算術講義

許志農

國立台灣師範大學數學系

December 28, 2004

左圖三小圓半徑和＝右圖三小圓半徑和
目 录

1 狄利克雷定理 1
1 狄利克雷定理

數學家狄利克雷利用簡單的鴿籠原理證明了有名的狄利克雷定理：

定理 1.1（狄利克雷定理）如果 α 是實數，N 是一個正整數，則可以找到正整數 $n \ (1 \leq n \leq N)$ 及整數 m 滿足

$$|\alpha - \frac{m}{n}| < \frac{1}{nN}.$$

【證明】考慮下列 N 個實數

$$0 \leq n\alpha - \lfloor n\alpha \rfloor < 1, \ n = 1, 2, 3, \ldots, N.$$

由於此 N 個數落在

$$[0, 1/N), [1/N, 2/N), [2/N, 3/N), \ldots, [(N-1)/N, 1)$$

N 個區間內，所以有底下兩種情形：

(1) 每一個區間恰含一個數，因此可以找到正整數 $n (1 \leq n \leq N)$ 滿足

$$0 \leq n\alpha - \lfloor n\alpha \rfloor < \frac{1}{N} \Rightarrow |\alpha - \frac{\lfloor n\alpha \rfloor}{n}| < \frac{1}{nN}.$$

(2) 有一個區間含兩個數以上：設正整數 $1 \leq n_1 < n_2 \leq N$ 滿足

$$\left\{ \begin{array}{l}
\frac{i}{N} \leq n_1\alpha - \lfloor n_1\alpha \rfloor < \frac{i+1}{N} \Rightarrow 0 \leq |(n_2 - n_1)\alpha - (\lfloor n_2\alpha \rfloor - \lfloor n_1\alpha \rfloor)| < \frac{1}{N} \\
\frac{i}{N} \leq n_2\alpha - \lfloor n_2\alpha \rfloor < \frac{i+1}{N} \Rightarrow |\alpha - \frac{\lfloor n_2\alpha \rfloor - \lfloor n_1\alpha \rfloor}{n_2 - n_1}| < \frac{1}{(n_2 - n_1)N}.
\end{array} \right.$$

得證。

定理 1.2 設實數 α 不是有理數。證明：可以找到無窮多個分數 m/n （其中 n 為正整數，m 為整數）滿足

$$|\alpha - \frac{m}{n}| < \frac{1}{n^2}.$$

【證明】假設僅有 d 個分數滿足定理所要求，並令此 d 個分數分別為

$$\frac{m_i}{n_i}, \ i = 1, 2, 3, \ldots, d.$$

因為 α 不是有理數，所以 $\alpha - m_i/n_i \neq 0$。因此可以取一個滿足

$$\frac{1}{N} < |\alpha - \frac{m_i}{n_i}|, \ i = 1, 2, 3, \ldots, d$$

的大整數 N。根據狄利克雷定理：可以找到正整數 $n \ (n \leq N)$ 及整數 m 使得

$$|\alpha - \frac{m}{n}| < \frac{1}{nN} \leq \frac{1}{n^2}.$$
因為
\[|\alpha - \frac{m}{n}| < \frac{1}{nN} \leq \frac{1}{N}, \]
所以分數 \(m/n \) 不是前面假設的 \(d \) 個分數之一；但這與
\[|\alpha - \frac{m}{n}| < \frac{1}{n^2} \]
矛盾。因此可以找到無窮多個分數 \(m/n \) （其中 \(n \) 為正整數，\(m \) 為整數）滿足
\[|\alpha - \frac{m}{n}| < \frac{1}{n^2}. \]

定理 1.3 設正整數 \(s \) 不是完全平方數。證明：可以找到無窮多個整數數對 \((x, y) \) 滿足
\[|x^2 - sy^2| < 1 + 2\sqrt{s}. \]

【證明】由前定理知道：可以找到無窮多個正分數 \(x/y \) 滿足
\[
\left| \sqrt{s} - \frac{x}{y} \right| < \frac{1}{y^2} \Rightarrow \left\{ \begin{array}{l}
|y\sqrt{s} - x| < \frac{1}{y} \\
|y\sqrt{s} + x| < \frac{1}{y} + 2y\sqrt{s}
\end{array} \right.
\]
\[\Rightarrow |x^2 - sy^2| < \frac{1}{y^2} \left(\frac{1}{y} + 2y\sqrt{s} \right) = \frac{1}{y^2} + 2\sqrt{s} \leq 1 + 2\sqrt{s}. \]

因此可以找到無窮多的正整數數對 \((x, y) \) 使得
\[|x^2 - sy^2| < 1 + 2\sqrt{s}. \]

取 \(s = 3 \) 時，這個定理告訴我們：有無窮多個整數數對 \((x, y) \) 滿足
\[|x^2 - 3y^2| \leq 4. \]
換句話說：雙曲線 \(x^2 - 3y^2 = \pm 1, \pm 2, \pm 3, \pm 4 \) 至少有一條通過無窮多個整數數對。事實上，在第 ?? 節中，我們已經證明 \(s = 2 \) 的情形：在第 ?? 節中，我們將證明更一般的結果。

動手玩數學

觀察等式
\[
\frac{1}{2} = 1, \\
2 \cdot \frac{1}{2} = 1 + \frac{1}{2}, \\
3 \cdot \frac{1}{2} = 1 + \frac{1}{2} + \frac{1}{3}, \\
4 \cdot \frac{1}{2} + \frac{1}{3} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4},
\]
根據這些等式，是否可以得到比較一般的猜測。
設 \(p, q \) 為實數且 \(x^3 - px + q = 0 \) 有三實根。

(1) 證明 \(p \geq 0 \)。

(2) 若 \(\alpha \) 為 \(x^3 - px + q = 0 \) 的一根，則證明

\[
| \alpha | \leq 2 \sqrt{\frac{p}{3}}.
\]

費馬質數問題

我們都知道第 \(n \) 個費馬數 \(F_n \) 定義為正整數

\[
F_n = 2^{2^n} + 1.
\]

是否存在無窮多個費馬質數（即既是費馬數也是質數）一直是很困難的問題。費馬質數之所以重要的原因是因為：利用代數學上的伽羅瓦理論，數學家可以證明：“正質數 \(P \) 邊形可以尺規作圖的充要條件是 \(P \) 是一個費馬質數”。由此結果，我們知道：

\[
F_0 = 3, F_1 = 5, F_2 = 17, F_3 = 257, F_4 = 65537
\]

邊形等是可以尺規作圖的；而正 7, 11, 13 邊形是不能以尺規作圖的（因為它們不是費馬質數）。