Boundary-Value Problems for Ordinary

Differential Equations

NTNU

Tsung-Min Hwang
December 20, 2003

Department of Mathematics - NTNU
1 - Mathematical Theories 4
2 - Finite Difference Method For Linear Problems 15
2.1 - The Finite Difference Formulation 15
2.2 - Convergence Analysis 19
3 - Shooting Methods 22

BVP of ODE

The two-point boundary-value problems (BVP) considered in this chapter involve a second-order differential equation together with boundary condition in the following form:

$$
\left\{\begin{array}{l}
y^{\prime \prime}=f\left(x, y, y^{\prime}\right) \tag{1}\\
y(a)=\alpha, \quad y(b)=\beta
\end{array}\right.
$$

BVP of ODE

The two-point boundary-value problems (BVP) considered in this chapter involve a second-order differential equation together with boundary condition in the following form:

$$
\left\{\begin{array}{l}
y^{\prime \prime}=f\left(x, y, y^{\prime}\right) \tag{1}\\
y(a)=\alpha, \quad y(b)=\beta
\end{array}\right.
$$

The numerical procedures for finding approximate solutions to the initial-value problems can not be adapted to the solution of this problem since the specification of conditions involve two different points, $x=a$ and $x=b$.

BVP of ODE

The two-point boundary-value problems (BVP) considered in this chapter involve a second-order differential equation together with boundary condition in the following form:

$$
\left\{\begin{array}{l}
y^{\prime \prime}=f\left(x, y, y^{\prime}\right) \tag{1}\\
y(a)=\alpha, \quad y(b)=\beta
\end{array}\right.
$$

The numerical procedures for finding approximate solutions to the initial-value problems can not be adapted to the solution of this problem since the specification of conditions involve two different points, $x=a$ and $x=b$. New techniques are introduced in this chapter for handling problems (1) in which the conditions imposed are of a boundary-value rather than an initial-value type.

BVP of ODE

1 - Mathematical Theories

Before considering numerical methods, a few mathematical theories about the two-point boundary-value problem (1), such as the existence and uniqueness of solution, shall be discussed in this section.

Theorem 1 Suppose that f in (1) is continuous on the set

$$
D=\left\{\left(x, y, y^{\prime}\right) \mid a \leq x \leq b,-\infty<y<\infty,-\infty<y^{\prime}<\infty\right\}
$$

and that $\frac{\partial f}{\partial y}$ and $\frac{\partial f}{\partial y^{\prime}}$ are also continuous on D. If

1. $\frac{\partial f}{\partial y}\left(x, y, y^{\prime}\right)>0$ for all $\left(x, y, y^{\prime}\right) \in D$, and
2. a constant M exists, with $\left|\frac{\partial f}{\partial y^{\prime}}\left(x, y, y^{\prime}\right)\right| \leq M, \forall\left(x, y, y^{\prime}\right) \in D$,
then (1) has a unique solution.

When the function $f\left(x, y, y^{\prime}\right)$ has the special form

$$
f\left(x, y, y^{\prime}\right)=p(x) y^{\prime}+q(x) y+r(x)
$$

the differential equation become a so-called linear problem. The previous theorem can be simplified for this case.

Corollary 1 If the linear two-point boundary-value problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}=p(x) y^{\prime}+q(x) y+r(x) \\
y(a)=\alpha, \quad y(b)=\beta
\end{array}\right.
$$

satisfies

1. $p(x), q(x)$, and $r(x)$ are continuous on $[a, b]$, and
2. $q(x)>0$ on $[a, b]$,
then the problem has a unique solution.

Many theories and application models consider the boundary-value problem in a special form as follows.

$$
\left\{\begin{array}{l}
y^{\prime \prime}=f(x, y) \\
y(0)=0, \quad y(1)=0
\end{array}\right.
$$

We will show that this simple form can be derived from the original problem by simple techniques such as changes of variables and linear transformation. To do this, we begin by changing the variable. Suppose that the original problem is

$$
\left\{\begin{array}{l}
y^{\prime \prime}=f(x, y) \tag{2}\\
y(a)=\alpha, \quad y(b)=\beta
\end{array}\right.
$$

where $y=y(x)$. Now let $\lambda=b-a$ and define a new variable

$$
t=\frac{x-a}{b-a}=\frac{1}{\lambda}(x-a) .
$$

That is, $x=a+\lambda t$. Notice that $t=0$ corresponds to $x=a$, and $t=1$ corresponds to $x=b$. Then we define

$$
z(t)=y(a+\lambda t)=y(x)
$$

with $\lambda=b-a$. This gives

$$
z^{\prime}(t)=\frac{d}{d t} z(t)=\frac{d}{d t} y(a+\lambda t)=\left[\frac{d}{d x} y(x)\right]\left[\frac{d}{d t}(a+\lambda t)\right]=\lambda y^{\prime}(x)
$$

and, analogously,

$$
z^{\prime \prime}(t)=\frac{d}{d t} z^{\prime}(t)=\lambda^{2} y^{\prime \prime}(x)=\lambda^{2} f(x, y(x))=\lambda^{2} f(a+\lambda t, z(t))
$$

Likewise the boundary conditions are changed to

$$
z(0)=y(a)=\alpha \quad \text { and } \quad z(1)=y(b)=\beta
$$

BVP of ODE

With all these together, the problem (2) is transformed into

$$
\left\{\begin{array}{l}
z^{\prime \prime}(t)=\lambda^{2} f(a+\lambda t, z(t)) \tag{3}\\
z(0)=\alpha, \quad z(1)=\beta
\end{array}\right.
$$

Thus, if $y(x)$ is a solution for (2), then $z(t)=y(a+\lambda t)$ is a solution for the boundary-value problem (3). Conversely, if $z(t)$ is a solution for (3), then $y(x)=z\left(\frac{1}{\lambda}(x-a)\right)$ is a solution for (2).

Example 1 Simplify the boundary conditions of the following equation by use of changing variables.

$$
\left\{\begin{array}{l}
y^{\prime \prime}=\sin (x y)+y^{2} \\
y(1)=3, \quad y(4)=7
\end{array}\right.
$$

Solution: In this problem $a=1, b=4$, hence $\lambda=3$. Now define the new variable $t=\frac{1}{3}(x-1)$, hence $x=1+3 t$, and let $z(t)=y(x)=y(1+3 t)$. Then

$$
\lambda^{2} f(a+\lambda t, z)=9\left[\sin (1+3 t) z+z^{2}\right],
$$

and the original equation is reduced to

$$
\left\{\begin{array}{l}
z^{\prime \prime}(t)=9 \sin ((1+3 t) z)+9 z^{2} \\
z(0)=3, \quad z(1)=7
\end{array}\right.
$$

To reduce a two-point boundary-value problem

$$
\left\{\begin{array}{l}
z^{\prime \prime}(t)=g(t, z) \\
z(0)=\alpha, \quad z(1)=\beta
\end{array}\right.
$$

to a homogeneous system, let

$$
u(t)=z(t)-[\alpha+(\beta-\alpha) t]
$$

then $u^{\prime \prime}(t)=z^{\prime \prime}(t)$, and

$$
u(0)=z(0)-\alpha=0 \quad \text { and } \quad u(1)=z(1)-\beta=0
$$

Moreover,

$$
g(t, z)=g(t, u+\alpha+(\beta-\alpha) t) \equiv h(t, u) .
$$

The system is now transformed into

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)=h(t, u) \\
u(0)=0, \quad u(1)=0
\end{array}\right.
$$

Example 2 Reduce the system

$$
\left\{\begin{array}{l}
z^{\prime \prime}=[5 z-10 t+35+\sin (3 z-6 t+21)] e^{t} \\
z(0)=-7, \quad z(1)=-5
\end{array}\right.
$$

to a homogeneous problem by linear transformation technique.
Solution: Let

$$
u(t)=z(t)-[-7+(-5+7) t]=z(t)-2 t+7
$$

Then $z(t)=u(t)+2 t-7$, and

$$
\begin{aligned}
u^{\prime \prime}=z^{\prime \prime} & =[5 z-10 t+35+\sin (3 z-6 t+21)] e^{t} \\
& =[5(u+2 t-7)-10 t+35+\sin (3(u+2 t-7)-6 t+21)] e^{t} \\
& =[5 u+\sin (3 u)] e^{t}
\end{aligned}
$$

The system is transformed to

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)=[5 u+\sin (3 u)] e^{t} \\
u(0)=u(1)=0
\end{array}\right.
$$

Example 3 Reduce the following two-point boundary-value problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}=y^{2}+3-x^{2}+x y \\
y(3)=7, \quad y(5)=9
\end{array}\right.
$$

to a homogeneous system.

Solution: In the original system, $a=3, b=5, \alpha=7, \beta=9$. Let $\lambda=b-a=2$ and define a new variable

$$
t=\frac{1}{2}(x-3) \quad \Longrightarrow \quad x=2 t+3
$$

Let the function $z(t)=y(x)=y(2 t+3)$. Then

$$
\begin{aligned}
z^{\prime \prime}(t) & =\lambda^{2} y^{\prime \prime}(2 t+3)=\lambda^{2} f(2 t+3, u) \\
& =4\left[z^{2}+3-(2 t+3)^{2}+(2 t+3) z\right] \\
& =4\left[z^{2}+3 z+2 t z-4 t^{2}-12 t-6\right]
\end{aligned}
$$

The original problem is first transformed into

$$
\left\{\begin{array}{l}
z^{\prime \prime}(t)=4\left[z^{2}+3 z+2 t z-4 t^{2}-12 t-6\right] \\
z(0)=7, \quad z(1)=9
\end{array}\right.
$$

Next let

$$
u(t)=z(t)-[7+2 t], \quad \text { or equivalently, } \quad z(t)=u(t)+2 t+7
$$

BVP of ODE

Then

$$
\begin{aligned}
u^{\prime \prime}(t) & =4\left[(z+2 t+7)^{2}+3(u+2 t+7)+2 t(u+2 t+7)-4 t^{2}-12 t-6\right] \\
& =4\left[u^{2}+6 t u+17 u+4 t^{2}+36 t+64\right]
\end{aligned}
$$

The original problem is transformed into the following homogeneous system

$$
\left\{\begin{array}{l}
u^{\prime \prime}(t)=4\left[u^{2}+6 t u+17 u+4 t^{2}+36 t+64\right] \\
u(0)=u(1)=0
\end{array}\right.
$$

Theorem 2 The boundary-value problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}=f(x, y) \\
y(0)=0, \quad y(1)=0
\end{array}\right.
$$

has a unique solution if $\frac{\partial f}{\partial y}$ is continuous, non-negative, and bounded in the strip $0 \leq x \leq 1$ and $-\infty<y<\infty$.

Theorem 3 If f is a continuous function of (s, t) in the domain $0 \leq s \leq 1$ and $-\infty<t<\infty$ such that

$$
\left|f\left(s, t_{1}\right)-f\left(s, t_{2}\right)\right| \leq K\left|t_{1}-t_{2}\right|, \quad(K<8)
$$

Then the boundary-value problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}=f(x, y) \\
y(0)=0, \quad y(1)=0
\end{array}\right.
$$

has a unique solution in $C[0,1]$.

2 - Finite Difference Method For Linear Problems

We consider finite difference method for solving the linear two-point boundary-value problem of the form

$$
\left\{\begin{array}{l}
y^{\prime \prime}=p(x) y^{\prime}+q(x) y+r(x) \tag{4}\\
y(a)=\alpha, \quad y(b)=\beta
\end{array}\right.
$$

2 - Finite Difference Method For Linear Problems

We consider finite difference method for solving the linear two-point boundary-value problem of the form

$$
\left\{\begin{array}{l}
y^{\prime \prime}=p(x) y^{\prime}+q(x) y+r(x) \tag{4}\\
y(a)=\alpha, \quad y(b)=\beta
\end{array}\right.
$$

Methods involving finite differences for solving boundary-value problems replace each of the derivatives in the differential equation by an appropriate difference-quotient approximation.

2 - Finite Difference Method For Linear Problems

We consider finite difference method for solving the linear two-point boundary-value problem of the form

$$
\left\{\begin{array}{l}
y^{\prime \prime}=p(x) y^{\prime}+q(x) y+r(x) \tag{4}\\
y(a)=\alpha, \quad y(b)=\beta
\end{array}\right.
$$

Methods involving finite differences for solving boundary-value problems replace each of the derivatives in the differential equation by an appropriate difference-quotient approximation.

$$
2.1 \text { - The Finite Difference Formulation }
$$

2 - Finite Difference Method For Linear Problems

We consider finite difference method for solving the linear two-point boundary-value problem of the form

$$
\left\{\begin{array}{l}
y^{\prime \prime}=p(x) y^{\prime}+q(x) y+r(x) \tag{4}\\
y(a)=\alpha, \quad y(b)=\beta
\end{array}\right.
$$

Methods involving finite differences for solving boundary-value problems replace each of the derivatives in the differential equation by an appropriate difference-quotient approximation.

2.1 - The Finite Difference Formulation

First, partition the interval $[a, b]$ into n equally-spaced subintervals by points
$a=x_{0}<x_{1}<\ldots<x_{n}<x_{n}=b$.

2 - Finite Difference Method For Linear Problems

We consider finite difference method for solving the linear two-point boundary-value problem of the form

$$
\left\{\begin{array}{l}
y^{\prime \prime}=p(x) y^{\prime}+q(x) y+r(x) \tag{4}\\
y(a)=\alpha, \quad y(b)=\beta
\end{array}\right.
$$

Methods involving finite differences for solving boundary-value problems replace each of the derivatives in the differential equation by an appropriate difference-quotient approximation.

2.1 - The Finite Difference Formulation

First, partition the interval $[a, b]$ into n equally-spaced subintervals by points
$a=x_{0}<x_{1}<\ldots<x_{n}<x_{n}=b$. Each mesh point x_{i} can be computed by

$$
x_{i}=a+i * h, \quad i=0,1, \ldots, n, \text { with } h=\frac{b-a}{n}
$$

where h is called the mesh size.

At the interior mesh points, x_{i}, for $i=1,2, \ldots, n-1$, the differential equation to be approximated satisfies

$$
\begin{equation*}
y^{\prime \prime}\left(x_{i}\right)=p\left(x_{i}\right) y^{\prime}\left(x_{i}\right)+q\left(x_{i}\right) y\left(x_{i}\right)+r\left(x_{i}\right) \tag{5}
\end{equation*}
$$

At the interior mesh points, x_{i}, for $i=1,2, \ldots, n-1$, the differential equation to be approximated satisfies

$$
\begin{equation*}
y^{\prime \prime}\left(x_{i}\right)=p\left(x_{i}\right) y^{\prime}\left(x_{i}\right)+q\left(x_{i}\right) y\left(x_{i}\right)+r\left(x_{i}\right) \tag{5}
\end{equation*}
$$

The central finite difference formulae

$$
\begin{equation*}
y^{\prime}\left(x_{i}\right)=\frac{y\left(x_{i+1}\right)-y\left(x_{i-1}\right)}{2 h}-\frac{h^{2}}{6} y^{(3)}\left(\eta_{i}\right) \tag{6}
\end{equation*}
$$

for some η_{i} in the interval $\left(x_{i-1}, x_{i+1}\right)$,

At the interior mesh points, x_{i}, for $i=1,2, \ldots, n-1$, the differential equation to be approximated satisfies

$$
\begin{equation*}
y^{\prime \prime}\left(x_{i}\right)=p\left(x_{i}\right) y^{\prime}\left(x_{i}\right)+q\left(x_{i}\right) y\left(x_{i}\right)+r\left(x_{i}\right) \tag{5}
\end{equation*}
$$

The central finite difference formulae

$$
\begin{equation*}
y^{\prime}\left(x_{i}\right)=\frac{y\left(x_{i+1}\right)-y\left(x_{i-1}\right)}{2 h}-\frac{h^{2}}{6} y^{(3)}\left(\eta_{i}\right) \tag{6}
\end{equation*}
$$

for some η_{i} in the interval $\left(x_{i-1}, x_{i+1}\right)$, and

$$
\begin{equation*}
y^{\prime \prime}\left(x_{i}\right)=\frac{y\left(x_{i+1}\right)-2 y\left(x_{i}\right)+y\left(x_{i-1}\right)}{h^{2}}-\frac{h^{2}}{12} y^{(4)}\left(\xi_{i}\right) \tag{7}
\end{equation*}
$$

for some ξ_{i} in the interval $\left(x_{i-1}, x_{i+1}\right)$, can be derived from Taylor's theorem by expanding y about x_{i}.

At the interior mesh points, x_{i}, for $i=1,2, \ldots, n-1$, the differential equation to be approximated satisfies

$$
\begin{equation*}
y^{\prime \prime}\left(x_{i}\right)=p\left(x_{i}\right) y^{\prime}\left(x_{i}\right)+q\left(x_{i}\right) y\left(x_{i}\right)+r\left(x_{i}\right) \tag{5}
\end{equation*}
$$

The central finite difference formulae

$$
\begin{equation*}
y^{\prime}\left(x_{i}\right)=\frac{y\left(x_{i+1}\right)-y\left(x_{i-1}\right)}{2 h}-\frac{h^{2}}{6} y^{(3)}\left(\eta_{i}\right) \tag{6}
\end{equation*}
$$

for some η_{i} in the interval $\left(x_{i-1}, x_{i+1}\right)$, and

$$
\begin{equation*}
y^{\prime \prime}\left(x_{i}\right)=\frac{y\left(x_{i+1}\right)-2 y\left(x_{i}\right)+y\left(x_{i-1}\right)}{h^{2}}-\frac{h^{2}}{12} y^{(4)}\left(\xi_{i}\right) \tag{7}
\end{equation*}
$$

for some ξ_{i} in the interval $\left(x_{i-1}, x_{i+1}\right)$, can be derived from Taylor's theorem by expanding y about x_{i}.

Let u_{i} denote the approximate value of $y_{i}=y\left(x_{i}\right)$.

At the interior mesh points, x_{i}, for $i=1,2, \ldots, n-1$, the differential equation to be approximated satisfies

$$
\begin{equation*}
y^{\prime \prime}\left(x_{i}\right)=p\left(x_{i}\right) y^{\prime}\left(x_{i}\right)+q\left(x_{i}\right) y\left(x_{i}\right)+r\left(x_{i}\right) \tag{5}
\end{equation*}
$$

The central finite difference formulae

$$
\begin{equation*}
y^{\prime}\left(x_{i}\right)=\frac{y\left(x_{i+1}\right)-y\left(x_{i-1}\right)}{2 h}-\frac{h^{2}}{6} y^{(3)}\left(\eta_{i}\right) \tag{6}
\end{equation*}
$$

for some η_{i} in the interval $\left(x_{i-1}, x_{i+1}\right)$, and

$$
\begin{equation*}
y^{\prime \prime}\left(x_{i}\right)=\frac{y\left(x_{i+1}\right)-2 y\left(x_{i}\right)+y\left(x_{i-1}\right)}{h^{2}}-\frac{h^{2}}{12} y^{(4)}\left(\xi_{i}\right) \tag{7}
\end{equation*}
$$

for some ξ_{i} in the interval $\left(x_{i-1}, x_{i+1}\right)$, can be derived from Taylor's theorem by expanding y about x_{i}.

Let u_{i} denote the approximate value of $y_{i}=y\left(x_{i}\right)$. If $y \in C^{4}[a, b]$, then a finite difference method with truncation error of order $O\left(h^{2}\right)$ can be obtained by using the approximations

$$
y^{\prime}\left(x_{i}\right) \approx \frac{u_{i+1}-u_{i-1}}{2 h} \quad \text { and } \quad y^{\prime \prime}\left(x_{i}\right) \approx \frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}}
$$

for $y^{\prime}\left(x_{i}\right)$ and $y^{\prime \prime}\left(x_{i}\right)$, respectively.

$$
y^{\prime}\left(x_{i}\right) \approx \frac{u_{i+1}-u_{i-1}}{2 h} \quad \text { and } \quad y^{\prime \prime}\left(x_{i}\right) \approx \frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}}
$$

for $y^{\prime}\left(x_{i}\right)$ and $y^{\prime \prime}\left(x_{i}\right)$, respectively. Furthermore, let

$$
p_{i}=p\left(x_{i}\right), \quad q_{i}=q\left(x_{i}\right), \quad r_{i}=r\left(x_{i}\right)
$$

$$
y^{\prime}\left(x_{i}\right) \approx \frac{u_{i+1}-u_{i-1}}{2 h} \quad \text { and } \quad y^{\prime \prime}\left(x_{i}\right) \approx \frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}}
$$

for $y^{\prime}\left(x_{i}\right)$ and $y^{\prime \prime}\left(x_{i}\right)$, respectively. Furthermore, let

$$
p_{i}=p\left(x_{i}\right), \quad q_{i}=q\left(x_{i}\right), \quad r_{i}=r\left(x_{i}\right)
$$

The discrete version of equation (4) is then

$$
\begin{equation*}
\frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}}=p_{i} \frac{u_{i+1}-u_{i-1}}{2 h}+q_{i} u_{i}+r_{i}, \quad i=1,2, \ldots, n-1 \tag{8}
\end{equation*}
$$

together with boundary conditions $u_{0}=\alpha$ and $u_{n}=\beta$.

$$
y^{\prime}\left(x_{i}\right) \approx \frac{u_{i+1}-u_{i-1}}{2 h} \text { and } y^{\prime \prime}\left(x_{i}\right) \approx \frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}}
$$

for $y^{\prime}\left(x_{i}\right)$ and $y^{\prime \prime}\left(x_{i}\right)$, respectively. Furthermore, let

$$
p_{i}=p\left(x_{i}\right), \quad q_{i}=q\left(x_{i}\right), \quad r_{i}=r\left(x_{i}\right)
$$

The discrete version of equation (4) is then

$$
\begin{equation*}
\frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}}=p_{i} \frac{u_{i+1}-u_{i-1}}{2 h}+q_{i} u_{i}+r_{i}, \quad i=1,2, \ldots, n-1, \tag{8}
\end{equation*}
$$

together with boundary conditions $u_{0}=\alpha$ and $u_{n}=\beta$. Equation (8) can be written in the form

$$
\begin{equation*}
\left(1+\frac{h}{2} p_{i}\right) u_{i-1}-\left(2+h^{2} q_{i}\right) u_{i}+\left(1-\frac{h}{2} p_{i}\right) u_{i+1}=h^{2} r_{i} \tag{9}
\end{equation*}
$$

for $i=1,2, \ldots, n-1$.

$$
y^{\prime}\left(x_{i}\right) \approx \frac{u_{i+1}-u_{i-1}}{2 h} \text { and } y^{\prime \prime}\left(x_{i}\right) \approx \frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}}
$$

for $y^{\prime}\left(x_{i}\right)$ and $y^{\prime \prime}\left(x_{i}\right)$, respectively. Furthermore, let

$$
p_{i}=p\left(x_{i}\right), \quad q_{i}=q\left(x_{i}\right), \quad r_{i}=r\left(x_{i}\right)
$$

The discrete version of equation (4) is then

$$
\begin{equation*}
\frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}}=p_{i} \frac{u_{i+1}-u_{i-1}}{2 h}+q_{i} u_{i}+r_{i}, \quad i=1,2, \ldots, n-1 \tag{8}
\end{equation*}
$$

together with boundary conditions $u_{0}=\alpha$ and $u_{n}=\beta$. Equation (8) can be written in the form

$$
\begin{equation*}
\left(1+\frac{h}{2} p_{i}\right) u_{i-1}-\left(2+h^{2} q_{i}\right) u_{i}+\left(1-\frac{h}{2} p_{i}\right) u_{i+1}=h^{2} r_{i} \tag{9}
\end{equation*}
$$

for $i=1,2, \ldots, n-1$. In (8), $u_{1}, u_{2}, \ldots, u_{n-1}$ are the unknown, and there are $n-1$ linear equations to be solved.

$$
y^{\prime}\left(x_{i}\right) \approx \frac{u_{i+1}-u_{i-1}}{2 h} \text { and } y^{\prime \prime}\left(x_{i}\right) \approx \frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}}
$$

for $y^{\prime}\left(x_{i}\right)$ and $y^{\prime \prime}\left(x_{i}\right)$, respectively. Furthermore, let

$$
p_{i}=p\left(x_{i}\right), \quad q_{i}=q\left(x_{i}\right), \quad r_{i}=r\left(x_{i}\right)
$$

The discrete version of equation (4) is then

$$
\begin{equation*}
\frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}}=p_{i} \frac{u_{i+1}-u_{i-1}}{2 h}+q_{i} u_{i}+r_{i}, \quad i=1,2, \ldots, n-1 \tag{8}
\end{equation*}
$$

together with boundary conditions $u_{0}=\alpha$ and $u_{n}=\beta$. Equation (8) can be written in the form

$$
\begin{equation*}
\left(1+\frac{h}{2} p_{i}\right) u_{i-1}-\left(2+h^{2} q_{i}\right) u_{i}+\left(1-\frac{h}{2} p_{i}\right) u_{i+1}=h^{2} r_{i} \tag{9}
\end{equation*}
$$

for $i=1,2, \ldots, n-1$. In (8), $u_{1}, u_{2}, \ldots, u_{n-1}$ are the unknown, and there are $n-1$ linear equations to be solved. The resulting system of linear equations can be expressed in the matrix form

$$
\begin{equation*}
A u=f \tag{10}
\end{equation*}
$$

where

$$
\begin{aligned}
& A= \\
& {\left[\begin{array}{cc}
-2-h^{2} q_{1} & 1-\frac{h}{2} p_{1} \\
1+\frac{h}{2} p_{2} & -2-h^{2} q_{2}
\end{array} \quad 1-\frac{h}{2} p_{2} . ~ \$\right.} \\
& 1+\frac{h}{2} p_{n-2} \quad-2-h^{2} q_{n-2} \quad 1-\frac{h}{2} p_{n-2} \\
& \left.1+\frac{h}{2} p_{n-1} \quad-2-h^{2} q_{n-1}\right] \\
& u=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n-2} \\
u_{n-1}
\end{array}\right], \quad \text { and } \quad f=\left[\begin{array}{c}
h^{2} r_{1}-\left(1+\frac{h}{2} p_{1}\right) \alpha \\
h^{2} r_{2} \\
\vdots \\
h^{2} r_{n-2} \\
h^{2} r_{n-1}-\left(1-\frac{h}{2} p_{n-1}\right) \beta
\end{array}\right]
\end{aligned}
$$

Since the matrix A is tridiagonal, this system can be solved by a special Gaussian elimination in $O\left(n^{2}\right)$ flops.

Since the matrix A is tridiagonal, this system can be solved by a special Gaussian elimination in $O\left(n^{2}\right)$ flops.

Theorem 4 Suppose that $p(x), q(x)$, and $r(x)$ in (4) are continuous on $[a, b]$, and $q(x)>0$ on $[a, b]$. Then (10) has a unique solution provided that $h<2 / L$, where $L=\max _{a \leq x \leq b}|p(x)|$.

Since the matrix A is tridiagonal, this system can be solved by a special Gaussian elimination in $O\left(n^{2}\right)$ flops.

Theorem 4 Suppose that $p(x), q(x)$, and $r(x)$ in (4) are continuous on $[a, b]$, and $q(x)>0$ on $[a, b]$. Then (10) has a unique solution provided that $h<2 / L$, where $L=\max _{a \leq x \leq b}|p(x)|$.

2.2 - Convergence Analysis

We shall analyze that when h converges to zero, the solution u_{i} of the discrete problem (8) converges to the solution y_{i} of the original continuous problem (5).

Since the matrix A is tridiagonal, this system can be solved by a special Gaussian elimination in $O\left(n^{2}\right)$ flops.

Theorem 4 Suppose that $p(x), q(x)$, and $r(x)$ in (4) are continuous on $[a, b]$, and $q(x)>0$ on $[a, b]$. Then (10) has a unique solution provided that $h<2 / L$, where $L=\max _{a \leq x \leq b}|p(x)|$.

2.2 - Convergence Analysis

We shall analyze that when h converges to zero, the solution u_{i} of the discrete problem (8) converges to the solution y_{i} of the original continuous problem (5).
y_{i} satisfies the following system of equations

$$
\begin{equation*}
\frac{y_{i+1}-2 y_{i}+y_{i-1}}{h^{2}}-\frac{h^{2}}{12} y^{(4)}\left(\xi_{i}\right)=p_{i}\left(\frac{y_{i+1}-y_{i-1}}{2 h}-\frac{h^{2}}{6} y^{(3)}\left(\eta_{i}\right)\right)+q_{i} y_{i}+r_{i} \tag{11}
\end{equation*}
$$

$$
\text { for } i=1,2, \ldots, n-1
$$

Since the matrix A is tridiagonal, this system can be solved by a special Gaussian elimination in $O\left(n^{2}\right)$ flops.

Theorem 4 Suppose that $p(x), q(x)$, and $r(x)$ in (4) are continuous on $[a, b]$, and $q(x)>0$ on $[a, b]$. Then (10) has a unique solution provided that $h<2 / L$, where $L=\max _{a \leq x \leq b}|p(x)|$.

2.2 - Convergence Analysis

We shall analyze that when h converges to zero, the solution u_{i} of the discrete problem (8) converges to the solution y_{i} of the original continuous problem (5).
y_{i} satisfies the following system of equations
$\frac{y_{i+1}-2 y_{i}+y_{i-1}}{h^{2}}-\frac{h^{2}}{12} y^{(4)}\left(\xi_{i}\right)=p_{i}\left(\frac{y_{i+1}-y_{i-1}}{2 h}-\frac{h^{2}}{6} y^{(3)}\left(\eta_{i}\right)\right)+q_{i} y_{i}+r_{i}$,
for $i=1,2, \ldots, n-1$. Subtract (8) from (11) and let $e_{i}=y_{i}-u_{i}$, the result is

$$
\frac{e_{i+1}-2 e_{i}+e_{i-1}}{h^{2}}=p_{i} \frac{e_{i+1}-e_{i-1}}{2 h}+q_{i} e_{i}+h^{2} g_{i}, \quad i=1,2, \ldots, n-1
$$

where

$$
g_{i}=\frac{1}{12} y^{(4)}\left(\xi_{i}\right)-\frac{1}{6} p_{i} y^{(3)}\left(\eta_{i}\right)
$$

where

$$
g_{i}=\frac{1}{12} y^{(4)}\left(\xi_{i}\right)-\frac{1}{6} p_{i} y^{(3)}\left(\eta_{i}\right) .
$$

After collecting terms and multiplying by h^{2}, we have

$$
\left(1+\frac{h}{2} p_{i}\right) e_{i-1}-\left(2+h^{2} q_{i}\right) e_{i}+\left(1-\frac{h}{2} p_{i}\right) e_{i+1}=h^{4} g_{i}, i=1,2, \ldots, n-1
$$

where

$$
g_{i}=\frac{1}{12} y^{(4)}\left(\xi_{i}\right)-\frac{1}{6} p_{i} y^{(3)}\left(\eta_{i}\right) .
$$

After collecting terms and multiplying by h^{2}, we have

$$
\begin{aligned}
& \left(1+\frac{h}{2} p_{i}\right) e_{i-1}-\left(2+h^{2} q_{i}\right) e_{i}+\left(1-\frac{h}{2} p_{i}\right) e_{i+1}=h^{4} g_{i}, i=1,2, \ldots, n-1 \\
& \text { Let } e=\left[e_{1}, e_{2}, \ldots, e_{n-1}\right]^{T} \text { and }\left|e_{k}\right|=\|e\|_{\infty}
\end{aligned}
$$

where

$$
g_{i}=\frac{1}{12} y^{(4)}\left(\xi_{i}\right)-\frac{1}{6} p_{i} y^{(3)}\left(\eta_{i}\right) .
$$

After collecting terms and multiplying by h^{2}, we have

$$
\left(1+\frac{h}{2} p_{i}\right) e_{i-1}-\left(2+h^{2} q_{i}\right) e_{i}+\left(1-\frac{h}{2} p_{i}\right) e_{i+1}=h^{4} g_{i}, i=1,2, \ldots, n-1
$$

Let $e=\left[e_{1}, e_{2}, \ldots, e_{n-1}\right]^{T}$ and $\left|e_{k}\right|=\|e\|_{\infty}$. Then

$$
\left(2+h^{2} q_{k}\right) e_{k}=\left(1+\frac{h}{2} p_{k}\right) e_{k-1}+\left(1-\frac{h}{2} p_{k}\right) e_{k+1}-h^{4} g_{k}
$$

where

$$
g_{i}=\frac{1}{12} y^{(4)}\left(\xi_{i}\right)-\frac{1}{6} p_{i} y^{(3)}\left(\eta_{i}\right) .
$$

After collecting terms and multiplying by h^{2}, we have

$$
\left(1+\frac{h}{2} p_{i}\right) e_{i-1}-\left(2+h^{2} q_{i}\right) e_{i}+\left(1-\frac{h}{2} p_{i}\right) e_{i+1}=h^{4} g_{i}, i=1,2, \ldots, n-1
$$

Let $e=\left[e_{1}, e_{2}, \ldots, e_{n-1}\right]^{T}$ and $\left|e_{k}\right|=\|e\|_{\infty}$. Then

$$
\left(2+h^{2} q_{k}\right) e_{k}=\left(1+\frac{h}{2} p_{k}\right) e_{k-1}+\left(1-\frac{h}{2} p_{k}\right) e_{k+1}-h^{4} g_{k}
$$

and, hence

$$
\begin{aligned}
\left|2+h^{2} q_{k}\right|\left|e_{k}\right| & \leq\left|1+\frac{h}{2} p_{k}\right|\left|e_{k-1}\right|+\left|1-\frac{h}{2} p_{k}\right|\left|e_{k+1}\right|+h^{4}\left|g_{k}\right| \\
& \leq\left|1+\frac{h}{2} p_{k}\right|\|e\|_{\infty}+\left|1-\frac{h}{2} p_{k}\right|\|e\|_{\infty}+h^{4}\|g\|_{\infty}
\end{aligned}
$$

When $q(x)>0, \forall x \in[a, b]$ and h is chosen small enough so that $\left|\frac{h}{2} p_{i}\right|<1, \forall i$, then the the above inequality induces

$$
h^{2} q_{k}\|e\|_{\infty} \leq h^{4}\|g\|_{\infty}
$$

When $q(x)>0, \forall x \in[a, b]$ and h is chosen small enough so that $\left|\frac{h}{2} p_{i}\right|<1, \forall i$, then the the above inequality induces

$$
h^{2} q_{k}\|e\|_{\infty} \leq h^{4}\|g\|_{\infty}
$$

Therefore, we derive an upper bound for $\|e\|_{\infty}$

$$
\|e\|_{\infty} \leq h^{2}\left(\frac{\|g\|_{\infty}}{\inf q(x)}\right)
$$

When $q(x)>0, \forall x \in[a, b]$ and h is chosen small enough so that $\left|\frac{h}{2} p_{i}\right|<1, \forall i$, then the the above inequality induces

$$
h^{2} q_{k}\|e\|_{\infty} \leq h^{4}\|g\|_{\infty}
$$

Therefore, we derive an upper bound for $\|e\|_{\infty}$

$$
\|e\|_{\infty} \leq h^{2}\left(\frac{\|g\|_{\infty}}{\inf q(x)}\right)
$$

By the definition of g_{i}, we have

$$
\|g\|_{\infty} \leq \frac{1}{12}\left\|y^{(4)}(x)\right\|_{\infty}+\frac{1}{6}\|p(x)\|_{\infty}\left\|y^{(3)}(x)\right\|_{\infty}
$$

When $q(x)>0, \forall x \in[a, b]$ and h is chosen small enough so that $\left|\frac{h}{2} p_{i}\right|<1, \forall i$, then the the above inequality induces

$$
h^{2} q_{k}\|e\|_{\infty} \leq h^{4}\|g\|_{\infty}
$$

Therefore, we derive an upper bound for $\|e\|_{\infty}$

$$
\|e\|_{\infty} \leq h^{2}\left(\frac{\|g\|_{\infty}}{\inf q(x)}\right)
$$

By the definition of g_{i}, we have

$$
\|g\|_{\infty} \leq \frac{1}{12}\left\|y^{(4)}(x)\right\|_{\infty}+\frac{1}{6}\|p(x)\|_{\infty}\left\|y^{(3)}(x)\right\|_{\infty}
$$

Hence $\frac{\|g\|_{\infty}}{\inf q(x)}$ is a bound independent of h.

When $q(x)>0, \forall x \in[a, b]$ and h is chosen small enough so that $\left|\frac{h}{2} p_{i}\right|<1, \forall i$, then the the above inequality induces

$$
h^{2} q_{k}\|e\|_{\infty} \leq h^{4}\|g\|_{\infty}
$$

Therefore, we derive an upper bound for $\|e\|_{\infty}$

$$
\|e\|_{\infty} \leq h^{2}\left(\frac{\|g\|_{\infty}}{\inf q(x)}\right)
$$

By the definition of g_{i}, we have

$$
\|g\|_{\infty} \leq \frac{1}{12}\left\|y^{(4)}(x)\right\|_{\infty}+\frac{1}{6}\|p(x)\|_{\infty}\left\|y^{(3)}(x)\right\|_{\infty}
$$

Hence $\frac{\|g\|_{\infty}}{\inf q(x)}$ is a bound independent of h. Thus we can conclude that $\|e\|_{\infty}$ is $O\left(h^{2}\right)$ as $h \rightarrow 0$.

3 - Shooting Methods

We consider solving the following 2-point boundary-value problem:

$$
\left\{\begin{array}{l}
y^{\prime \prime}=f\left(x, y, y^{\prime}\right) \tag{12}\\
y(a)=\alpha, \quad y(b)=\beta
\end{array}\right.
$$

3 - Shooting Methods

We consider solving the following 2-point boundary-value problem:

$$
\left\{\begin{array}{l}
y^{\prime \prime}=f\left(x, y, y^{\prime}\right) \tag{12}\\
y(a)=\alpha, \quad y(b)=\beta
\end{array}\right.
$$

The idea of shooting method for (12) is to solve a related initial-value problem with a guess for $y^{\prime}(a)$, say z.

We consider solving the following 2-point boundary-value problem:

$$
\left\{\begin{array}{l}
y^{\prime \prime}=f\left(x, y, y^{\prime}\right) \tag{12}\\
y(a)=\alpha, \quad y(b)=\beta
\end{array}\right.
$$

The idea of shooting method for (12) is to solve a related initial-value problem with a guess for $y^{\prime}(a)$, say z. The corresponding IVP

$$
\left\{\begin{array}{l}
y^{\prime \prime}=f\left(x, y, y^{\prime}\right) \tag{13}\\
y(a)=\alpha, \quad y^{\prime}(a)=z
\end{array}\right.
$$

can then be solved by, for example, Runge-Kutta method.

3 - Shooting Methods

We consider solving the following 2-point boundary-value problem:

$$
\left\{\begin{array}{l}
y^{\prime \prime}=f\left(x, y, y^{\prime}\right) \tag{12}\\
y(a)=\alpha, \quad y(b)=\beta
\end{array}\right.
$$

The idea of shooting method for (12) is to solve a related initial-value problem with a guess for $y^{\prime}(a)$, say z. The corresponding IVP

$$
\left\{\begin{array}{l}
y^{\prime \prime}=f\left(x, y, y^{\prime}\right) \tag{11}\\
y(a)=\alpha, \quad y^{\prime}(a)=z
\end{array}\right.
$$

can then be solved by, for example, Runge-Kutta method. We denote this approximate solution y_{z} and hope $y_{z}(b)=\beta$.

3 - Shooting Methods

We consider solving the following 2-point boundary-value problem:

$$
\left\{\begin{array}{l}
y^{\prime \prime}=f\left(x, y, y^{\prime}\right) \tag{12}\\
y(a)=\alpha, \quad y(b)=\beta
\end{array}\right.
$$

The idea of shooting method for (12) is to solve a related initial-value problem with a guess for $y^{\prime}(a)$, say z. The corresponding IVP

$$
\left\{\begin{array}{l}
y^{\prime \prime}=f\left(x, y, y^{\prime}\right) \tag{11}\\
y(a)=\alpha, \quad y^{\prime}(a)=z
\end{array}\right.
$$

can then be solved by, for example, Runge-Kutta method. We denote this approximate solution y_{z} and hope $y_{z}(b)=\beta$. If not, we use another guess for $y^{\prime}(a)$, and try to solve an altered IVP (13) again.

3 - Shooting Methods

We consider solving the following 2-point boundary-value problem:

$$
\left\{\begin{array}{l}
y^{\prime \prime}=f\left(x, y, y^{\prime}\right) \tag{12}\\
y(a)=\alpha, \quad y(b)=\beta
\end{array}\right.
$$

The idea of shooting method for (12) is to solve a related initial-value problem with a guess for $y^{\prime}(a)$, say z. The corresponding IVP

$$
\left\{\begin{array}{l}
y^{\prime \prime}=f\left(x, y, y^{\prime}\right) \tag{13}\\
y(a)=\alpha, \quad y^{\prime}(a)=z
\end{array}\right.
$$

can then be solved by, for example, Runge-Kutta method. We denote this approximate solution y_{z} and hope $y_{z}(b)=\beta$. If not, we use another guess for $y^{\prime}(a)$, and try to solve an altered IVP (13) again. This process is repeated and can be done systematically.

Objective: select z, so that $y_{z}(b)=\beta$.

Objective: select z, so that $y_{z}(b)=\beta$.
Let

$$
\phi(z)=y_{z}(b)-\beta
$$

Objective: select z, so that $y_{z}(b)=\beta$.
Let

$$
\phi(z)=y_{z}(b)-\beta
$$

Now our objective is simply to solve the equation $\phi(z)=0$.

Objective: select z, so that $y_{z}(b)=\beta$.
Let

$$
\phi(z)=y_{z}(b)-\beta
$$

Now our objective is simply to solve the equation $\phi(z)=0$. Hence secant method can be used.

Opjective: select z, so that $y_{z}(b)=\beta$.
Let

$$
\phi(z)=y_{z}(b)-\beta
$$

Now our objective is simply to solve the equation $\phi(z)=0$. Hence secant method can be used.

How to compute z ?

Opjective: select z, so that $y_{z}(b)=\beta$.
Let

$$
\phi(z)=y_{z}(b)-\beta .
$$

Now our objective is simply to solve the equation $\phi(z)=0$. Hence secant method can be used.

How to compute z ?
Suppose we have solutions $y_{z_{1}}, y_{z_{2}}$ with guesses z_{1}, z_{2} and obtain $\phi\left(z_{1}\right)$ and $\phi\left(z_{2}\right)$.

Objective: select z, so that $y_{z}(b)=\beta$.
Let

$$
\phi(z)=y_{z}(b)-\beta
$$

Now our objective is simply to solve the equation $\phi(z)=0$. Hence secant method can be used.

How to compute z ?
Suppose we have solutions $y_{z_{1}}, y_{z_{2}}$ with guesses z_{1}, z_{2} and obtain $\phi\left(z_{1}\right)$ and $\phi\left(z_{2}\right)$. If these guesses can not generate satisfactory solutions, we can obtain another guess
z_{3} by the secant method

$$
z_{3}=z_{2}-\phi\left(z_{2}\right) \frac{z_{2}-z_{1}}{\phi\left(z_{2}\right)-\phi\left(z_{1}\right)}
$$

Objective: select z, so that $y_{z}(b)=\beta$.
Let

$$
\phi(z)=y_{z}(b)-\beta
$$

Now our objective is simply to solve the equation $\phi(z)=0$. Hence secant method can be used.

How to compute z ?
Suppose we have solutions $y_{z_{1}}, y_{z_{2}}$ with guesses z_{1}, z_{2} and obtain $\phi\left(z_{1}\right)$ and $\phi\left(z_{2}\right)$. If these guesses can not generate satisfactory solutions, we can obtain another guess
z_{3} by the secant method

$$
z_{3}=z_{2}-\phi\left(z_{2}\right) \frac{z_{2}-z_{1}}{\phi\left(z_{2}\right)-\phi\left(z_{1}\right)}
$$

In general

$$
z_{k+1}=z_{k}-\phi\left(z_{k}\right) \frac{z_{k}-z_{k-1}}{\phi\left(z_{k}\right)-\phi\left(z_{k-1}\right)}
$$

Special BVP:

$$
\left\{\begin{array}{l}
y^{\prime \prime}=u(x)+v(x) y+w(x) y^{\prime} \tag{14}\\
y(a)=\alpha, \quad y(b)=\beta
\end{array}\right.
$$

where $u(x), v(x), w(x)$ are continuous in $[a, b]$.

Special BVP:

$$
\left\{\begin{array}{l}
y^{\prime \prime}=u(x)+v(x) y+w(x) y^{\prime} \tag{14}\\
y(a)=\alpha, \quad y(b)=\beta
\end{array}\right.
$$

where $u(x), v(x), w(x)$ are continuous in $[a, b]$.
Suppose we have solved (14) twice with initial guesses z_{1} and z_{2}, and obtain approximate solutions y_{1} and y_{2},

Special BVP:

$$
\left\{\begin{array}{l}
y^{\prime \prime}=u(x)+v(x) y+w(x) y^{\prime} \tag{14}\\
y(a)=\alpha, \quad y(b)=\beta
\end{array}\right.
$$

where $u(x), v(x), w(x)$ are continuous in $[a, b]$.
Suppose we have solved (14) twice with initial guesses z_{1} and z_{2}, and obtain approximate solutions y_{1} and y_{2}, hence

$$
\left\{\begin{array} { l }
{ y _ { 1 } ^ { \prime \prime } = u + v y _ { 1 } + w y _ { 1 } ^ { \prime } } \\
{ y _ { 1 } (a) = \alpha , \quad y _ { 1 } ^ { \prime } (a) = z _ { 1 } }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
y_{2}^{\prime \prime}=u+v y_{2}+w y_{2}^{\prime} \\
y_{2}(a)=\alpha, \quad y_{2}^{\prime}(a)=z_{2}
\end{array}\right.\right.
$$

18 Special BVP:

$$
\left\{\begin{array}{l}
y^{\prime \prime}=u(x)+v(x) y+w(x) y^{\prime} \tag{14}\\
y(a)=\alpha, \quad y(b)=\beta
\end{array}\right.
$$

where $u(x), v(x), w(x)$ are continuous in $[a, b]$.
Suppose we have solved (14) twice with initial guesses z_{1} and z_{2}, and obtain approximate solutions y_{1} and y_{2}, hence

$$
\left\{\begin{array} { l }
{ y _ { 1 } ^ { \prime \prime } = u + v y _ { 1 } + w y _ { 1 } ^ { \prime } } \\
{ y _ { 1 } (a) = \alpha , \quad y _ { 1 } ^ { \prime } (a) = z _ { 1 } }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
y_{2}^{\prime \prime}=u+v y_{2}+w y_{2}^{\prime} \\
y_{2}(a)=\alpha, \quad y_{2}^{\prime}(a)=z_{2}
\end{array}\right.\right.
$$

Now let

$$
y(x)=\lambda y_{1}(x)+(1-\lambda) y_{2}(x)
$$

for some parameter λ,

18 Special BVP:

$$
\left\{\begin{array}{l}
y^{\prime \prime}=u(x)+v(x) y+w(x) y^{\prime} \tag{14}\\
y(a)=\alpha, \quad y(b)=\beta
\end{array}\right.
$$

where $u(x), v(x), w(x)$ are continuous in $[a, b]$.
Suppose we have solved (14) twice with initial guesses z_{1} and z_{2}, and obtain approximate solutions y_{1} and y_{2}, hence

$$
\left\{\begin{array} { l }
{ y _ { 1 } ^ { \prime \prime } = u + v y _ { 1 } + w y _ { 1 } ^ { \prime } } \\
{ y _ { 1 } (a) = \alpha , \quad y _ { 1 } ^ { \prime } (a) = z _ { 1 } }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
y_{2}^{\prime \prime}=u+v y_{2}+w y_{2}^{\prime} \\
y_{2}(a)=\alpha, \quad y_{2}^{\prime}(a)=z_{2}
\end{array}\right.\right.
$$

Now let

$$
y(x)=\lambda y_{1}(x)+(1-\lambda) y_{2}(x)
$$

for some parameter λ, we can show

$$
y^{\prime \prime}=u+v y+w y^{\prime}
$$

and

$$
y(a)=\lambda y_{1}(a)+(1-\lambda) y_{2}(a)=\alpha
$$

and

$$
y(a)=\lambda y_{1}(a)+(1-\lambda) y_{2}(a)=\alpha
$$

We can select λ so that $y(b)=\beta$.
and

$$
y(a)=\lambda y_{1}(a)+(1-\lambda) y_{2}(a)=\alpha
$$

We can select λ so that $y(b)=\beta$.

$$
\begin{aligned}
\beta=y(b) & =\lambda y_{1}(b)+(1-\lambda) y_{2}(b) \\
& =\lambda\left(y_{1}(b)-y_{2}(b)\right)+y_{2}(b)
\end{aligned}
$$

and

$$
y(a)=\lambda y_{1}(a)+(1-\lambda) y_{2}(a)=\alpha
$$

We can select λ so that $y(b)=\beta$.

$$
\begin{aligned}
& \beta=y(b)=\lambda y_{1}(b)+(1-\lambda) y_{2}(b) \\
&=\lambda\left(y_{1}(b)-y_{2}(b)\right)+y_{2}(b) \\
& \Rightarrow \lambda=\frac{\beta-y_{2}(b)}{\left(y_{1}(b)-y_{2}(b)\right)}
\end{aligned}
$$

and

$$
y(a)=\lambda y_{1}(a)+(1-\lambda) y_{2}(a)=\alpha
$$

We can select λ so that $y(b)=\beta$.

$$
\begin{aligned}
& \beta=y(b)=\lambda y_{1}(b)+(1-\lambda) y_{2}(b) \\
&=\lambda\left(y_{1}(b)-y_{2}(b)\right)+y_{2}(b) \\
& \Rightarrow \lambda= \beta-y_{2}(b) \\
&\left(y_{1}(b)-y_{2}(b)\right)
\end{aligned}
$$

In practice, we can solve the following two IVPs (in parallel)

$$
\left\{\begin{array}{l}
y^{\prime \prime}=u(x)+v(x) y+w(x) y^{\prime} \\
y(a)=\alpha, \quad y^{\prime}(a)=0
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
y^{\prime \prime}=u(x)+v(x) y+w(x) y^{\prime} \\
y(a)=\alpha, \quad y^{\prime}(a)=1
\end{array}\right.
$$

i.e.,

$$
\left\{\begin{array}{l}
y_{1}^{\prime}=y_{3} \\
y_{3}^{\prime}=y_{1}^{\prime \prime}=u+v y_{1}+w y_{1}^{\prime}=u+v y_{1}+w y_{3} \\
y_{1}(a)=\alpha, \quad y_{3}(a)=y_{1}^{\prime}(a)=0
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
y_{2}^{\prime}=y_{4} \\
y_{4}^{\prime}=u+v y_{2}+w y_{4} \\
y_{2}(a)=\alpha, \quad y_{4}(a)=1
\end{array}\right.
$$

to obtain approximate solutions y_{1} and y_{2}, then compute λ and form the solution y.

