if e = {vy,...,v,} is an orthogonal
basis of V' and if we put a; = Q(v;), we have its discriminant

dQ)=ar--a, inQ/Q>
d(Q) is an invariant of Q in Q;/Q;*. There is another invariant (e) which is defined by

e(e) = [ (@i ay)
i<j
where (a,b) is the Hilbert symbol. One has £(e) = +1. We need to show that £(e) is
independent of the choice of the orthogonal basis.

Theorem 4.1. For any two orthogonal bases e, e’ of V, £(e) = (€').

Proof. If n = 1, one has £(e) = 1 by definition. If n = 2, f ~ a;2% + ayx3. One has ¢(e) =1
if and only if 2% — a;2? — ayx3 represents 0, that is equivalent to say (by Corollary 2.10) that
f represents 1 an this condition does not depend on e.

For n > 3 we use induction on n. By Theorem 2.13, it suffices to prove that £(e) = £(e’)

when e and € are contiguous. By the symmetry of the Hilbert symbol, we can suppose that

e = {v},..., v} with v} = v;. If we put a; = Q(v}), then a} = a;. One can write £(e) in the
form
e(e) = (a1, a2+~ ay) H (ai, aj) = (a1, —d(Q)) H (ai, aj),
2<i<; 2<i<j

and similarly
e(e') = (a, —d(Q)) [] (a}, a)).
2<i<j
Apply the inductive hypothesis to the orthogonal complement of vy, the desired result follows.
Il

We therefore write from now on £(Q) instead of £(e) and call it the Hasse invariant of Q.
Let now f be a quadratic form of rank n. Let d = d(f) and € = ¢(f) be its discriminant
and Hasse invariant, respectively.

Theorem 4.2. For f to represent 0 it is necessary and sufficient that:
(1) n=2 and d = —1 in k*/k*?,
(2) n=3 and (—1,—d) =&,
(3) n =4 and either d # 1 in k*/k** ord =1 in k*/k** and e = (—1, —1),
(4) n > 5.

Before proving the theorem, let us indicate a consequence of it: let a € k*/k*2 and
g = f Baz? By Corollary 2.10, ¢ represents 0 if and only if f represents a. On the other
hand, d(g) = —ad(f) and ¢(g) = (—a,d(f))e(f). By applying Theorem 4.2 to g and taking
into account the above formulas, we obtain:

Corollary 4.3. Let a € k*/k*Q. In order that f represents a it is necessary and sufficient
that:
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(1) n=1 and a = d in k*/k*?,

(2) n=2 and (a,—d) =&,

(3) n =3 and either a # —d in k*/k** or a = —d in k*/k** and (—=1,—d) = ¢,
(4) n > 4.

Proof of Corollary 4.5. If the rank of f is 1 , we have the rank of g is 2. Since in this case,
g represents 0 if and only if d(g) = —1; this is equivalent to ad(f) =1, i.e., d = d(f) =
For n = 2, we have ¢ represents 0 if and only if

(_lvd)(av d)6 = (_av d)6 = 8(9) = (_17 _d(g)) = (_laad) = (_lva)(_lad)'

This is equivalent to € = (a, d)(a, —1) = (a, —d).
—ad = d(g) # 1 in k*/k*? is equivalent to a # —d in k*/k**. d(g) = 1 in k*/k** and
(—a,d)e = £(g) = (=1, —1) is equivalent to a = —d in k*/k** and by Proposition 3.1 (3),

e=(—a,d)(~1,-1) = (d,d) (=1, -1) = (=1, d)(~1,-1) = (—1, —d).

This proves the case for n = 3.

Proof of Theorem 4.2. We write f in the form f ~ a;z? + - - - a,z>.

(1) The case n = 2: The form f represents 0 if and only if —a;/ay = 1 in k*/k*?; but
—a1/ay = —ajay = —d in k*/k**. This means that d = —1 in k*/k**.
(2) The case n = 3: f represents 0 if and only if

—agf ~ —agalx% — a3021‘; — :17%

represents 0. Now by the definition of Hilbert symbol —aga;2? —azay73—23 represents

0 if and only if (—aga;, —azas) = 1. By the bilinear property of Hilbert symbol, we
have the expansion

( @301,—0302)

= (=1,-1)(—1,a3)(—1,a2)(as, —1)(as, a3)(as, az)(ar, —1)(ay, as)(a, as)

= (=1, -1)(=1,a1)(=1,a2)(as, as) (a1, az) (a1, as)(az, as)

= (—=1,-1)(—1,a1)(—1,a2)(—1,a3)(as,az)(ai, a3)(as, a3) (Proposition 3.1)
= (-1,-1)(-1,d)e.

i.e., (=1,—d) =e.

(3) The case n = 4: By Corollary 2.11, f represents 0 if and only if there exists an
element a € k*/k** which is represented by a,2? + ayz3 and —az23 — as2?. Since we
already proved the case n = 3 we can apply case (2) (n = 2) of Corollary 4.3. Thus
such an a is characterized by the conditions

(a, —ajay) = (ay,a3) and (a, —azas) = (—asz, —ay).

Denote e = (ay,az) and 9 = (—a3, —a4). In order that f does not represent 0, it
is necessary and sufficient that H, , N H®?_ ., = &. By Proposition 3.1 (3), a; €

al a2 —asaq
H® and —a3 € H??_,, and hence H®Y . and H®2_, are nonempty. Therefore, by

—aia2 —azaq —aia2 —azaq

Proposition 3.3 (2), H, , NH®, ., = @ is thus equivalent to ajay = asay in k*/k*>

—a1a2 —a3a4
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and (ay,as) = —(—as, —ay). The first condition means that d = 1 in k*/k*2. If it is
fulfilled, one has

€ (a1,a9)(as, as)(a1, asz)(az, as)(ar, as)(asz, aq)
= (a1,0a2)(as, as)(aras, azas)
= (al, 02) (a3, a4)(a3a4, a3a4)
= (ay,a9)(as, a4)(—1,a3ay) (Proposition 3.1)
= (ay,a9)(as, aq4)(—1,a3)(—1,a4)
= (ay,a9)(as, —aq4)(—1, —aq)(—1, 1)
= (ay,a9)(—az, —aq4)(—1,—1)

Hence the second condition can be written ¢ = —(—1, —1), from which the result

follows.

(4) The case n > 5: It is sufficient to treat the case n = 5. By Corollary 2.11, f
represents 0 if and only if there exists an element a € k*/k*? which is represented by
fi = ayx? + ag73 and fy = —a3x3 — a4x3 — azw:. By the case n = 2, if a9 = —1
in k*/k*2, f1 represents 0 and hence by Proposition 2.8, f; represents all elements of
k. In particular, all non-zero values taken by f, can be represented by f;. On the
other hand, if ajas # —1 in k*/k**, by using Proposition 3.3 and case (2) (n = 2) of
Corollary 4.3, there are 2"~' > 2 elements in k*/k*? which can be represented by f;.
We can choose such a a so that a # asasas in k*/k** and hence by case (3)(n = 3) of
Corollary 4.3 (which can be proved by using case (3) (n = 3) above), a is represented
by fe and the proof is complete.

O

To end this subsection, we give a classification of quadratic forms over Q,.

Theorem 4.4. Two quadrate forms over k are equivalent if and only if they have the same
rank, same discriminant and same Hasse invariant.

Proof. That two equivalent forms have the same rank, discriminant and Hasse invariant
follows from the definitions and Theorem 4.1. The converse is proved by induction on the
rank n of two forms f and g considered. Corollary 4.3 shows that f and g represent the
same elements of k*/k*2. One can thus find a € k* which is represented at the same time by
f and by g; by Corollary 2.10, this allows one to write:

f~ar?@Bfy and g~ az’ B g,

where f; and g, are forms of rank n—1. One has ad(f1) = d(f) = d(g) = ad(g1) which shows

that d(f;) = d(g1). One also has (f1)(a,d(f1)) =e(f) =e(g9) = €(g1)(a,d(g1)) which shows
that £(f1) = £(¢g1). In view of the inductive hypothesis, we have f; ~ g;, hence f~g. O

Corollary 4.5. Up to equivalence, there exists a unique quadratic form of rank 4 which does
not represent 0; it is the form z* — ax® — by* + abt® with (a,b) = —

Proof. By Theorem 4.2, such a form is characterized by d(f) =1 and £(f) = —(—1, —1) and
a simple computation shows that 22 — ax? — by? + abt? has these properties. The uniqueness
follows from Theorem 4.4. O
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Proposition 4.6. Let n > 1, d € k*/k** and € = +1. In order that there exists a quadratic
form f of rank n such that d(f) = d and e(f) = ¢, it is necessary and sufficient that n =1,
e=1;0rn=2,d# -1 ink*/k**; orn=2,c=1; orn > 3.

Proof. The case n = 1 is trivial. If n = 2, one has f ~ az? + by? and d(f) = ab = —1 in
k*/k** implies ¢(f) = (a,b) = (a, —ab) = 1. Thus, we must have either d(f) # —1 in k*/k**
or £(f) = 1. Conversely, if d # —1 in k*/k*?, there exists a € k* such that (a, —d) = ¢ and
we take f = ax® + ady® so that d(f) = a®d = d in k*/k** and ¢(f) = (a,ad) = (a, —d) = ¢;
for f = z? — y?, we have d(f) = —1 and £(f) = 1.

If n = 3, we can choose a € k*/k*? such that a # —d (i.e., ad # —1) in k*/k**. By what we
have just seen, there exists a form ¢ of rank 2 such that d(¢g) = ad and ¢(g) = ¢(a, —d). The
form f = az? B g has d(f) = ad(g) = d in k*/k** and e(f) = (a,d(g))e(g) = (a, —d)%e = ¢.
The case n > 4 is reduced to the case n = 3 by taking f = g(z1, v, x3) + 27 + - - -+ 22 where
g is a form of rank 3 of given d and ¢. U

Corollary 4.7. The number of equivalent classes of quadratic forms of rank n over Q, for
pF#2isequaltodifn=1,to7 ifn=2andto8 ifn>3; forp=21s equal to 8 if n =1,
to 15 if n =2 and to 16 if n > 3.

Proof. For p # 2, k*/k* has 4 elements and for p = 2, k*/k*? has 8 elements. Since ¢ can
take 2 values, our result follows easily from Proposition 4.6. 0

4.2. Quadratic Forms over R. Let f ba a quadratic form of rank n over the field R of real
numbers. We know that R* /R*? = {+1} and hence f is equivalent to 2, +- - -+22 —y?—- - - 2,
where r and s are two nonnegative integers such that r + s = n.

Theorem 4.8 (Sylvester’s Law of Inertia). Let (V,Q) be a real nondegenerate quadratic
space of rank n. The number r and s are independent of the orthogonal basis of V.

Proof. Suppose that e = {vy,..., v, vp41,..., v} and € = {v,..., v, 0. ¢, ..., 0, } are two
orthogonal bases with Q(v;) > 0 (resp. Q(v},) > 0) for 1 < i < r (resp. 1 < ¢ <7') and
Q(vj) <0 (resp. Q(vj) <0) for r < j <n (resp. r' < j" <n).

We suppose that r # r' and arrive at a contradiction. Without loss of generality assume
that < 7'. Let [ : V' — R*""" be the mapping defined by

[(v) = (H(v,wn),...,H(v,v,), Hv,v.,),...,H(v,v,)).

It is easy to check that [ is linear and dim(/(V')) < n+r—r'. Hence dim(Ker(l)) > ' —r > 0.
Therefore, there exist a nonzero vy € Ker(l). It follows that H(vg,v;) = 0 for i < r and
H(vo,v;) = 0 for 7' < j < n. Hence we have

n r'
vy = g a;v; = 5 bjv;.
Jj=1

i=r+1

Thus

n

Q(vy) = Z a;Q(v;) >0 and Q(vo) = Zb?Q(U;‘) <0.

1=r+1

So we have a; = b; = 0 which contradict to that vy is nonzero. O
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From Sylvester’s law of inertia, the pair (r, s) depends only on f; it is called the signature
of f. We say that f is definite if r = 0 or s = 0, i.e., if f does not change sign; otherwise,
we say that f is indefinite. Only indefinite real quadratic form represents 0.

We can see easily that d(f) = (—1)° in R*/R*2. The Hasse invariant £(f) is defined as in
the case of Q,; due to the fact that (—1,—1) = —1, we have g(f) = (—1)*(=1/2,

Though the representation of elements in R of a quadratic form can be directly derived, it
is interested to know that parts (1), (2), (3) of Theorem 4.2 and Corollary 4.3 are valid for R
(indeed their proofs use only the nondegeneracy of the Hilbert symbol). However, part (4)
does not extend (indeed, in the proof we use the fact that the number of HE is > 2 which is
not true for R).

5. QUADRATIC FORMS OVER QQ

All quadratic forms considered in this section have coefficients in Q and are nondegenerate.

5.1. Invariants of a Quadratic Form. We denote by V the union of the set of prime
numbers and the symbol co, and we put Q,, = R.
Let f ~ ajz} + -+ + a,72 be a quadratic form of rank n. We associate to it the following
invariants:
(1) The discriminant d(f) € Q*/Q*? equal to a; - - - ay,.
(2) Let v € V. The injection Q — Q, allows one to view f as a quadratic form f, over
Q.. The discriminant and Hasse invariant of f, will be denoted by d,(f) and £,(f),
respectively. It is clear that d,(f) is the image of d(f) by Q*/Q** — Q' /Q*? and we

have
61/(f) — H(ai, a]‘)y.
i<j

The product formula (Theorem 3.4) gives the relation

[Tz =1

vey
(3) The signature (r, s) of the real quadratic form f is another invariant of f.

d,(f), e,(f) and (r,s) are sometimes called the local invariants of f.

5.2. Hasse-Minkowski Theorem. Hasse-Minkowski theorem is mainly concerning about
representation of a ration number by a quadratic form. It says that f has a “global” zero if
and only if f has everywhere a “local” zero.

Theorem 5.1 (Hasse-Minkowski). In order that f represent 0, it is necessary and sufficient
that for all v € V, the form f, represents (.

Proof. The necessity is trivial. In order to see the sufficiency, we write f = a2 + - - -+ a, 12
with a; € Q@*. Replacing f by a;f, one can moreover suppose that a; = 1; being free to
multiply by squares, we can assume that a; are square free integers (i.e., v,(a;) is equal to 0
or 1 for all prime numbers p).

(1) The case n = 2: We have f ~ z2 — ax3. Since f,, represents 0, a > 0. If we write
a = Hp p"»(®) the fact that fp represents 0 shows that a is a square in Q,, hence
vp(a) = 0. From this follows that @ = 1 and f ~ 27 — x3 represents 0.
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The case n = 3 (Legendre): We have f ~ x? — az3 — br3. We assume that |a| < |b|
and use induction on the integer m = |a|+|b|. If m = 2, we have f ~ x?+22+22; the
case of z? + x5 + 2 is excluded because f., represents 0; in other cases, f represents
0.

Suppose now that m > 2. For every p | b, we are going to prove that a is a square
modulo p. This is obvious if @ = 0 (mod p). Otherwise, by hypothesis there exists
(a, B,7) € Z} such that v* — aa® — bs* = 0 and (a, B,7) is primitive (i.c., at least
one of a, 8 or v is a p-adic unit). If p | o, then p | v and hence p? | b3%. Since p? 1 b,
this implies that p | 5 and contrary to the fact that («, 3,~) is primitive. Thus, we
have p { o, which shows that a = (y/a)? (mod p). Since b is square free, by Chinese
remainder theorem, we see that a is a square modulo b. There exist thus integers u
and ' such that u* = a+ b’ and (by substituting u by u + Ab) we can always choose
u such that |u] < |b|/2. u? —a-1% — bb - 12 shows that (a,bd’), = 1 for all v € V.
Combining this with the assumption (a,b), = 1, Vv € V, we have that (a,b), =1,
Vv € V. This shows that ¢ = 22 — az — 0/x?2 represents 0 in each of the Q,. But we
have
u? —

b

@ +% 1ol +1<|b|. (because |b| > 2)

Write b’ in the form b”\? with b”, ) integers and b” square free; we have a fortiori
"] < |b]. The induction hypothesis applies thus to the form z? — az2 — 0" x2 which is
equivalent to g and hence ¢ represents 0 in Q. Suppose that («, 3,7) € Q* such that
v2—aa?—Vp3? =0. If B =0, we have a is a square in Q and hence f ~ x? —ax3 — b3
represents 0; otherwise we have that b = (v/3) — a(«/3)? and this shows that b’ is a
norm of the extension Q(y/a)/Q. Since bb' = u* — a is also a norm of the extension
Q(v/a)/Q, this implies that b is a norm of the extension Q(y/a)/Q. Therefore, b =
C? —an? for {,n € Q, thus 2% — ax2 bxz? represents 0.

The case n = 4: Write f = az? + bxd — (cxi + dx3). For every v € V, since f,
represents 0, Corollary 2.11 shows that there exists «, which is represented both by
az? + br3 and by cz? + dx?. By part (2) of Corollary 4.3, this is equivalent to saying
that

V] =

(ay,—ab), = (a,b), and (a,,—cd), = (c¢,d), Vv e V.

Since [ ],y (a,b), =[],y (c,d), = 1, we can apply Theorem 3.5 and obtain from it
the existence of a € QF such that

(a, —ab), = (a,b), and («a,—cd), = (¢,d), Vv e V.

This shows that both az? + bx3 and cz? + dz? represent « in each of the Q, and
hence az? + bz — az? and cx? + dr? — az? in each of the Q, (Corollary 2.10). By
what we have just proved (the case of n = 3), azx? + br3 — az? and czx? + dr? — az?
both represent 0 in Q and hence « is represented in Q by ax? + br3 and cx3 + dz?;
the fact that f represents 0 follows from this.

The case n > 5: We use induction on n. We write f in the form

f=hBg with h=a ]+ a3, g = —(az23+ -+ a,z2).

Let S be a subset of V consisting of oo, 2 and the primes p such that v,(a;) # 0 for
one 7 > 3.; it is a finite set. For v € S, since f, represents 0, there exist o, € Q) and
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xzy € Q,,2=1,...,n such that

h(xy,z5) = o, = g(5, ..., x7).

Consider h as a mapping from ], 4 Q7 = [], . Qv. Let

1+pZ, ifv=p#2,
U,={14+8Z, ifv=2
Rt if v = 0.

Because h is continuous and U, is a open set of @}, the pre-image of h of the open
neighborhood (..., ®,U,,...) is also an open set. By the “approximation theorem”
(i.e., Q is dense in [, 4@, ), there exists (5,v) € Q* such that the image of (3, 7)
in [],.q @2 is in the pre-image. Thus if (3, 7) = «, then « € o, U, for every v € S.
If v € S, g represents a, € Q,, thus also a because U, C Q:? (this can be shown
by using Hensel’s Lemma); hence f; = a2z — ¢ represents 0 in Q,. If v ¢ S, the
coefficients of g are v-adic units; the same is true of d,(g), and because v # 2 , we
have ¢,(g) = 1 (recall that (a,b), = 1 if a,b are v-adic units). For n > 5 the rank
of g is > 4 and for n = 5, the rank of ¢ is 3; in this case (—1,—d,(g)) =1 = £,(g).
By Corollary 4.3, g represents « in Q,, and hence f; represents 0 in QQ,. In all cases,
since the rank of f; is n — 1, the inductive hypothesis shows that f; represents 0 in
Q, i.e., g represents « in Q; since we have chosen « such that h represents a in Q, f
represents 0 in QQ and the proof is complete.

O

Corollary 5.2. Let a € Q*. In order that f represents a in Q, it is necessary and sufficient
that it does in each of the Q,.

Proof. Applying Theorem 5.1 to the form g = az? B f, we have that g represents 0 in Q if
and only if g represents 0 in each of Q,. By Corollary 2.10, our result follows.
Il

Corollary 5.3 (Meyer). A quadratic form of rank > 5 represents 0 if and only if it is
indefinite.

Proof. Indeed, it represents 0 in R and by Theorem 4.2, such a form represents 0 in each of
the Q,. O

Corollary 5.4. Let n be the rank of f. Suppose that

(1) n=2 and f represents 0 in almost all the Q,;
(2) n =3 and f represents 0 in all the Q, except at most one;
(3) n=4, d(f) =1 in Q" /Q* and f represents 0 in all the Q, except at most one.

Then [ represents 0 in Q.

Proof. For n = 2, by Theorem 4.2, f represents 0 in Q if and only if —d(f) is in Q%? for
every Q,. One can show, by means of the “Dirichlet theorem” that if —d(f) is not a square
in Q, then there are infinitely many p such that —d(f) is not a square in Q,.

For n = 3, f represents 0 in Q if and only if (=1, —d(f)), = £,(f) for every v € V. But
the two families €, (f) and (—1, —d(f)), satisfy the product formula (Theorem 3.4). From
this, it is impossible that there is only one v € V such that (=1, —d(f)), # €,(f) and hence
f represents 0.
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For n = 4 and d(f) = 1 in Q*/Q*?, we have that f represents 0 in Q if and only if
(—1,—1), =&,(f) for every v € V. We argue in the same as in the case n = 3.
0J

5.3. Classification.

Theorem 5.5. Let f and g be two quadratic forms over Q. For f and g to be equivalent
over Q it is necessary and sufficient that f and g are equivalent over each Q,.

Proof. The necessity is trivial. To prove the sufficiency, we use induction on the rank n of
f and g. For the case n = 0 there is nothing to prove. Otherwise, consider any a € Q*
which is represented by f in Q and hence in each Q,. Since f ~ ¢ over each Q,, a is also
represented by ¢ in each Q, and hence by Corollary 5.2, a is represented by ¢ over Q. Thus
we have f ~ az? B f; and g ~ az? B g;. Again, since f ~ g over each Q,, we have f; ~ ¢,
over each Q,. The induction hypothesis then shows that f; ~ ¢g; over Q, hence f ~ ¢ over
Q. O

Let f and g be two quadratic form over Q. By Theorem 4.4, f ~ g over QQ, if and only
if they have the same rank, d,(f) = d,(¢) and ¢,(f) = ,(g). Also, by Theorem 4.8, f ~ ¢
in R if and only if they have the same signatures. Combining these with Theorem 5.5, we
have the following corollary.

Corollary 5.6. Let (r,s) and (r',s") be the signatures of the two quadratic forms f and g
over Q, respectively. For f and g to be equivalent it is necessary and sufficient that one has

d(f)=d(g), (r,s)=(",s) and e,(f)=¢e,(9),VveV.

Proof. Indeed, since d(f) and d(g) are in Q, d(f) = d(g) if and only if d,(f) = d,(g) for
every p. ]

The invariants d = d(f), €, = £,(f) and (r, s) are not arbitrary. They satisfy the following
relations:

(1) e, = 1 for almost all v € V and [],., e, = 1,

(2) if n =1, then g, =1 for all v € V (by definition),

(3) if n = 2 and the image —d, of —d in @} is a square, then ¢, = 1 (because if
f ~ az® + by?, then ¢, = (a,b), = (a,—d), = 1),

(4) r,s >0 and r + s = n,

(5) doo = (=1)7,

(6) 0o = (—1)*6=1/2 (because (—1, 1), = —1).

Proposition 5.7. Let d, (¢,),ey and (r,s) satisfy the relations (1) to (6) above. Then there
exists a quadratic form of rank n over Q having d(f) =d, €,(f) = e, and signature (r, s).

Proof. The case n =1 is trivial.

Suppose that n = 2. For v € V, if —d, € Q}?, by condition (3), for any a, € Q%, we have
(ay,—d), =1 = ¢,; if —d, ¢ Q%?, then by the nondegeneracy of the Hilbert symbol, there
exists a, € Q such that (a,, —d), = £,. From this and condition (1), follows the existence
of a € Q* such that (a,—d), = ¢, for all v € V (c.f. Theorem 3.5). The form az? + ady?
works.

Suppose that n = 3. Let S be the set of v € V such that (—d, 1), = —¢,. S is a finite
set. Indeed, by condition (1) there are only finitely many v € V such that —e, = 1, so that
there are only finitely many v € V such that —s, = (—d, —1), = 1; similarly, there are only
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finitely many v € V such that (—d,—1), = —¢, = —1 (Theorem 3.4). If v € S, choose
c, # —d, in Q,/Q:% Since Q*? is an open set of Q% (recall that U, C Q2 is open in Q}),
using the approximation theorem, there exists ¢ € Q* such that ¢ = ¢, in Q% /Q}?, for every
v €S. Let d = cd and let €/, = (¢, —d),e,, Vv € V. Since (¢, —d), = 1 for almost all v € V
and [],¢,,(c, —=d), = 1 (Theorem 3.4), (¢},),ey satisfies condition (1). Also, if the image —d;,
of —d’ in Q% is a square (i.e., ¢, = —d, in Q%/Q%?), then v ¢ S and hence, (—d, —1), # —¢,
(i.e., (—d, —1), =¢€,); thus,

e, = (c,—d),e, = (cd,—d) e, = (—1,—d),e, = 1.

v

Hence, from what we have just proved (using only conditions (1) and (3)) follows the existence
of a form ¢ of rank 2 such that

d(g)=d =cd and ¢,(g9) =¢, = (¢, —d),e,, Vv € V.
The form f = c2? @ g then has d(f) = cd(g) = *d = d in Q*/Q*? and
6V(f) = (C, d(g))l’gll(g) = (Ca Cd)ll(ca _d)llgl/ = (C, —d)?,e’;‘y = Eyp.

When n > 4, we use induction on n. Suppose first that » > 1. Because d,, and ., depend
only on s, using the induction hypothesis, we obtain a form ¢ of rank n — 1 which has for
invariants d(g) = d, (¢,(9))vey = (¢,)vey and signature (r — 1,s); the form z? B g is then
a form of rank n with desired invariants. When r = 0 (i.e., s = n) we consider d' = —d
and ¢!, = ¢,(—1, —d), for all v € V. We have (£],),¢y satisfies condition (1), the image d' in
R*/R*?is —d = (1) - (—=1)" = (—=1)""" and
6’ — 600(—1, _d)oo — (_l)n(n—l)/Z . (_l)n—l — (_1)(n—1)(n—2)/2‘

o0

These are conditions (5) and (6) for s = n — 1. By the inductive hypothesis, we obtain a
form h of rank n — 1 having for invariants d(h) = d’' = —d, ¢,(h) = €|, = ¢,(—1, —d), and
signature (0,n — 1); the form f = —2? B h has d(f) = —d(h) = d,

51/(f) = (_lv d(h))z/gu(h) = (_lv _d)u(_la _d)vgu =&y
and signature (0,n). O

Note that in this proof, for n < 3 we do not need to consider the signature of the form.
Indeed, dy and e is equivalent to that of the class of s modulo 4 and hence, when n < 3,
ds and e, determinate s uniquely.

5.4. Sums of Three Squares. Let n be a positive integer. We say that n is the sum of 3
squares if n is representable over the ring Z by the quadratic form 22 + 22 + 232, i.e. there
exist integers nq,ny and nz such that n = n? + n2 + n2.

Lemma 5.8. Let a € Q*. In order that a be represented in Q by the form f = x? + x3 + x3
it is necessary and sufficient that a > 0 and that —a s not a square in Q,

Proof. By Corollary 5.2, we have to represent a by f in R and in all @Q,. The case of R
gives the positivity condition. On the other hand, we have the local invariants d,(f) = 1
and €,(f) = 1 for all prime p. If p # 2, we have (—1,—d(f)), = (—1,-1), = 1 = &,(f);
Corollary 4.3 thus shows that a is represented by f in Q,. if p = 2, we have (—1, —d(f))s =
(—1,—1) = —1 # 25(f); Again, Corollary 4.3 shows that a is represented by f in Q, if and
only if @ # —1 in Q5/Q32, i.e., if —a is not a square in Q. O
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Now we must pass from representations in QQ to representations in Z. Note that for every
(a1, az,a3) € Q®, we can choose (my, mg, m3) € Z3 such that |a; — m;| < 1/2 for i = 1,2, 3;
we have (a; —mg)? + (az — m2)? + (a3 — m3)? < 3/4 < 1. Hence, we can apply the following
Lemma.

Lemma 5.9 (Davenport-Cassels). Let f be a positive definite quadratic form of rank r with

integer coefficients. Suppose that for every (aq,...,a,) € Q there exists (mqy,...,m,) € Z'
such that f(a;—my,...,a.—m,) < 1. Ifn € Z is represented by f in Q, then n is represented
by f in Z.

Proof. Let H be the symmetric bilinear form corresponding to f; thus, we have H(v,v) =
f(v). Let n € Z be represented by f in Q. There exists an integer ¢ > 0 such that
t?n = f(ai,...,q,) with v = (aq,...,a,) € Z". Choose t in such a way that it is minimum;
we claim that ¢ = 1.
By the hypothesis, there exists w = (my,...,m,) € Z" such that
(_

PREREEE t):(ml,...,mr)+(51,...,ﬁr), with f(ﬁl,...,ﬁ,«)<]_.

If f(Bi,...,05,) =0, we have (31,...,5,) = (0,...,0) because f is positive definite. Hence
(an/t,...,a,/t) € Z". Because of the minimality of ¢, this implies that ¢ = 1.
Assume now that f(f1,...,5,) # 0 and put

a= f(w)—mn, and b=2(nt— H(v,w)).

a1 678

We also put
' =at+b and v =av+ bw.

It is clear that a,b,t' € Z, v' € Z" and
F) = a®f(v) + 2abH (v, w) + b2 f (w) = a®>n + ab(2nt — b) + b*(n + a) = t"*n.

Moreover,
tt' = at® +bt = 2 f(w) — nt® + 2nt*> — 2tH (v, w)
= 12 f(w) — 2tH(v,w) + f(v)
= [f(tw—v)
= t2f(B1,...,0)
Hence, t' = tf(By,...,05;); since 0 < f(By,...,05,) <1, we have 0 < t' < t. This contradicts
the minimality of £ and concludes the proof of the lemma. O

Using generalized Hensel’s lemma, we know that a positive integer n of the form 4%(83—1)
is equivalent to say that —n is a square in Q5. Combining this with Lemma 5.8 and Lemma
5.9, we have the following theorem.

Theorem 5.10 (Gauss). In order that a positive integer be a sum of three squares it is
necessary and sufficient that it is not of the form 4*(83 — 1) with o, § € N.

A positive integer n is a sum of four squares if there exist integers nq,...,nys such that
— 2 2
n—n1+"'+n4.

Corollary 5.11 (Largrange). Fvery positive integer is a sum of four squares.
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Proof. We write n in the form 4*m where 4 f m. m is not a sum of three squares only when
m = —1 (mod 8), but in this case m — 1 is a sum of three squares and hence m is a sum of

four squares; the same holds for n.

A number is called triangular if it is of the form m(m + 1)/2 with m € Z.

Corollary 5.12 (Gauss). Every positive integers is a sum of three triangular numbers.

Proof. Given a positive integer m, by applying Theorem 5.10 to the number 8m + 3, there
exist ny,ng,n3 € Z such that n? + nZ + n3 = 8m + 3. The only squares modulo 8 is 0, 1, 4

Hence we have that n; = 2m; + 1 for i = 1,2, 3. We have

3 3
J(m; + 1) 1
) m(L <§:2m1+1 —3) gBm+3-3) =
=1

=1
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