
Computer Arithmetic 1

Numerical Analysis

NTNU

Tsung-Min Hwang

September 14, 2003

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 2

1 Floating-Point Number and Roundoff Error

• Normalized scientific notation for the decimal number system of x:

x = ±r × 10n,

where
1

10
≤ r < 1,

and n is an integer (positive, negative, or zero).

– r is called the mantissa and n is the exponent.

– The leading digit in the fraction is not zero.

– For example,

42.965 = 0.42965 × 102,

−0.00234 = −0.234 × 10−2.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 2

1 Floating-Point Number and Roundoff Error

• Normalized scientific notation for the decimal number system of x:

x = ±r × 10n,

where
1

10
≤ r < 1,

and n is an integer (positive, negative, or zero).

– r is called the mantissa and n is the exponent.

– The leading digit in the fraction is not zero.

– For example,

42.965 = 0.42965 × 102,

−0.00234 = −0.234 × 10−2.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 2

1 Floating-Point Number and Roundoff Error

• Normalized scientific notation for the decimal number system of x:

x = ±r × 10n,

where
1

10
≤ r < 1,

and n is an integer (positive, negative, or zero).

– r is called the mantissa and n is the exponent.

– The leading digit in the fraction is not zero.

– For example,

42.965 = 0.42965 × 102,

−0.00234 = −0.234 × 10−2.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 2

1 Floating-Point Number and Roundoff Error

• Normalized scientific notation for the decimal number system of x:

x = ±r × 10n,

where
1

10
≤ r < 1,

and n is an integer (positive, negative, or zero).

– r is called the mantissa and n is the exponent.

– The leading digit in the fraction is not zero.

– For example,

42.965 = 0.42965 × 102,

−0.00234 = −0.234 × 10−2.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 3

• Scientific notation for the binary number system of x:

x = ±q × 2m

with
1

2
≤ q < 1,

and some integer m. For example,

(1001.1101)2 = 1 × 23 + 1 × 20 + 1 × 2−1 + 1 × 2−2 + 1 × 2−4

= 0.10011101 × 24

= (9.8125)10

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 3

• Scientific notation for the binary number system of x:

x = ±q × 2m

with
1

2
≤ q < 1,

and some integer m.

For example,

(1001.1101)2 = 1 × 23 + 1 × 20 + 1 × 2−1 + 1 × 2−2 + 1 × 2−4

= 0.10011101 × 24

= (9.8125)10

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 3

• Scientific notation for the binary number system of x:

x = ±q × 2m

with
1

2
≤ q < 1,

and some integer m. For example,

(1001.1101)2 = 1 × 23 + 1 × 20 + 1 × 2−1 + 1 × 2−2 + 1 × 2−4

= 0.10011101 × 24

= (9.8125)10

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 4

Example 1.1 What is the binary representation of 2
3?

Solution: To determine the binary representation for 2
3 , we write

2

3
= (0.a1a2a3 . . .)2.

Multiply by 2 to obtain
4

3
= (a1.a2a3 . . .)2.

Therefore, we get a1 = 1 by taking the integer part of both sides. Subtracting 1, we have

1

3
= (0.a2a3a4 . . .)2.

Repeating the previous step, we arrive at

2

3
= (0.101010 . . .)2.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 4

Example 1.1 What is the binary representation of 2
3?

Solution: To determine the binary representation for 2
3 , we write

2

3
= (0.a1a2a3 . . .)2.

Multiply by 2 to obtain
4

3
= (a1.a2a3 . . .)2.

Therefore, we get a1 = 1 by taking the integer part of both sides. Subtracting 1, we have

1

3
= (0.a2a3a4 . . .)2.

Repeating the previous step, we arrive at

2

3
= (0.101010 . . .)2.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 4

Example 1.1 What is the binary representation of 2
3?

Solution: To determine the binary representation for 2
3 , we write

2

3
= (0.a1a2a3 . . .)2.

Multiply by 2 to obtain
4

3
= (a1.a2a3 . . .)2.

Therefore, we get a1 = 1 by taking the integer part of both sides. Subtracting 1, we have

1

3
= (0.a2a3a4 . . .)2.

Repeating the previous step, we arrive at

2

3
= (0.101010 . . .)2.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 4

Example 1.1 What is the binary representation of 2
3?

Solution: To determine the binary representation for 2
3 , we write

2

3
= (0.a1a2a3 . . .)2.

Multiply by 2 to obtain
4

3
= (a1.a2a3 . . .)2.

Therefore, we get a1 = 1 by taking the integer part of both sides.

Subtracting 1, we have

1

3
= (0.a2a3a4 . . .)2.

Repeating the previous step, we arrive at

2

3
= (0.101010 . . .)2.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 4

Example 1.1 What is the binary representation of 2
3?

Solution: To determine the binary representation for 2
3 , we write

2

3
= (0.a1a2a3 . . .)2.

Multiply by 2 to obtain
4

3
= (a1.a2a3 . . .)2.

Therefore, we get a1 = 1 by taking the integer part of both sides. Subtracting 1, we have

1

3
= (0.a2a3a4 . . .)2.

Repeating the previous step, we arrive at

2

3
= (0.101010 . . .)2.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 4

Example 1.1 What is the binary representation of 2
3?

Solution: To determine the binary representation for 2
3 , we write

2

3
= (0.a1a2a3 . . .)2.

Multiply by 2 to obtain
4

3
= (a1.a2a3 . . .)2.

Therefore, we get a1 = 1 by taking the integer part of both sides. Subtracting 1, we have

1

3
= (0.a2a3a4 . . .)2.

Repeating the previous step, we arrive at

2

3
= (0.101010 . . .)2.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 5

• Only a relatively small subset of the real number system is used for the representation

of all the real numbers.

• This subset, which are called the floating-point numbers, contains only rational

numbers, both positive and negative.

• When a number can not be represented exactly with the fixed finite number of digits in a

computer, a near-by floating-point number is chosen for approximate representation.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 5

• Only a relatively small subset of the real number system is used for the representation

of all the real numbers.

• This subset, which are called the floating-point numbers, contains only rational

numbers, both positive and negative.

• When a number can not be represented exactly with the fixed finite number of digits in a

computer, a near-by floating-point number is chosen for approximate representation.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 5

• Only a relatively small subset of the real number system is used for the representation

of all the real numbers.

• This subset, which are called the floating-point numbers, contains only rational

numbers, both positive and negative.

• When a number can not be represented exactly with the fixed finite number of digits in a

computer, a near-by floating-point number is chosen for approximate representation.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 5

• Only a relatively small subset of the real number system is used for the representation

of all the real numbers.

• This subset, which are called the floating-point numbers, contains only rational

numbers, both positive and negative.

• When a number can not be represented exactly with the fixed finite number of digits in a

computer, a near-by floating-point number is chosen for approximate representation.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 6

• For any real number x, let

x = ±0.a1a2 · · · atat+1at+2 · · · × 2m, a1 6= 0,

denote the normalized scientific binary representation of x.

– a1 6= 0, hence a1 = 1.

– If x is within the numerical range of the machine, the floating-point form of x, denoted

fl(x), is obtained by terminating the mantissa of x at t digits for some integer t.

– There are two ways of performing this termination.

1. chopping: simply discard the excess bits at+1, at+2, . . . to obtain

fl(x) = ±0.a1a2 · · · at × 2m.

2. rounding up: add 2−(t+1) × 2m to x and then chop the excess bits to obtain a

number of the form

fl(x) = ±0.δ1δ2 · · · δt × 2m.

In this method, if at+1 = 1, we add 1 to at to obtain fl(x), and if at+1 = 0, we

merely chop off all but the first t digits.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 6

• For any real number x, let

x = ±0.a1a2 · · · atat+1at+2 · · · × 2m, a1 6= 0,

denote the normalized scientific binary representation of x.

– a1 6= 0, hence a1 = 1.

– If x is within the numerical range of the machine, the floating-point form of x, denoted

fl(x), is obtained by terminating the mantissa of x at t digits for some integer t.

– There are two ways of performing this termination.

1. chopping: simply discard the excess bits at+1, at+2, . . . to obtain

fl(x) = ±0.a1a2 · · · at × 2m.

2. rounding up: add 2−(t+1) × 2m to x and then chop the excess bits to obtain a

number of the form

fl(x) = ±0.δ1δ2 · · · δt × 2m.

In this method, if at+1 = 1, we add 1 to at to obtain fl(x), and if at+1 = 0, we

merely chop off all but the first t digits.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 6

• For any real number x, let

x = ±0.a1a2 · · · atat+1at+2 · · · × 2m, a1 6= 0,

denote the normalized scientific binary representation of x.

– a1 6= 0, hence a1 = 1.

– If x is within the numerical range of the machine, the floating-point form of x, denoted

fl(x), is obtained by terminating the mantissa of x at t digits for some integer t.

– There are two ways of performing this termination.

1. chopping: simply discard the excess bits at+1, at+2, . . . to obtain

fl(x) = ±0.a1a2 · · · at × 2m.

2. rounding up: add 2−(t+1) × 2m to x and then chop the excess bits to obtain a

number of the form

fl(x) = ±0.δ1δ2 · · · δt × 2m.

In this method, if at+1 = 1, we add 1 to at to obtain fl(x), and if at+1 = 0, we

merely chop off all but the first t digits.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 6

• For any real number x, let

x = ±0.a1a2 · · · atat+1at+2 · · · × 2m, a1 6= 0,

denote the normalized scientific binary representation of x.

– a1 6= 0, hence a1 = 1.

– If x is within the numerical range of the machine, the floating-point form of x, denoted

fl(x), is obtained by terminating the mantissa of x at t digits for some integer t.

– There are two ways of performing this termination.

1. chopping: simply discard the excess bits at+1, at+2, . . . to obtain

fl(x) = ±0.a1a2 · · · at × 2m.

2. rounding up: add 2−(t+1) × 2m to x and then chop the excess bits to obtain a

number of the form

fl(x) = ±0.δ1δ2 · · · δt × 2m.

In this method, if at+1 = 1, we add 1 to at to obtain fl(x), and if at+1 = 0, we

merely chop off all but the first t digits.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 6

• For any real number x, let

x = ±0.a1a2 · · · atat+1at+2 · · · × 2m, a1 6= 0,

denote the normalized scientific binary representation of x.

– a1 6= 0, hence a1 = 1.

– If x is within the numerical range of the machine, the floating-point form of x, denoted

fl(x), is obtained by terminating the mantissa of x at t digits for some integer t.

– There are two ways of performing this termination.

1. chopping: simply discard the excess bits at+1, at+2, . . . to obtain

fl(x) = ±0.a1a2 · · · at × 2m.

2. rounding up: add 2−(t+1) × 2m to x and then chop the excess bits to obtain a

number of the form

fl(x) = ±0.δ1δ2 · · · δt × 2m.

In this method, if at+1 = 1, we add 1 to at to obtain fl(x), and if at+1 = 0, we

merely chop off all but the first t digits.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 6

• For any real number x, let

x = ±0.a1a2 · · · atat+1at+2 · · · × 2m, a1 6= 0,

denote the normalized scientific binary representation of x.

– a1 6= 0, hence a1 = 1.

– If x is within the numerical range of the machine, the floating-point form of x, denoted

fl(x), is obtained by terminating the mantissa of x at t digits for some integer t.

– There are two ways of performing this termination.

1. chopping: simply discard the excess bits at+1, at+2, . . . to obtain

fl(x) = ±0.a1a2 · · · at × 2m.

2. rounding up: add 2−(t+1) × 2m to x and then chop the excess bits to obtain a

number of the form

fl(x) = ±0.δ1δ2 · · · δt × 2m.

In this method, if at+1 = 1, we add 1 to at to obtain fl(x), and if at+1 = 0, we

merely chop off all but the first t digits.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 7

Definition 1.1 (Roundoff error) The error results from replacing a number with its

floating-point form is called roundoff error or rounding error.

Definition 1.2 (Absolute Error and Relative Error) If x is an approximation to the exact

value x?, the absolute error is |x? − x| and the relative error is
|x?−x|
|x?| , provided that

x? 6= 0.

Remark 1.1 As a measure of accuracy, the absolute error may be misleading and the

relative error more meaningful.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 7

Definition 1.1 (Roundoff error) The error results from replacing a number with its

floating-point form is called roundoff error or rounding error.

Definition 1.2 (Absolute Error and Relative Error) If x is an approximation to the exact

value x?, the absolute error is |x? − x| and the relative error is
|x?−x|
|x?| , provided that

x? 6= 0.

Remark 1.1 As a measure of accuracy, the absolute error may be misleading and the

relative error more meaningful.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 7

Definition 1.1 (Roundoff error) The error results from replacing a number with its

floating-point form is called roundoff error or rounding error.

Definition 1.2 (Absolute Error and Relative Error) If x is an approximation to the exact

value x?, the absolute error is |x? − x| and the relative error is
|x?−x|
|x?| , provided that

x? 6= 0.

Remark 1.1 As a measure of accuracy, the absolute error may be misleading and the

relative error more meaningful.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 7

Definition 1.1 (Roundoff error) The error results from replacing a number with its

floating-point form is called roundoff error or rounding error.

Definition 1.2 (Absolute Error and Relative Error) If x is an approximation to the exact

value x?, the absolute error is |x? − x| and the relative error is
|x?−x|
|x?| , provided that

x? 6= 0.

Remark 1.1 As a measure of accuracy, the absolute error may be misleading and the

relative error more meaningful.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 8

• If the floating-point representation fl(x) for the number x is obtained by using t digits

and chopping procedure, then the relative error is

|x − fl(x)|
|x| =

|0.00 · · · 0at+1at+2 · · · × 2m|
|0.a1a2 · · · atat+1at+2 · · · × 2m|

=
|0.at+1at+2 · · · |

|0.a1a2 · · · atat+1at+2 · · · |
× 2−t.

Since a1 6= 0, the minimal value of the denominator is 1
2 . The numerator is bounded

above by 1. As a consequence
∣

∣

∣

∣

x − fl(x)

x

∣

∣

∣

∣

≤ 2−t+1.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 8

• If the floating-point representation fl(x) for the number x is obtained by using t digits

and chopping procedure, then the relative error is

|x − fl(x)|
|x| =

|0.00 · · · 0at+1at+2 · · · × 2m|
|0.a1a2 · · · atat+1at+2 · · · × 2m|

=
|0.at+1at+2 · · · |

|0.a1a2 · · · atat+1at+2 · · · |
× 2−t.

Since a1 6= 0, the minimal value of the denominator is 1
2 . The numerator is bounded

above by 1. As a consequence
∣

∣

∣

∣

x − fl(x)

x

∣

∣

∣

∣

≤ 2−t+1.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 8

• If the floating-point representation fl(x) for the number x is obtained by using t digits

and chopping procedure, then the relative error is

|x − fl(x)|
|x| =

|0.00 · · · 0at+1at+2 · · · × 2m|
|0.a1a2 · · · atat+1at+2 · · · × 2m|

=
|0.at+1at+2 · · · |

|0.a1a2 · · · atat+1at+2 · · · |
× 2−t.

Since a1 6= 0, the minimal value of the denominator is 1
2 . The numerator is bounded

above by 1. As a consequence
∣

∣

∣

∣

x − fl(x)

x

∣

∣

∣

∣

≤ 2−t+1.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 8

• If the floating-point representation fl(x) for the number x is obtained by using t digits

and chopping procedure, then the relative error is

|x − fl(x)|
|x| =

|0.00 · · · 0at+1at+2 · · · × 2m|
|0.a1a2 · · · atat+1at+2 · · · × 2m|

=
|0.at+1at+2 · · · |

|0.a1a2 · · · atat+1at+2 · · · |
× 2−t.

Since a1 6= 0, the minimal value of the denominator is 1
2 . The numerator is bounded

above by 1.

As a consequence
∣

∣

∣

∣

x − fl(x)

x

∣

∣

∣

∣

≤ 2−t+1.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 8

• If the floating-point representation fl(x) for the number x is obtained by using t digits

and chopping procedure, then the relative error is

|x − fl(x)|
|x| =

|0.00 · · · 0at+1at+2 · · · × 2m|
|0.a1a2 · · · atat+1at+2 · · · × 2m|

=
|0.at+1at+2 · · · |

|0.a1a2 · · · atat+1at+2 · · · |
× 2−t.

Since a1 6= 0, the minimal value of the denominator is 1
2 . The numerator is bounded

above by 1. As a consequence
∣

∣

∣

∣

x − fl(x)

x

∣

∣

∣

∣

≤ 2−t+1.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 9

• If t-digit rounding arithmetic is used and

– at+1 = 0, then fl(x) = ±0.a1a2 · · · at × 2m.

A bound for the relative error is

|x − fl(x)|
|x| =

|0.at+1at+2 · · · |
|0.a1a2 · · · atat+1at+2 · · · |

× 2−t ≤ 2−t,

since the numerator is bounded above by 1
2 .

– at+1 = 1, then fl(x) = ±(0.a1a2 · · · at + 2−t) × 2m. The upper bound for

relative error becomes

|x − fl(x)|
|x| =

|1 − 0.at+1at+2 · · · |
|0.a1a2 · · · atat+1at+2 · · · |

× 2−t ≤ 2−t,

since the numerator is bounded by 1
2 due to at+1 = 1.

Therefore the relative error for rounding arithmetic is
∣

∣

∣

∣

x − fl(x)

x

∣

∣

∣

∣

≤ 2−t =
1

2
× 2−t+1.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 9

• If t-digit rounding arithmetic is used and

– at+1 = 0, then fl(x) = ±0.a1a2 · · · at × 2m. A bound for the relative error is

|x − fl(x)|
|x| =

|0.at+1at+2 · · · |
|0.a1a2 · · · atat+1at+2 · · · |

× 2−t ≤ 2−t,

since the numerator is bounded above by 1
2 .

– at+1 = 1, then fl(x) = ±(0.a1a2 · · · at + 2−t) × 2m. The upper bound for

relative error becomes

|x − fl(x)|
|x| =

|1 − 0.at+1at+2 · · · |
|0.a1a2 · · · atat+1at+2 · · · |

× 2−t ≤ 2−t,

since the numerator is bounded by 1
2 due to at+1 = 1.

Therefore the relative error for rounding arithmetic is
∣

∣

∣

∣

x − fl(x)

x

∣

∣

∣

∣

≤ 2−t =
1

2
× 2−t+1.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 9

• If t-digit rounding arithmetic is used and

– at+1 = 0, then fl(x) = ±0.a1a2 · · · at × 2m. A bound for the relative error is

|x − fl(x)|
|x| =

|0.at+1at+2 · · · |
|0.a1a2 · · · atat+1at+2 · · · |

× 2−t ≤ 2−t,

since the numerator is bounded above by 1
2 .

– at+1 = 1, then fl(x) = ±(0.a1a2 · · · at + 2−t) × 2m. The upper bound for

relative error becomes

|x − fl(x)|
|x| =

|1 − 0.at+1at+2 · · · |
|0.a1a2 · · · atat+1at+2 · · · |

× 2−t ≤ 2−t,

since the numerator is bounded by 1
2 due to at+1 = 1.

Therefore the relative error for rounding arithmetic is
∣

∣

∣

∣

x − fl(x)

x

∣

∣

∣

∣

≤ 2−t =
1

2
× 2−t+1.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 9

• If t-digit rounding arithmetic is used and

– at+1 = 0, then fl(x) = ±0.a1a2 · · · at × 2m. A bound for the relative error is

|x − fl(x)|
|x| =

|0.at+1at+2 · · · |
|0.a1a2 · · · atat+1at+2 · · · |

× 2−t ≤ 2−t,

since the numerator is bounded above by 1
2 .

– at+1 = 1, then fl(x) = ±(0.a1a2 · · · at + 2−t) × 2m. The upper bound for

relative error becomes

|x − fl(x)|
|x| =

|1 − 0.at+1at+2 · · · |
|0.a1a2 · · · atat+1at+2 · · · |

× 2−t ≤ 2−t,

since the numerator is bounded by 1
2 due to at+1 = 1.

Therefore the relative error for rounding arithmetic is
∣

∣

∣

∣

x − fl(x)

x

∣

∣

∣

∣

≤ 2−t =
1

2
× 2−t+1.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 10

• The number εM ≡ 2−t+1 is referred to as the unit roundoff error or machine epsilon.

The floating-point representation, fl(x), of x can be expressed as

fl(x) = x(1 + δ), |δ| ≤ εM . (1)

• In 1985, the IEEE (Institute for Electrical and Electronic Engineers) published a report

called Binary Floating Point Arithmetic Standard 754-1985. In this report, formats were

specified for single, double, and extended precisions, and these standards are generally

followed by microcomputer manufactures using floating-point hardware.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 10

• The number εM ≡ 2−t+1 is referred to as the unit roundoff error or machine epsilon.

The floating-point representation, fl(x), of x can be expressed as

fl(x) = x(1 + δ), |δ| ≤ εM . (1)

• In 1985, the IEEE (Institute for Electrical and Electronic Engineers) published a report

called Binary Floating Point Arithmetic Standard 754-1985. In this report, formats were

specified for single, double, and extended precisions, and these standards are generally

followed by microcomputer manufactures using floating-point hardware.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 10

• The number εM ≡ 2−t+1 is referred to as the unit roundoff error or machine epsilon.

The floating-point representation, fl(x), of x can be expressed as

fl(x) = x(1 + δ), |δ| ≤ εM . (1)

• In 1985, the IEEE (Institute for Electrical and Electronic Engineers) published a report

called Binary Floating Point Arithmetic Standard 754-1985. In this report, formats were

specified for single, double, and extended precisions, and these standards are generally

followed by microcomputer manufactures using floating-point hardware.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 10

• The number εM ≡ 2−t+1 is referred to as the unit roundoff error or machine epsilon.

The floating-point representation, fl(x), of x can be expressed as

fl(x) = x(1 + δ), |δ| ≤ εM . (1)

• In 1985, the IEEE (Institute for Electrical and Electronic Engineers) published a report

called Binary Floating Point Arithmetic Standard 754-1985. In this report, formats were

specified for single, double, and extended precisions, and these standards are generally

followed by microcomputer manufactures using floating-point hardware.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 11

☞ The single precision IEEE standard floating-point format allocates 32 bits for the

normalized floating-point number ±q × 2m as shown in Figure 1.

23 bits

sign of mantissa

normalized mantissaexponent8 bits

0 1 8 9 31

Figure 1: 32-bit single precision.

• The first bit is a sign indicator, denoted s. This is followed by an 8-bit exponent c and a

23-bit mantissa f .

• The base for the exponent and mantissa is 2, and the actual exponent is c − 127. The

value of c is restricted by the inequality 0 ≤ c ≤ 255.

• The actual exponent of the number is restricted by the inequality

−126 ≤ c − 127 ≤ 128.

• A normalization is imposed that requires that the leading digit in fraction be 1, and this

digit is not stored as part of the 23-bit mantissa.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 11

☞ The single precision IEEE standard floating-point format allocates 32 bits for the

normalized floating-point number ±q × 2m as shown in Figure 1.

23 bits

sign of mantissa

normalized mantissaexponent8 bits

0 1 8 9 31

Figure 1: 32-bit single precision.

• The first bit is a sign indicator, denoted s. This is followed by an 8-bit exponent c and a

23-bit mantissa f .

• The base for the exponent and mantissa is 2, and the actual exponent is c − 127. The

value of c is restricted by the inequality 0 ≤ c ≤ 255.

• The actual exponent of the number is restricted by the inequality

−126 ≤ c − 127 ≤ 128.

• A normalization is imposed that requires that the leading digit in fraction be 1, and this

digit is not stored as part of the 23-bit mantissa.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 11

☞ The single precision IEEE standard floating-point format allocates 32 bits for the

normalized floating-point number ±q × 2m as shown in Figure 1.

23 bits

sign of mantissa

normalized mantissaexponent8 bits

0 1 8 9 31

Figure 1: 32-bit single precision.

• The first bit is a sign indicator, denoted s. This is followed by an 8-bit exponent c and a

23-bit mantissa f .

• The base for the exponent and mantissa is 2, and the actual exponent is c − 127. The

value of c is restricted by the inequality 0 ≤ c ≤ 255.

• The actual exponent of the number is restricted by the inequality

−126 ≤ c − 127 ≤ 128.

• A normalization is imposed that requires that the leading digit in fraction be 1, and this

digit is not stored as part of the 23-bit mantissa.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 11

☞ The single precision IEEE standard floating-point format allocates 32 bits for the

normalized floating-point number ±q × 2m as shown in Figure 1.

23 bits

sign of mantissa

normalized mantissaexponent8 bits

0 1 8 9 31

Figure 1: 32-bit single precision.

• The first bit is a sign indicator, denoted s. This is followed by an 8-bit exponent c and a

23-bit mantissa f .

• The base for the exponent and mantissa is 2, and the actual exponent is c − 127. The

value of c is restricted by the inequality 0 ≤ c ≤ 255.

• The actual exponent of the number is restricted by the inequality

−126 ≤ c − 127 ≤ 128.

• A normalization is imposed that requires that the leading digit in fraction be 1, and this

digit is not stored as part of the 23-bit mantissa.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 11

☞ The single precision IEEE standard floating-point format allocates 32 bits for the

normalized floating-point number ±q × 2m as shown in Figure 1.

23 bits

sign of mantissa

normalized mantissaexponent8 bits

0 1 8 9 31

Figure 1: 32-bit single precision.

• The first bit is a sign indicator, denoted s. This is followed by an 8-bit exponent c and a

23-bit mantissa f .

• The base for the exponent and mantissa is 2, and the actual exponent is c − 127. The

value of c is restricted by the inequality 0 ≤ c ≤ 255.

• The actual exponent of the number is restricted by the inequality

−126 ≤ c − 127 ≤ 128.

• A normalization is imposed that requires that the leading digit in fraction be 1, and this

digit is not stored as part of the 23-bit mantissa.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 11

☞ The single precision IEEE standard floating-point format allocates 32 bits for the

normalized floating-point number ±q × 2m as shown in Figure 1.

23 bits

sign of mantissa

normalized mantissaexponent8 bits

0 1 8 9 31

Figure 1: 32-bit single precision.

• The first bit is a sign indicator, denoted s. This is followed by an 8-bit exponent c and a

23-bit mantissa f .

• The base for the exponent and mantissa is 2, and the actual exponent is c − 127. The

value of c is restricted by the inequality 0 ≤ c ≤ 255.

• The actual exponent of the number is restricted by the inequality

−126 ≤ c − 127 ≤ 128.

• A normalization is imposed that requires that the leading digit in fraction be 1, and this

digit is not stored as part of the 23-bit mantissa.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 12

• The mantissa f actually corresponds to 24 binary digits (i.e., precision t = 24), the

machine epsilon is

εM = 2−24+1 = 2−23 ≈ 1.192 × 10−7. (2)

• This approximately corresponds to 6 accurate decimal digits. And the first single

precision floating-point number greater than 1 is 1 + 2−23.

• The largest number that can be represented by the single precision format is

approximately 2128 ≈ 3.403 × 1038, and the smallest positive number is

2−126 ≈ 1.175 × 10−38.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 12

• The mantissa f actually corresponds to 24 binary digits (i.e., precision t = 24),

the

machine epsilon is

εM = 2−24+1 = 2−23 ≈ 1.192 × 10−7. (2)

• This approximately corresponds to 6 accurate decimal digits. And the first single

precision floating-point number greater than 1 is 1 + 2−23.

• The largest number that can be represented by the single precision format is

approximately 2128 ≈ 3.403 × 1038, and the smallest positive number is

2−126 ≈ 1.175 × 10−38.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 12

• The mantissa f actually corresponds to 24 binary digits (i.e., precision t = 24), the

machine epsilon is

εM = 2−24+1 = 2−23 ≈ 1.192 × 10−7. (2)

• This approximately corresponds to 6 accurate decimal digits. And the first single

precision floating-point number greater than 1 is 1 + 2−23.

• The largest number that can be represented by the single precision format is

approximately 2128 ≈ 3.403 × 1038, and the smallest positive number is

2−126 ≈ 1.175 × 10−38.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 12

• The mantissa f actually corresponds to 24 binary digits (i.e., precision t = 24), the

machine epsilon is

εM = 2−24+1 = 2−23 ≈ 1.192 × 10−7. (2)

• This approximately corresponds to 6 accurate decimal digits. And the first single

precision floating-point number greater than 1 is 1 + 2−23.

• The largest number that can be represented by the single precision format is

approximately 2128 ≈ 3.403 × 1038, and the smallest positive number is

2−126 ≈ 1.175 × 10−38.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 13

☞ A floating point number in double precision IEEE standard format uses two words (64

bits) to store the number as shown in Figure 2.

1

sign of mantissa

normalized mantissa

exponent

52-bit

mantissa

0 1

11-bit

11 12

63

Figure 2: 64-bit double precision.

• The first bit is a sign indicator, denoted s. This is followed by an 11-bit exponent c and a

52-bit mantissa f .

• The actual exponent is c − 1023.

• The machine epsilon

εM = 2−52 ≈ 2.220 × 10−16,

which provides between 15 and 16 decimal digits of accuracy.

• Range of approximately 2−1022 ≈ 2.225 × 10−308 to 21024 ≈ 1.798 × 10308.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 13

☞ A floating point number in double precision IEEE standard format uses two words (64

bits) to store the number as shown in Figure 2.

1

sign of mantissa

normalized mantissa

exponent

52-bit

mantissa

0 1

11-bit

11 12

63

Figure 2: 64-bit double precision.

• The first bit is a sign indicator, denoted s. This is followed by an 11-bit exponent c and a

52-bit mantissa f .

• The actual exponent is c − 1023.

• The machine epsilon

εM = 2−52 ≈ 2.220 × 10−16,

which provides between 15 and 16 decimal digits of accuracy.

• Range of approximately 2−1022 ≈ 2.225 × 10−308 to 21024 ≈ 1.798 × 10308.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 13

☞ A floating point number in double precision IEEE standard format uses two words (64

bits) to store the number as shown in Figure 2.

1

sign of mantissa

normalized mantissa

exponent

52-bit

mantissa

0 1

11-bit

11 12

63

Figure 2: 64-bit double precision.

• The first bit is a sign indicator, denoted s. This is followed by an 11-bit exponent c and a

52-bit mantissa f .

• The actual exponent is c − 1023.

• The machine epsilon

εM = 2−52 ≈ 2.220 × 10−16,

which provides between 15 and 16 decimal digits of accuracy.

• Range of approximately 2−1022 ≈ 2.225 × 10−308 to 21024 ≈ 1.798 × 10308.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 13

☞ A floating point number in double precision IEEE standard format uses two words (64

bits) to store the number as shown in Figure 2.

1

sign of mantissa

normalized mantissa

exponent

52-bit

mantissa

0 1

11-bit

11 12

63

Figure 2: 64-bit double precision.

• The first bit is a sign indicator, denoted s. This is followed by an 11-bit exponent c and a

52-bit mantissa f .

• The actual exponent is c − 1023.

• The machine epsilon

εM = 2−52 ≈ 2.220 × 10−16,

which provides between 15 and 16 decimal digits of accuracy.

• Range of approximately 2−1022 ≈ 2.225 × 10−308 to 21024 ≈ 1.798 × 10308.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 13

☞ A floating point number in double precision IEEE standard format uses two words (64

bits) to store the number as shown in Figure 2.

1

sign of mantissa

normalized mantissa

exponent

52-bit

mantissa

0 1

11-bit

11 12

63

Figure 2: 64-bit double precision.

• The first bit is a sign indicator, denoted s. This is followed by an 11-bit exponent c and a

52-bit mantissa f .

• The actual exponent is c − 1023.

• The machine epsilon

εM = 2−52 ≈ 2.220 × 10−16,

which provides between 15 and 16 decimal digits of accuracy.

• Range of approximately 2−1022 ≈ 2.225 × 10−308 to 21024 ≈ 1.798 × 10308.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 13

☞ A floating point number in double precision IEEE standard format uses two words (64

bits) to store the number as shown in Figure 2.

1

sign of mantissa

normalized mantissa

exponent

52-bit

mantissa

0 1

11-bit

11 12

63

Figure 2: 64-bit double precision.

• The first bit is a sign indicator, denoted s. This is followed by an 11-bit exponent c and a

52-bit mantissa f .

• The actual exponent is c − 1023.

• The machine epsilon

εM = 2−52 ≈ 2.220 × 10−16,

which provides between 15 and 16 decimal digits of accuracy.

• Range of approximately 2−1022 ≈ 2.225 × 10−308 to 21024 ≈ 1.798 × 10308.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 14

• Table 1 summarizes some characteristics of IEEE standard floating-point

representations.

single precision double precision

εM 2
−23

≈ 1.192 × 10
−7

2
−52

≈ 2.220 × 10
−16

smallest positive number 2
−126

≈ 1.175 × 10
−38

2
−1022

≈ 2.225 × 10
−308

largest number 2
128

≈ 3.403 × 10
38

2
1024

≈ 1.798 × 10
308

decimal precision 6 15

Table 1: Some characteristics of IEEE standard floating-point numbers

• For the most accuracy, computations should be done using double precision

floating-point numbers, however, the execution time is much higher.

• If a number x = ±q × 2m with m outside the computer’s possible range (too large or

too small), then we say that an overflow or an underflow has occurred.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 14

• Table 1 summarizes some characteristics of IEEE standard floating-point

representations.

single precision double precision

εM 2
−23

≈ 1.192 × 10
−7

2
−52

≈ 2.220 × 10
−16

smallest positive number 2
−126

≈ 1.175 × 10
−38

2
−1022

≈ 2.225 × 10
−308

largest number 2
128

≈ 3.403 × 10
38

2
1024

≈ 1.798 × 10
308

decimal precision 6 15

Table 1: Some characteristics of IEEE standard floating-point numbers

• For the most accuracy, computations should be done using double precision

floating-point numbers, however, the execution time is much higher.

• If a number x = ±q × 2m with m outside the computer’s possible range (too large or

too small), then we say that an overflow or an underflow has occurred.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 14

• Table 1 summarizes some characteristics of IEEE standard floating-point

representations.

single precision double precision

εM 2
−23

≈ 1.192 × 10
−7

2
−52

≈ 2.220 × 10
−16

smallest positive number 2
−126

≈ 1.175 × 10
−38

2
−1022

≈ 2.225 × 10
−308

largest number 2
128

≈ 3.403 × 10
38

2
1024

≈ 1.798 × 10
308

decimal precision 6 15

Table 1: Some characteristics of IEEE standard floating-point numbers

• For the most accuracy, computations should be done using double precision

floating-point numbers, however, the execution time is much higher.

• If a number x = ±q × 2m with m outside the computer’s possible range (too large or

too small), then we say that an overflow or an underflow has occurred.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 15

• +Inf and −Inf correspond to two quite different numbers, +∞ and −∞. A NaN stands

for Not a Number and is an error pattern rather than a number. Table 2 lists the IEEE

exception handling standard.

big*big ± Inf overflow

number/0.0 ± Inf division

0.0/0.0 NaN invalid

small/big subnormal number underflow

2.0/3.0 rounded

Table 2: IEEE exception handling.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 16

2 Floating-Point Error Analysis

• Let � stand for any one of the four basic arithmetic operators +, −, ?, ÷.

• Whenever two machine numbers x and y are to be combined arithmetically, the

computer will produce fl(x � y) instead of x � y.

• Under (1), the relative error of fl(x � y) satisfies

fl(x � y) = (x � y)(1 + δ), δ ≤ εM , (3)

where εM is the unit roundoff.

• But if x, y are not machine numbers, then they must first rounded to floating-point

format before the arithmetic operation and the resulting relative error becomes

fl(fl(x) � fl(y)) = (x(1 + δ1) � y(1 + δ2))(1 + δ3),

where δi ≤ εM , i = 1, 2, 3.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 16

2 Floating-Point Error Analysis

• Let � stand for any one of the four basic arithmetic operators +, −, ?, ÷.

• Whenever two machine numbers x and y are to be combined arithmetically, the

computer will produce fl(x � y) instead of x � y.

• Under (1), the relative error of fl(x � y) satisfies

fl(x � y) = (x � y)(1 + δ), δ ≤ εM , (3)

where εM is the unit roundoff.

• But if x, y are not machine numbers, then they must first rounded to floating-point

format before the arithmetic operation and the resulting relative error becomes

fl(fl(x) � fl(y)) = (x(1 + δ1) � y(1 + δ2))(1 + δ3),

where δi ≤ εM , i = 1, 2, 3.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 16

2 Floating-Point Error Analysis

• Let � stand for any one of the four basic arithmetic operators +, −, ?, ÷.

• Whenever two machine numbers x and y are to be combined arithmetically, the

computer will produce fl(x � y) instead of x � y.

• Under (1), the relative error of fl(x � y) satisfies

fl(x � y) = (x � y)(1 + δ), δ ≤ εM , (3)

where εM is the unit roundoff.

• But if x, y are not machine numbers, then they must first rounded to floating-point

format before the arithmetic operation and the resulting relative error becomes

fl(fl(x) � fl(y)) = (x(1 + δ1) � y(1 + δ2))(1 + δ3),

where δi ≤ εM , i = 1, 2, 3.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 16

2 Floating-Point Error Analysis

• Let � stand for any one of the four basic arithmetic operators +, −, ?, ÷.

• Whenever two machine numbers x and y are to be combined arithmetically, the

computer will produce fl(x � y) instead of x � y.

• Under (1), the relative error of fl(x � y) satisfies

fl(x � y) = (x � y)(1 + δ), δ ≤ εM , (3)

where εM is the unit roundoff.

• But if x, y are not machine numbers, then they must first rounded to floating-point

format before the arithmetic operation and the resulting relative error becomes

fl(fl(x) � fl(y)) = (x(1 + δ1) � y(1 + δ2))(1 + δ3),

where δi ≤ εM , i = 1, 2, 3.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 16

2 Floating-Point Error Analysis

• Let � stand for any one of the four basic arithmetic operators +, −, ?, ÷.

• Whenever two machine numbers x and y are to be combined arithmetically, the

computer will produce fl(x � y) instead of x � y.

• Under (1), the relative error of fl(x � y) satisfies

fl(x � y) = (x � y)(1 + δ), δ ≤ εM , (3)

where εM is the unit roundoff.

• But if x, y are not machine numbers, then they must first rounded to floating-point

format before the arithmetic operation and the resulting relative error becomes

fl(fl(x) � fl(y)) = (x(1 + δ1) � y(1 + δ2))(1 + δ3),

where δi ≤ εM , i = 1, 2, 3.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 17

• The analysis (3) can be extended to arithmetic operations on three floating-point

numbers.

For example,

fl(x(y + z)) = (x · fl(y + z))(1 + δ1)

= (x(y + z)(1 + δ2))(1 + δ1)

= x(y + z)(1 + δ1 + δ2 + δ1δ2)

≈ x(y + z)(1 + δ1 + δ2)

= x(y + z)(1 + δ3)

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 17

• The analysis (3) can be extended to arithmetic operations on three floating-point

numbers. For example,

fl(x(y + z)) = (x · fl(y + z))(1 + δ1)

= (x(y + z)(1 + δ2))(1 + δ1)

= x(y + z)(1 + δ1 + δ2 + δ1δ2)

≈ x(y + z)(1 + δ1 + δ2)

= x(y + z)(1 + δ3)

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 18

3 Loss of Significance

☞ One of the most common error-producing calculations involves the cancellation of

significant digits due to

the subtraction of nearly equal numbers (or the addition of one

very large number and one very small number).

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 18

3 Loss of Significance

☞ One of the most common error-producing calculations involves the cancellation of

significant digits due to the subtraction of nearly equal numbers

(or the addition of one

very large number and one very small number).

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 18

3 Loss of Significance

☞ One of the most common error-producing calculations involves the cancellation of

significant digits due to the subtraction of nearly equal numbers (or the addition of one

very large number and one very small number).

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 19

• Assume that two nearly equal numbers x and y, with x > y, have the t-digit

floating-point representations

fl(x) = 0.d1d2 · · · dpαp+1αp+2 · · ·αt × 10n,

and

fl(y) = 0.d1d2 · · · dpβp+1βp+2 · · ·βt × 10n.

Then the floating-point form of x − y is

fl(fl(x) − fl(y)) = 0.σp+1σp+2 · · ·σt × 10n,

where

0.σp+1σp+2 · · ·σt = 0.αp+1αp+2 · · ·αt − 0.βp+1βp+2 · · ·βt.

• The floating-point number used to represent x − y has at most t − p digits of

significance. However, in most computers, x − y will be assigned t digits, with the last

p digits being either zero or randomly assigned.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 19

• Assume that two nearly equal numbers x and y, with x > y, have the t-digit

floating-point representations

fl(x) = 0.d1d2 · · · dpαp+1αp+2 · · ·αt × 10n,

and

fl(y) = 0.d1d2 · · · dpβp+1βp+2 · · ·βt × 10n.

Then the floating-point form of x − y is

fl(fl(x) − fl(y)) = 0.σp+1σp+2 · · ·σt × 10n,

where

0.σp+1σp+2 · · ·σt = 0.αp+1αp+2 · · ·αt − 0.βp+1βp+2 · · ·βt.

• The floating-point number used to represent x − y has at most t − p digits of

significance. However, in most computers, x − y will be assigned t digits, with the last

p digits being either zero or randomly assigned.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 19

• Assume that two nearly equal numbers x and y, with x > y, have the t-digit

floating-point representations

fl(x) = 0.d1d2 · · · dpαp+1αp+2 · · ·αt × 10n,

and

fl(y) = 0.d1d2 · · · dpβp+1βp+2 · · ·βt × 10n.

Then the floating-point form of x − y is

fl(fl(x) − fl(y)) = 0.σp+1σp+2 · · ·σt × 10n,

where

0.σp+1σp+2 · · ·σt = 0.αp+1αp+2 · · ·αt − 0.βp+1βp+2 · · ·βt.

• The floating-point number used to represent x − y has at most t − p digits of

significance. However, in most computers, x − y will be assigned t digits, with the last

p digits being either zero or randomly assigned.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 19

• Assume that two nearly equal numbers x and y, with x > y, have the t-digit

floating-point representations

fl(x) = 0.d1d2 · · · dpαp+1αp+2 · · ·αt × 10n,

and

fl(y) = 0.d1d2 · · · dpβp+1βp+2 · · ·βt × 10n.

Then the floating-point form of x − y is

fl(fl(x) − fl(y)) = 0.σp+1σp+2 · · ·σt × 10n,

where

0.σp+1σp+2 · · ·σt = 0.αp+1αp+2 · · ·αt − 0.βp+1βp+2 · · ·βt.

• The floating-point number used to represent x − y has at most t − p digits of

significance. However, in most computers, x − y will be assigned t digits, with the last

p digits being either zero or randomly assigned.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 19

• Assume that two nearly equal numbers x and y, with x > y, have the t-digit

floating-point representations

fl(x) = 0.d1d2 · · · dpαp+1αp+2 · · ·αt × 10n,

and

fl(y) = 0.d1d2 · · · dpβp+1βp+2 · · ·βt × 10n.

Then the floating-point form of x − y is

fl(fl(x) − fl(y)) = 0.σp+1σp+2 · · ·σt × 10n,

where

0.σp+1σp+2 · · ·σt = 0.αp+1αp+2 · · ·αt − 0.βp+1βp+2 · · ·βt.

• The floating-point number used to represent x − y has at most t − p digits of

significance.

However, in most computers, x − y will be assigned t digits, with the last

p digits being either zero or randomly assigned.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 19

• Assume that two nearly equal numbers x and y, with x > y, have the t-digit

floating-point representations

fl(x) = 0.d1d2 · · · dpαp+1αp+2 · · ·αt × 10n,

and

fl(y) = 0.d1d2 · · · dpβp+1βp+2 · · ·βt × 10n.

Then the floating-point form of x − y is

fl(fl(x) − fl(y)) = 0.σp+1σp+2 · · ·σt × 10n,

where

0.σp+1σp+2 · · ·σt = 0.αp+1αp+2 · · ·αt − 0.βp+1βp+2 · · ·βt.

• The floating-point number used to represent x − y has at most t − p digits of

significance. However, in most computers, x − y will be assigned t digits, with the last

p digits being either zero or randomly assigned.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 20

Example 3.1 If x = 0.3721478693 and y = 0.3720230572, what is the relative error in

the computation of x − y using five decimal digits of accuracy?

Solution:

In exact computation using ten decimal digits of accuracy,

x − y = 0.0001248121.

But both x and y will be rounded to five decimal digits before subtraction. Thus

fl(x) = 0.37215

fl(y) = 0.37202

fl(x) − fl(y) = 0.00013 = 0.13000 × 10−3

Therefore the relative error is

(x − y) − (fl(x) − fl(y))

x − y
≈ 0.04 = 4%.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 20

Example 3.1 If x = 0.3721478693 and y = 0.3720230572, what is the relative error in

the computation of x − y using five decimal digits of accuracy?

Solution: In exact computation using ten decimal digits of accuracy,

x − y = 0.0001248121.

But both x and y will be rounded to five decimal digits before subtraction. Thus

fl(x) = 0.37215

fl(y) = 0.37202

fl(x) − fl(y) = 0.00013 = 0.13000 × 10−3

Therefore the relative error is

(x − y) − (fl(x) − fl(y))

x − y
≈ 0.04 = 4%.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 20

Example 3.1 If x = 0.3721478693 and y = 0.3720230572, what is the relative error in

the computation of x − y using five decimal digits of accuracy?

Solution: In exact computation using ten decimal digits of accuracy,

x − y = 0.0001248121.

But both x and y will be rounded to five decimal digits before subtraction.

Thus

fl(x) = 0.37215

fl(y) = 0.37202

fl(x) − fl(y) = 0.00013 = 0.13000 × 10−3

Therefore the relative error is

(x − y) − (fl(x) − fl(y))

x − y
≈ 0.04 = 4%.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 20

Example 3.1 If x = 0.3721478693 and y = 0.3720230572, what is the relative error in

the computation of x − y using five decimal digits of accuracy?

Solution: In exact computation using ten decimal digits of accuracy,

x − y = 0.0001248121.

But both x and y will be rounded to five decimal digits before subtraction. Thus

fl(x) = 0.37215

fl(y) = 0.37202

fl(x) − fl(y) = 0.00013 = 0.13000 × 10−3

Therefore the relative error is

(x − y) − (fl(x) − fl(y))

x − y
≈ 0.04 = 4%.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 20

Example 3.1 If x = 0.3721478693 and y = 0.3720230572, what is the relative error in

the computation of x − y using five decimal digits of accuracy?

Solution: In exact computation using ten decimal digits of accuracy,

x − y = 0.0001248121.

But both x and y will be rounded to five decimal digits before subtraction. Thus

fl(x) = 0.37215

fl(y) = 0.37202

fl(x) − fl(y) = 0.00013 = 0.13000 × 10−3

Therefore the relative error is

(x − y) − (fl(x) − fl(y))

x − y
≈ 0.04 = 4%.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 21

☞ How many significant binary bits are lost in the subtraction when x is close to y?

Theorem 3.1 If x ≥ 0 and y ≥ 0 are normalized floating-point binary numbers such that

x > y and

2−q ≤ 1 − y

x
≤ 2−p,

then at most q and at least p significant binary digits are lost in the subtraction x − y.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 21

☞ How many significant binary bits are lost in the subtraction when x is close to y?

Theorem 3.1 If x ≥ 0 and y ≥ 0 are normalized floating-point binary numbers such that

x > y and

2−q ≤ 1 − y

x
≤ 2−p,

then at most q and at least p significant binary digits are lost in the subtraction x − y.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 22

Proof: Write

x = r × 2n,
1

2
≤ r < 1 and y = s × 2m,

1

2
≤ s < 1.

Since x > y, we must shift the decimal digits of y to the right

y = (s × 2m−n) × 2n.

Then

x − y = (r − s × 2m−n) × 2n = r

(

1 − s × 2m

r × 2n

)

× 2n = r
(

1 − y

x

)

× 2n.

By assumption 2−q ≤ 1 − y

x
≤ 2−p, hence

r
(

1 − y

x

)

< 1 · 2−p = 2−p.

This means that to normalize the result x − y, a shift of at least p bits to the left is required.

Similarly,

r
(

1 − y

x

)

≥ 1

2
· 2−q = 2−(q+1),

and a shift of at most q bits to the right is required.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 23

☞ Sometimes, loss of significance can be avoided by rewriting the mathematical formula.

Example 3.2 Consider the two equivalent functions

f(x) = x(
√

x + 1 −
√

x) and g(x) =
x√

x + 1 +
√

x
.

Compare the function evaluation of f(500) and g(500) using 6 digits and rounding.

Solution:

f(500) = 0.500000 × 103 × (
√

501 −
√

500)

= 0.500000 × 103 × (0.223830 × 102 − 0.223607 × 102)

= 0.500000 × 103 × 0.223000

= 0.111500 × 103

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 23

☞ Sometimes, loss of significance can be avoided by rewriting the mathematical formula.

Example 3.2 Consider the two equivalent functions

f(x) = x(
√

x + 1 −
√

x) and g(x) =
x√

x + 1 +
√

x
.

Compare the function evaluation of f(500) and g(500) using 6 digits and rounding.

Solution:

f(500) = 0.500000 × 103 × (
√

501 −
√

500)

= 0.500000 × 103 × (0.223830 × 102 − 0.223607 × 102)

= 0.500000 × 103 × 0.223000

= 0.111500 × 103

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 23

☞ Sometimes, loss of significance can be avoided by rewriting the mathematical formula.

Example 3.2 Consider the two equivalent functions

f(x) = x(
√

x + 1 −
√

x) and g(x) =
x√

x + 1 +
√

x
.

Compare the function evaluation of f(500) and g(500) using 6 digits and rounding.

Solution:

f(500) = 0.500000 × 103 × (
√

501 −
√

500)

= 0.500000 × 103 × (0.223830 × 102 − 0.223607 × 102)

= 0.500000 × 103 × 0.223000

= 0.111500 × 103

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 24

and

g(500) =
500√

501 +
√

500

=
0.500000 × 103

0.223830 × 102 + 0.223607 × 102

=
0.500000 × 103

0.447437 × 102

= 0.111748 × 102

If more digits are used, we can calculated

f(500) = 500 × (
√

501 −
√

500)

= 500 × (22.38302929 − 22.36067977)

= 500 × 0.022349516

= 11.1747553

Hence it can be argued that the formulation g(x) is better.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 24

and

g(500) =
500√

501 +
√

500

=
0.500000 × 103

0.223830 × 102 + 0.223607 × 102

=
0.500000 × 103

0.447437 × 102

= 0.111748 × 102

If more digits are used, we can calculated

f(500) = 500 × (
√

501 −
√

500)

= 500 × (22.38302929 − 22.36067977)

= 500 × 0.022349516

= 11.1747553

Hence it can be argued that the formulation g(x) is better.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 24

and

g(500) =
500√

501 +
√

500

=
0.500000 × 103

0.223830 × 102 + 0.223607 × 102

=
0.500000 × 103

0.447437 × 102

= 0.111748 × 102

If more digits are used, we can calculated

f(500) = 500 × (
√

501 −
√

500)

= 500 × (22.38302929 − 22.36067977)

= 500 × 0.022349516

= 11.1747553

Hence it can be argued that the formulation g(x) is better.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 25

Example 3.3 The quadratic formulas for computing the roots of ax2 + bx + c = 0, when

a 6= 0, are

x1 =
−b +

√
b2 − 4ac

2a
and x2 =

−b −
√

b2 − 4ac

2a
.

Consider the quadratic equation x2 +62.10x+1 = 0 and discuss the numerical results.

Solution: Using the quadratic formula and 8-digit rounding arithmetic, one can obtain

x1 = −0.01610723 and x2 = −62.08390.

Now we perform the calculations with 4-digit rounding arithmetic. First we have
√

b2 − 4ac =
√

62.102 − 4.000 =
√

3856 − 4.000 =
√

3852 = 62.06,

and

fl(x1) =
−62.10 + 62.06

2.000
=

−0.04000

2.000
= −0.02000.

The relative error in computing x1 is

|fl(x1) − x1|
|x1|

=
| − 0.02000 + 0.01610723|

| − 0.01610723| =
0.00389277

0.01610723
≈ 0.2417.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 25

Example 3.3 The quadratic formulas for computing the roots of ax2 + bx + c = 0, when

a 6= 0, are

x1 =
−b +

√
b2 − 4ac

2a
and x2 =

−b −
√

b2 − 4ac

2a
.

Consider the quadratic equation x2 +62.10x+1 = 0 and discuss the numerical results.

Solution: Using the quadratic formula and 8-digit rounding arithmetic, one can obtain

x1 = −0.01610723 and x2 = −62.08390.

Now we perform the calculations with 4-digit rounding arithmetic. First we have
√

b2 − 4ac =
√

62.102 − 4.000 =
√

3856 − 4.000 =
√

3852 = 62.06,

and

fl(x1) =
−62.10 + 62.06

2.000
=

−0.04000

2.000
= −0.02000.

The relative error in computing x1 is

|fl(x1) − x1|
|x1|

=
| − 0.02000 + 0.01610723|

| − 0.01610723| =
0.00389277

0.01610723
≈ 0.2417.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 25

Example 3.3 The quadratic formulas for computing the roots of ax2 + bx + c = 0, when

a 6= 0, are

x1 =
−b +

√
b2 − 4ac

2a
and x2 =

−b −
√

b2 − 4ac

2a
.

Consider the quadratic equation x2 +62.10x+1 = 0 and discuss the numerical results.

Solution: Using the quadratic formula and 8-digit rounding arithmetic, one can obtain

x1 = −0.01610723 and x2 = −62.08390.

Now we perform the calculations with 4-digit rounding arithmetic. First we have
√

b2 − 4ac =
√

62.102 − 4.000 =
√

3856 − 4.000 =
√

3852 = 62.06,

and

fl(x1) =
−62.10 + 62.06

2.000
=

−0.04000

2.000
= −0.02000.

The relative error in computing x1 is

|fl(x1) − x1|
|x1|

=
| − 0.02000 + 0.01610723|

| − 0.01610723| =
0.00389277

0.01610723
≈ 0.2417.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 25

Example 3.3 The quadratic formulas for computing the roots of ax2 + bx + c = 0, when

a 6= 0, are

x1 =
−b +

√
b2 − 4ac

2a
and x2 =

−b −
√

b2 − 4ac

2a
.

Consider the quadratic equation x2 +62.10x+1 = 0 and discuss the numerical results.

Solution: Using the quadratic formula and 8-digit rounding arithmetic, one can obtain

x1 = −0.01610723 and x2 = −62.08390.

Now we perform the calculations with 4-digit rounding arithmetic. First we have
√

b2 − 4ac =
√

62.102 − 4.000 =
√

3856 − 4.000 =
√

3852 = 62.06,

and

fl(x1) =
−62.10 + 62.06

2.000
=

−0.04000

2.000
= −0.02000.

The relative error in computing x1 is

|fl(x1) − x1|
|x1|

=
| − 0.02000 + 0.01610723|

| − 0.01610723| =
0.00389277

0.01610723
≈ 0.2417.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 25

Example 3.3 The quadratic formulas for computing the roots of ax2 + bx + c = 0, when

a 6= 0, are

x1 =
−b +

√
b2 − 4ac

2a
and x2 =

−b −
√

b2 − 4ac

2a
.

Consider the quadratic equation x2 +62.10x+1 = 0 and discuss the numerical results.

Solution: Using the quadratic formula and 8-digit rounding arithmetic, one can obtain

x1 = −0.01610723 and x2 = −62.08390.

Now we perform the calculations with 4-digit rounding arithmetic.

First we have
√

b2 − 4ac =
√

62.102 − 4.000 =
√

3856 − 4.000 =
√

3852 = 62.06,

and

fl(x1) =
−62.10 + 62.06

2.000
=

−0.04000

2.000
= −0.02000.

The relative error in computing x1 is

|fl(x1) − x1|
|x1|

=
| − 0.02000 + 0.01610723|

| − 0.01610723| =
0.00389277

0.01610723
≈ 0.2417.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 25

Example 3.3 The quadratic formulas for computing the roots of ax2 + bx + c = 0, when

a 6= 0, are

x1 =
−b +

√
b2 − 4ac

2a
and x2 =

−b −
√

b2 − 4ac

2a
.

Consider the quadratic equation x2 +62.10x+1 = 0 and discuss the numerical results.

Solution: Using the quadratic formula and 8-digit rounding arithmetic, one can obtain

x1 = −0.01610723 and x2 = −62.08390.

Now we perform the calculations with 4-digit rounding arithmetic. First we have
√

b2 − 4ac =
√

62.102 − 4.000 =
√

3856 − 4.000 =
√

3852 = 62.06,

and

fl(x1) =
−62.10 + 62.06

2.000
=

−0.04000

2.000
= −0.02000.

The relative error in computing x1 is

|fl(x1) − x1|
|x1|

=
| − 0.02000 + 0.01610723|

| − 0.01610723| =
0.00389277

0.01610723
≈ 0.2417.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 25

Example 3.3 The quadratic formulas for computing the roots of ax2 + bx + c = 0, when

a 6= 0, are

x1 =
−b +

√
b2 − 4ac

2a
and x2 =

−b −
√

b2 − 4ac

2a
.

Consider the quadratic equation x2 +62.10x+1 = 0 and discuss the numerical results.

Solution: Using the quadratic formula and 8-digit rounding arithmetic, one can obtain

x1 = −0.01610723 and x2 = −62.08390.

Now we perform the calculations with 4-digit rounding arithmetic. First we have
√

b2 − 4ac =
√

62.102 − 4.000 =
√

3856 − 4.000 =
√

3852 = 62.06,

and

fl(x1) =
−62.10 + 62.06

2.000
=

−0.04000

2.000
= −0.02000.

The relative error in computing x1 is

|fl(x1) − x1|
|x1|

=
| − 0.02000 + 0.01610723|

| − 0.01610723| =
0.00389277

0.01610723
≈ 0.2417.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 26

In calculating x2,

fl(x2) =
−62.1062.06

2.000
=

−124.2

2.000
= −62.10,

and the relative error in computing x2 is

|fl(x2) − x2|
|x2|

=
| − 62.10 + 62.08390|

| − 62.08390| =
0.0161

62.08390
≈ 0.259 × 10−3.

In this equation, b2 = 62.102 is much larger than 4ac = 4. Hence b and
√

b2 − 4ac

become two nearly equal numbers. The calculation of x1 involves the subtraction of two

nearly equal numbers.

To obtain a more accurate 4-digit rounding approximation for x1, we change the formulation

by rationalizing the numerator, that is,

x1 =
−2c

b +
√

b2 − 4ac
.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 26

In calculating x2,

fl(x2) =
−62.1062.06

2.000
=

−124.2

2.000
= −62.10,

and the relative error in computing x2 is

|fl(x2) − x2|
|x2|

=
| − 62.10 + 62.08390|

| − 62.08390| =
0.0161

62.08390
≈ 0.259 × 10−3.

In this equation, b2 = 62.102 is much larger than 4ac = 4. Hence b and
√

b2 − 4ac

become two nearly equal numbers. The calculation of x1 involves the subtraction of two

nearly equal numbers.

To obtain a more accurate 4-digit rounding approximation for x1, we change the formulation

by rationalizing the numerator, that is,

x1 =
−2c

b +
√

b2 − 4ac
.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 26

In calculating x2,

fl(x2) =
−62.1062.06

2.000
=

−124.2

2.000
= −62.10,

and the relative error in computing x2 is

|fl(x2) − x2|
|x2|

=
| − 62.10 + 62.08390|

| − 62.08390| =
0.0161

62.08390
≈ 0.259 × 10−3.

In this equation, b2 = 62.102 is much larger than 4ac = 4. Hence b and
√

b2 − 4ac

become two nearly equal numbers. The calculation of x1 involves the subtraction of two

nearly equal numbers.

To obtain a more accurate 4-digit rounding approximation for x1, we change the formulation

by rationalizing the numerator, that is,

x1 =
−2c

b +
√

b2 − 4ac
.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 26

In calculating x2,

fl(x2) =
−62.1062.06

2.000
=

−124.2

2.000
= −62.10,

and the relative error in computing x2 is

|fl(x2) − x2|
|x2|

=
| − 62.10 + 62.08390|

| − 62.08390| =
0.0161

62.08390
≈ 0.259 × 10−3.

In this equation, b2 = 62.102 is much larger than 4ac = 4. Hence b and
√

b2 − 4ac

become two nearly equal numbers. The calculation of x1 involves the subtraction of two

nearly equal numbers.

To obtain a more accurate 4-digit rounding approximation for x1, we change the formulation

by rationalizing the numerator, that is,

x1 =
−2c

b +
√

b2 − 4ac
.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 26

In calculating x2,

fl(x2) =
−62.1062.06

2.000
=

−124.2

2.000
= −62.10,

and the relative error in computing x2 is

|fl(x2) − x2|
|x2|

=
| − 62.10 + 62.08390|

| − 62.08390| =
0.0161

62.08390
≈ 0.259 × 10−3.

In this equation, b2 = 62.102 is much larger than 4ac = 4. Hence b and
√

b2 − 4ac

become two nearly equal numbers. The calculation of x1 involves the subtraction of two

nearly equal numbers.

To obtain a more accurate 4-digit rounding approximation for x1, we change the formulation

by rationalizing the numerator,

that is,

x1 =
−2c

b +
√

b2 − 4ac
.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 26

In calculating x2,

fl(x2) =
−62.1062.06

2.000
=

−124.2

2.000
= −62.10,

and the relative error in computing x2 is

|fl(x2) − x2|
|x2|

=
| − 62.10 + 62.08390|

| − 62.08390| =
0.0161

62.08390
≈ 0.259 × 10−3.

In this equation, b2 = 62.102 is much larger than 4ac = 4. Hence b and
√

b2 − 4ac

become two nearly equal numbers. The calculation of x1 involves the subtraction of two

nearly equal numbers.

To obtain a more accurate 4-digit rounding approximation for x1, we change the formulation

by rationalizing the numerator, that is,

x1 =
−2c

b +
√

b2 − 4ac
.

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 27

Then

fl(x1) =
−2.000

62.10 + 62.06
=

−2.000

124.2
= −0.01610.

The relative error in computing x1 is now reduced to 0.62 × 10−3.

Example 3.4 Let

p(x) = ((x3 − 3x2) + 3x) − 1,

q(x) = ((x − 3)x + 3)x − 1.

Compare the function values at x = 2.19.

Solution: Use 3-digit and rounding for p(2.19) and q(2.19).

p̂(2.19) = ((2.193 − 3 × 2.192) + 3 × 2.19) − 1

= ((10.5 − 14.4) + 3 × 2.19) − 1

= (−3.9 + 6.57) − 1

= 2.67 − 1

= 1.67

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 27

Then

fl(x1) =
−2.000

62.10 + 62.06
=

−2.000

124.2
= −0.01610.

The relative error in computing x1 is now reduced to 0.62 × 10−3.

Example 3.4 Let

p(x) = ((x3 − 3x2) + 3x) − 1,

q(x) = ((x − 3)x + 3)x − 1.

Compare the function values at x = 2.19.

Solution: Use 3-digit and rounding for p(2.19) and q(2.19).

p̂(2.19) = ((2.193 − 3 × 2.192) + 3 × 2.19) − 1

= ((10.5 − 14.4) + 3 × 2.19) − 1

= (−3.9 + 6.57) − 1

= 2.67 − 1

= 1.67

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 27

Then

fl(x1) =
−2.000

62.10 + 62.06
=

−2.000

124.2
= −0.01610.

The relative error in computing x1 is now reduced to 0.62 × 10−3.

Example 3.4 Let

p(x) = ((x3 − 3x2) + 3x) − 1,

q(x) = ((x − 3)x + 3)x − 1.

Compare the function values at x = 2.19.

Solution: Use 3-digit and rounding for p(2.19) and q(2.19).

p̂(2.19) = ((2.193 − 3 × 2.192) + 3 × 2.19) − 1

= ((10.5 − 14.4) + 3 × 2.19) − 1

= (−3.9 + 6.57) − 1

= 2.67 − 1

= 1.67

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 27

Then

fl(x1) =
−2.000

62.10 + 62.06
=

−2.000

124.2
= −0.01610.

The relative error in computing x1 is now reduced to 0.62 × 10−3.

Example 3.4 Let

p(x) = ((x3 − 3x2) + 3x) − 1,

q(x) = ((x − 3)x + 3)x − 1.

Compare the function values at x = 2.19.

Solution: Use 3-digit and rounding for p(2.19) and q(2.19).

p̂(2.19) = ((2.193 − 3 × 2.192) + 3 × 2.19) − 1

= ((10.5 − 14.4) + 3 × 2.19) − 1

= (−3.9 + 6.57) − 1

= 2.67 − 1

= 1.67

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 28

q̂(2.19) = ((2.19 − 3) × 2.19 + 3) × 2.19 − 1

= (−0.81 × 2.19 + 3) × 2.19 − 1

= (−1.77 + 3) × 2.19 − 1

= 1.23 × 2.19 − 1

= 2.69 − 1

= 1.69

With more digits, one can have

p(2.19) = g(2.19) = 1.685159

Hence the absolute errors are

|p(2.19) − p̂(2.19)| = 0.015159

and

|q(2.19) − q̂(2.19)| = 0.004841,

respectively. One can observe that the evaluation formula q(x) is better than p(x).

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 28

q̂(2.19) = ((2.19 − 3) × 2.19 + 3) × 2.19 − 1

= (−0.81 × 2.19 + 3) × 2.19 − 1

= (−1.77 + 3) × 2.19 − 1

= 1.23 × 2.19 − 1

= 2.69 − 1

= 1.69

With more digits, one can have

p(2.19) = g(2.19) = 1.685159

Hence the absolute errors are

|p(2.19) − p̂(2.19)| = 0.015159

and

|q(2.19) − q̂(2.19)| = 0.004841,

respectively. One can observe that the evaluation formula q(x) is better than p(x).

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 28

q̂(2.19) = ((2.19 − 3) × 2.19 + 3) × 2.19 − 1

= (−0.81 × 2.19 + 3) × 2.19 − 1

= (−1.77 + 3) × 2.19 − 1

= 1.23 × 2.19 − 1

= 2.69 − 1

= 1.69

With more digits, one can have

p(2.19) = g(2.19) = 1.685159

Hence the absolute errors are

|p(2.19) − p̂(2.19)| = 0.015159

and

|q(2.19) − q̂(2.19)| = 0.004841,

respectively. One can observe that the evaluation formula q(x) is better than p(x).

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 28

q̂(2.19) = ((2.19 − 3) × 2.19 + 3) × 2.19 − 1

= (−0.81 × 2.19 + 3) × 2.19 − 1

= (−1.77 + 3) × 2.19 − 1

= 1.23 × 2.19 − 1

= 2.69 − 1

= 1.69

With more digits, one can have

p(2.19) = g(2.19) = 1.685159

Hence the absolute errors are

|p(2.19) − p̂(2.19)| = 0.015159

and

|q(2.19) − q̂(2.19)| = 0.004841,

respectively.

One can observe that the evaluation formula q(x) is better than p(x).

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 28

q̂(2.19) = ((2.19 − 3) × 2.19 + 3) × 2.19 − 1

= (−0.81 × 2.19 + 3) × 2.19 − 1

= (−1.77 + 3) × 2.19 − 1

= 1.23 × 2.19 − 1

= 2.69 − 1

= 1.69

With more digits, one can have

p(2.19) = g(2.19) = 1.685159

Hence the absolute errors are

|p(2.19) − p̂(2.19)| = 0.015159

and

|q(2.19) − q̂(2.19)| = 0.004841,

respectively. One can observe that the evaluation formula q(x) is better than p(x).

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 29

Example 3.5 How to evaluate

y = x − sinx

when x is small?

Solution: Since x ≈ sinx for small x, the computation will cause loss of significance.

Alternatively, use Taylor series for sinx so that

y = x −
(

x − x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− · · ·

)

=
x3

3!
− x5

5!
+

x7

7!
− x9

9!
+ · · ·

=
x3

6
− x5

6 × 20
+

x7

6 × 20 × 42
− x9

6 × 20 × 42 × 72
· · ·

=
x3

6

(

1 − x2

20

(

1 − x2

42

(

1 − x2

72
(· · ·)

)))

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 29

Example 3.5 How to evaluate

y = x − sinx

when x is small?

Solution: Since x ≈ sinx for small x, the computation will cause loss of significance.

Alternatively, use Taylor series for sinx so that

y = x −
(

x − x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− · · ·

)

=
x3

3!
− x5

5!
+

x7

7!
− x9

9!
+ · · ·

=
x3

6
− x5

6 × 20
+

x7

6 × 20 × 42
− x9

6 × 20 × 42 × 72
· · ·

=
x3

6

(

1 − x2

20

(

1 − x2

42

(

1 − x2

72
(· · ·)

)))

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 29

Example 3.5 How to evaluate

y = x − sinx

when x is small?

Solution: Since x ≈ sinx for small x, the computation will cause loss of significance.

Alternatively, use Taylor series for sinx so that

y = x −
(

x − x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− · · ·

)

=
x3

3!
− x5

5!
+

x7

7!
− x9

9!
+ · · ·

=
x3

6
− x5

6 × 20
+

x7

6 × 20 × 42
− x9

6 × 20 × 42 × 72
· · ·

=
x3

6

(

1 − x2

20

(

1 − x2

42

(

1 − x2

72
(· · ·)

)))

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic 29

Example 3.5 How to evaluate

y = x − sinx

when x is small?

Solution: Since x ≈ sinx for small x, the computation will cause loss of significance.

Alternatively, use Taylor series for sinx so that

y = x −
(

x − x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− · · ·

)

=
x3

3!
− x5

5!
+

x7

7!
− x9

9!
+ · · ·

=
x3

6
− x5

6 × 20
+

x7

6 × 20 × 42
− x9

6 × 20 × 42 × 72
· · ·

=
x3

6

(

1 − x2

20

(

1 − x2

42

(

1 − x2

72
(· · ·)

)))

Department of Mathematics – NTNU Tsung-Min Hwang September 14, 2003

Computer Arithmetic

N
u
m
e
r
i
c
a
l
a
n
a
l
y
s
i
s

30

4 Stability and Conditioning

4.1 Numerical Stability

A numerical process is unstable if small errors made at one stage of the process are magnified and

propagated in subsequent stages and seriously degrade the accuracy of the overall calculation.

Example 4.1 Consider the following recurrence algorithm

x0 = 1, x1 = 1
3

xn+1 = 13
3 xn − 4

3xn−1

for computing the sequence of {xn = (1
3)n}. This algorithm is unstable.

September 14, 2003

Version 2.1
Tsung-Min Hwang

Computer Arithmetic

N
u
m
e
r
i
c
a
l
a
n
a
l
y
s
i
s

30

4 Stability and Conditioning

4.1 Numerical Stability

A numerical process is unstable if small errors made at one stage of the process are magnified and

propagated in subsequent stages and seriously degrade the accuracy of the overall calculation.

Example 4.1 Consider the following recurrence algorithm

x0 = 1, x1 = 1
3

xn+1 = 13
3 xn − 4

3xn−1

for computing the sequence of {xn = (1
3)n}. This algorithm is unstable.

September 14, 2003

Version 2.1
Tsung-Min Hwang

Computer Arithmetic

N
u
m
e
r
i
c
a
l
a
n
a
l
y
s
i
s

30

4 Stability and Conditioning

4.1 Numerical Stability

A numerical process is unstable if small errors made at one stage of the process are magnified and

propagated in subsequent stages and seriously degrade the accuracy of the overall calculation.

Example 4.1 Consider the following recurrence algorithm

x0 = 1, x1 = 1
3

xn+1 = 13
3 xn − 4

3xn−1

for computing the sequence of {xn = (1
3)n}. This algorithm is unstable.

September 14, 2003

Version 2.1
Tsung-Min Hwang

Computer Arithmetic

N
u
m
e
r
i
c
a
l
a
n
a
l
y
s
i
s

31

Solution: A computer implementation of the recurrence algorithm gives the following result.

n xn n xn n xn n xn

0 1.0000000 4 0.0123466 8 0.0003757 12 0.0571502

1 0.3333333 5 0.0041187 9 0.0009437 13 0.2285939

2 0.1111112 6 0.0013857 10 0.0035887 14 0.9143735

3 0.0370373 7 0.0005153 11 0.0142927 15 3.6574934

The error present in xn is multiplied by 13
3 in computing xn+1. For example, the error will be

propagated with a factor of
(

13
3

)14
in computing x15. Additional roundoff errors in computing

x2, x3, . . . may also be propagated and added to that of x15.

September 14, 2003

Version 2.1
Tsung-Min Hwang

Computer Arithmetic

N
u
m
e
r
i
c
a
l
a
n
a
l
y
s
i
s

31

Solution: A computer implementation of the recurrence algorithm gives the following result.

n xn n xn n xn n xn

0 1.0000000 4 0.0123466 8 0.0003757 12 0.0571502

1 0.3333333 5 0.0041187 9 0.0009437 13 0.2285939

2 0.1111112 6 0.0013857 10 0.0035887 14 0.9143735

3 0.0370373 7 0.0005153 11 0.0142927 15 3.6574934

The error present in xn is multiplied by 13
3 in computing xn+1.

For example, the error will be

propagated with a factor of
(

13
3

)14
in computing x15. Additional roundoff errors in computing

x2, x3, . . . may also be propagated and added to that of x15.

September 14, 2003

Version 2.1
Tsung-Min Hwang

Computer Arithmetic

N
u
m
e
r
i
c
a
l
a
n
a
l
y
s
i
s

31

Solution: A computer implementation of the recurrence algorithm gives the following result.

n xn n xn n xn n xn

0 1.0000000 4 0.0123466 8 0.0003757 12 0.0571502

1 0.3333333 5 0.0041187 9 0.0009437 13 0.2285939

2 0.1111112 6 0.0013857 10 0.0035887 14 0.9143735

3 0.0370373 7 0.0005153 11 0.0142927 15 3.6574934

The error present in xn is multiplied by 13
3 in computing xn+1. For example, the error will be

propagated with a factor of
(

13
3

)14
in computing x15.

Additional roundoff errors in computing

x2, x3, . . . may also be propagated and added to that of x15.

September 14, 2003

Version 2.1
Tsung-Min Hwang

Computer Arithmetic

N
u
m
e
r
i
c
a
l
a
n
a
l
y
s
i
s

31

Solution: A computer implementation of the recurrence algorithm gives the following result.

n xn n xn n xn n xn

0 1.0000000 4 0.0123466 8 0.0003757 12 0.0571502

1 0.3333333 5 0.0041187 9 0.0009437 13 0.2285939

2 0.1111112 6 0.0013857 10 0.0035887 14 0.9143735

3 0.0370373 7 0.0005153 11 0.0142927 15 3.6574934

The error present in xn is multiplied by 13
3 in computing xn+1. For example, the error will be

propagated with a factor of
(

13
3

)14
in computing x15. Additional roundoff errors in computing

x2, x3, . . . may also be propagated and added to that of x15.

September 14, 2003

Version 2.1
Tsung-Min Hwang

Computer Arithmetic

N
u
m
e
r
i
c
a
l
a
n
a
l
y
s
i
s

32

4.2 Conditioning

☞ A problem is ill-conditioned if small changes in the data can produce large changes in the

results.

☞ For a nonsingular square matrix A, the condition number of A is defined as

κ(A) = ‖A‖‖A−1‖,

with respect to some matrix norm.

☞ For a general rectangular matrix, the singular values are used to characterize the condition

number

κ(A) =
σmax

σmin

,

where σmax is the largest singular value of A and σmin the smallest singular value.

September 14, 2003

Version 2.1
Tsung-Min Hwang

Computer Arithmetic

N
u
m
e
r
i
c
a
l
a
n
a
l
y
s
i
s

32

4.2 Conditioning

☞ A problem is ill-conditioned if small changes in the data can produce large changes in the

results.

☞ For a nonsingular square matrix A, the condition number of A is defined as

κ(A) = ‖A‖‖A−1‖,

with respect to some matrix norm.

☞ For a general rectangular matrix, the singular values are used to characterize the condition

number

κ(A) =
σmax

σmin

,

where σmax is the largest singular value of A and σmin the smallest singular value.

September 14, 2003

Version 2.1
Tsung-Min Hwang

Computer Arithmetic

N
u
m
e
r
i
c
a
l
a
n
a
l
y
s
i
s

32

4.2 Conditioning

☞ A problem is ill-conditioned if small changes in the data can produce large changes in the

results.

☞ For a nonsingular square matrix A, the condition number of A is defined as

κ(A) = ‖A‖‖A−1‖,

with respect to some matrix norm.

☞ For a general rectangular matrix, the singular values are used to characterize the condition

number

κ(A) =
σmax

σmin

,

where σmax is the largest singular value of A and σmin the smallest singular value.

September 14, 2003

Version 2.1
Tsung-Min Hwang

Computer Arithmetic

N
u
m
e
r
i
c
a
l
a
n
a
l
y
s
i
s

32

4.2 Conditioning

☞ A problem is ill-conditioned if small changes in the data can produce large changes in the

results.

☞ For a nonsingular square matrix A, the condition number of A is defined as

κ(A) = ‖A‖‖A−1‖,

with respect to some matrix norm.

☞ For a general rectangular matrix, the singular values are used to characterize the condition

number

κ(A) =
σmax

σmin

,

where σmax is the largest singular value of A and σmin the smallest singular value.
September 14, 2003

Version 2.1
Tsung-Min Hwang

Computer Arithmetic

N
u
m
e
r
i
c
a
l
a
n
a
l
y
s
i
s

33

☞ A is said to be ill-conditioned if κ(A) is large, and well-conditioned when κ(A) is modest.

☞ A well-known ill-conditioned matrix is the Hilbert matrix

Hn = [hij] ∈ R
n×n, where hij =

1

i + j − 1
.

☞ In general, ill-conditioning is not easy to detect.

☞ In solving a system of linear equations Ax = b in which A is ill-conditioned, small

perturbation in b will cause large perturbation in x.

September 14, 2003

Version 2.1
Tsung-Min Hwang

Computer Arithmetic

N
u
m
e
r
i
c
a
l
a
n
a
l
y
s
i
s

33

☞ A is said to be ill-conditioned if κ(A) is large, and well-conditioned when κ(A) is modest.

☞ A well-known ill-conditioned matrix is the Hilbert matrix

Hn = [hij] ∈ R
n×n, where hij =

1

i + j − 1
.

☞ In general, ill-conditioning is not easy to detect.

☞ In solving a system of linear equations Ax = b in which A is ill-conditioned, small

perturbation in b will cause large perturbation in x.

September 14, 2003

Version 2.1
Tsung-Min Hwang

Computer Arithmetic

N
u
m
e
r
i
c
a
l
a
n
a
l
y
s
i
s

33

☞ A is said to be ill-conditioned if κ(A) is large, and well-conditioned when κ(A) is modest.

☞ A well-known ill-conditioned matrix is the Hilbert matrix

Hn = [hij] ∈ R
n×n, where hij =

1

i + j − 1
.

☞ In general, ill-conditioning is not easy to detect.

☞ In solving a system of linear equations Ax = b in which A is ill-conditioned, small

perturbation in b will cause large perturbation in x.

September 14, 2003

Version 2.1
Tsung-Min Hwang

Computer Arithmetic

N
u
m
e
r
i
c
a
l
a
n
a
l
y
s
i
s

33

☞ A is said to be ill-conditioned if κ(A) is large, and well-conditioned when κ(A) is modest.

☞ A well-known ill-conditioned matrix is the Hilbert matrix

Hn = [hij] ∈ R
n×n, where hij =

1

i + j − 1
.

☞ In general, ill-conditioning is not easy to detect.

☞ In solving a system of linear equations Ax = b in which A is ill-conditioned, small

perturbation in b will cause large perturbation in x.

September 14, 2003

Version 2.1
Tsung-Min Hwang

Computer Arithmetic

N
u
m
e
r
i
c
a
l
a
n
a
l
y
s
i
s

33

☞ A is said to be ill-conditioned if κ(A) is large, and well-conditioned when κ(A) is modest.

☞ A well-known ill-conditioned matrix is the Hilbert matrix

Hn = [hij] ∈ R
n×n, where hij =

1

i + j − 1
.

☞ In general, ill-conditioning is not easy to detect.

☞ In solving a system of linear equations Ax = b in which A is ill-conditioned, small

perturbation in b will cause large perturbation in x.

September 14, 2003

Version 2.1
Tsung-Min Hwang

	blueFloating-Point Number and Roundoff Error
	blueFloating-Point Error Analysis
	blueLoss of Significance
	blueStability and Conditioning
	blueNumerical Stability
	blueConditioning

