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Solve linear systems of equations





a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

an1x1 + an2x2 + · · ·+ annxn = bn

Rewrite in the matrix form

Ax = b, (1)

where

A =




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann




, b =




b1

b2

...

bn




, x =




x1

x2

...

xn




.
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☞ This equation has a unique solution x = A−1b when the coefficient matrix A is

nonsingular.

☞ Direct methods are considered in this chapter.

☞ Gaussian elimination is the principal tool in the direct solution of (1).

☞ Use Gaussian elimination to factor the coefficient matrix into a product of matrices. The

factorization is called LU -factorization and has the form A = LU , where L is unit

lower triangular and U is upper triangular.
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1 – Triangular Systems

Let

A =




a11 0 · · · 0

0 a22 · · · 0
...

...
. . .

...

0 0 · · · ann




.

☞ Provided that all aii 6= 0, then

x =
[

x1 x2 · · · xn

]T

=
[

b1/a11 b2/a22 · · · bn/ann

]T

.

☞ If aii = 0 and bi = 0 for some index i, then xi can be any real number.

☞ If aii = 0 but bi 6= 0, no solution of the system exists.
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1.1 – Forward Substitution

When a linear system Lx = b is lower triangular of the form




`11 0 · · · 0

`21 `22 · · · 0
...

...
. . .

...

`n1 `n2 · · · `nn







x1

x2

...

xn




=




b1

b2

...

bn




,

where all diagonals `ii 6= 0

,

xi can be obtained by the following procedure

x1 = b1/`11

x2 = (b2 − `21x1)/`22

x3 = (b3 − `31x1 − `32x2)/`33
...

xn = (bn − `n1x1 − `n2x2 − · · · − `n,n−1xn−1)/`nn
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The general formulation for computing xi is

xi =


bi −

i−1∑

j=1

`ijxj




/
`ii, i = 1, 2, . . . , n.

Algorithm 1 (Forward Substitution) Suppose that L ∈ R
n×n is nonsingular lower

triangular and b ∈ R
n. This algorithm computes the solution of Lx = b.

For i = 1, . . . , n

tmp = 0

For j = 1, . . . , i− 1

tmp = tmp + L(i, j) ∗ x(j)

End for

x(i) = (b(i)− tmp)/L(i, i)

End for
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The number of floating-point operations, flops, involved in the forward substitution are

n∑

i=1

[2(i− 1) + 2] = n2 + n.

Hence the forward substitution algorithm is an O(n2) algorithm.
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1.2 – Back Substitution

Consider the upper triangular system Ux = b:




u11 u12 · · · u1n

0 u22 · · · u2n

...
...

. . .
...

0 0 · · · unn







x1

x2

...

xn




=




b1

b2

...

bn




provided that all uii 6= 0.The solution xi are computed in a reversed order by

xn = bn/unn

xn−1 = (bn−1 − un−1,nxn)/un−1,n−1

xn−2 = (bn−2 − un−2,n−1xn−1 − un−2,nxn)/un−2,n−2

...

x1 = (b1 − u12x2 − u13x3 − · · · − u1nxn)/u11
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The general formulation is

xi =


bi −

n∑

j=i+1

uijxj




/
uii, i = n, n− 1, . . . , 1.

Algorithm 2 (Back Substitution) Suppose that U ∈ R
n×n is nonsingular upper

triangular and b ∈ R
n. This algorithm computes the solution of Ux = b.

For i = n, . . . , 1

tmp = 0

For j = i + 1, . . . , n

tmp = tmp + U(i, j) ∗ x(j)

End for

x(i) = (b(i)− tmp)/U(i, i)

End for

Back substitution requires n2 + O(n) flops.
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2 – Gaussian Elimination and LU Factorization

In this section we will derive an algorithm that computes a matrix factorization called LU

factorization such that A = LU , where L is unit lower triangular and U is upper triangular.

The solution to the original problem Ax = LUx = b is then found by a two-step triangular

solve process:

Ly = b, Ux = y. (2)
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Direct Methods for LS 12

2.1 – Gaussian Elimination

Three types of elementary row operations for a system of linear equations:

1. Interchange two equations in the system (or equivalently, interchange two rows in A):

Ei ↔ Ej ;

Here Ei denotes the i-th equation in the system.

2. Multiply an equation by a non-zero constant (multiply one row of A by a non-zero

constant):

Ei ← λEi.

3. Add to an equation a multiple of some other equation (add to a row a multiple of some

other row):

Ei ← Ei + λEj .
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Direct Methods for LS 13

☞ The first step in the Gaussian elimination process: for each i = 2, 3, . . . , n,

Ei ← (Ei −mi,1E1), where mi,1 =
ai1

a11
. (3)

⇒ Transform all the entries in the first column below the diagonal are zero. For

example,

A1 ≡




a11 a12 a13

a21 a22 a23

a31 a32 a33


⇒ A2 ≡




a11 a12 a13

0 ã22 ã23

0 ã32 ã33




☞ Then the process is repeated on the resulting equations E2, . . . , En, and so on.

A2 =




a11 a12 a13

0 ã22 ã23

0 ã32 ã33


⇒ A3 ≡




a11 a12 a13

0 ã22 ã23

0 0 â33




A3 is upper triangular.
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0 ã22 ã23
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0 ã22 ã23
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A3 is upper triangular.

Department of Mathematics – NTNU Tsung-Min Hwang October 5, 2003



Direct Methods for LS 13

☞ The first step in the Gaussian elimination process: for each i = 2, 3, . . . , n,

Ei ← (Ei −mi,1E1), where mi,1 =
ai1

a11
. (3)

⇒ Transform all the entries in the first column below the diagonal are zero. For

example,

A1 ≡




a11 a12 a13

a21 a22 a23

a31 a32 a33


⇒ A2 ≡




a11 a12 a13

0 ã22 ã23
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0 ã32 ã33
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0 ã22 ã23
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Direct Methods for LS 14

The process of Gaussian elimination result in a sequence of matrices as follows:

A = A(1) → A(2) → · · · → A(n) = upper triangular matrix,

The matrix A(k) has the following form:

A(k) =




a
(k)
11 · · · a

(k)
1,k−1 a

(k)
1k · · · a

(k)
1j · · · a

(k)
1n

...
. . .

...
...

...
...

0 · · · a
(k)
k−1,k−1 a

(k)
k−1,k · · · a

(k)
k−1,j · · · a

(k)
k−1,n

0 · · · 0 a
(k)
kk · · · a

(k)
kj · · · a

(k)
kn

...
...

...
...

...

0 · · · 0 a
(k)
ik · · · a

(k)
ij · · · a

(k)
in

...
...

...
...

...

0 · · · 0 a
(k)
nk · · · a

(k)
nj · · · a

(k)
nn
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Direct Methods for LS 15

In the k-th step,

☞ a
(k)
kk is used as a pivot element

☞ Elementary operations are applied to rows k + 1 through n so that zeros are produced

in column k below the diagonal.

That is, A(k+1) is obtained from A(k) in which

☞ a
(k+1)
k+1,k, · · · , a

(k+1)
nk are zero

☞ row k + 1 through n are modified

☞ row 1 through row k are unchanged.
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Direct Methods for LS 16

More precisely, the entries of A(k+1) are produced by the formula

a
(k+1)
ij =





a
(k)
ij , for i = 1, . . . , k, and j = 1, . . . , n;

0, for i = k + 1, . . . , n, and j = 1, . . . , k;

a
(k)
ij −

a
(k)
ik

a
(k)
kk

× a
(k)
kj , for i = k + 1, . . . , n, and j = k + 1, . . . , n.

(4)

Let L = [`ik] with

`ik =





0, if i < k;

1, if i = k;

a
(k)
ik

a
(k)
kk

, if i > k,

(5)

and U = A(n), then L is unit lower triangular, U is upper triangular, and later we shall

show that A = LU .
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Direct Methods for LS 17

Algorithm 3 (Gaussian elimination) Given A ∈ R
n×n and b ∈ R

n, this algorithm

implements the Gaussian elimination procedure to reduce A to upper triangular and modify

the entries of b accordingly.

For k = 1, . . . , n− 1

For i = k + 1, . . . , n

t = A(i, k)/A(k, k)

A(i, k) = 0

b(i) = b(i)− t× b(k)

For j = k + 1, . . . , n

A(i, j) = A(i, j)− t×A(k, j)

End for

End for

End for
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the entries of b accordingly.

For k = 1, . . . , n− 1

For i = k + 1, . . . , n

t = A(i, k)/A(k, k)

A(i, k) = 0

b(i) = b(i)− t× b(k)

For j = k + 1, . . . , n

A(i, j) = A(i, j)− t×A(k, j)

End for

End for
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Example 1 Solve system of linear equations.




6 −2 2 4

12 −8 6 10

3 −13 9 3

−6 4 1 −18







x1

x2

x3

x4




=




12

34

27

−38




Solution:

1st step Use 6 as pivot element, the first row as pivot row, and multipliers 2, 1
2 ,−1 are

produced to reduce the system to




6 −2 2 4

0 −4 2 2

0 −12 8 1

0 2 3 −14







x1

x2

x3

x4




=




12

10

21

−26
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2nd step Use−4 as pivot element, the second row as pivot row, and multipliers 3,− 1
2 are

computed to reduce the system to




6 −2 2 4

0 −4 2 2

0 0 2 −5

0 0 4 −13







x1

x2

x3

x4




=




12

10

−9

−21




3rd step Use 2 as pivot element, the third row as pivot row, and multipliers 2 is found to

reduce the system to




6 −2 2 4

0 −4 2 2

0 0 2 −5

0 0 0 −3







x1

x2

x3

x4




=




12

10

−9

−3
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Collect all the multipliers and let

L =




1 0 0 0

2 1 0 0

1
2 3 1 0

−1 − 1
2 2 1




and U =




6 −2 2 4

0 −4 2 2

0 0 2 −5

0 0 0 −3




,

then one can verify that LU = A.
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2.2 – Gaussian Transformation and LU Factorization

For a given vector v ∈ R
n with vk 6= 0 for some 1 ≤ k ≤ n, let

`ik =
vi

vk
, i = k + 1, . . . , n,

lk =
[

0 · · · 0 `k+1,k · · · `n,k

]T

,

and

Mk = I − lkeT
k =




1 · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · · 1 0 · · · 0

0 · · · −`k+1,k 1 · · · 0
...

...
...

. . .
...

0 · · · −`n,k 0 · · · 1




.
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Then one can verify that

Mkv =
[

v1 · · · vk 0 · · · 0
]T

.

Mk is called a Gaussian transformation, the vector lk a Gauss vector. Furthermore, one

can verify that

M−1
k = (I − lkeT

k )−1 = I + lkeT
k =




1 · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · · 1 0 · · · 0

0 · · · `k+1,k 1 · · · 0
...

...
...

. . .
...

0 · · · `n,k 0 · · · 1




.
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Given a nonsingular matrix A ∈ R
n×n, denote A(1) ≡ [a

(1)
ij ] = A.

If a
(1)
11 6= 0, then

M1 = I − l1e
T
1 ,

where

l1 =
[

0 `21 · · · `n1

]T

, `i1 =
a
(1)
i1

a
(1)
11

, i = 2, . . . , n,

can be formed such that

A(2) = M1A
(1) =




a
(2)
11 a

(2)
12 · · · a

(2)
1n

0 a
(2)
22 · · · a

(2)
2n

...
...

. . .
...

0 a
(2)
n2 · · · a

(2)
nn




,

where

a
(2)
ij =





a
(1)
ij , for i = 1 and j = 1, . . . , n;

a
(1)
ij − `i1 × a

(1)
1j , for i = 2, . . . , n and j = 2, . . . , n.
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In general, at the k-th step, we are confronted with a matrix

A(k) = Mk−1 · · ·M2M1A
(1)

=




a
(k)
11 a

(k)
12 · · · a

(k)
1,k−1 a

(k)
1k · · · a

(k)
1n

0 a
(k)
22 · · · a

(k)
2,k−1 a

(k)
2k · · · a

(k)
2n

...
...

. . .
...

...
...

0 0 · · · a
(k)
k−1,k−1 a

(k)
k−1,k · · · a

(k)
k−1,n

0 0 · · · 0 a
(k)
kk · · · a

(k)
kn

...
...

...
...

. . .
...

0 0 · · · 0 a
(k)
kn · · · a

(k)
nn




.

If the pivot a
(k)
kk 6= 0, then the multipliers

`ik =
a
(k)
ik

a
(k)
kk

, i = k + 1, . . . , n,
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(1)

=




a
(k)
11 a

(k)
12 · · · a

(k)
1,k−1 a

(k)
1k · · · a

(k)
1n

0 a
(k)
22 · · · a

(k)
2,k−1 a

(k)
2k · · · a

(k)
2n

...
...

. . .
...

...
...

0 0 · · · a
(k)
k−1,k−1 a

(k)
k−1,k · · · a

(k)
k−1,n

0 0 · · · 0 a
(k)
kk · · · a

(k)
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...
...

...
...

. . .
...

0 0 · · · 0 a
(k)
kn · · · a

(k)
nn




.

If the pivot a
(k)
kk 6= 0, then the multipliers

`ik =
a
(k)
ik

a
(k)
kk

, i = k + 1, . . . , n,
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can be computed

and the Gaussian transformation

Mk = I − lkeT
k , where lk =

[
0 · · · 0 `k+1,k · · · `nk

]
,

can be applied to the left of A(k) to obtain

A(k+1) = MkA(k)

=




a
(k+1)
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in which

a
(k+1)
ij =





a
(k)
ij , for i = 1, . . . , k, j = 1, . . . , n;

0, for i = k + 1, . . . , n, j = k;

a
(k)
ij − `ika

(k)
kj , for i = k + 1, . . . , n, j = k + 1, . . . , n.

Upon the completion,

U ≡ A(n) = Mn−1 · · ·M2M1A

is upper triangular.
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Hence

A = M−1
1 M−1

2 · · ·M−1
n−1U ≡ LU,

where

L ≡M−1
1 M−1

2 · · ·M−1
n−1 = (I − l1e

T
1 )−1(I − l2e

T
2 )−1 · · · (I − ln−1e

T
n−1)

−1

= (I + l1e
T
1 )(I + l2e

T
2 ) · · · (I + ln−1e

T
n−1)

= I + l1e
T
1 + l2e

T
2 + · · ·+ ln−1e

T
n−1

=




1 0 0 · · · 0

`21 1 0 · · · 0

`31 `32 1 · · · 0
...

...
...

. . .
...

`n1 `n2 `n3 · · · 1




is unit lower triangular. This matrix factorization is called the LU -factorization of A.
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Algorithm 4 (LU Factorization) Given a nonsingular square matrix A ∈ R
n×n, this

algorithm computes a unit lower triangular matrix L and an upper triangular matrix U such

that A = LU . The matrix A is overwritten by L and U .

For k = 1, . . . , n− 1

For i = k + 1, . . . , n

A(i, k) = A(i, k)/A(k, k)

For j = k + 1, . . . , n

A(i, j) = A(i, j)−A(i, k)×A(k, j)

End for

End for

End for

This algorithm requires
n−1∑

k=1

n∑

i=k+1

2(n− k) =
2

3
n3 −

1

2
n2 +

1

3
n flops.
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2.3 – Existence and Uniqueness of LU Factorization

Definition 1 (Leading principal minor) Let A be an n× n matrix. The upper left k × k

submatrix, denoted as

Ak =




a11 a12 · · · a1k

a21 a22 · · · a2k

...
...

. . .
...

ak1 ak2 · · · akk




,

is called the leading k × k principal submatrix, and the determinant of Ak, det(Ak), is

called the leading principal minor.
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Theorem 1 If all leading principal minor of A ∈ R
n×n are nonzero, that is, all leading

principal submatrices are nonsingular, then A has an LU -factorization.

Proof: Proof by mathematical induction.

(i) n = 1, A1 = [a11] is nonsingular, then a11 6= 0. Let L1 = [1] and U1 = [a11].

Then A1 = L1U1. The theorem holds.

(ii) Assume that the leading principal submatrices A1, . . . , Ak are nonsingular and Ak

has an LU-factorization Ak = LkUk, where Lk is unit lower triangular and Uk is

upper triangular.

(iii) Show that there exist an unit lower triangular matrix Lk+1 and an upper triangular

matrix Uk+1 such that Ak+1 = Lk+1Uk+1.
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Write

Ak+1 =


 Ak vk

wT
k ak+1,k+1


 ,

where

vk =




a1,k+1

a2,k+1

...

ak,k+1




and wk =




ak+1,1

ak+1,2

...

ak+1,k




.

Since Ak is nonsingular, both Lk and Uk are nonsingular.

⇒ Lkyk = vk has a unique solution yk ∈ R
k, and ztUk = wT

k has a unique solution

zk ∈ R
k. Let

Lk+1 =


 Lk 0

zT
k 1


 and Uk+1 =


 Uk yk

0 ak+1,k+1 − zT
k yk


 .
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Then Lk+1 is unit lower triangular, Uk+1 is upper triangular,

and

Lk+1Uk+1 =


 LkUk Lkyk

zT
k Uk zT

k yk + ak+1,k+1 − zT
k yk




=


 Ak vk

wT
k ak+1,k+1


 = Ak+1.

This proves the theorem.

Department of Mathematics – NTNU Tsung-Min Hwang October 5, 2003



Direct Methods for LS 32

Then Lk+1 is unit lower triangular, Uk+1 is upper triangular, and

Lk+1Uk+1 =


 LkUk Lkyk

zT
k Uk zT

k yk + ak+1,k+1 − zT
k yk




=


 Ak vk

wT
k ak+1,k+1


 = Ak+1.

This proves the theorem.

Department of Mathematics – NTNU Tsung-Min Hwang October 5, 2003



Direct Methods for LS 32

Then Lk+1 is unit lower triangular, Uk+1 is upper triangular, and

Lk+1Uk+1 =


 LkUk Lkyk

zT
k Uk zT

k yk + ak+1,k+1 − zT
k yk




=


 Ak vk

wT
k ak+1,k+1


 = Ak+1.

This proves the theorem.

Department of Mathematics – NTNU Tsung-Min Hwang October 5, 2003



Direct Methods for LS 33

Theorem 2 If A is nonsingular and the LU factorization exists, then the LU factorization is

unique and det(A) = u11 · · ·unn.

Proof: Suppose both A = L1U1 and A = L2U2 are LU factorizations. Since A is

nonsingular, L1, U1, L2, U2 are all nonsingular, and

A = L1U1 = L2U2 =⇒ L−1
2 L1 = U2U

−1
1 .

L1 and L2 are unit lower triangular⇒ L−1
2 L1 is unit lower triangular

U1 and U2 are upper triangular⇒ U2U
−1
1 is upper triangular

∴ L−1
2 L1 = I = U2U

−1
1 ⇒ L1 = L2 and U1 = U2
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3 – Pivoting

3.1 – The Need for Pivoting

Example. The algorithm would fail at the first step on

 0 1

1 0





 x1

x2


 =


 1

1




since the first pivot element is zero.

But if we interchange the rows, the system

 1 0

0 1





 x1

x2


 =


 1

1




becomes trivial to solve.
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Example. The simple Gaussian elimination algorithm would produce relatively large error

on the system 
 ε 1

1 1





 x1

x2


 =


 1

2


 ,

where ε < εM .

Algorithm 3 would compute

 ε 1

0 1− 1
ε





 x1

x2


 =


 1

2− 1
ε


 =⇒


 ε 1

0 − 1
ε





 x1

x2


 =


 1

− 1
ε


 ,

since in the computer, if ε is small enough, 1− 1
ε and 2− 1

ε will be computed to be the

same as− 1
ε . Hence,

x2 =
− 1

ε

− 1
ε

= 1 and x1 =
1− 1

ε
= 0.

⇒ 
 ε 1

1 1





 0

1


 =


 1

1


 6=


 1

2


 .
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But actually x1 = x2 = 1 would be a much better solution since

 ε 1

1 1





 1

1


 =


 1 + ε

2


 ≈


 1

2


 .

If we interchange the rows, then Gaussian elimination would compute

 1 1

ε 1





 x1

x2


 =


 2

1


 =⇒


 1 1

0 1− ε





 x1

x2


 =


 2

1− 2ε


 ,

and

x2 =
1− 2ε

1− ε
≈ 1 and x1 = 2− x2 ≈ 2− 1 = 1.

The strategy of interchange rows/columns as described above is called “pivoting”.
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3.2 – Partial Pivoting and Complete Pivoting

If a
(k)
kk is small in magnitude compared to a

(k)
ik , i = k + 1, . . . , n,

then the multipliers

`ik =
a
(k)
ik

a
(k)
kk

� 1.

Roundoff introduced in computing

a
(k+1)
ij = a

(k)
ij − `ika

(k)
kj , i = k + 1, . . . , n, j = k + 1, . . . , n,

will be large. Also when performing the back substitution for

xk =


b̃k −

n∑

j=k+1

a
(k)
kj xj




/
a
(k)
kk ,

any error in the numerator will be dramatically increased when dividing by a small a
(k)
kk .

To ensure that no large entries appear in the computed triangular factors, one can choose a

pivot element to be the largest entry among |a
(k)
kk |, . . . , |a

(k)
nk |.
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Let P1, . . . , Pk−1 be the permutations chosen and M1, . . .Mk−1 denote the Gaussian

transformations performed in the first k− 1 steps.

At the k-th step, a permutation matrix Pk

is chosen so that

|(PkMk−1 · · ·M1P1A)kk| = max
k≤i≤n

|(Mk−1 · · ·M1P1A)ik| .

This row interchange strategy is called partial pivoting. As a consequence, |`ij | ≤ 1 for

i = 1, . . . , n, j = 1, . . . , i. Upon completion, we obtain an upper triangular matrix

U ≡Mn−1Pn−1 · · ·M1P1A. (6)

Since any Pk is symmetric and P T
k Pk = P 2

k = I , we have

Mn−1Pn−1 · · ·M2P2M1P2 · · ·Pn−1Pn−1 · · ·P2P1A = U,

therefore,

Pn−1 · · ·P1A = (Mn−1Pn−1 · · ·M2P2M1P2 · · ·Pn−1)
−1U.
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In summary, Gaussian elimination with partial pivoting leads to the LU factorization

PA = LU, (7)

where

P = Pn−1 · · ·P1

is a permutation matrix, and

L ≡ (Mn−1Pn−1 · · ·M2P2M1P2 · · ·Pn−1)
−1

= Pn−1 · · ·P2M
−1
1 P2M

−1
2 · · ·Pn−1M

−1
n−1.

Since, for i < j,

eT
i Pj = eT

i , eT
i `j = 0,

Pj`i =
[

0 · · · 0 ˜̀
i+1,i · · · ˜̀

n,i

]T

≡ ˜̀
i,

⇒

P2M
−1
1 P2 = P2(I + `1e

T
1 )P2 = I + ˜̀

1e
T
1
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⇒

P2M
−1
1 P2M

−1
2 = (I + ˜̀

1e
T
1 )(I + `2e

T
2 ) = I + ˜̀

1e
T
1 + `2e

T
2 ,

⇒

P3

(
P2M

−1
1 P2M

−1
2

)
P3 = I + ˆ̀

1e
T
1 + ˜̀

2e
T
2

⇒ · · ·

Therefore, L is unit lower triangular.

Algorithm 5 [LU -factorization with Partial Pivoting] Given a nonsingular square matrix

A ∈ R
n×n, this algorithm finds an appropriate permutation matrix P , and computes a unit

lower triangular matrix L and an upper triangular matrix U such that PA = LU . The

matrix A is overwritten by L and U , and the matrix P is not formed. An integer array p is

instead used for storing the row/column indices.
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p(1 : n) = 1 : n

For k = 1, . . . , n− 1

m = k

For i = k + 1, . . . , n

If |A(p(m), k)| < |A(p(i), k)|, then m = i

End For

` = p(k); p(k) = p(m); p(m) = `

For i = k + 1, . . . , n

A(p(i), k) = A(p(i), k)/A(p(k), k)

For j = k + 1, . . . , n

A(p(i), j) = A(p(i), j)−A(p(i), k)A(p(k), j)

End For

End For

End For
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Since the Gaussian elimination with partial pivoting produces the factorization (7), the linear

system problem should comply accordingly

Ax = b =⇒ PAx = Pb =⇒ LUx = Pb.

While in the partial pivoting algorithm, the k-th pivot is determined by scanning the current

k-th subcolumn A(k)(k : n, k), another pivoting strategy called complete pivoting

searches for the largest entry in magnitude in the current submatrix A(k)(k : n, k : n) and

permutes to the (k, k) position. That is, at the k-th step two permutation matrices Pk and

Qk are determined so that
∣∣∣(PkA(k)Qk)kk

∣∣∣ = max
k≤i,j≤n

∣∣∣(A(k))ij

∣∣∣ .

Gaussian elimination with complete pivoting leads to the LU factorization

PAQ = LU, (8)

where P, Q are permutation matrices, L is unit lower triangular, and U is upper triangular.
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4 – Some Special Linear Systems

4.1 – Symmetric Positive Definite System and Cholesky Factorization

An n× n matrix A is positive definite

if xT Ax > 0, for all x ∈ R
n, x 6= 0. If A is both

symmetric and positive definite (spd), then we can derive a stable LU factorization called

the Choleseky factorization.

Lemma 1 If A ∈ R
n×n is positive definite, then A is nonsingular and aii > 0 for

i = 1, . . . , n.

Proof: Suppose A is singular.

⇒∃ x ∈ R
n and x 6= 0 such that Ax = 0.

⇒ xT Ax = 0, which contradicts the fact that A is positive definite.

⇒ A is nonsingular.
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Since A is positive definite,

aii = eT
i Aei > 0,

where ei is the i-th column of the n× n identify matrix.

Lemma 2 If A ∈ R
n×n is positive definite, then all leading principal submatrices of A are

nonsingular.

Proof: For 1 ≤ k ≤ n, let

zk = [x1, . . . , xk]T ∈ R
k and x = [x1, . . . , xk, 0, . . . , 0]T ∈ R

n,

where x1, . . . , xk ∈ R are not all zero. Since A is positive definite,

zT
k Akzk = xT Ax > 0,

where Ak is the k × k leading principal submatrix of A. This shows that Ak are also

positive definite, hence Ak are nonsingular.
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Theorem 3 If A ∈ R
n×n is symmetric positive definite, then there exists a unique lower

triangular matrix G ∈ R
n×n with positive diagonal entries such that A has the factorization

A = GGT . (9)

Proof: A is positive definite

⇒ all leading principal submatrices of A are nonsingular (from Lemma 2)

⇒ A has the LU factorization A = LU , where L is unit lower triangular and U is upper

triangular.

Since A is symmetric,

LU = A = AT = UT LT =⇒ U(LT )−1 = L−1UT .

U(LT )−1 is upper triangular and L−1UT is lower triangular

⇒ U(LT )−1 to be a diagonal matrix, say, U(LT )−1 = D.

⇒ U = DLT . Hence

A = LDLT .
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Since A is positive definite,

xT Ax > 0 =⇒ xT LDLT x = (LT x)T D(LT x) > 0.

This means D is also positive definite, and hence dii > 0. Thus D1/2 is well-defined and

we have

A = LDLT = LD1/2D1/2LT ≡ GGT ,

where G ≡ LD1/2. Since the LU factorization is unique, G is unique.

The factorization (9) is referred to as the Cholesky factorization.

Derive an algorithm for computing the Cholesky factorization:

Assume the first k − 1 columns of G have been determined after k − 1 steps. By

componentwise comparison with equation (9), one has

akk =

k∑

j=1

g2
kj ,
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which gives

g2
kk = akk −

k−1∑

j=1

g2
kj . (10)

Moreover,

aik =

k∑

j=1

gijgkj , i = k + 1, . . . , n,

hence the k-th column of G can be computed by

gik =


aik −

k−1∑

j=1

gijgkj




/
gkk, i = k + 1, . . . , n. (11)
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Algorithm 6 (Cholesky Factorization) Given an n× n symmetric positive definite matrix

A, this algorithm computes the Cholesky factorization A = GGT .

Initialize G = 0

For k = 1, . . . , n

G(k, k) =
√

A(k, k)−
∑k−1

j=1 G(k, j)G(k, j)

For i = k + 1, . . . , n

G(i, k) =
(
A(i, k)−

∑k−1
j=1 G(i, j)G(k, j)

) /
G(k, k)

End For

End For

In addition to n square root operations, there are approximately

n∑

k=1

[2k − 1 + 2k(n− k)] =
1

3
n3 + n2 −

1

3
n

floating-point arithmetic required by the algorithm.
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4.2 – Diagonally Dominant Systems

Definition 2 A matrix A ∈ R
n×n is said to be strictly diagonally dominant

if

|aii| >
n∑

j=1,j 6=i

|aij |.

Lemma 3 If A ∈ R
n×n is strictly diagonally dominant, then A is nonsingular.

Proof: Suppose A is singular. Then there exists x ∈ R
n, x 6= 0 such that Ax = 0. Let k

be the integer index such that

|xk| = max
1≤i≤n

|xi| =⇒
|xi|

|xk|
< 1, ∀ |xi| 6= |xk|.

Since Ax = 0, for the fixed k, we have

n∑

j=1

akjxj = 0 ⇒ akkxk = −

n∑

j=1,j 6=k

akjxj ⇒ |akk||xk| ≤

n∑

j=1,j 6=k

|akj ||xj |,
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which implies

|akk| ≤

n∑

j=1,j 6=k

|akj |
|xj |

|xk|
<

n∑

j=1,j 6=k

|akj |.

But this contradicts the assumption that A is diagonally dominant. Therefore A must be

nonsingular.

Theorem 4 Gaussian elimination without pivoting preserve the diagonal dominance of a

matrix.

Proof: Let A ∈ R
n×n be a diagonally dominant matrix and A(2) = [a

(2)
ij ] is the result of

applying one step of Gaussian elimination to A(1) = A without any pivoting strategy.

After one step of Gaussian elimination, a
(2)
i1 = 0 for i = 2, . . . , n, and the first row is

unchanged. Therefore, the property

a
(2)
11 >

n∑

j=2

|a
(2)
1j |
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is preserved,

and all we need to show is that

a
(2)
ii >

n∑

j=2,j 6=i

|a
(2)
ij |, for i = 2, . . . , n.

Using the Gaussian elimination formula (4), we have

|a
(2)
ii | =

∣∣∣∣∣a
(1)
ii −

a
(1)
i1

a
(1)
11

a
(1)
1i

∣∣∣∣∣ =

∣∣∣∣aii −
ai1

a11
a1i

∣∣∣∣

≥ |aii| −
|ai1|

|a11|
|a1i|

= |aii| − |ai1|+ |ai1| −
|ai1|

|a11|
|a1i|

= |aii| − |ai1|+
|ai1|

|a11|
(|a11| − |a1i|)

>
n∑

j=2,j 6=i

|aij |+
|ai1|

|a11|

n∑

j=2,j 6=i

|a1j |
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|a
(2)
ii | >

n∑

j=2,j 6=i

|aij |+

n∑

j=2,j 6=i

|ai1|

|a11|
|a1j |

≥

n∑

j=2,j 6=i

∣∣∣∣aij −
ai1

a11
a1j

∣∣∣∣

=

n∑

j=2,j 6=i

|a
(2)
ij |

Thus A(2) is still diagonally dominant. Since the subsequent steps of Gaussian elimination

mimic the first, except for being applied to submatrices of smaller size, it suffices to conclude

that Gaussian elimination without pivoting preserves the diagonal dominance of a matrix.
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4.3 – Tridiagonal System

A square matrix A = [aij ] is said to be tridiagonal if

A =




a11 a12

a21 a22
. . .

. . .
. . . an−1,n

an,n−1 an,n



.

If Gaussian elimination can be applied safely without pivoting. Then L and U factors would

have the form

L =




1

`21 1

. . .
. . .

`n,n−1 1




and U =




u11 u12

u22
. . .

. . . un−1,n

unn




,
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and the entries are computed by the simple algorithm which only costs 3n flops.

Algorithm 7 (Tridiagonal LU Factorization) This algorithm computes the LU

factorization for a tridiagonal matrix without using pivoting strategy.

U(1, 1) = A(1, 1)

For i = 2, . . . , n

U(i− 1, i) = A(i− 1, i)

L(i, i− 1) = A(i, i− 1)/U(i− 1, i− 1)

U(i, i) = A(i, i)− L(i, i− 1)U(i− 1, i)

End For

A tridiagonal linear system arises in many applications, such as finite difference

discretization to second order linear boundary-value problem and the cubic spline

approximations.
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4.4 – General Banded Systems

In many applications that involve linear systems, the coefficient matrix is banded. Formally,

we say that A = [aij ] has upper bandwidth q if aij = 0 whenever j > i + q and lower

bandwidth p if aij = 0 whenever i > j + p. Substantial economies can be realized when

solving banded systems because the triangular factors in the LU factorization are also

banded.
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5 – Perturbation Analysis

In this section, we develop some perturbation theory for the problem of solving linear

systems Ax = b.

If we solve such a system numerically, we obtain not the exact solution x

but an approximate computed solution x̂. The difference

e = x− x̂

is called the error vector which is, however, not known. Instead one can test the accuracy of

x̂ by forming Ax̂ to see whether it is close to b. Thus we have the definition for the residual

vector.

Definition 3 Let x̂ be the computed solution to the linear system of equations Ax = b.

Then the vector

r = b−Ax̂

is called the residual vector.
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Then we can derive the residual equation

Ae = Ax−Ax̂ = b−Ax̂ = r (12)

between the error vector and the residual vector.

Notice that x̂ is the exact solution of the linear system

Ax̂ = b̂,

which has a perturbed right-hand side

b̂ = b− r.

Then

‖x− x̂‖ = ‖A−1b−A−1b̂‖ = ‖A−1(b− b̂)‖

≤ ‖A−1‖‖b− b̂‖ = ‖A−1‖‖b‖
‖b− b̂‖

‖b‖
= ‖A−1‖‖Ax‖

‖b− b̂‖

‖b‖

≤ ‖A−1‖‖A‖‖x‖
‖b− b̂‖

‖b‖
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Therefore

‖x− x̂‖

‖x‖
≤ κ(A)

‖b− b̂‖

‖b‖
= κ(A)

‖r‖

‖b‖
,

where

κ(A) = ‖A‖‖A−1‖

is called the condition number of A.

On the other hand, by the residual vector, we have

‖r‖‖x‖ = ‖Ae‖‖A−1b‖ ≤ ‖A‖‖A−1‖‖e‖‖b‖ = κ(A)‖x− x̂‖‖b‖

.

Hence
1

κ(A)

‖r‖

‖b‖
≤
‖x− x̂‖

‖x‖
. (13)

Theorem 5

1

κ(A)

‖r‖

‖b‖
≤
‖x− x̂‖

‖x‖
≤ κ(A)

‖r‖

‖b‖
.
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Lemma 4 Suppose that x and x̃ satisfy

Ax = b and (A +4A)x̃ = b +4b,

where A ∈ R
n×n,4A ∈ R

n×n, 0 6= b ∈ R
n, and4b ∈ R

n, with

‖4A‖

‖A‖
≤ δ and

‖4b‖

‖b‖
≤ δ.

If κ(A) · δ < 1, then A +4A is nonsingular and

‖x̃‖

‖x‖
≤

1 + κ(A)δ

1− κ(A)δ
.

Proof: Since ‖A−14A‖ ≤ ‖A−1‖‖4A‖ ≤ δ‖A−1‖‖A‖ = δκ(A) < 1, it follows

from Theorem ?? that A +4A is nonsingular. Now (A +4A)x̃ = b +4b,

(I + A−14A)x̃ = A−1b + A−14b = x + A−14b,
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and so by taking norms and using Theorem ?? we find

‖x̃‖ ≤ ‖(I + A−14A)−1‖
(
‖x‖+ ‖A−1‖‖4b‖

)

≤ ‖(I + A−14A)−1‖
(
‖x‖+ δ‖A−1‖‖b‖

)

≤
1

1− ‖A−14A‖

(
‖x‖+ δ‖A−1‖‖b‖

)

≤
1

1− δκ(A)

(
‖x‖+ δ‖A−1‖‖b‖

)

=
1

1− δκ(A)

(
‖x‖+ δ‖A−1‖‖Ax‖

)

≤
1

1− δκ(A)

(
‖x‖+ δ‖A−1‖‖A‖‖x‖

)

=
1

1− δκ(A)
(‖x‖+ δκ(A)‖x‖)

=
1

1− δκ(A)
(1 + δκ(A)) ‖x‖.
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Therefore
‖x̃‖

‖x‖
≤

1 + δκ(A)

1− δκ(A)
.

Theorem 6 If the conditions of Lemma 4 hold then

‖x− x̃‖

‖x‖
≤

2δ

1− κ(A)δ
κ(A)

Proof: Since x̃ satisfies (A +4A)x̃ = b +4b, Ax̃ = b +4b−4Ax̃. Then we have

Ax̃−Ax = 4b +4Ax̃

and

x̃− x = A−1 (4b +4Ax̃) .
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Hence

‖x̃− x‖ ≤ ‖A−1‖ (‖4b‖+ ‖4A‖‖x̃‖)

≤ ‖A−1‖ (δ‖b‖+ δ‖A‖‖x̃‖)

= δ‖A−1‖ (‖Ax‖+ ‖A‖‖x̃‖)

≤ δ‖A‖‖A−1‖ (‖x‖+ ‖x̃‖) ,

which gives

‖x̃− x‖

‖x‖
≤ δκ(A)

(
1 +
‖x̃‖

‖x‖

)
≤ δκ(A)

(
1 +

1 + κ(A)δ

1− κ(A)δ

)
=

2δκ(A)

1− δκ(A)
.
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