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The two-point boundary-value problems (BVP) considered in this chapter involve a

second-order differential equation together with boundary condition in the following form:






y′′ = f(x, y, y′)

y(a) = α, y(b) = β
(1)

The numerical procedures for finding approximate solutions to the initial-value problems can

not be adapted to the solution of this problem since the specification of conditions involve

two different points, x = a and x = b. New techniques are introduced in this chapter for

handling problems (1) in which the conditions imposed are of a boundary-value rather than

an initial-value type.
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1 – Mathematical Theories

Before considering numerical methods, a few mathematical theories about the two-point

boundary-value problem (1), such as the existence and uniqueness of solution, shall be

discussed in this section.

Theorem 1 Suppose that f in (1) is continuous on the set

D = {(x, y, y′)|a ≤ x ≤ b, −∞ < y < ∞, −∞ < y′ < ∞} ,

and that
∂f

∂y
and

∂f

∂y′
are also continuous on D. If

1.
∂f

∂y
(x, y, y′) > 0 for all (x, y, y′) ∈ D, and

2. a constant M exists, with

∣

∣

∣

∣

∂f

∂y′
(x, y, y′)

∣

∣

∣

∣

≤ M , ∀ (x, y, y′) ∈ D,

then (1) has a unique solution.
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When the function f(x, y, y′) has the special form

f(x, y, y′) = p(x)y′ + q(x)y + r(x),

the differential equation become a so-called linear problem. The previous theorem can be

simplified for this case.

Corollary 1 If the linear two-point boundary-value problem






y′′ = p(x)y′ + q(x)y + r(x)

y(a) = α, y(b) = β

satisfies

1. p(x), q(x), and r(x) are continuous on [a, b], and

2. q(x) > 0 on [a, b],

then the problem has a unique solution.
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Many theories and application models consider the boundary-value problem in a special

form as follows.






y′′ = f(x, y)

y(0) = 0, y(1) = 0

We will show that this simple form can be derived from the original problem by simple

techniques such as changes of variables and linear transformation. To do this, we begin by

changing the variable. Suppose that the original problem is






y′′ = f(x, y)

y(a) = α, y(b) = β
(2)

where y = y(x). Now let λ = b − a and define a new variable

t =
x − a

b − a
=

1

λ
(x − a).
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That is, x = a + λt. Notice that t = 0 corresponds to x = a, and t = 1 corresponds to

x = b. Then we define

z(t) = y(a + λt) = y(x)

with λ = b − a. This gives

z′(t) =
d

dt
z(t) =

d

dt
y(a + λt) =

[

d

dx
y(x)

] [

d

dt
(a + λt)

]

= λy′(x)

and, analogously,

z′′(t) =
d

dt
z′(t) = λ2y′′(x) = λ2f(x, y(x)) = λ2f(a + λt, z(t)).

Likewise the boundary conditions are changed to

z(0) = y(a) = α and z(1) = y(b) = β.
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With all these together, the problem (2) is transformed into






z′′(t) = λ2f(a + λt, z(t))

z(0) = α, z(1) = β
(3)

Thus, if y(x) is a solution for (2), then z(t) = y(a + λt) is a solution for the

boundary-value problem (3). Conversely, if z(t) is a solution for (3), then

y(x) = z( 1
λ
(x − a)) is a solution for (2).

Example 1 Simplify the boundary conditions of the following equation by use of changing

variables.






y′′ = sin(xy) + y2

y(1) = 3, y(4) = 7

Solution: In this problem a = 1, b = 4, hence λ = 3. Now define the new variable

t = 1
3 (x − 1), hence x = 1 + 3t, and let z(t) = y(x) = y(1 + 3t). Then

Department of Mathematics – NTNU Tsung-Min Hwang December 20, 2003



BVP of ODE 9

λ2f(a + λt, z) = 9
[

sin(1 + 3t)z + z2
]

,

and the original equation is reduced to






z′′(t) = 9 sin((1 + 3t)z) + 9z2

z(0) = 3, z(1) = 7

To reduce a two-point boundary-value problem






z′′(t) = g(t, z)

z(0) = α, z(1) = β

to a homogeneous system, let

u(t) = z(t) − [α + (β − α)t]

then u′′(t) = z′′(t), and

u(0) = z(0) − α = 0 and u(1) = z(1) − β = 0
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Moreover,

g(t, z) = g(t, u + α + (β − α)t) ≡ h(t, u).

The system is now transformed into






u′′(t) = h(t, u)

u(0) = 0, u(1) = 0

Example 2 Reduce the system






z′′ = [5z − 10t + 35 + sin(3z − 6t + 21)]et

z(0) = −7, z(1) = −5

to a homogeneous problem by linear transformation technique.

Solution: Let

u(t) = z(t) − [−7 + (−5 + 7)t] = z(t) − 2t + 7.
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Then z(t) = u(t) + 2t − 7, and

u′′ = z′′ = [5z − 10t + 35 + sin(3z − 6t + 21)]et

= [5(u + 2t − 7) − 10t + 35 + sin(3(u + 2t − 7) − 6t + 21)]et

= [5u + sin(3u)]et

The system is transformed to






u′′(t) = [5u + sin(3u)]et

u(0) = u(1) = 0

Example 3 Reduce the following two-point boundary-value problem






y′′ = y2 + 3 − x2 + xy

y(3) = 7, y(5) = 9

to a homogeneous system.
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Solution: In the original system, a = 3, b = 5, α = 7, β = 9. Let λ = b − a = 2 and

define a new variable

t =
1

2
(x − 3) =⇒ x = 2t + 3.

Let the function z(t) = y(x) = y(2t + 3). Then

z′′(t) = λ2y′′(2t + 3) = λ2f(2t + 3, u)

= 4[z2 + 3 − (2t + 3)2 + (2t + 3)z]

= 4[z2 + 3z + 2tz − 4t2 − 12t − 6]

The original problem is first transformed into






z′′(t) = 4[z2 + 3z + 2tz − 4t2 − 12t − 6]

z(0) = 7, z(1) = 9

Next let

u(t) = z(t) − [7 + 2t], or equivalently, z(t) = u(t) + 2t + 7.
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Then

u′′(t)=4[(z + 2t + 7)2 + 3(u + 2t + 7) + 2t(u + 2t + 7) − 4t2 − 12t − 6]

= 4[u2 + 6tu + 17u + 4t2 + 36t + 64].

The original problem is transformed into the following homogeneous system






u′′(t) = 4[u2 + 6tu + 17u + 4t2 + 36t + 64]

u(0) = u(1) = 0

Theorem 2 The boundary-value problem






y′′ = f(x, y)

y(0) = 0, y(1) = 0

has a unique solution if
∂f

∂y
is continuous, non-negative, and bounded in the strip

0 ≤ x ≤ 1 and −∞ < y < ∞.

Department of Mathematics – NTNU Tsung-Min Hwang December 20, 2003



BVP of ODE 14

Theorem 3 If f is a continuous function of (s, t) in the domain 0 ≤ s ≤ 1 and

−∞ < t < ∞ such that

|f(s, t1) − f(s, t2)| ≤ K|t1 − t2|, (K < 8).

Then the boundary-value problem






y′′ = f(x, y)

y(0) = 0, y(1) = 0

has a unique solution in C[0, 1].
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2 – Finite Difference Method For Linear Problems

We consider finite difference method for solving the linear two-point boundary-value problem

of the form






y′′ = p(x)y′ + q(x)y + r(x)

y(a) = α, y(b) = β.
(4)

Methods involving finite differences for solving boundary-value problems replace each of the

derivatives in the differential equation by an appropriate difference-quotient approximation.

2.1 – The Finite Difference Formulation

First, partition the interval [a, b] into n equally-spaced subintervals by points

a = x0 < x1 < . . . < xn < xn = b. Each mesh point xi can be computed by

xi = a + i ∗ h, i = 0, 1, . . . , n, with h =
b − a

n

where h is called the mesh size.
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At the interior mesh points, xi, for i = 1, 2, . . . , n − 1, the differential equation to be

approximated satisfies

y′′(xi) = p(xi)y
′(xi) + q(xi)y(xi) + r(xi). (5)

The central finite difference formulae

y′(xi) =
y(xi+1) − y(xi−1)

2h
−

h2

6
y(3)(ηi), (6)

for some ηi in the interval (xi−1, xi+1), and

y′′(xi) =
y(xi+1) − 2y(xi) + y(xi−1)

h2
−

h2

12
y(4)(ξi), (7)

for some ξi in the interval (xi−1, xi+1), can be derived from Taylor’s theorem by

expanding y about xi.

Let ui denote the approximate value of yi = y(xi). If y ∈ C4[a, b], then a finite difference

method with truncation error of order O(h2) can be obtained by using the approximations
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y′(xi) ≈
ui+1 − ui−1

2h
and y′′(xi) ≈

ui+1 − 2ui + ui−1

h2

for y′(xi) and y′′(xi), respectively.

Furthermore, let

pi = p(xi), qi = q(xi), ri = r(xi).

The discrete version of equation (4) is then

ui+1 − 2ui + ui−1

h2
= pi

ui+1 − ui−1

2h
+ qiui + ri, i = 1, 2, . . . , n − 1, (8)

together with boundary conditions u0 = α and un = β. Equation (8) can be written in the

form
(

1 +
h

2
pi

)

ui−1 −
(

2 + h2qi

)

ui +

(

1 −
h

2
pi

)

ui+1 = h2ri, (9)

for i = 1, 2, . . . , n − 1. In (8), u1, u2, . . . , un−1 are the unknown, and there are n − 1

linear equations to be solved. The resulting system of linear equations can be expressed in

the matrix form

Au = f, (10)
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linear equations to be solved.

The resulting system of linear equations can be expressed in

the matrix form

Au = f, (10)
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where

A =




























−2 − h2q1 1 −

h

2
p1

1 +
h

2
p2 −2 − h2q2 1 −

h

2
p2

. . .
. . .

. . .

. . .
. . .

. . .

1 +
h

2
pn−2 −2 − h2qn−2 1 −

h

2
pn−2

1 +
h

2
pn−1 −2 − h2qn−1





























,

u =





















u1

u2

...

un−2

un−1





















, and f =





















h2r1 −
(

1 + h
2 p1

)

α

h2r2

...

h2rn−2

h2rn−1 −
(

1 − h
2 pn−1

)

β




















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Since the matrix A is tridiagonal, this system can be solved by a special Gaussian

elimination in O(n2) flops.

Theorem 4 Suppose that p(x), q(x), and r(x) in (4) are continuous on [a, b], and

q(x) > 0 on [a, b]. Then (10) has a unique solution provided that h < 2/L, where

L = maxa≤x≤b |p(x)|.

2.2 – Convergence Analysis

We shall analyze that when h converges to zero, the solution ui of the discrete problem (8)

converges to the solution yi of the original continuous problem (5).

yi satisfies the following system of equations

yi+1 − 2yi + yi−1

h2
−

h2

12
y(4)(ξi) = pi

(

yi+1 − yi−1

2h
−

h2

6
y(3)(ηi)

)

+ qiyi + ri,

(11)

for i = 1, 2, . . . , n − 1. Subtract (8) from (11) and let ei = yi − ui, the result is

ei+1 − 2ei + ei−1

h2
= pi

ei+1 − ei−1

2h
+ qiei + h2gi, i = 1, 2, . . . , n − 1,
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where

gi =
1

12
y(4)(ξi) −

1

6
piy

(3)(ηi).

After collecting terms and multiplying by h2, we have
(

1 +
h

2
pi

)

ei−1 −
(

2 + h2qi

)

ei +

(

1 −
h

2
pi

)

ei+1 = h4gi, i = 1, 2, . . . , n − 1.

Let e = [e1, e2, . . . , en−1]
T and |ek| = ‖e‖∞. Then

(

2 + h2qk

)

ek =

(

1 +
h

2
pk

)

ek−1 +

(

1 −
h

2
pk

)

ek+1 − h4gk,

and, hence

∣

∣2 + h2qk

∣

∣ |ek| ≤

∣

∣

∣

∣

1 +
h

2
pk

∣

∣

∣

∣

|ek−1| +

∣

∣

∣

∣

1 −
h

2
pk

∣

∣

∣

∣

|ek+1| + h4|gk|

≤

∣

∣

∣

∣

1 +
h

2
pk

∣

∣

∣

∣

‖e‖∞ +

∣

∣

∣

∣

1 −
h

2
pk

∣

∣

∣

∣

‖e‖∞ + h4‖g‖∞
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When q(x) > 0, ∀x ∈ [a, b] and h is chosen small enough so that |h
2 pi| < 1, ∀i, then

the the above inequality induces

h2qk‖e‖∞ ≤ h4‖g‖∞.

Therefore, we derive an upper bound for ‖e‖∞

‖e‖∞ ≤ h2

(

‖g‖∞
inf q(x)

)

.

By the definition of gi, we have

‖g‖∞ ≤
1

12
‖y(4)(x)‖∞ +

1

6
‖p(x)‖∞‖y(3)(x)‖∞.

Hence
‖g‖∞

inf q(x) is a bound independent of h. Thus we can conclude that ‖e‖∞ is O(h2) as

h → 0.
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3 – Shooting Methods

We consider solving the following 2-point boundary-value problem:






y′′ = f(x, y, y′)

y(a) = α, y(b) = β
(12)

The idea of shooting method for (12) is to solve a related initial-value problem with a guess

for y′(a), say z. The corresponding IVP






y′′ = f(x, y, y′)

y(a) = α, y′(a) = z
(13)

can then be solved by, for example, Runge-Kutta method. We denote this approximate

solution yz and hope yz(b) = β. If not, we use another guess for y′(a), and try to solve an

altered IVP (13) again. This process is repeated and can be done systematically.
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can then be solved by, for example, Runge-Kutta method. We denote this approximate

solution yz and hope yz(b) = β.

If not, we use another guess for y′(a), and try to solve an

altered IVP (13) again. This process is repeated and can be done systematically.

Department of Mathematics – NTNU Tsung-Min Hwang December 20, 2003



BVP of ODE 22

3 – Shooting Methods

We consider solving the following 2-point boundary-value problem:






y′′ = f(x, y, y′)

y(a) = α, y(b) = β
(12)

The idea of shooting method for (12) is to solve a related initial-value problem with a guess

for y′(a), say z. The corresponding IVP






y′′ = f(x, y, y′)

y(a) = α, y′(a) = z
(13)

can then be solved by, for example, Runge-Kutta method. We denote this approximate

solution yz and hope yz(b) = β. If not, we use another guess for y′(a), and try to solve an

altered IVP (13) again.

This process is repeated and can be done systematically.

Department of Mathematics – NTNU Tsung-Min Hwang December 20, 2003



BVP of ODE 22

3 – Shooting Methods

We consider solving the following 2-point boundary-value problem:






y′′ = f(x, y, y′)

y(a) = α, y(b) = β
(12)

The idea of shooting method for (12) is to solve a related initial-value problem with a guess

for y′(a), say z. The corresponding IVP






y′′ = f(x, y, y′)

y(a) = α, y′(a) = z
(13)

can then be solved by, for example, Runge-Kutta method. We denote this approximate

solution yz and hope yz(b) = β. If not, we use another guess for y′(a), and try to solve an

altered IVP (13) again. This process is repeated and can be done systematically.

Department of Mathematics – NTNU Tsung-Min Hwang December 20, 2003



BVP of ODE 23

☞ Objective: select z, so that yz(b) = β.

Let

φ(z) = yz(b) − β.

Now our objective is simply to solve the equation φ(z) = 0. Hence secant method can

be used.

☞ How to compute z?

Suppose we have solutions yz1
, yz2

with guesses z1, z2 and obtain φ(z1) and φ(z2).

If these guesses can not generate satisfactory solutions, we can obtain another guess

z3 by the secant method

z3 = z2 − φ(z2)
z2 − z1

φ(z2) − φ(z1)
.

In general

zk+1 = zk − φ(zk)
zk − zk−1

φ(zk) − φ(zk−1)
.
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BVP of ODE 24

☞ Special BVP:






y′′ = u(x) + v(x)y + w(x)y′

y(a) = α, y(b) = β
(14)

where u(x), v(x), w(x) are continuous in [a, b].

Suppose we have solved (14) twice with initial guesses z1 and z2, and obtain

approximate solutions y1 and y2, hence






y1
′′ = u + vy1 + wy1

′

y1(a) = α, y1
′(a) = z1

and







y2
′′ = u + vy2 + wy2

′

y2(a) = α, y2
′(a) = z2

Now let

y(x) = λy1(x) + (1 − λ)y2(x)

for some parameter λ, we can show

y′′ = u + vy + wy′
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and

y(a) = λy1(a) + (1 − λ)y2(a) = α

We can select λ so that y(b) = β.

β = y(b) = λy1(b) + (1 − λ)y2(b)

= λ(y1(b) − y2(b)) + y2(b)

⇒ λ =
β − y2(b)

(y1(b) − y2(b))

In practice, we can solve the following two IVPs (in parallel)






y′′ = u(x) + v(x)y + w(x)y′

y(a) = α, y′(a) = 0

and






y′′ = u(x) + v(x)y + w(x)y′

y(a) = α, y′(a) = 1

Department of Mathematics – NTNU Tsung-Min Hwang December 20, 2003



BVP of ODE 25

and

y(a) = λy1(a) + (1 − λ)y2(a) = α

We can select λ so that y(b) = β.

β = y(b) = λy1(b) + (1 − λ)y2(b)

= λ(y1(b) − y2(b)) + y2(b)

⇒ λ =
β − y2(b)

(y1(b) − y2(b))

In practice, we can solve the following two IVPs (in parallel)






y′′ = u(x) + v(x)y + w(x)y′

y(a) = α, y′(a) = 0

and






y′′ = u(x) + v(x)y + w(x)y′

y(a) = α, y′(a) = 1

Department of Mathematics – NTNU Tsung-Min Hwang December 20, 2003



BVP of ODE 25

and

y(a) = λy1(a) + (1 − λ)y2(a) = α

We can select λ so that y(b) = β.

β = y(b) = λy1(b) + (1 − λ)y2(b)

= λ(y1(b) − y2(b)) + y2(b)

⇒ λ =
β − y2(b)

(y1(b) − y2(b))

In practice, we can solve the following two IVPs (in parallel)






y′′ = u(x) + v(x)y + w(x)y′

y(a) = α, y′(a) = 0

and






y′′ = u(x) + v(x)y + w(x)y′

y(a) = α, y′(a) = 1

Department of Mathematics – NTNU Tsung-Min Hwang December 20, 2003



BVP of ODE 25

and

y(a) = λy1(a) + (1 − λ)y2(a) = α

We can select λ so that y(b) = β.

β = y(b) = λy1(b) + (1 − λ)y2(b)

= λ(y1(b) − y2(b)) + y2(b)

⇒ λ =
β − y2(b)

(y1(b) − y2(b))

In practice, we can solve the following two IVPs (in parallel)






y′′ = u(x) + v(x)y + w(x)y′

y(a) = α, y′(a) = 0

and






y′′ = u(x) + v(x)y + w(x)y′

y(a) = α, y′(a) = 1

Department of Mathematics – NTNU Tsung-Min Hwang December 20, 2003



BVP of ODE 25

and

y(a) = λy1(a) + (1 − λ)y2(a) = α

We can select λ so that y(b) = β.

β = y(b) = λy1(b) + (1 − λ)y2(b)

= λ(y1(b) − y2(b)) + y2(b)

⇒ λ =
β − y2(b)

(y1(b) − y2(b))

In practice, we can solve the following two IVPs (in parallel)






y′′ = u(x) + v(x)y + w(x)y′

y(a) = α, y′(a) = 0

and






y′′ = u(x) + v(x)y + w(x)y′

y(a) = α, y′(a) = 1

Department of Mathematics – NTNU Tsung-Min Hwang December 20, 2003



BVP of ODE 26

i.e.,














y′
1 = y3

y3
′ = y1

′′ = u + vy1 + wy1
′ = u + vy1 + wy3

y1(a) = α, y3(a) = y1
′(a) = 0

and














y2
′ = y4

y4
′ = u + vy2 + wy4

y2(a) = α, y4(a) = 1

to obtain approximate solutions y1 and y2, then compute λ and form the solution y.
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