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Solve linear systems of equations

(

a11x1 +ai2x2+ -+ a1, = b
211 + a22To + -+ + agpnx, = bo
L An1d1 + poZTo + -+ AppTn = bn
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Solve linear systems of equations

(

Rewrite in the matrix form

where

aii

a1

ai2

a2

A11T1 + A12T2 + - - - + @1, Th

A21T1 + A22T2 + - - - + G2, Ty

L An1d1 ot An2X2 S Anpndn

= by
— b2
= b,
(1)
7. . i
L2
y L=
| Tn
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[J This equation has a unique solution = = A 'b when the coefficient matrix A is

nonsingular.
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[J This equation has a unique solution = = A 'b when the coefficient matrix A is

nonsingular.
[1 Direct methods are considered in this chapter.
[1 Gaussian elimination is the principal tool in the direct solution of (1).

[1 Use Gaussian elimination to factor the coefficient matrix into a product of matrices. The
factorization is called LU -factorization and has the form A = LU, where L is unit

lower triangular and U/ is upper triangular.
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1 — Triangular Systems
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1 — Triangular Systems

Let

aii
0

0

a2

0
0
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1 — Triangular Systems

Let
.. (]
0 a9 --- O
A =
0 0 e
[ Provided that all a;; # 0, then
T T
37:[5171 Ty - mn} :{bl/all ba/aza - bn/ann :
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1 — Triangular Systems

Let

.. (]

I . 0

A =

0 0 e
[ Provided that all a;; # 0, then

T g1\

37:[561 o - ZCn} :{51/6111 52/6122 bn/@nn

[ Ifa;; = 0 and b; = 0 for some index 2, then x; can be any real number.
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1 — Triangular Systems

Let

.. (]

I . 0

A =

0 0 e
[ Provided that all a;; # 0, then

T g1\

37:[561 o - ZCn} :{51/6111 52/6122 bn/@nn

[ Ifa;; = 0 and b; = 0 for some index 2, then x; can be any real number.

[ ifa;; = 0 but b; = 0, no solution of the system exists.

Department of Mathematics — NTNU Tsung-Min Hwang October 5, 2003



Direct Methods for LS 6

| 1.1 — Forward Substitution I
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where all diagonals /;; + 0,

611
621

gnl

0

622

€n2

0
0

gnn

L1

L2

| 1.1 — Forward Substitution I

When a linear system Lx = b is lower triangular of the form
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| 1.1 — Forward Substitution I

When a linear system Lx = b is lower triangular of the form
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| 1.1 — Forward Substitution I

When a linear system Lx = b is lower triangular of the form

611 0 0 I b1
la1 L2 0 T bo
| gnl €n2 gnn 1 L Tn | bn

where all diagonals /;; % (), 2; can be obtained by the following procedure

b1 /411

I —

L2
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| 1.1 — Forward Substitution I

When a linear system Lx = b is lower triangular of the form

611 0 0 I b1
la1 L2 0 T bo
| gnl €n2 gnn 1 L Tn | bn

where all diagonals /;; % (), 2; can be obtained by the following procedure

b1 /411

I —
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| 1.1 — Forward Substitution I

When a linear system Lx = b is lower triangular of the form

611 0 0 I b1
b1 Lo 0 T2 by
| gnl €n2 gnn 1 L Tn | | bn |

where all diagonals /;; % (), 2; can be obtained by the following procedure

b1 /411
(52 - 5213;1)/@2

I —

9 p—
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| 1.1 — Forward Substitution I

When a linear system Lx = b is lower triangular of the form

611 0 0 I b1
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| 1.1 — Forward Substitution I

When a linear system Lx = b is lower triangular of the form

611 0 0 I b1
b1 Lo 0 T2 by
| gnl €n2 gnn 1 L Tn | | bn |

where all diagonals /;; % (), 2; can be obtained by the following procedure

ry = b1/l
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| 1.1 — Forward Substitution I

When a linear system Lx = b is lower triangular of the form

611 0 _— 0 I b1
b1 fop -+ 0 T x bo
| gnl €n2 - gnn 1 L Tn | | bn =

where all diagonals /;; % (), 2; can be obtained by the following procedure

ry = b1/l

L2 = (b2 - 521901)/622

X3 — (53 — U311 — 5323?2)/533
i
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| 1.1 — Forward Substitution I

When a linear system Lx = b is lower triangular of the form

611
621

gnl

0

622

€n2

0
0

gnn

L1

L2

| ITn

where all diagonals /;; % (), 2; can be obtained by the following procedure

I —

b1 /411
(b2 - 521901)/622
(53 — U311 — 5323?2)/533

(br

— £n1%1 — Lpox2 — - -

77 gn,n—lxn—l)/gnn
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nonsingular lower

Fore=1,...,n
tmp =0
Fory=1,...,1—1
tmp =tmp + L(t,7) xx(j)
End for
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nonsingular lower

Fore=1,...,n
tmp =0
Fory=1,...,1—1
tmp =tmp + L(t,7) xx(j)
End for
(1) = (b(7) — tmp)/L(3,7)
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The general formulation for computing z; is
i—1
r; — bi_zéijxj /gm, i:1,2,...,n.
J=1

Algorithm 1 (Forward Substitution) Suppose that /. € R"*" is nonsingular lower

triangular and b € R". This algorithm computes the solution of Lz = b.

Fort=1,...,n
tmp =0
Forg=1,...,12—1
tmp =tmp+ L(2,75) *x x(7)
End for
2(i) = (b(3) — tmp) /L (i, 1
End for
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The number of floating-point operations, flops, involved in the forward substitution are
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The number of floating-point operations, flops, involved in the forward substitution are

n

Z[Q(i—1)+2]:n2+n.

1=1
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The number of floating-point operations, flops, involved in the forward substitution are

n

Z[Q(i—1)+2]:n2+n.

1=1

Hence the forward substitution algorithm is an O (1) algorithm.
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Consider the upper triangular system Ux = b:

Uil

Uui2

provided that all u,; # 0.

Uln

Uon,

| 1.2 — Back Substitution I

X1

L2
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| 1.2 — Back Substitution I

Consider the upper triangular system Ux = b:

Uilp Ui12
0 w2
0 0

Uln

Uon,

unn

e

L1

L2

Ln

provided that all 12;; # ().The solution x-;, are computed in a reversed order by
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| 1.2 — Back Substitution I

Consider the upper triangular system Ux = b:

Uiy U2 o Ulp T1 b1
0 wgs -+ U, X9 b2
0 0 T T e ) K, | -

provided that all 1,; # ().The solution x:; are computed in a reversed order by

Ln—1 — (bn—l - un—l,nxn)/un—l,n—l
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Consider the upper triangular system Ux = b:
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0

0
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0
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Uon,

u’I’L’I’L

X1

L2

Ln

| 1.2 — Back Substitution I

provided that all 1,; # ().The solution x:; are computed in a reversed order by

bn/unn

(bn—l — un—l,nxn)/un—l,n—l

Department of Mathematics — NTNU

Tsung-Min Hwang October 5, 2003



Direct Methods for LS

Consider the upper triangular system Ux = b:

Uil
0

0

Uui2

U22

0

Uln

Uon,

u’I’L’I’L

X1

L2

Ln

| 1.2 — Back Substitution I

provided that all 1,; # ().The solution x:; are computed in a reversed order by

bn/unn

(bn—l — un—l,nxn)/un—l,n—l

Department of Mathematics — NTNU

Tsung-Min Hwang October 5, 2003



Direct Methods for LS

Consider the upper triangular system Ux = b:

Uil
0

0

Uui2

U22

0

Uln

Uon,

u’I’L’I’L

X1

L2

Ln

| 1.2 — Back Substitution I

provided that all 1,; # ().The solution x:; are computed in a reversed order by

bn/unn

(bn—l — un—l,nxn)/un—l,n—l

(bn—Q — Up—2n—1Tn—1 — un—Q,nwn)/un—Q,n—Q

Department of Mathematics — NTNU

Tsung-Min Hwang October 5, 2003



Direct Methods for LS

Consider the upper triangular system Ux = b:

Uil
0

0

Uui2

U22

0

Uln

Uon,

u’I’L’I’L

X1

L2

Ln

| 1.2 — Back Substitution I

provided that all 1,; # ().The solution x:; are computed in a reversed order by

bn/unn

(bn—l — un—l,nxn)/un—l,n—l

(bn—Q — Up—2n—1Tn—1 — un—Q,nwn)/un—Q,n—Q

Department of Mathematics — NTNU

Tsung-Min Hwang October 5, 2003



Direct Methods for LS

Consider the upper triangular system Ux = b:

Uil
0

0

Uui2

U22

0

Uln

Uon,

u’I’L’I’L

X1

L2

Ln

| 1.2 — Back Substitution I

provided that all 1,; # ().The solution x:; are computed in a reversed order by

bn/unn

(bn—l — un—l,nxn)/un—l,n—l

(bn—Q — Up—2n—1Tn—1 — un—Q,nwn)/un—Q,n—Q

Department of Mathematics — NTNU

Tsung-Min Hwang October 5, 2003



Direct Methods for LS

Consider the upper triangular system Ux = b:

Uil
0

0

Uui2

U22

0

Uln

Uon,

u’I’L’I’L

X1

L2

Ln

| 1.2 — Back Substitution I

provided that all 1,; # ().The solution x:; are computed in a reversed order by

bn/unn

(bn—l — un—l,nxn)/un—l,n—l

(bn—Q — Up—2n—1Tn—1 — un—Q,nwn)/un—Q,n—Q

Department of Mathematics — NTNU

Tsung-Min Hwang October 5, 2003



Direct Methods for LS

| 1.2 — Back Substitution I

Consider the upper triangular system Ux = b:

X1

L2

Ln

Uip U2 -+ Uin
0 w92 -+ U
L0 0 e U,

provided that all 1,; # ().The solution x:; are computed in a reversed order by

Ln—1 — (bn—l - un—l,nxn)/un—l,n—l
Ln—2 — (bn—Q — Un—2n—1Ln—-1 — un—Q,nwn)/un—Q,n—Q
ry = (bl — U122 — U13TL3 — " — U1nCCn)/U11
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" is nonsingular upper

tmp =0
Forg=14+1,...,n
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" is nonsingular upper

tmp =0
Forg=14+1,...,n
tmp =tmp+ U(i,j) xx(j) |
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The general formulation is

n
Ly — bi— E WUj5 L 4 /uii, Z:n,n—l,...,l.

j=i+1
Algorithm 2 (Back Substitution) Suppose that [/ € R" " is nonsingular upper

triangular and b € R"™. This algorithm computes the solution of U/ = b.

Fori=n,...,1
tmp =0
Forg=14+1,...,n
tmp =tmp+U(i,7) xz(7)
End for
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The general formulation is

n
Ly — bi— E WUj5 L 4 /uii, z:n,n—l,...,l.

j=i+1
Algorithm 2 (Back Substitution) Suppose that [/ € R" " is nonsingular upper

triangular and b € R"™. This algorithm computes the solution of U/ = b.

Fori=n,...,1
tmp =0
Forg=14+1,...,n
tmp =tmp+U(i,7) xz(7)
End for
(1) = (b(é) — tmp) /U (i, 1)
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The general formulation is

n
Ly — bi— E WUj5 L 4 /uii, z:n,n—l,...,l.

j=i+1
Algorithm 2 (Back Substitution) Suppose that [/ € R" " is nonsingular upper

triangular and b € R"™. This algorithm computes the solution of U/ = b.

Fori=n,...,1
tmp =0
Forg=14+1,...,n
tmp =tmp+U(i,7) xz(7)
End for
(i) = (b(¢) — tmp) /U (i, )
End for
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The general formulation is

n
Ly — bi— E WUj5 L 4 /uii, z:n,n—l,...,l.

j=i+1
Algorithm 2 (Back Substitution) Suppose that [/ € R" " is nonsingular upper

triangular and b € R"™. This algorithm computes the solution of U/ = b.

Fori=n,...,1
tmp =0
Forg=14+1,...,n
tmp =tmp+U(i,7) xz(7)
End for
(i) = (b(¢) — tmp) /U (i, )
End for

Back substitution requires 1% + O(n ) flops.
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2 — Gaussian Elimination and LU Factorization
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2 — Gaussian Elimination and LU Factorization

In this section we will derive an algorithm that computes a matrix factorization called LU

factorization such that A = LU, where L is unit lower triangular and U is upper triangular.

-
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2 — Gaussian Elimination and LU Factorization

In this section we will derive an algorithm that computes a matrix factorization called LU
factorization such that A = LU, where L is unit lower triangular and U is upper triangular.
The solution to the original problem Ax = LUx = b is then found by a two-step triangular

solve process:
Ly = b, Ux =y. (2)

-
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| 2.1 — Gaussian Elimination I

Three types of elementary row operations for a system of linear equations:

NS
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| 2.1 — Gaussian Elimination I

Three types of elementary row operations for a system of linear equations:

1. Interchange two equations in the system (or equivalently, interchange two rows in A):
52' NI gj;

Here &; denotes the 2-th equation in the system.

SN
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| 2.1 — Gaussian Elimination I

Three types of elementary row operations for a system of linear equations:

1. Interchange two equations in the system (or equivalently, interchange two rows in A):
52' NI gj;
Here &; denotes the 2-th equation in the system.

2. Multiply an equation by a non-zero constant (multiply one row of A by a non-zero
constant):
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| 2.1 — Gaussian Elimination I

Three types of elementary row operations for a system of linear equations:

1. Interchange two equations in the system (or equivalently, interchange two rows in A):
52' NI gj;
Here &; denotes the 2-th equation in the system.

2. Multiply an equation by a non-zero constant (multiply one row of A by a non-zero

constant):

3. Add to an equation a multiple of some other equation (add to a row a multiple of some

other row):

E, — & + )\5]

S|
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[

[1 The first step in the Gaussian elimination process:
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[1 The first step in the Gaussian elimination process: foreach: = 2.3,...,n,
il
E; — (5@ — mijlgl), where m; 1 = . (3)
a11
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[1 The first step in the Gaussian elimination process: foreach: = 2.3,...,n,
il
E; — (51 — mijlgl), where m; 1 = . (3)
a11

— Transform all the entries in the first column below the diagonal are zero.
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13
B
[1 The first step in the Gaussian elimination process: foreach: = 2.3,...,n,
a1
E; — (gz = mijlgl), where m; 1 = : (3)
aii
— Transform all the entries in the first column below the diagonal are zero. For
example,
ail1 Gi2 013 ailx 12 13
A1= | a1 ax ags | = A2=| 0 a2 ags
| a3l asz asz 0 asx ass
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13
I
[1 The first step in the Gaussian elimination process: foreach: = 2.3,...,n,
a1
E; — (gz = mijlgl), where m; 1 = : (3)
aii
— Transform all the entries in the first column below the diagonal are zero. For
example,
ail1 Gi2 013 ailx 12 13
A1= | a1 ax ags | = A2=| 0 a2 ags
| a3l asz asz 0 asx ass
[1 Then the process is repeated on the resulting equations &, . . ., &£,,, and so on.
SEE————
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13
[1 The first step in the Gaussian elimination process: foreach: = 2.3,...,n,
il
E; — (5@ — mijlgl), where m; 1 = . (3)
a11

— Transform all the entries in the first column below the diagonal are zero. For

example,

AlE

[1 Then the process is repeated on the resulting equations &s,

Ay =

a1
0
0

aji2

~

a2

~

as2

ai13

~

a23

~

ass3

:>AQE

:>ASE

aii
0
0

Department of Mathematics — NTNU
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a33

.., &y, and so on.

aji2

~

a2

0

ai13

~

a23

A

ass
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13
[1 The first step in the Gaussian elimination process: foreach: = 2.3,...,n,
il
E; — (5@ — mijlgl), where m; 1 = . (3)
a11

— Transform all the entries in the first column below the diagonal are zero. For

example,
aii
| 431

[1 Then the process is repeated on the resulting equations &s,

a1
Ay = 0

0

A is upper triangular.

aji2

~

a2

~

as2

ai13

~

a23

~

ass3

:>AQE

:>ASE

aii
0
0

Department of Mathematics — NTNU

ai13
(23

a33

.., &y, and so on.

aji2

~

a2

0

ai13

~

a23

A

ass
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The process of Gaussian elimination result in a sequence of matrices as follows:

A=A 5 A@) ... A™ = ypper triangular matrix,
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14

The process of Gaussian elimination result in a sequence of matrices as follows:

A=AD A2 _, ...

The matrix A*) has the following form:

— A™ = upper triangular matrix,

B [ [ d® o
0 e [ | B
A% 0 0 agz) a,g;) a,(j,b)
T S I SRR
0 0 |a® RERR

Department of Mathematics — NTNU
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In the k-th step,
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In the k-th step,

k) . :
] a]({;k) IS used as a pivot element
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In the k-th step,
(k) . .
] ay.,. is used as a pivot element

[1 Elementary operations are applied to rows k + 1 through n so that zeros are produced

in column £ below the diagonal.

NS
Department of Mathematics — NTNU Tsung-Min Hwang October 5, 2003
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In the k-th step,
(k) . .
] ay.,. is used as a pivot element

[1 Elementary operations are applied to rows k + 1 through n so that zeros are produced

in column £ below the diagonal.

That is, A1) is obtained from A*) in which

S
Department of Mathematics — NTNU Tsung-Min Hwang October 5, 2003




Direct Methods for LS 15

In the k-th step,
(k) . .
] ay.,. is used as a pivot element

[1 Elementary operations are applied to rows k + 1 through n so that zeros are produced

in column £ below the diagonal.

That is, A1) is obtained from A*) in which

(k+1) (k+1)
L Upq o ° " Gy, are zero
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Direct Methods for LS 15

In the k-th step,
(k) . .
] ay.,. is used as a pivot element

[1 Elementary operations are applied to rows k + 1 through n so that zeros are produced

in column £ below the diagonal.

That is, A1) is obtained from A*) in which

(k+1) (k+1)
L Upq o ° " Gy, are zero

[1 row k + 1 through n are modified
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In the k-th step,
(k) . .
] ay.,. is used as a pivot element

[1 Elementary operations are applied to rows k + 1 through n so that zeros are produced
in column £ below the diagonal.

That is, A(*T1) is obtained from A(*) in which

L a]({;]f;%,)c, ce ,agﬂl) are zero

[1 row k + 1 through n are modified

[1 row 1 through row k are unchanged.
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More precisely, the entries of AktD) gre produced by the formula
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More precisely, the entries of AktD) gre produced by the formula
(k)
1) )

a§?+1):<0 fore =k+1,...,n,andj =1,...,k; (4)

(
a fortr=1,...,k,andj =1,...,n;

(k)
a§j>— Z;i% xa,({;j), forer=k+1,...,nandj=k+1,...,n.

-
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More precisely, the entries of AktD) gre produced by the formula

(
a
a,E;.ﬁLl) — < 0
a: .
\ (£
Let L = [fzk

(k) &' (k)

ik
(k)
Ap ks

with

fortr=1,...,k,andj =1,...,n;

)

fortc=k+1,...,n,andj=1,...,k; (4)

)

X ay:, forer=k+1,...,nandj=k+1,...,n.

,
0, if 1 < k;
li. =< 1, if i = k; (5)
al®
s, if1 > K,
\ Pk
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More precisely, the entries of AktD) gre produced by the formula

a
aE?H) =<0
\aij
Let L = [{;]
and U = A(™),

(k) &' (k)

ik
(k)
Ap ks

with

fortr=1,...,k,andj =1,...,n;

)

fortc=k+1,...,n,andj=1,...,k; (4)

)

X ay:, forer=k+1,...,nandj=k+1,...,n.

,
0, if 1 < k;
li. =< 1, if i = k; (5)
al®
s, if1 > K,
\ Pk
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More precisely, the entries of AktD) gre produced by the formula

(
a,E?, fortr=1,...,k,andj =1,...,n;
a§?+1):<0, foreo =k+1,...,n,andj =1,...,k; (4)
a(.]?)—agl’z) xa® fori=k+1 n,andj =k + 1 n
L 1) a}’(clz) k;j? 9 o0 o9 ) g o o o g o
Let L = [{;] with
)
0, if 1 < k;
li. =< 1, if i = k; (5)
(k)
“iks o if g > k,
\ %k

and U = A then L is unit lower triangular, U is upper triangular,
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16

More precisely, the entries of AktD) gre produced by the formula

(
a,E?, fortr=1,...,k,andj =1,...,n;
a§?+1):<0, forr=%k+1,...,n,andj =1,...,k;
(k)
\a§j>—z7€kﬁk)><a,(€j), fortcr=k+1,...,nandj=k+1,...,n
Let L = [/;;.] with
)
0, if 1 < k;
.
s, if1 > K,
\ Yk

and U = A then L is unit lower triangular, U is upper triangular, and later we shall

show that A =

LU.
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Algorithm 3 (Gaussian elimination) Given A € R™*" and b € R", this algorithm
implements the Gaussian elimination procedure to reduce A to upper triangular and modify

the entries of b accordingly.
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Direct Methods for LS 17

Algorithm 3 (Gaussian elimination) Given A € R™*" and b € R", this algorithm
implements the Gaussian elimination procedure to reduce A to upper triangular and modify

the entries of b accordingly.

Fork=1,...,n—1
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Direct Methods for LS 17

Algorithm 3 (Gaussian elimination) Given A € R™*" and b € R", this algorithm
implements the Gaussian elimination procedure to reduce A to upper triangular and modify

the entries of b accordingly.

Fork=1,...,n—1
Fori=k+1,...,n

EEESSSSS
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Direct Methods for LS 17

Algorithm 3 (Gaussian elimination) Given A € R™*" and b € R", this algorithm
implements the Gaussian elimination procedure to reduce A to upper triangular and modify

the entries of b accordingly.
Fork=1,...,n—1

Fori=k+1,...,n
t = A(i, k)/A(k, k)
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Direct Methods for LS 17

Algorithm 3 (Gaussian elimination) Given A € R™*" and b € R", this algorithm
implements the Gaussian elimination procedure to reduce A to upper triangular and modify

the entries of b accordingly.

Fork=1,...,n—1
Fori=k+1,...,n
t=A(i, k)/A(k, k)
A(i, k) =0
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Direct Methods for LS 17

Algorithm 3 (Gaussian elimination) Given A € R™*" and b € R", this algorithm
implements the Gaussian elimination procedure to reduce A to upper triangular and modify

the entries of b accordingly.

Fork=1,...,n—1
Fori=k+1,...,n
t=A(i, k)/A(k, k)
A(i, k) =0
b(i) = b(7) —t X b(k)
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Direct Methods for LS 17

Algorithm 3 (Gaussian elimination) Given A € R™*" and b € R", this algorithm

implements the Gaussian elimination procedure to reduce A to upper triangular and modify
the entries of b accordingly.

Fork=1,...,n—1
Fori=k+1,...,n
t=A(i, k)/A(k, k)
A(i, k) =0
b(i) = b(7) —t X b(k)
Forj=k+1,....n
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Algorithm 3 (Gaussian elimination) Given A € R™*" and b € R", this algorithm

implements the Gaussian elimination procedure to reduce A to upper triangular and modify
the entries of b accordingly.

Fork=1,...,n—1
Fori=k+1,...,n
t=A(i, k)/A(k, k)
A(i, k) =0
b(i) = b(7) —t X b(k)
Forj=k+1,....n
Ai, ) = i, §) — t x Ak, j)
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Algorithm 3 (Gaussian elimination) Given A € R™*" and b € R", this algorithm
implements the Gaussian elimination procedure to reduce A to upper triangular and modify

the entries of b accordingly.

Fork=1,...,n—1
Fori=k+1,...,n
t=A(i, k)/A(k, k)
A(i, k) =0
b(i) = b(7) —t X b(k)
Forj=k+1,....n
Ai, ) = i, §) — t x Ak, j)
End for
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Direct Methods for LS 17

Algorithm 3 (Gaussian elimination) Given A € R™*" and b € R", this algorithm

implements the Gaussian elimination procedure to reduce A to upper triangular and modify
the entries of b accordingly.

Fork=1,...,n—1
Fori=k+1,...,n
t=A(i, k)/A(k, k)
A(i, k) =0
b(i) = b(7) —t X b(k)
Forj=k+1,....n
Ai, ) = i, §) — t x Ak, j)
End for

End for
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Algorithm 3 (Gaussian elimination) Given A € R™*" and b € R", this algorithm

implements the Gaussian elimination procedure to reduce A to upper triangular and modify
the entries of b accordingly.

Fork=1,...,n—1
Fori=k+1,...,n
t=A(i, k)/A(k, k)
A(i, k) =0
b(i) = b(7) —t X b(k)
Forj=k+1,....n
A(i, ) = A, 5) — t x A(k, 5)
End for
End for

End for
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Example 1 Solve system of linear equations.

6
12

Solution:

—7
—8
—13
4

2
6
9
1

4

10

3
—18

12
34
27
—38
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B
Example 1 Solve system of linear equations.

6 -2 2 4| [ 12
12 -8 6 10 || a | | 34
3 13 9 3 || x| | 27
6 4 1 —18 ||| | -3

Solution:

1

15 step Use 6 as pivot element, the first row as pivot row, and multipliers 2, 5, — 1 are

produced to reduce the system to

6 -2 2 4] = 12
0 42 2||a| | 10
0 12 8 1 ||| | 2
0 23 —14 || @ | | 26|

S|
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el step Use —4 as pivot element, the second row as pivot row, and multipliers 3, —% are

computed to reduce the system to

(6 2 2 4] [x ]| [ 12
0 —4 2 2 T2 | 10
0 0 2 5| |as| | -9

0 0 4 —13 || @ | | -21
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I
2nd

computed to reduce the system to

6
0
0
0

374 step Use 2 as pivot element, the third row as pivot row, and multipliers 2 is found to

reduce the system to

oS O O O

=N NN

S NN

)

X3

step Use —4 as pivot element, the second row as pivot row, and multipliers 3, —

12
10
-9
—2

Department of Mathematics — NTNU
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Collect all the multipliers and let

then one can verify that LU = A.

N N =

—1

0
1
3
1
2

0
0
1
2

= o O O

and U =

oS O O O

2 2 4
4 2 9
0 2 -5 |
0 0 -3
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I

| 2.2 — Gaussian Transformation and LU Factorization I

For a given vector v € R™ with vy, % 0 forsome 1 < k < n, let
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[

| 2.2 — Gaussian Transformation and LU Factorization I

For a given vector v € R™ with vy, % 0 forsome 1 < k < n, let

(%] :
bip = —, 1=k+1,...,n,
Vg

S
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[

| 2.2 — Gaussian Transformation and LU Factorization I

For a given vector v € R™ with vy, % 0 forsome 1 < k < n, let

by =~ i=k+1,....n,
Ul
T
lk:[o oo 0 lpyrr o Lk :

S
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| 2.2 — Gaussian Transformation and LU Factorization I

For a given vector v € R™ with vy, % 0 forsome 1 < k < n, let

K'L'k: — ﬁ?
Vg,
lk, = [ 0
and
My =1 —lgel =

0

1

Department of Mathematics — NTNU
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Then one can verify that

T
Mk,U:|:’Ul cee Uk o ... O:| .

-~
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Then one can verify that

T
Mk’U:|:fU1 cee Uk o ... O:| .

M. is called a Gaussian transformation, the vector [, a Gauss vector.

SN |
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Then one can verify that

T
Mk,U:|:’Ul cee Uk o ... O:| .

M. is called a Gaussian transformation, the vector [, a Gauss vector. Furthermore, one

can verify that

1 0 0 0

0 1 0 0
]\4,;1 = (I —lpe; ) P =1+ 1Iel =

0 lry1r 1 0

0 gy 1
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S
Given a nonsingular matrix A € R™*" denote A1) = [a,gjl-)] = A.
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I
Given a nonsingular matrix A € R™*" denote A1) = [a,gjl-)] = A. If agll) + 0,

-~
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N
Given a nonsingular matrix A € R™*" denote Al = [a,gjl-)] = A. If agll) # 0, then

M1 = I — 116?,

-~
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N
Given a nonsingular matrix A € R™*" denote Al = [a,gjl-)] = A. If agll) # 0, then

M1 = I — 116?,
where
T e
11:|:O 621 gnl ; g,ﬂ:%,i:Q,...,n,
aqq

can be formed such that

-~
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I
Given a nonsingular matrix A € R™*" denote Al = [a,gjl-)] = A. If aﬁ) # 0, then

Mlzl—lle?,
where
i e
h=]0 tn - b |, la="h5i=2..,n,
aqq
can be formed such that
- (2 2 2) 7]
ay aiy - af)
0 42 ... 4@
A® = AQ — Q22 Ao, |
0 ay o am

-
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I
Given a nonsingular matrix A € R™*" denote Al = [a,gjl-)] = A. If aﬁ) # 0, then
M1 =1 — 116?,
where
i e
11:|:O 621 f,nl ) gi]_:%,iZQ,...,n,
G
can be formed such that
- (2 2 2) -
aif a7 o ain
0 C) N ¢)
A® = AQ — A22 Aoy, |
ol
where
2) a,gjl-), foro =1landj =1,...,n;
Yiim =Y ) (1) . .
a;;° — b Xay;, fori=2,...,nandj=2,...,n.

Tsung-Min Hwang October 5, 2003
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B
In general, at the k-th step, we are confronted with a matrix
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B
In general, at the k-th step, we are confronted with a matrix

AK)
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B
In general, at the k-th step, we are confronted with a matrix

AK)
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B
In general, at the k-th step, we are confronted with a matrix

AR — My MM AW
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B
In general, at the k-th step, we are confronted with a matrix

AR — My MM AW
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In general, at the k-th step, we are confronted with a matrix

AR — M Mo M AD
[ (K k k k k
a’gl) a§2) @g,i_l a’gk) agn)
k k k k
0 aéz) aé,;—l agk) aén>
k k k
= 0 0 al(c—>1,k—1 al(c—)l,k al(s—)l,n
k k)
0 0 0 a;(gk) al(cn
| 0 0 0 a,(j,b) asm

Department of Mathematics — NTNU
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In general, at the k-th step, we are confronted with a matrix

AR — M Mo M AD
[ (K k k k k
a’gl) a§2) @g,i_l a’gk) agn)
k k k k
0 aéz) aé,;—l agk) a§n>
k k k
= 0 0 a’l(c—>1,k—1 al(c—)l,k al(s—)l,n
k k)
0 0 0 a;(@k) al(cn
| 0 0 0 a,(flf,b) asm

If the pivot a,g;;) 0,

Department of Mathematics — NTNU
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In general, at the k-th step, we are confronted with a matrix

AR — My MM AW
[ (k k k k k) |
a’gl) a§2) @g,i_l a’gk) agn)
k k k k
0 aé2) aé,li—l agk) aén>
_ (k) (k) (k)
— 0 0 A 1.k—1 | Tp—1k Ar_1.n
0 0 0 al?) a)
0 0 0 o) )
If the pivot a,gz) +#~ (), then the multipliers
(k)
gik:ai—z, 1=k+1,...,n,
(k)
kk

Department of Mathematics — NTNU
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B
can be computed
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[

can be computed and the Gaussian transformation
T
Mk :]—Zk;ek, where lk; — |: O --- 0 fk_H,k fnk .

can be applied to the left of A%) to obtain
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[

can be computed and the Gaussian transformation
T
Mk :]—Zk;ek, where lk; — |: O --- 0 fk_H,k fnk .

can be applied to the left of A%) to obtain

A®TD — pp AKR)
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Direct Methods for LS 25
[

can be computed and the Gaussian transformation
T
Mk :]—Zk;ek, where lk; — |: O --- 0 fk_H,k fnk .

can be applied to the left of A%) to obtain

A®TD — pp AKR)
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[

can be computed and the Gaussian transformation

Mk:I—lkeZ, where lk:{() oo 0 Ay o Ank |

can be applied to the left of A%) to obtain

A(Hl) = M, A%

GD (k1) gk | (k1) (k+1) o\t
aqq 12 B S P | A1k Al k1 7 Q1p
(D) (k+1) (k41) (k+1) (k+1)
0 Q22 o o1 | Qo Qok+1 77 Oon
(k+1) (k+1) (k4+1) (k4+1)
B 0 0 O k1 | Yk—1k Yk—1k+1 7 Qg_1n
= LJEFD (Rt (k+1) |
0 0 S 0 A, ap g1 0 Oy
(k+1)
0 At 1 k+1
(k+1) (k+1)

SEEENN——————— ]
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in which
(o) fori=1,....kj=1,....n
a§f+1):<07 forir=k+1,...,n,7 =k;
kagf)—ﬁikaélz), fortr=k+1,...,n,7=k+1,...,n.
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in which
(o) fori=1,....kj=1,....n
a§f+1):<07 foric=k+1,...,n,7 =k;
kagf)—ﬁikaélz), fortr=k+1,...,n,7=k+1,...,n.

Upon the completion,
U=A"™ =M, _;--- MM A

IS upper triangular.
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Hence
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Hence

A=M;"M;'-- M1 U=LU,
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Hence
A=M'M;*'---M ' U=LU,

where
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Hence

where

L=M"'"M;* - M
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Hence

where

L=M; "My MY =

-
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Hence
A=M;"M;'-- M1 U=LU,
where
L=M{"My* M2, = (I—he) (I —laeg) - (I = lp—1en_q) "

-
Department of Mathematics — NTNU Tsung-Min Hwang October 5, 2003




Direct Methods for LS 27

Hence
A=M;"M;'-- M1 U=LU,
where
L=M{"My* M2, = (I—he) (I —laeg) - (I = lp—1en_q) "

-
Department of Mathematics — NTNU Tsung-Min Hwang October 5, 2003




Direct Methods for LS 27

Hence
A=M;"M;'-- M1 U=LU,
where
D=MIMy M = (e b)) (= el )

= ([ +he]) T +ley) I +1l1e 1)
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Hence
A=M;"M;'-- M1 U=LU,
where
D=MIMy M = (e b)) (= el )

= ([ +he]) T +ley) I +1l1e 1)
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Hence
A=M;"M;'-- M1 U=LU,
where
D=MIMy M = (e b)) (= el )

= ([ +he]) T +ley) I +1l1e 1)
= I+ lle{ + 1265 P 000 =F ln_leg_l
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Hence
A=M;"M;'-- M1 U=LU,
where
D=MIMy M = (e b)) (= el )

= ([ +he]) T +ley) I +1l1e 1)
= I+ lle{ + 1265 P 000 =F ln_leg_l
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Hence
A=M;"M;'-- M1 U=LU,
where
L=M My My = (= hel) T = lef) ™ (1= Laaef )™

= ([ +he]) T +ley) I +1l1e 1)
= I+ lleip + 1265 P 000 =F ln_leg_l

1 0 o --- 0

by 1 o --- 0

= b31 32 1 -+ 0
| €n1 €n2 €n3 1 i

SEEENN——————— ]
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Hence
A=M{ M- MILU = LU,
where
L=M7' My MY = (I =te]) = loe]) ™ (= baael )

= ([ +he]) T +ley) I +1l1e 1)
= I+ lleip + 1265 P 000 =F ln_leg_l

IS unit lower triangular.

0

0
0
0
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Hence
A=M;"M;'-- M1 U=LU,
where
L=M{"My* M2, = (I—he) (I —laeg) - (I = lp—1en_q) "

= ([ +he]) T +ley) I +1l1e 1)
= I+ lle{ + 1265 P 000 =F ln_leg_l

1 0 0 0 |

by 1 0 0

= b31 32 1 -+ 0
| €n1 €n2 gnS e 1 i

is unit lower triangular. This matrix factorization is called the LU -factorization of A.
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I
Algorithm 4 (LU Factorization) Given a nonsingular square matrix A € R™*"™  this

algorithm computes a unit lower triangular matrix /. and an upper triangular matrix {/ such
that A = LU. The matrix A is overwritten by L and U.
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Direct Methods for LS 28

I
Algorithm 4 (LU Factorization) Given a nonsingular square matrix A € R™*"™  this

algorithm computes a unit lower triangular matrix /. and an upper triangular matrix {/ such
that A = LU. The matrix A is overwritten by L and U.

Fork=1,...,n—1
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Direct Methods for LS 28

I
Algorithm 4 (LU Factorization) Given a nonsingular square matrix A € R™*"™  this

algorithm computes a unit lower triangular matrix L and an upper triangular matrix {J such
that A = LU. The matrix A is overwritten by L and U.
Fork=1,...,n—1
Fori=k+1,...,n
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Direct Methods for LS 28

I
Algorithm 4 (LU Factorization) Given a nonsingular square matrix A € R™*"™  this

algorithm computes a unit lower triangular matrix L and an upper triangular matrix {J such
that A = LU. The matrix A is overwritten by L and U.
Fork=1,...,n—1
Fori=k+1,...,n
Al k) = A(i, k) /A(k, k)
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I
Algorithm 4 (LU Factorization) Given a nonsingular square matrix A € R™*"™  this

algorithm computes a unit lower triangular matrix /. and an upper triangular matrix {/ such
that A = LU. The matrix A is overwritten by L and U.
Fork=1,...,n—1
Fori=k+1,...,n
A(i, k) = A(i, k) /A(k, k)
Forj=k+1,...,n
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I
Algorithm 4 (LU Factorization) Given a nonsingular square matrix A € R™*"™  this

algorithm computes a unit lower triangular matrix /. and an upper triangular matrix {/ such
that A = LU. The matrix A is overwritten by L and U.
Fork=1,...,n—1
Fori=k+1,...,n
AGi k) = A(i, k) JA(k, k)
Forj=k+1,...,n
A(i, 5) = Ali, §) — Ali, k) x A(k, 5)
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I
Algorithm 4 (LU Factorization) Given a nonsingular square matrix A € R™*"™  this

algorithm computes a unit lower triangular matrix /. and an upper triangular matrix {/ such
that A = LU. The matrix A is overwritten by L and U.
Fork=1,...,n—1
Fori=k+1,...,n
A(i, k) = A(i, k) /A(k, k)
Forj=k+1,...,n
A(i, §) = A(i,5) — A(i, k) x A(k, )
End for
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I
Algorithm 4 (LU Factorization) Given a nonsingular square matrix A € R™*"™  this

algorithm computes a unit lower triangular matrix /. and an upper triangular matrix {/ such
that A = LU. The matrix A is overwritten by L and U.
Fork=1,...,n—1
Fori=k+1,...,n
A(i, k) = A(i, k) /A(k, k)
Forj=k+1,...,n
A(i, §) = A(i,5) — A(i, k) x A(k, )
End for

End for
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I
Algorithm 4 (LU Factorization) Given a nonsingular square matrix A € R™*"™  this

algorithm computes a unit lower triangular matrix /. and an upper triangular matrix {/ such
that A = LU. The matrix A is overwritten by L and U.
Fork=1,...,n—1
Fori=k+1,...,n
AGi k) = A(i, k) JA(k, k)
Forj=k+1,...,n
A(i, 5) = Ali, §) — Ali, k) x A(k, 5)
End for
End for
End for
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I
Algorithm 4 (LU Factorization) Given a nonsingular square matrix A € R™*"™  this

algorithm computes a unit lower triangular matrix /. and an upper triangular matrix {/ such
that A = LU. The matrix A is overwritten by L and U.
Fork=1,...,n—1
Fori=k+1,...,n
AGi k) = A(i, k) JA(k, k)
Forj=k+1,...,n
A(i, 5) = Ali, §) — Ali, k) x A(k, 5)
End for
End for
End for

This algorithm requires
n—1 n
2 1 1
Z Z 2(n — k) = gn?’ — 5712 + 3" flops.
k=1 1=k+1
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‘ 2.3 — Existence and Uniqueness of LU Factorization I

Definition 1 (Leading principal minor) Let A be an n X 1 matrix. The upper left & x k

submatrix, denoted as

aixz a2 -+ a1k
az1 az2 -+ A2k
A = ;
| Akl Qg2 o Ak |

is called the leading k x k principal submatrix, and the determinant of Ay, det(Ay), is

called the leading principal minor.
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Theorem 1 If all leading principal minor of A € R™*" are nonzero, that is, all leading

principal submatrices are nonsingular, then A has an LU -factorization.

SRS
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Theorem 1 If all leading principal minor of A € R™*" are nonzero, that is, all leading

principal submatrices are nonsingular, then A has an LU -factorization.

Proof: Proof by mathematical induction.
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Theorem 1 If all leading principal minor of A € R™*" are nonzero, that is, all leading

principal submatrices are nonsingular, then A has an LU -factorization.
Proof: Proof by mathematical induction.

() n = 1, Ay = |a11] is nonsingular, then a11 # 0. Let L1 = [1] and U; = |aq11].
Then Ay = L{U;. The theorem holds.
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Theorem 1 If all leading principal minor of A € R™*" are nonzero, that is, all leading

principal submatrices are nonsingular, then A has an LU -factorization.
Proof: Proof by mathematical induction.

() n = 1, Ay = |a11] is nonsingular, then a11 # 0. Let L1 = [1] and U; = |aq11].
Then Ay = L{U;. The theorem holds.

(i) Assume that the leading principal submatrices A1, . .., Ay are nonsingular and Ay
has an LU-factorization Ay, = LU}, where L, is unit lower triangular and Uy, is

upper triangular.

EEESSSSS
Department of Mathematics — NTNU Tsung-Min Hwang October 5, 2003




Direct Methods for LS 30

Theorem 1 If all leading principal minor of A € R™*" are nonzero, that is, all leading

principal submatrices are nonsingular, then A has an LU -factorization.
Proof: Proof by mathematical induction.

() n = 1, Ay = |a11] is nonsingular, then a11 # 0. Let L1 = [1] and U; = |aq11].
Then Ay = L{U;. The theorem holds.

(i) Assume that the leading principal submatrices A1, . .., Ay are nonsingular and Ay
has an LU-factorization Ay, = LU}, where L, is unit lower triangular and Uy, is

upper triangular.

(iii) Show that there exist an unit lower triangular matrix L1 and an upper triangular

matrix Ui 1 suchthat Ax 11 = L1 1Uga.
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Department of Mathematics — NTNU Tsung-Min Hwang October 5, 2003




Direct Methods for LS 31

Write

Ag Vg
A1 =

W  Ak+4+1,k+1

SN |
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Write
Agy1 =
where
a1, k+1
a2 k+1
Vi —
| Ak k41 _

and wg =

| Qk+1.k

Department of Mathematics — NTNU
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Write
Ay, Vg
Ak—|—1 — )
W  Og41,k+1
where
a1 k+1 Ak+1,1
a2 k+1 af41,2
V = . and wg =
| Akk+1 | Ak+1,k

Since Ay, is nonsingular, both L, and U}, are nonsingular.
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Write
Ay, Vg
Ak—|—1 — )
W  Og41,k+1
where
a1 k+1 Ak+1,1
a2 k+1 af41,2
V = . and wg =
| Akk+1 | Ak+1,k

Since Ay, is nonsingular, both Lj, and Uy, are nonsingular.
= Ly, = Ui has a unique solution vy, € R¥, and 2!U}, = w,:g has a unigue solution
2k € R”.
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Write
Ay, Vg
Ak—|—1 — )
W  Og41,k+1
where
a1 k+1 Ak+1,1
a2 k+1 Af+1,2
V = and wg =
| Ok,k+1 | Ak+1,k

Since Ay, is nonsingular, both Lj, and Uy, are nonsingular.

= Ly, = Ui has a unique solution vy, € R¥, and 2!U}, = w,:g has a unigue solution

2z € R*. Let

Liiq =

Ly,

T
“

0
1

and Ugy1 =

Uy

Yk

T
Af+1,k+1 — 2 Yk

Department of Mathematics — NTNU

Tsung-Min Hwang October 5, 2003



Direct Methods for LS 32

Then L1 is unit lower triangular, U 1 is upper triangular,

- S
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Then L1 is unit lower triangular, Uy 1 is upper triangular, and

LUy, Ly

T T T
2. Up 2 Yk + Qrg1,k+1 — 2 Yk

Lii1Ugy1 =

Ag U A

T
Wy  Ok41,k+1

S
Department of Mathematics — NTNU Tsung-Min Hwang October 5, 2003




Direct Methods for LS 32

Then L1 is unit lower triangular, Uy 1 is upper triangular, and

LUy, Ly
Lgi1Ug1 = - - .
2 Uk 2, Yk + Opy1,k41 — 2j Yk
Ay, Vk
Wy  Ok41,k+1
This proves the theorem. B
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Theorem 2 If A is nonsingular and the LU factorization exists, then the LU factorization is

unique and det(A) = w11 - - - Upp.
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Theorem 2 If A is nonsingular and the LU factorization exists, then the LU factorization is

unique and det(A) = w11 - - - Upp.

Proof: Suppose both A = L1U; and A = LU, are LU factorizations.

SRS
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Theorem 2 If A is nonsingular and the LU factorization exists, then the LU factorization is
unique and det(A) = w11 - - - Upp.

Proof: Suppose both A = L,U; and A = LU, are LU factorizations. Since A is
nonsingular, L1, Uy, Lo, Uy are all nonsingular,
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Theorem 2 If A is nonsingular and the LU factorization exists, then the LU factorization is
unique and det(A) = w11 - - - Upp.

Proof: Suppose both A = L,U; and A = LU, are LU factorizations. Since A is
nonsingular, L1, Uy, Lo, Us are all nonsingular, and

A= LU, = LUy = L;'Ly = U,U; .
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Theorem 2 If A is nonsingular and the LU factorization exists, then the LU factorization is
unique and det(A) = w11 - - - Upp.

Proof: Suppose both A = L,U; and A = LU, are LU factorizations. Since A is
nonsingular, L1, Uy, Lo, Us are all nonsingular, and

A= LU, = LUy = L;'Ly = U,U; .

L1 and L+ are unit lower triangular
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Theorem 2 If A is nonsingular and the LU factorization exists, then the LU factorization is
unique and det(A) = w11 - - - Upp.

Proof: Suppose both A = L,U; and A = LU, are LU factorizations. Since A is
nonsingular, L1, Uy, Lo, Us are all nonsingular, and

A= LU, = LUy = L;'Ly = U,U; .

L1 and L+ are unit lower triangular = L2_1L1 is unit lower triangular
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Theorem 2 If A is nonsingular and the LU factorization exists, then the LU factorization is
unique and det(A) = w11 - - - Upp.

Proof: Suppose both A = L,U; and A = LU, are LU factorizations. Since A is
nonsingular, L1, Uy, Lo, Us are all nonsingular, and

A= LU, = LUy = L;'Ly = U,U; .

L1 and L+ are unit lower triangular = L2_1L1 is unit lower triangular

U, and Us are upper triangular

SN
Department of Mathematics — NTNU Tsung-Min Hwang October 5, 2003



Direct Methods for LS 33

Theorem 2 If A is nonsingular and the LU factorization exists, then the LU factorization is
unique and det(A) = w11 - - - Upp.

Proof: Suppose both A = L,U; and A = LU, are LU factorizations. Since A is
nonsingular, L1, Uy, Lo, Us are all nonsingular, and

A= LU, = LUy = L;'Ly = U,U; .

L1 and L+ are unit lower triangular = L2_1L1 is unit lower triangular

U, and U, are upper triangular = UgUl_1 is upper triangular
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Theorem 2 If A is nonsingular and the LU factorization exists, then the LU factorization is
unique and det(A) = w11 - - - Upp.

Proof: Suppose both A = L,U; and A = LU, are LU factorizations. Since A is
nonsingular, L1, Uy, Lo, Us are all nonsingular, and

A= LU, = LUy = L;'Ly = U,U; .

L1 and L+ are unit lower triangular = L2_1L1 is unit lower triangular

U, and U, are upper triangular = UgUl_1 is upper triangular
S LyYL =T =UU7 !
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Theorem 2 If A is nonsingular and the LU factorization exists, then the LU factorization is
unique and det(A) = w11 - - - Upp.

Proof: Suppose both A = L,U; and A = LU, are LU factorizations. Since A is
nonsingular, L1, Uy, Lo, Us are all nonsingular, and

A= LU, = LUy = L;'Ly = U,U; .

L1 and L+ are unit lower triangular = L2_1L1 is unit lower triangular
U, and U, are upper triangular = UgUl_1 is upper triangular
L'y =T=U,U; ' = L1 = Lyand U; = Uy H

EEESSSSS
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3 — Pivoting

‘ 3.1 — The Need for Pivoting I

Example. The algorithm would fail at the first step on

since the first pivot element is zero.

Department of Mathematics — NTNU
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‘ 3.1 — The Need for Pivoting I

Example. The algorithm would fail at the first step on

since the first pivot element is zero. But if we interchange the rows, the system

becomes trivial to solve.

0

Department of Mathematics — NTNU
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X1
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X1
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35

Example. The simple Gaussian elimination algorithm would produce relatively large error

on the system

where € < €.

Department of Mathematics — NTNU
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Example. The simple Gaussian elimination algorithm would produce relatively large error

on the system

e 1 I 1
— Y
1 1 T2 2
where € < &)y. Algorithm 3 would compute
€ 1 1 1 e 1 T1 1
1 — 1 — 1 - 1 |’
_0 1—g__332_ _z—g_ _O —g__$2_ _—g_

1

since in the computer, if € is small enough, 1 — = and 2 — % will be computed to be the

same as —%

T
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Example. The simple Gaussian elimination algorithm would produce relatively large error

on the system

e 1 I 1
— Y
1 1 T2 2
where € < &)y. Algorithm 3 would compute
€ 1 1 1 e 1 T1 1
1 — 1 — 1 - 1 |’
_0 1—g__332_ _z—g_ _O —g__$2_ _—g_

1

since in the computer, if € is small enough, 1 — = and 2 — % will be computed to be the

same as —%. Hence,

|
m |—=

1-1
— -

0.

Ty = =1 and x1 =

m |—=

T
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Example. The simple Gaussian elimination algorithm would produce relatively large error
on the system

e 1 I 1
— Y
1 1 T2 2
where € < &)y. Algorithm 3 would compute
€ 1 1 1 e 1 T1 1
1 — 1 — 1 - 1 |’
_0 1—g__332_ _z—g_ _O —g__$2_ _—g_

since in the computer, if € is small enough, 1 — % and 2 — % will be computed to be the
same as —%. Hence,

—1 1-1
Xy — 1 — 1 and r1 — = 0.
= _ o - - _ _
e 1 0 1 1
- #
1 1 1 1 2

Department of Mathematics — NTNU Tsung-Min Hwang October 5, 2003



Direct Methods for LS

But actually £1 = x2 = 1 would be a much better solution since
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But actually £1 = x2 = 1 would be a much better solution since
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Q
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But actually £1 = x2 = 1 would be a much better solution since

1+4+¢
2

Q

1
2

Direct Methods for LS

1 1 1 2 1 1 1 2

e 1 Lo 1

and

— ~1 and 1 =2—29~2—-1=1.
1 —¢
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But actually £1 = x2 = 1 would be a much better solution since

1+4+¢
2

Q

1
2

Direct Methods for LS

1 1 1 2 1 1 1 2

e 1 Lo 1

and
1 — 2¢
x p—
2 1l —¢

~]1 and 21 =2—29~2—1=1.
The strategy of interchange rows/columns as described above is called “pivoting”.
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‘ 3.2 — Partial Pivoting and Complete Pivoting I
(k)

If @, ,” is small in magnitude compared to a,gk), 1=k+1,...,n,

T
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‘ 3.2 — Partial Pivoting and Complete Pivoting I

If a( Vi Is small in magnitude compared to a( ) .1 =k-+1,...,n,then the multipliers
(k)

— " (k
alik)

Ui, =

T
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‘ 3.2 — Partial Pivoting and Complete Pivoting I

If a,(;? Is small in magnitude compared to a,fk), 1 =k —+1,...,n, then the multipliers

(k:)

— " (k
alik)

Ui, =

Roundoff introduced in computing

gfﬂ)— (k) — ¢, a,(w), r=k+1,...,n, 5=k+1,...,n,

will be large.

-
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‘ 3.2 — Partial Pivoting and Complete Pivoting I

If a,(;? Is small in magnitude compared to a,fk), 1 =k —+1,...,n, then the multipliers

(k:)

— " (k
alik)

Ui, =

Roundoff introduced in computing

gfﬂ)— (k) —/; a,(w), r=k+1,...,n, 5=k+1,...,n,

will be large. Also when performing the back substitution for

e (i )

j=k+1
(k)

any error in the numerator will be dramatically increased when dividing by a small @, ,”.
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‘ 3.2 — Partial Pivoting and Complete Pivoting I
(k)

If @, ,” is small in magnitude compared to a,fk), 1 =k —+1,...,n, then the multipliers
(k)

— " (k
al(ck)

Ui, =

Roundoff introduced in computing

gfﬂ)— (k) —/; a,(w), r=k+1,...,n, 5=k+1,...,n,

will be large. Also when performing the back substitution for

o (5o ) J

j=k+1
(k)

any error in the numerator will be dramatically increased when dividing by a small @, ,”.

To ensure that no large entries appear in the computed triangular factors, one can choose a

. k k
pivot element to be the largest entry among \aék) ..., |a, ( )\
| —
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Let /i, ..., P._1 be the permutations chosen and M, ... M;._; denote the Gaussian

transformations performed in the first k — 1 steps.

T
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Let /i, ..., P._1 be the permutations chosen and M, ... M;._; denote the Gaussian
transformations performed in the first K — 1 steps. At the k-th step, a permutation matrix /.
Is chosen so that

‘(}%vhlk—l_"'A4i}%%4>kk‘:: IﬂaXZ|(A4k_q_'°°ﬂ4i}%¢4)ﬂﬂ.

kE<i<n
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Let /i, ..., P._1 be the permutations chosen and M, ... M;._; denote the Gaussian
transformations performed in the first K — 1 steps. At the k-th step, a permutation matrix /.

IS chosen so that

|(PxMpg—1--- M1 P1A)ki| = Joax |(My—1--- M1 P1A)l.

This row interchange strategy is called partial pivoting.

-
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Direct Methods for LS 38

Let /i, ..., P._1 be the permutations chosen and M, ... M;._; denote the Gaussian
transformations performed in the first K — 1 steps. At the k-th step, a permutation matrix /.
Is chosen so that

‘(}%ﬂﬂfk_q_°°'A4i}%/4>kk‘:: IﬂaXZ|(A4k_q_'°°ﬂ4i}%¢4)ﬂﬂ.

kE<i<n

This row interchange strategy is called partial pivoting. As a consequence, Eij\ < 1 for

i=1,....nj=1,....i

-
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Let /i, ..., P._1 be the permutations chosen and M, ... M;._; denote the Gaussian
transformations performed in the first K — 1 steps. At the k-th step, a permutation matrix /.

IS chosen so that

‘(PkMk—l . M1P1A>kk‘ = INax |(Mk_1 e MlplA)zk‘ .

k<i<n
This row interchange strategy is called partial pivoting. As a consequence, Eij\ < 1 for
1=1,...,n,7 =1,...,7. Upon completion, we obtain an upper triangular matrix
UEMn_lpn_l"'MlplA. (6)
T
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Let /i, ..., P._1 be the permutations chosen and M, ... M;._; denote the Gaussian
transformations performed in the first K — 1 steps. At the k-th step, a permutation matrix /.
Is chosen so that

‘(PkMk—l . M1P1A>kk‘ = INax |(Mk_1 e MlplA)zk‘ .

kE<i<n

E'L’j‘ S 1 for

1=1,...,n,7 =1,...,7. Upon completion, we obtain an upper triangular matrix

This row interchange strategy is called partial pivoting. As a consequence,

U= Mn—lpn—l Tt MlplA. (6)

Since any /7. is symmetric and Png — P,? =1,

T
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Let /i, ..., P._1 be the permutations chosen and M, ... M;._; denote the Gaussian
transformations performed in the first K — 1 steps. At the k-th step, a permutation matrix /.

IS chosen so that

‘(PkMk—l . M1P1A>kk‘ = INax |(Mk_1 e MlplA)zk‘ .

k<i<n
This row interchange strategy is called partial pivoting. As a consequence, Eij\ < 1 for
1=1,...,n,7 =1,...,7. Upon completion, we obtain an upper triangular matrix
UEMn_lpn_l"'MlplA. (6)

Since any /7. is symmetric and Png — P2 = I, we have

My 1Py1---MaPo M Py Py 1Py --- PoPLA=T,

T
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Let /i, ..., P._1 be the permutations chosen and M, ... M;._; denote the Gaussian
transformations performed in the first K — 1 steps. At the k-th step, a permutation matrix /.

IS chosen so that

‘(PkMk—l . M1P1A>kk‘ = INax |(Mk_1 e MlplA)zk‘ .

k<i<n
This row interchange strategy is called partial pivoting. As a consequence, Eij\ < 1 for
1=1,...,n,7 =1,...,7. Upon completion, we obtain an upper triangular matrix
UEMn_lpn_l"'MlplA. (6)

Since any /7. is symmetric and Png — P2 = I, we have
My 1Py1---MaPo M Py Py 1Py --- PoPLA=T,
therefore,

P, PIA=(Mp_1Py_1---MaPoM; P, - "Pn—l)_lU-

-
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[

In summary, Gaussian elimination with partial pivoting leads to the LU factorization

PA=LU, (7)
where
P=P, ---P,
IS a permutation matrix, and
L = (Mp_1Py_1---MyPyMiPy---P,_1)""

= P,1---PM'PM; P, M

B
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[

In summary, Gaussian elimination with partial pivoting leads to the LU factorization

PA=LU, (7)
where
P=P, ---P,
IS a permutation matrix, and
L = (Mp_1Py_1---MyPyMiPy---P,_1)""

= P,1---PM'PM; P, M
Since, for 2 < 7,
e;fFPj — ez-T, eTEj = 0,

1

Pil;i=|0 --- 0 &H,i e =/,

B
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[

In summary, Gaussian elimination with partial pivoting leads to the LU factorization

PA=LU, (7)
where
P=P, ---P,
IS a permutation matrix, and
L = (Mp_1Py_1---MyPyMiPy---P,_1)""

= P,1---PM'PM; P, M
Since, for 2 < 7,
e;fFPj — ez-T, effj =0,

Pili=1|0 -+ 0 fix1i - Lna = {;,

PoM{YPy = Py(I + £1€T)Py = T + 41€T

- I
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PMi PoMy = (14 brel)(I + boey) = T + Luef + fae

B
Department of Mathematics — NTNU Tsung-Min Hwang October 5, 2003



Direct Methods for LS 40

PMi PoMy = (14 brel)(I + boey) = T + Luef + fae

P3 (P,M'PoMyY) Py =14 frel + fgel

B
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_.
PoMi ' PoMy ™t = (I + el )T+ ae5) = T+ dre] + loeg,
_
Py (PM{ P, My ) Py = I+ brel + fael
.o

Therefore, L is unit lower triangular.

B
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_.
PoMi ' PoMy ™t = (I + el )T+ ae5) = T+ dre] + loeg,
_
P3 (PoM[ ' PoMy ) Py =T+ £1el + foed
.o

Therefore, L is unit lower triangular.

Algorithm 5 [LU -factorization with Partial Pivoting]

B
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=
Po M PoMy "t = (14 bre] )(I +led) =1+ bref + lae],
N
Ps (P2M1_1P2M2_1) Py =1+ 01T + 0yel
...

Therefore, L is unit lower triangular.

Algorithm 5 [LU -factorization with Partial Pivoting] Given a nonsingular square matrix

A e R™ "™ this algorithm finds an appropriate permutation matrix £,

B
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=
Po M PoMy "t = (14 bre] )(I +led) =1+ bref + lae],
N
Py (PM;'PoMy ) Py =1+ lrel + 0yel
...

Therefore, L is unit lower triangular.

Algorithm 5 [LU -factorization with Partial Pivoting] Given a nonsingular square matrix

A e R™™ "™ this algorithm finds an appropriate permutation matrix /2, and computes a unit
lower triangular matrix L

B
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=
Po M PoMy "t = (14 bre] )(I +led) =1+ bref + lae],
N
Ps (P2M1_1P2M2_1) Py =1+ 01T + 0yel
...

Therefore, L is unit lower triangular.

Algorithm 5 [LU -factorization with Partial Pivoting] Given a nonsingular square matrix
A e R™™ "™ this algorithm finds an appropriate permutation matrix /2, and computes a unit

lower triangular matrix L and an upper triangular matrix {J

T
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=
Po M PoMy "t = (14 bre] )(I +led) =1+ bref + lae],
N
Ps (P2M1_1P2M2_1) Py =1+ 01T + 0yel
...

Therefore, L is unit lower triangular.

Algorithm 5 [LU -factorization with Partial Pivoting] Given a nonsingular square matrix
A e R™™ "™ this algorithm finds an appropriate permutation matrix /2, and computes a unit

lower triangular matrix . and an upper triangular matrix U such that PA = LU.
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=
Po M PoMy "t = (14 bre] )(I +led) =1+ bref + lae],
N
Py (PM;'PoMy ) Py =1+ lrel + 0yel
...

Therefore, L is unit lower triangular.

Algorithm 5 [LU -factorization with Partial Pivoting] Given a nonsingular square matrix
A e R™™ "™ this algorithm finds an appropriate permutation matrix /2, and computes a unit

lower triangular matrix /. and an upper triangular matrix [/ such that P A = LU. The
matrix A is overwritten by L and U,

B
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=
Po M PoMy "t = (14 bre] )(I +led) =1+ bref + lae],
N
Py (PM;'PoMy ) Py =1+ lrel + 0yel
...

Therefore, L is unit lower triangular.

Algorithm 5 [L U -factorization with Partial Pivoting] Given a nonsingular square matrix
A e R™™ "™ this algorithm finds an appropriate permutation matrix /2, and computes a unit
lower triangular matrix /. and an upper triangular matrix [/ such that P A = LU. The

matrix A is overwritten by L and U, and the matrix P is not formed.

-
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=
Po M PoMy "t = (14 bre] )(I +led) =1+ bref + lae],
N
Py (PM;'PoMy ) Py =1+ lrel + 0yel
...

Therefore, L is unit lower triangular.

Algorithm 5 [L U -factorization with Partial Pivoting] Given a nonsingular square matrix

A e R™™ "™ this algorithm finds an appropriate permutation matrix /2, and computes a unit
lower triangular matrix /. and an upper triangular matrix [/ such that P A = LU. The
matrix A is overwritten by L and U, and the matrix P is not formed. An integer array p is

instead used for storing the row/column indices.
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p(l:n)=1:n

B
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p(l:n)=1:n
Fork=1,...,n—1

End For
B
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p(l:n)=1:n
Fork=1,....n—1
m =k

Fori=k+1,...,n

End For

End For
B
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p(l:n)=1:n
Fork=1,...,n—1
m =k
Fori=k+1,...,n
it |[A(p(m), k)| < |A(p(i), k)|, thenm =i
End For

End For
B
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Direct Methods for LS 41

p(l:n)=1:n
Fork=1,...,n—1
m =k
Fori=k+1,...,n
it |[A(p(m), k)| < |A(p(i), k)|, thenm =i
End For
¢ = p(k); p(k) = p(m); p(m) = ¢

End For
B

Department of Mathematics — NTNU Tsung-Min Hwang October 5, 2003
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p(l:n)=1:n
Fork=1,...,n—1
m =k
Fori=k+1,...,n
it |[A(p(m), k)| < |A(p(i), k)|, thenm =i
End For
¢ = p(k); p(k) = p(m); p(m) = ¢
Fori=k+1,...,n

End For

End For
B
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p(l:n)=1:n
Fork=1,....n—1
m==k
Fori=k+1,...,n
it |[A(p(m), k)| < |A(p(i), k)|, thenm =i
End For
¢ = p(k); p(k) = p(m); p(m) = ¢
Fortr=k+1,....n
A(p(i), k) = A(p(3), k) /A(p(k), k)

End For

End For
B
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p(l:n)=1:n
Fork=1,...,n—1
m =k
Fori=k+1,...,n
it |[A(p(m), k)| < |A(p(i), k)|, thenm =i
End For
¢ = p(k); p(k) = p(m); p(m) = ¢
Fori=k+1,...,n
A(p(i), k) = A(p(3), k) /A(p(k), k)
For=k+1,....n

End For
End For

End For
B
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p(l:n)=1:n
Fork=1,...,n—1
m =k
Fori=k+1,...,n
it |[A(p(m), k)| < |A(p(i), k)|, thenm =i
End For
¢ = p(k); p(k) = p(m); p(m) = ¢
Fori=k+1,...,n
A(p(i), k) = A(p(3), k) /A(p(k), k)
For=k+1,....n
A(p(i),7) = Alp(i),7) — Ap(i), k) A(p(k), j)
End For
End For

End For
B
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Since the Gaussian elimination with partial pivoting produces the factorization (7), the linear

system problem should comply accordingly

Ar = b= PAx = Pb — LUx = Pb.

I
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Since the Gaussian elimination with partial pivoting produces the factorization (7), the linear

system problem should comply accordingly

Ar = b= PAx = Pb — LUx = Pb.

While in the partial pivoting algorithm, the k-th pivot is determined by scanning the current
k-th subcolumn A% (k= n, k),

-
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Since the Gaussian elimination with partial pivoting produces the factorization (7), the linear

system problem should comply accordingly

Ar = b= PAx = Pb — LUx = Pb.

While in the partial pivoting algorithm, the k-th pivot is determined by scanning the current
k-th subcolumn A (%) (k i n, k) another pivoting strategy called complete pivoting

searches for the largest entry in magnitude in the current submatrix A(k)(k n, ko n)
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Since the Gaussian elimination with partial pivoting produces the factorization (7), the linear

system problem should comply accordingly

Ar = b= PAx = Pb — LUx = Pb.

While in the partial pivoting algorithm, the k-th pivot is determined by scanning the current
k-th subcolumn A (%) (k i n, k) another pivoting strategy called complete pivoting
searches for the largest entry in magnitude in the current submatrix A (k : n, k : n) and
permutes to the (k, k) position.

.
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Since the Gaussian elimination with partial pivoting produces the factorization (7), the linear

system problem should comply accordingly

Ar = b= PAx = Pb — LUx = Pb.

While in the partial pivoting algorithm, the k-th pivot is determined by scanning the current
k-th subcolumn A (%) (k i n, k) another pivoting strategy called complete pivoting
searches for the largest entry in magnitude in the current submatrix A (k : n, k : n) and
permutes to the (k, k) position. That is, at the k-th step two permutation matrices ;. and

(). are determined

.
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Since the Gaussian elimination with partial pivoting produces the factorization (7), the linear

system problem should comply accordingly

Ar = b= PAx = Pb — LUx = Pb.

While in the partial pivoting algorithm, the k-th pivot is determined by scanning the current
k-th subcolumn A (%) (k i n, k) another pivoting strategy called complete pivoting
searches for the largest entry in magnitude in the current submatrix A(k)(k n, ko n) and
permutes to the (k, k) position. That is, at the k-th step two permutation matrices ;. and
(). are determined so that

(PkA(k)Qk)kk‘ = max

k<i,j<n

A s

-
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Since the Gaussian elimination with partial pivoting produces the factorization (7), the linear

system problem should comply accordingly

Ar = b= PAx = Pb — LUx = Pb.

While in the partial pivoting algorithm, the k-th pivot is determined by scanning the current
k-th subcolumn A (%) (k i n, k) another pivoting strategy called complete pivoting
searches for the largest entry in magnitude in the current submatrix A(k)(k n, ko n) and
permutes to the (k, k) position. That is, at the k-th step two permutation matrices ;. and
(). are determined so that

(PkA(k)Qk)kk‘ = max

k<i,j<n

A s

Gaussian elimination with complete pivoting leads to the LU factorization

PAQ = LU, (8)
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Since the Gaussian elimination with partial pivoting produces the factorization (7), the linear

system problem should comply accordingly

Ar = b= PAx = Pb — LUx = Pb.

While in the partial pivoting algorithm, the k-th pivot is determined by scanning the current
k-th subcolumn A (%) (k i n, k) another pivoting strategy called complete pivoting
searches for the largest entry in magnitude in the current submatrix A(k)(k n, ko n) and
permutes to the (k, k) position. That is, at the k-th step two permutation matrices ;. and
(). are determined so that

(k) ‘ _
(PeAY™ Q) ik kgl?gn

A s

Gaussian elimination with complete pivoting leads to the LU factorization
PAQ = LU, (8)

where P, () are permutation matrices, L is unit lower triangular, and U is upper triangular.

42
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4 — Some Special Linear Systems

‘4.1 — Symmetric Positive Definite System and Cholesky Factorization I

An 1. X n matrix A is positive definite
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4 — Some Special Linear Systems

‘4.1 — Symmetric Positive Definite System and Cholesky Factorization I

An . X m matrix A is positive definite if 27 Az > 0, for all z € R™, 2z # 0.
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4 — Some Special Linear Systems

‘4.1 — Symmetric Positive Definite System and Cholesky Factorization I

An . X m matrix A is positive definite if 27 Az > 0, forall z € R"™, = # 0. If A is both

symmetric and positive definite (spd),
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4 — Some Special Linear Systems

‘4.1 — Symmetric Positive Definite System and Cholesky Factorization I

An 7. X 1 matrix A is positive definite if 2 Az > 0, forall z € R™, 2 # 0. If A is both
symmetric and positive definite (spd), then we can derive a stable LU factorization called

the Choleseky factorization.
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4 — Some Special Linear Systems

‘4.1 — Symmetric Positive Definite System and Cholesky Factorization I

An 7. X 1 matrix A is positive definite if 2 Az > 0, forall z € R™, 2 # 0. If A is both
symmetric and positive definite (spd), then we can derive a stable LU factorization called

the Choleseky factorization.

Lemmal If A € R™*"™ is positive definite, then A is nonsingular and a;; > 0 for

1=1,...,n.
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4 — Some Special Linear Systems

‘4.1 — Symmetric Positive Definite System and Cholesky Factorization I

An 7. X 1 matrix A is positive definite if 2 Az > 0, forall z € R™, 2 # 0. If A is both
symmetric and positive definite (spd), then we can derive a stable LU factorization called

the Choleseky factorization.

Lemmal If A € R™*"™ is positive definite, then A is nonsingular and a;; > 0 for

1=1,...,n.

Proof: Suppose A is singular.
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4 — Some Special Linear Systems

‘4.1 — Symmetric Positive Definite System and Cholesky Factorization I

An 7. X 1 matrix A is positive definite if 2 Az > 0, forall z € R™, 2 # 0. If A is both
symmetric and positive definite (spd), then we can derive a stable LU factorization called

the Choleseky factorization.

Lemmal If A € R™*"™ is positive definite, then A is nonsingular and a;; > 0 for

1=1,...,n.

Proof: Suppose A is singular.
= da € R" and  # 0 such that Ax = 0.
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4 — Some Special Linear Systems

‘4.1 — Symmetric Positive Definite System and Cholesky Factorization I

An 7. X 1 matrix A is positive definite if 2 Az > 0, forall z € R™, 2 # 0. If A is both
symmetric and positive definite (spd), then we can derive a stable LU factorization called

the Choleseky factorization.

Lemmal If A € R™*"™ is positive definite, then A is nonsingular and a;; > 0 for

1=1,...,n.

Proof: Suppose A is singular.
= da € R" and  # 0 such that Ax = 0.
= 21 Ax = 0, which contradicts the fact that A is positive definite.
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4 — Some Special Linear Systems

‘4.1 — Symmetric Positive Definite System and Cholesky Factorization I

An 7. X 1 matrix A is positive definite if 2 Az > 0, forall z € R™, 2 # 0. If A is both
symmetric and positive definite (spd), then we can derive a stable LU factorization called

the Choleseky factorization.

Lemmal If A € R™*"™ is positive definite, then A is nonsingular and a;; > 0 for

1=1,...,n.

Proof: Suppose A is singular.
= da € R" and  # 0 such that Ax = 0.
= 21 Ax = 0, which contradicts the fact that A is positive definite.

= A is nonsingular.
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Since A is positive definite,
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Since A is positive definite,

Qi = 6?1462' > 0,

where €; is the ¢-th column of the n X n identify matrix. N

Department of Mathematics — NTNU Tsung-Min Hwang October 5, 2003



Direct Methods for LS 44

Since A is positive definite,
Qi = 6?1462' > O,

where €; is the ¢-th column of the n X n identify matrix. N

Lemma 2 If A € R™*" is positive definite, then all leading principal submatrices of A are

nonsingular.
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Since A is positive definite,
Qi = 6?1462' > O,

where €; is the ¢-th column of the n X n identify matrix. N

Lemma 2 If A € R™*" is positive definite, then all leading principal submatrices of A are
nonsingular.

Proof: For 1 < k < n, let
T k T
Zk:[.flfl,...,$k] c R™ and x:[ajl,...,wk,O,...,O] e R",

where x1, ..., x; € R are not all zero.
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Since A is positive definite,
Qi = 6?1462' > O,

where €; is the ¢-th column of the n X n identify matrix. N

Lemma 2 If A € R™*" is positive definite, then all leading principal submatrices of A are
nonsingular.

Proof: For 1 < k < n, let
T k T
Zk:[.flfl,...,$k] c R™ and x:[ajl,...,wk,O,...,O] e R",

where 1, ..., x; € R are not all zero. Since A is positive definite,
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Since A is positive definite,

Qi = 6?1462' > 0,
where €; is the ¢-th column of the n X n identify matrix. N

Lemma 2 If A € R™*" is positive definite, then all leading principal submatrices of A are

nonsingular.

Proof: For 1 < k < n, let
2 =lx1,...,26)7 €R® and z = [x1,...,2,0,...,0/T € R",
where 1, ..., x; € R are not all zero. Since A is positive definite,
z,zAkzk — 21 Az > 0,

where Ay, is the k X k leading principal submatrix of A.
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Since A is positive definite,
Qi = 6?1462' > O,

where €; is the ¢-th column of the n X n identify matrix. N

Lemma 2 If A € R™*" is positive definite, then all leading principal submatrices of A are

nonsingular.

Proof: For 1 < k < n, let
2 =lx1,...,26)7 €R® and z = [x1,...,2,0,...,0/T € R",
where 1, ..., x; € R are not all zero. Since A is positive definite,
z,zAkzk — 21 Az > 0,

where A is the k X k leading principal submatrix of A. This shows that A, are also

positive definite, hence A, are nonsingular. B
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Theorem 3 If A € R"™*"™ is symmetric positive definite, then there a lower

triangular matrix G € IR™ " with positive diagonal entries such that A has the factorization

A= GG". 9)
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Theorem 3 If A € R"™*"™ is symmetric positive definite, then there a lower

triangular matrix G € IR™ " with positive diagonal entries such that A has the factorization

A= GG". 9)

Proof: A is positive definite
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Theorem 3 If A € R™*"™ is symmetric positive definite, then there a lower

triangular matrix G € IR™ " with positive diagonal entries such that A has the factorization

A= GG". 9)

Proof: A is positive definite

—> all leading principal submatrices of A are nonsingular (from Lemma 2)
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triangular matrix G € IR™ " with positive diagonal entries such that A has the factorization

A= GG". 9)

Proof: A is positive definite
—> all leading principal submatrices of A are nonsingular (from Lemma 2)
— A has the LU factorization A = LU, where L is unit lower triangular and U is upper

triangular.
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triangular matrix G € IR™ " with positive diagonal entries such that A has the factorization

A= GG". 9)

Proof: A is positive definite

—> all leading principal submatrices of A are nonsingular (from Lemma 2)

— A has the LU factorization A = LU, where L is unit lower triangular and U is upper
triangular.

Since A is symmetric,
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Theorem 3 If A € R™*"™ is symmetric positive definite, then there a lower

triangular matrix G € IR™ " with positive diagonal entries such that A has the factorization

A= GG". 9)

Proof: A is positive definite

—> all leading principal submatrices of A are nonsingular (from Lemma 2)

— A has the LU factorization A = LU, where L is unit lower triangular and U is upper
triangular.

Since A is symmetric,

LU=A=AT =UTLT
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Theorem 3 If A € R™*"™ is symmetric positive definite, then there a lower

triangular matrix G € IR™ " with positive diagonal entries such that A has the factorization

A= GG". 9)

Proof: A is positive definite

—> all leading principal submatrices of A are nonsingular (from Lemma 2)

— A has the LU factorization A = LU, where L is unit lower triangular and U is upper
triangular.

Since A is symmetric,

LU=A=A"=U'"L"Y = vu@H)'=L"1U"
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Theorem 3 If A € R"*"™ is symmetric positive definite, then there a lower

triangular matrix G € IR™ " with positive diagonal entries such that A has the factorization

A= GG". 9)

Proof: A is positive definite

—> all leading principal submatrices of A are nonsingular (from Lemma 2)

— A has the LU factorization A = LU, where L is unit lower triangular and U is upper
triangular.

Since A is symmetric,
LU=A=A"=U'"L"Y = vu@H)'=L"1U"

U(LT)_1 is upper triangular and L~1U™" is lower triangular
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Theorem 3 If A € R"*"™ is symmetric positive definite, then there a lower

triangular matrix G € IR™ " with positive diagonal entries such that A has the factorization

A= GG". 9)

Proof: A is positive definite

—> all leading principal submatrices of A are nonsingular (from Lemma 2)

— A has the LU factorization A = LU, where L is unit lower triangular and U is upper
triangular.

Since A is symmetric,
LU=A=A"=U'"L"Y = vu@H)'=L"1U"

U(LT)_1 is upper triangular and L~1U™" is lower triangular
= U(L*) ™! to be a diagonal matrix, say, U (L1)~! = D.
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Theorem 3 If A € R"*"™ is symmetric positive definite, then there a lower

triangular matrix G € IR™ " with positive diagonal entries such that A has the factorization

A= GG". 9)

Proof: A is positive definite

—> all leading principal submatrices of A are nonsingular (from Lemma 2)

— A has the LU factorization A = LU, where L is unit lower triangular and U is upper
triangular.

Since A is symmetric,
LU=A=A"=U'"L"Y = vu@H)'=L"1U"

U(LT)_1 is upper triangular and L~1U™" is lower triangular
= U(L*) ™! to be a diagonal matrix, say, U (L1)~! = D.
= U = DL". Hence

A=LDL".
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Since A is positive definite,
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Since A is positive definite,

' Az > 0
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Since A is positive definite,

t'Ar >0 = 2'LDL"z=(L'2)'D(L"z) > 0.
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Since A is positive definite,
t'Ar >0 = 2'LDL"z=(L'2)'D(L"z) > 0.

This means D is also positive definite,
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Since A is positive definite,
t'Ar >0 = 2'LDL"z=(L'2)'D(L"z) > 0.

This means D is also positive definite, and hence d;; > 0.

Department of Mathematics — NTNU Tsung-Min Hwang October 5, 2003



Direct Methods for LS 46
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t'Ar >0 = 2'LDL"z=(L'2)'D(L"z) > 0.

This means D is also positive definite, and hence d;; > 0. Thus D/2 is well-defined
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Since A is positive definite,
t'Ar >0 = 2'LDL"z=(L'2)'D(L"z) > 0.

This means D is also positive definite, and hence d;; > 0. Thus D/2 is well-defined and

we have

A=LDLT = LDY2D'Y?2 [T = GGT,
where G = LD1/2,
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Since A is positive definite,
t'Ar >0 = 2'LDL"z=(L'2)'D(L"z) > 0.

This means D is also positive definite, and hence d;; > 0. Thus D/2 is well-defined and

we have

A=LDLT = LD'?D'?[T = GGT,

where G = LD'/2. Since the LU factorization is unique,
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t'Ar >0 = 2'LDL"z=(L'2)'D(L"z) > 0.

This means D is also positive definite, and hence d;; > 0. Thus D/2 is well-defined and

we have

A=LDLT = LD'?D'?[T = GGT,

where G = LD'2. Since the LU factorization is unique, G is unique. |
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Since A is positive definite,
t'Ar >0 = 2'LDL"z=(L'2)'D(L"z) > 0.

This means D is also positive definite, and hence d;; > 0. Thus D/2 is well-defined and

we have

A=LDLT = LD'?D'?[T = GGT,
where G = LD'2. Since the LU factorization is unique, G is unique. |

The factorization (9) is referred to as the Cholesky factorization.
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Since A is positive definite,
t'Ar >0 = 2'LDL"z=(L'2)'D(L"z) > 0.

This means D is also positive definite, and hence d;; > 0. Thus D/2 is well-defined and

we have

A=LDLT = LD'Y?2DY?2LT = GGT,
where G = LD'2. Since the LU factorization is unique, G is unique. |
The factorization (9) is referred to as the Cholesky factorization.

Derive an algorithm for computing the Cholesky factorization:
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Since A is positive definite,
t'Ar >0 = 2'LDL"z=(L'2)'D(L"z) > 0.

This means D is also positive definite, and hence d;; > 0. Thus D/2 is well-defined and

we have

A=LDLT = LD'Y?2DY?2LT = GGT,
where G = LD'2. Since the LU factorization is unique, G is unique. |
The factorization (9) is referred to as the Cholesky factorization.

Derive an algorithm for computing the Cholesky factorization:

Assume the first £ — 1 columns of (G have been determined after £k — 1 steps.
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Since A is positive definite,
t'Ar >0 = 2'LDL"z=(L'2)'D(L"z) > 0.

This means D is also positive definite, and hence d;; > 0. Thus D/2 is well-defined and

we have

A=LDLT = LD'Y?2DY?2LT = GGT,
where G = LD'2. Since the LU factorization is unique, G is unique. |
The factorization (9) is referred to as the Cholesky factorization.

Derive an algorithm for computing the Cholesky factorization:
Assume the first £ — 1 columns of (G have been determined after K — 1 steps. By

componentwise comparison with equation (9),
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Since A is positive definite,
t'Ar >0 = 2'LDL"z=(L'2)'D(L"z) > 0.

This means D is also positive definite, and hence d;; > 0. Thus D/2 is well-defined and

we have

A=LDLT = LD'Y?2DY?2LT = GGT,
where G = LD'2. Since the LU factorization is unique, G is unique. |
The factorization (9) is referred to as the Cholesky factorization.

Derive an algorithm for computing the Cholesky factorization:
Assume the first £ — 1 columns of (G have been determined after K — 1 steps. By

componentwise comparison with equation (9), one has

k
- 2
Akl = E R
j=
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which gives

k—1
2 2
Ik = Akk — Z Ikj- (10)
j=1

Department of Mathematics — NTNU Tsung-Min Hwang October 5, 2003



Direct Methods for LS 47

which gives

kE—1

2 2
Ik = Akk — Z Ikj- (10)

Jg=1

Moreover,
k
azk:Zgijgkja Z:k+17 ) 10,
j=1
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which gives

k—1

2 2
Ik = Akk — Z Ikj- (10)

J=1

Moreover,
k
azk:nggkja i:k+17'°°7n7
j=1

hence the k-th column of GG can be computed by

k-1
Gik = aik—zgijgkj /gkk, t=k+1,...,n. (11)
j=1
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Algorithm 6 (Cholesky Factorization) Given an . X 1 symmetric positive definite matrix
A, this algorithm computes the Cholesky factorization 4 = GG
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Algorithm 6 (Cholesky Factorization) Given an . X 1 symmetric positive definite matrix
A, this algorithm computes the Cholesky factorization 4 = GG

Initialize G = 0
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Algorithm 6 (Cholesky Factorization) Given an . X 1 symmetric positive definite matrix
A, this algorithm computes the Cholesky factorization 4 = GG

Initialize G = 0

Fork=1,...,n

End For
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Algorithm 6 (Cholesky Factorization) Given an . X 1 symmetric positive definite matrix
A, this algorithm computes the Cholesky factorization 4 = GG

Initialize G = 0

Fork=1,...,n
Gk k) = \JA(k, k) — 521 G(k, )Gk, )

End For
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Algorithm 6 (Cholesky Factorization) Given an . X 1 symmetric positive definite matrix
A, this algorithm computes the Cholesky factorization 4 = GG

Initialize G = 0
Fork=1,...,n

Gk, k) = /A(k, k) — X5 G(k, )G (k. )
Fortr=k+1,....n

End For

End For
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Algorithm 6 (Cholesky Factorization) Given an . X 1 symmetric positive definite matrix
A, this algorithm computes the Cholesky factorization 4 = GG

Initialize G = 0

Fork=1,...,n

Fortr=k+1,....n
G(i.k) = (AGR) ~ S GG D) /Gl
End For

End For
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Algorithm 6 (Cholesky Factorization) Given an . X 1 symmetric positive definite matrix
A, this algorithm computes the Cholesky factorization 4 = GG

Initialize G = 0

Fork=1,...,n

Fortr=k+1,....n
G(i.k) = (AGR) ~ S GG D) /Gl
End For

End For

In addition to 7 square root operations, there are approximately

n

1 1
Z[Qk—l—l—Qk(n—k)] —= §n3+n2— 3"
k=1

floating-point arithmetic required by the algorithm.
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‘ 4.2 — Diagonally Dominant Systems I

Definition 2 A matrix A € R"™*" is said to be strictly diagonally dominant
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‘ 4.2 — Diagonally Dominant Systems I

Definition 2 A matrix A € R"*" is said to be strictly diagonally dominant if

mn
agil > > agl-

J=1,5%#i

Department of Mathematics — NTNU Tsung-Min Hwang October 5, 2003



Direct Methods for LS 49

‘ 4.2 — Diagonally Dominant Systems I

Definition 2 A matrix A € R"*" is said to be strictly diagonally dominant if

mn
agil > > agl-

j=1,5#i

Lemma 3 If A € R™™"™ is strictly diagonally dominant, then A is nonsingular.
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‘ 4.2 — Diagonally Dominant Systems I

Definition 2 A matrix A € R"*" is said to be strictly diagonally dominant if

mn
agil > > agl-

j=1,5#i

Lemma 3 If A € R™™"™ is strictly diagonally dominant, then A is nonsingular.

Proof: Suppose A is singular.
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‘ 4.2 — Diagonally Dominant Systems I

Definition 2 A matrix A € R"*" is said to be strictly diagonally dominant if

mn
agil > > agl-

j=1,5#i

Lemma 3 If A € R™™"™ is strictly diagonally dominant, then A is nonsingular.

Proof: Suppose A is singular. Then there exists x € R", x # 0 such that Az = 0.
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‘ 4.2 — Diagonally Dominant Systems I

Definition 2 A matrix A € R"*" is said to be strictly diagonally dominant if

mn
agil > > agl-

J=1,5%#i

Lemma 3 If A € R™™"™ is strictly diagonally dominant, then A is nonsingular.

Proof: Suppose A is singular. Then there exists © € R", x # 0 such that Az = 0. Let k
be the integer index such that

|4

lzx| = max |x;| = <1, Vx| # |z

1<i<n |z
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‘ 4.2 — Diagonally Dominant Systems I

Definition 2 A matrix A € R"*" is said to be strictly diagonally dominant if

mn
agil > > agl-

J=1,5%#i

Lemma 3 If A € R™™"™ is strictly diagonally dominant, then A is nonsingular.

Proof: Suppose A is singular. Then there exists © € R", x # 0 such that Az = 0. Let k
be the integer index such that

|4

lzx| = max |x;| = <1, Vx| # |z

1<i<n |z

Since Ax = 0, for the fixed £,
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‘ 4.2 — Diagonally Dominant Systems I

Definition 2 A matrix A € R"*" is said to be strictly diagonally dominant if

mn
agil > > agl-

J=1,5%#i

Lemma 3 If A € R™™"™ is strictly diagonally dominant, then A is nonsingular.

Proof: Suppose A is singular. Then there exists © € R", x # 0 such that Az = 0. Let k
be the integer index such that

x| = max |z;] = i <1, V|x;| # |zk|
1<i<n ‘lek|
Since Ax = 0, for the fixed k, we have
n mn n
D arm; =0 = amme =— > argw; = lawkllzel <D awg|lml,
j=1 i=1,j#k j=1,5#k
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which implies

IfL‘\
kx| < Z |a]| < Z | ag; |-

j=1,7#k j=1,3#k
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which implies

|5
akk| < Z |ak; |—‘7< Z | ag; |-

j=1,7#k j=1,3#k

But this contradicts the assumption that A is diagonally dominant.
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which implies
Ix \
171
kx| < Z |a]| < Z | ag; |-
J=1,j#k J=1,7#k
But this contradicts the assumption that A is diagonally dominant. Therefore A must be

nonsingular. B
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which implies
|5
akk| < Z |ak; |—‘7< Z | ag; |-
J=1,j#k J=1,j#k

But this contradicts the assumption that A is diagonally dominant. Therefore A must be

nonsingular. B

Theorem 4 Gaussian elimination without pivoting preserve the diagonal dominance of a

matrix.
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which implies

IfL‘\
kx| < Z |a]| < Z | ag; |-

J=1,j#k J=1,7#k
But this contradicts the assumption that A is diagonally dominant. Therefore A must be

nonsingular. B

Theorem 4 Gaussian elimination without pivoting preserve the diagonal dominance of a

matrix.

Proof: Let A € R™*™ be a diagonally dominant matrix and A(?) = [a; (2 )] is the result of

applying one step of Gaussian elimination to A = A without any pivoting strategy.
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which implies
Ix \
171
kx| < Z |a]| < Z | ag; |-
J=1,j#k J=1,7#k
But this contradicts the assumption that A is diagonally dominant. Therefore A must be

nonsingular. B

Theorem 4 Gaussian elimination without pivoting preserve the diagonal dominance of a

matrix.

Proof: Let A € R™*™ be a diagonally dominant matrix and A(?) = [a; (2 )] is the result of

applying one step of Gaussian elimination to A = A without any pivoting strategy.

After one step of Gaussian elimination, a,( ) — = 0for?2 = 2,...,n, and the first row is

unchanged.

Department of Mathematics — NTNU Tsung-Min Hwang October 5, 2003



Direct Methods for LS 50

which implies

IfL‘\
kx| < Z |a]| < Z | ag; |-

J=1,j#k J=1,7#k
But this contradicts the assumption that A is diagonally dominant. Therefore A must be

nonsingular. B

Theorem 4 Gaussian elimination without pivoting preserve the diagonal dominance of a

matrix.

Proof: Let A € R™*™ be a diagonally dominant matrix and A(?) = [a; (2 )] is the result of

applying one step of Gaussian elimination to A = A without any pivoting strategy.

After one step of Gaussian elimination, a,( ) — = 0for?2 = 2,...,n, and the first row is

unchanged. Therefore, the property

2 2
ary > lay3)
j=2
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IS preserved,
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Is preserved, and all we need to show is that

al?) > Z P, for i=2,...,n.

J=2,j#1
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Is preserved, and all we need to show is that

al?) > Z P, for i=2,...,n.

J=2,j#1

Using the Gaussian elimination formula (4), we have
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Is preserved, and all we need to show is that

al?) > Z P, for i=2,...,n.

J=2,j#1

Using the Gaussian elimination formula (4), we have

al?]
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Is preserved, and all we need to show is that

al?) > Z P, for i=2,...,n.

J=2,j#1

Using the Gaussian elimination formula (4), we have

(1)
d@] = g - %L
A (1) 12

aqq
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Is preserved, and all we need to show is that

@5 S 1?2,

J=2,j#1

Using the Gaussian elimination formula (4), we have

(1)
a a;
a (2)| — S) (1>CL§,1L) Aip — < a1
all 11
a
> |azz‘ | Zl| ‘a’11|
|11
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Is preserved, and all we need to show is that

al?) > Z P, for i=2,...,n.

J=2,j#1

Using the Gaussian elimination formula (4), we have

(1)
a a;
et N | N P
a1 a11
a
> Jag| — 19l
la11]
a.
— Jass] — o]+ it | — 1% gy
a1
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Is preserved, and all we need to show is that

al?) > Z P, for i=2,...,n.

J=2,j#1

Using the Gaussian elimination formula (4), we have

(1)
a a;
0@ ) [ P P
ayq a11
a
> Jas| — 1% g
a1
0
= |ag| — |aa| + |an| — ] a1l
a1
a
aal = ol + (22 (| ~ )
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Is preserved, and all we need to show is that

al?) > Z P, for i=2,...,n.

J=2,j#1

Using the Gaussian elimination formula (4), we have

(1)
2 1 a 1 a1
o) 0y — o | = |as = o
11
a
> |azz‘ | Zl| ‘a’11|
|a11]
.
= Jag| — |as| + |a;| — a1 |a1;]
|
CL11\
0
—  Jaua] — Lol - 22 (g Jans])
11|
> Z ja;| + |aﬂ‘ Z a1l
j=2,j#i M =2 gt
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n
2 |a1]
o] > ) Jagl+ Z i
Jj=2,j#1 Jj= 2,3#1
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n

2 |a 1
)] > > agl+ §j i
J=2,5#1 Jj= 2,3#1
- a;1
> E a; ay;

a
j=2,j H
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- Ia |
2 1
ol > Y agl+ Z i
J=2,j#1 Jj= 2,3#1
& Q51
> Z Clz'j—a a1
j=2,j H
mn
- > W
j=2,j#
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n

2 |a 1
ol > > agl+ Z i
J=2,5#1 Jj= 2,3#1

mn

> Z afij_zﬂalj
j=2,j#i H
mn

- Y
j=2,j7i

Thus A(2) s still diagonally dominant.
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n

2 |a 1’
ol > > ayl+ Z i
J=2,5#1 Jj= 2,3#1

mn

> Z ; ZZlCLU
j=2,j#i H
mn

- >
j=2,j#1

Thus A2 is still diagonally dominant. Since the subsequent steps of Gaussian elimination
mimic the first, except for being applied to submatrices of smaller size, it suffices to conclude

that Gaussian elimination without pivoting preserves the diagonal dominance of a matrix. [l
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‘ 4.3 — Tridiagonal System I

A square matrix A = |a;;] is said to be tridiagonal if

aip a2
az1 a2

Ap—1,n
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‘ 4.3 — Tridiagonal System I

A square matrix A = |a;;] is said to be tridiagonal if

aip a2
az1 a2

Ap—1,n

An n—1 An n

If Gaussian elimination can be applied safely without pivoting.
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If Gaussian elimination can be applied safely without pivoting. Then L and U factors would

have the form

1
21

1

‘ 4.3 — Tridiagonal System I

A square matrix A = |a;;] is said to be tridiagonal if

gn,n—l

aii

a1

1

ai2

a2

An n—1

and U =

Ap—1,n

Ap,n

Uilp Ui12
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and the entries are computed by the simple algorithm which only costs 37 flops.
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and the entries are computed by the simple algorithm which only costs 37 flops.

Algorithm 7 (Tridiagonal LU Factorization) This algorithm computes the LU

factorization for a tridiagonal matrix without using pivoting strategy.
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and the entries are computed by the simple algorithm which only costs 37 flops.

Algorithm 7 (Tridiagonal LU Factorization) This algorithm computes the LU

factorization for a tridiagonal matrix without using pivoting strategy.

U(1,1) = A(1,1)
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and the entries are computed by the simple algorithm which only costs 37 flops.

Algorithm 7 (Tridiagonal LU Factorization) This algorithm computes the LU

factorization for a tridiagonal matrix without using pivoting strategy.

U(1,1) = A(1,1)

Fori=2,...,n

End For
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and the entries are computed by the simple algorithm which only costs 37 flops.

Algorithm 7 (Tridiagonal LU Factorization) This algorithm computes the LU

factorization for a tridiagonal matrix without using pivoting strategy.

U(1,1) = A(1,1)
Fori=2,...,n

Ui —1,4) = A — 1,4)

End For
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and the entries are computed by the simple algorithm which only costs 37 flops.

Algorithm 7 (Tridiagonal LU Factorization) This algorithm computes the LU

factorization for a tridiagonal matrix without using pivoting strategy.

U(1,1) = A(1,1)

Fori=2,...,n
U(i—1,1) = At — 1,47)
L(i,i—1)=A(i,e—1)/U(i — 1,7 — 1)

End For
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and the entries are computed by the simple algorithm which only costs 37 flops.

Algorithm 7 (Tridiagonal LU Factorization) This algorithm computes the LU

factorization for a tridiagonal matrix without using pivoting strategy.

U(1,1) = A(1,1)
Fori=2,...,n
U(i—1,1) = At — 1,47)
L(i,i —1)=A(4,i—1)/U(i —1,i — 1)
U(i,i) = A(i,7) — L(i,e — 1)U (i — 1,17)
End For
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and the entries are computed by the simple algorithm which only costs 37 flops.

Algorithm 7 (Tridiagonal LU Factorization) This algorithm computes the LU

factorization for a tridiagonal matrix without using pivoting strategy.

U(1,1) = A(1,1)
Fori=2,...,n
U(i—1,1) = At — 1,47)
L(i,i—1)=A(i,i—1)/U(i—1,i—1)
U(i,i) = A(i,7) — L(i,e — 1)U (i — 1,17)
End For

A tridiagonal linear system arises in many applications, such as finite difference
discretization to second order linear boundary-value problem and the cubic spline

approximations.
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‘ 4.4 — General Banded Systems I

In many applications that involve linear systems, the coefficient matrix is banded. Formally,
we say that A = [aij] has upper bandwidth g if a;; = 0 whenever 7 > 7 + q and lower
bandwidth p if a;; = 0 whenever ¢ > j + p. Substantial economies can be realized when
solving banded systems because the triangular factors in the LU factorization are also
banded.
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5 — Perturbation Analysis

In this section, we develop some perturbation theory for the problem of solving linear

systems Az = b.
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5 — Perturbation Analysis

In this section, we develop some perturbation theory for the problem of solving linear
systems Az = b. If we solve such a system numerically, we obtain not the exact solution x

but an approximate computed solution 7.
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5 — Perturbation Analysis

In this section, we develop some perturbation theory for the problem of solving linear
systems Az = b. If we solve such a system numerically, we obtain not the exact solution x

but an approximate computed solution .. The difference

AN

€E=I— T

Is called the error vector which is, however, not known.
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5 — Perturbation Analysis

In this section, we develop some perturbation theory for the problem of solving linear
systems Az = b. If we solve such a system numerically, we obtain not the exact solution x

but an approximate computed solution .. The difference

AN

€E=I— T

Is called the error vector which is, however, not known. Instead one can test the accuracy of

Z by forming AZ to see whether it is close to b.
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5 — Perturbation Analysis

In this section, we develop some perturbation theory for the problem of solving linear
systems Az = b. If we solve such a system numerically, we obtain not the exact solution x

but an approximate computed solution .. The difference
2 = 15 it

Is called the error vector which is, however, not known. Instead one can test the accuracy of

Z by forming A to see whether it is close to b. Thus we have the definition for the residual

vector.
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5 — Perturbation Analysis

In this section, we develop some perturbation theory for the problem of solving linear
systems Az = b. If we solve such a system numerically, we obtain not the exact solution x

but an approximate computed solution .. The difference
2 = 15 it

Is called the error vector which is, however, not known. Instead one can test the accuracy of

Z by forming A to see whether it is close to b. Thus we have the definition for the residual

vector.

Definition 3 Let = be the computed solution to the linear system of equations Ax = b.

Then the vector
r=>b— Ax

is called the residual vector.
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Then we can derive the residual equation
Ae= Az — Az =b— Ax =r (12)

between the error vector and the residual vector.
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Then we can derive the residual equation
Ae= Az — Az =b— Ax =r (12)

between the error vector and the residual vector.

Notice that 7 is the exact solution of the linear system
Axr = b,

which has a perturbed right-hand side

Then
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Then we can derive the residual equation
Ae= Az — Az =b— Ax =r (12)

between the error vector and the residual vector.

Notice that 7 is the exact solution of the linear system

A7 = b,
which has a perturbed right-hand side
b=b—r
Then
le — 7|
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Then we can derive the residual equation
Ae=Ax — Az =b—-Ax =r (12)
between the error vector and the residual vector.

Notice that 7 is the exact solution of the linear system

AT = b,
which has a perturbed right-hand side
b=b—r
Then
lz—2| = [A7'0— A" =]A7 (b - D)
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Then we can derive the residual equation
Ae=Ax — Az =b—-Ax =r (12)
between the error vector and the residual vector.

Notice that 7 is the exact solution of the linear system

AT = b,
which has a perturbed right-hand side
b=b—r.
Then
lz—2| = [A7'0— A" =]A7 (b - D)

< [lATIb -8l
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Then we can derive the residual equation
Ae=Ax — Az =b—-Ax =r (12)
between the error vector and the residual vector.

Notice that 7 is the exact solution of the linear system

AT = b
which has a perturbed right-hand side
B:b—r
Then
lz—2) = [|[A7— A" = A (b -b)|
< e B = 14
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Then we can derive the residual equation
Ae = Az —Ar =b—-Ax =r (12)
between the error vector and the residual vector.

Notice that 7 is the exact solution of the linear system

AT = b
which has a perturbed right-hand side
B:b—r
Then
lz—2) = [|[A7— A" = A (b -b)|
< =B = g e g 2
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Then we can derive the residual equation
Ae = Az —Ar =b—-Ax =r (12)
between the error vector and the residual vector.

Notice that 7 is the exact solution of the linear system

Ar =0
which has a perturbed right-hand side
b=b—r
Then
Jz=3] = AT - AT = |47 - b)| )
< =B = g e g 2
< fatage o
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Therefore

|z — 2| 1b— | |7
— r(A)S T
1] 1]
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Therefore

|z — 2| 1b— | |7
=1 < k(4) = k(A),
1] 1]

where
k(A) = [|A[lIIA™Y]

is called the condition number of A,
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Therefore

|z — 2| 1b— | |7
=1 < k(4) = k(A),
1] 1]

where
k(A) = [|A[lIIA™Y]
is called the condition number of A.

On the other hand, by the residual vector, we have
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Therefore

|z — 2| 1b— | |7
=1 < k(4) = k(A),
1] 1]

where
k(A) = [|A[lIIA™Y]
is called the condition number of A.

On the other hand, by the residual vector, we have

Irllllzll = [l Aelll A~ 0|
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Therefore

|z — 2| 1b— | |7
=1 < k(4) = k(A),
1] 1]

where
k(A) = [|A[lIIA™Y]
is called the condition number of A.

On the other hand, by the residual vector, we have

Irllllzll = lAelll A= 0l < [LANIA™ el o]
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Therefore

|z — 2| 1b— | |7
=1 < k(4) = k(A),
1] 1]

where
k(A) = [|A[lIIA™Y]
is called the condition number of A.

On the other hand, by the residual vector, we have

Irllllzll = lAelllA="all < [LANIA™ el = x(A)ll= — ZlIb]l
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Therefore

|z — 3| Ib— 0 I

—— < K(A) = K(A) 777

||| 5] il
where
k(A) = [|A[lIIA™Y]
is called the condition number of A.
On the other hand, by the residual vector, we have
I7lllzll = (| AellllA= 0] < [AIIAT I llellllbl] = s(A)llz — Z]|][b]].
Hence R
L firfl _ Jle — =]
TR (13)

r(A) ol = =]
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Therefore
|z — 3| Ib— 0 I
—— < K(A) = K(A) 777
||| 5] il
where
k(A) = [|A[lIIA™Y]
is called the condition number of A.
On the other hand, by the residual vector, we have
I7lllzll = (| AellllA= 0] < [AIIAT I llellllbl] = s(A)llz — Z]|][b]].
Hence R
L firfl _ Jle — =] 13)
k(A) [[bll — ||l
Theorem 5
1 lrf] _ |lz -7 ]|
e (A
r(A) [[0]] ]| 10]]
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Lemma 4 Suppose that = and z satisfy
Ar=b and (A+ AA)x=0b+ Ab,

where A € R"*", AA € R"*"™, 0 # b € R", and Ab € R", with

|AA| |Ab]]
—— <9 and ——— <.
IA] @l
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Lemma 4 Suppose that = and z satisfy
Ar=b and (A+ AA)x=0b+ Ab,
where A € R"*", AA € R"*"™, 0 # b € R", and Ab € R", with

|AA] |Ab]]
—— <9 and ——— <.
IA] 1]

fk(A) -0 <1,
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Lemma 4 Suppose that = and z satisfy
Ar=b and (A+ AA)x=0b+ Ab,

where A € R"*", AA € R"*"™, 0 # b € R", and Ab € R", with

|AA] |Ab]]
—— <9 and ——— <.
IA] @l

If k(A) -0 < 1, then A + /A A is nonsingular
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Lemma 4 Suppose that = and z satisfy
Ar=b and (A+ AA)x=0b+ Ab,
where A € R"*", AA € R"*"™, 0 # b € R", and Ab € R", with

A VAN
jaa 88

< <.
1A 1]

If K(A) -0 < 1, then A + A A is nonsingular and
||| P 1+ rx(A)d

lzll = 1 —x(A)0
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Lemma 4 Suppose that = and z satisfy
Ar=b and (A+ AA)x=0b+ Ab,
where A € R"*", AA € R"*"™, 0 # b € R", and Ab € R", with

|AA] |Ab]]
—— <9 and ——— <.
IA] 1]

If K(A) -0 < 1, then A + A A is nonsingular and
||| P 1+ rx(A)d

lzll = 1 —x(A)0

Proof: Since |A~AA| < A=Y AA| < ]| A=1|||A]l = dx(A) < 1,
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Lemma 4 Suppose that = and z satisfy
Ar=b and (A+ AA)x=0b+ Ab,
where A € R"*", AA € R"*"™, 0 # b € R", and Ab € R", with

|AA] |Ab]]
—— <9 and ——— <.
IA] 1]

If K(A) -0 < 1, then A + A A is nonsingular and
||| P 1+ rx(A)d

lzll = 1 —x(A)0

Proof: Since ||[AT1AA| < ||[ATH|||AA| < 8| ATH|||A|| = dx(A) < 1, it follows

from Theorem ?? that A + A A is nonsingular.
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Lemma 4 Suppose that = and z satisfy
Ar=b and (A+ AA)x=0b+ Ab,
where A € R"*", AA € R"*"™, 0 # b € R", and Ab € R", with

|AA| |Ab]]
—— <9 and ——— <.
IA] 1]

If K(A) -0 < 1, then A + A A is nonsingular and
||| P 1+ rx(A)d

lzll = 1 —x(A)0

Proof: Since ||[AT1AA| < ||[ATH|||AA| < 8| ATH|||A|| = dx(A) < 1, it follows
from Theorem ?? that A + A A is nonsingular. Now (A + AA)x = b+ Ab,
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Lemma 4 Suppose that = and z satisfy
Ar=b and (A+ AA)x=0b+ Ab,
where A € R"*", AA € R"*"™, 0 # b € R", and Ab € R", with

|AA| |Ab]]
—— <9 and ——— <.
IA] 1]

If K(A) -0 < 1, then A + A A is nonsingular and
||| P 1+ rx(A)d

lzll = 1 —x(A)0

Proof: Since ||[AT1AA| < ||[ATH|||AA| < 8| ATH|||A|| = dx(A) < 1, it follows
from Theorem ?? that A + A A is nonsingular. Now (A + AA)x = b+ Ab,

I+AAAZT=A"10+ AN
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Lemma 4 Suppose that = and z satisfy
Ar=b and (A+ AA)x=0b+ Ab,
where A € R"*", AA € R"*"™, 0 # b € R", and Ab € R", with

|AA| |Ab]]
—— <9 and ——— <.
IA] 1]

If K(A) -0 < 1, then A + A A is nonsingular and
||| P 1+ rx(A)d

lzll = 1 —x(A)0

Proof: Since ||[AT1AA| < ||[ATH|||AA| < 8| ATH|||A|| = dx(A) < 1, it follows
from Theorem ?? that A + A A is nonsingular. Now (A + AA)x = b+ Ab,

(I+AAAT = A+ A Ab =2+ A1 A,
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and so by taking norms and using Theorem ?? we find
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and so by taking norms and using Theorem ?? we find

lzll - <
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and so by taking norms and using Theorem ?? we find

Izl < I+ AAA) T (=l + AT Ab])
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and so by taking norms and using Theorem ?? we find

1]

IA

I+ AT AT (=] + AT Ab])
< NT+ATAA)TH (] + ol A7 bl
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and so by taking norms and using Theorem ?? we find

1Z] < [[@+A247H ()l + AT b))
< NI +ATLAA)TH (] + sl AT Hlel)
1
< A7y
= 1-[[A-IAA| (HxH"'(SH I ‘)
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and so by taking norms and using Theorem ?? we find

1Z] < [[@+A247H ()l + AT b))
< NI +ATLAA)TH (] + sl AT Hlel)
1
< _1
= 1-[[A-IAA| (HxH"'(SHA HHb‘)
1 1
= 1-—6r(A) (HxH + 4| A HHbH)
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and so by taking norms and using Theorem ?? we find

< I+ AT A4 (lal + A7 26)
< @ +AAA) T (=] + AT f1pl)
< == (el + 4~ pl)
< =5 (Il + a1 o)
= =5 (l=l+ 814 4x)
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and so by taking norms and using Theorem ?? we find

< T+ AT A4 (2] + A7 128))
< T+ AT A4 (=] +dlA™ 1oll)
< == (el + 4~ pl)
< =5 (Il + a1 o)
= =5 (l=l+ 814 4x)
< 5 (Il + 1A~ A1)
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and so by taking norms and using Theorem ?? we find

1]

VANVA

INA

I

IA

I+ AT AT (=] + AT Ab])
I(Z+ AT AA) | (1l + sl A7 18])

1 _
1— [|[A-1AA| (HxH +4||A 1HHb‘ )
1 _
1— 0r(A) (HxH + 4| A 1HHbH)
1

(llzll + ol A= ][I A1)

1 —0k(A)

(lzll + sl A=Al =)

0
1

1 —0k(A)
= (Il + dn(4) )

1 —90k(A)

Department of Mathematics — NTNU

Tsung-Min Hwang October 5, 2003



Direct Methods for LS

60

and so by taking norms and using Theorem ?? we find

1]

VANVA

INA

I

IA

I+ AT AT (=] + AT Ab])
I(Z+ AT AA) | (1l + sl A7 18])

e (sl + 814~ o)
s (el + 347 )
5= (el + 8147 a])
5= (sl + 1A~ LAl )
s (el + dn()l)
gy (L 0x(4) L
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Therefore

|zl _ 1+ 0m(4)
lzll = 1 = 0r(A)
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Therefore

2] _ 1+ dm(4)
|zl = 1 = dr(A)

Theorem 6 If the conditions of Lemma 4 hold then

|z — 7| 20
=
lzll = 1= w(A)9

k(A)
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Therefore

2] _ 1+ dm(4)
|zl = 1 = dr(A)

Theorem 6 If the conditions of Lemma 4 hold then

|z — || 20
<
||| 1 —k(A)d

k(A)

Proof: Since T satisfies (A + AA)x = b+ Ab, Ax = b+ Ab— AAx. Then we have
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Therefore

2] _ 1+ dm(4)
|zl = 1 = dr(A)

Theorem 6 If the conditions of Lemma 4 hold then

|z — || 20
<
||| 1 —k(A)d

k(A)

Proof: Since T satisfies (A + AA)x = b+ Ab, Ax = b+ Ab— AAx. Then we have

Axr — Ax = Ab+ NAx

Department of Mathematics — NTNU Tsung-Min Hwang October 5, 2003



Direct Methods for LS 61

Therefore

2] _ 1+ dm(4)
|zl = 1 = dr(A)

Theorem 6 If the conditions of Lemma 4 hold then

|z — || 20
<
||| 1 —k(A)d

k(A)

Proof: Since T satisfies (A + AA)x = b+ Ab, Ax = b+ Ab— AAx. Then we have
Ax — Ax = Ab+ NAzx

and

F—x=A"1(Ab+ AAT).
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Hence

|z —=ll < AT (A6 + 1AA]Z])
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Hence

|z —=ll < AT (A6 + 1AA]Z])
< AT (alpl + sl Al
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Hence

|z —=ll < AT (A6 + 1AA]Z])
A= (allbll + sl AlIZ])
SIATHI ([l A=l + I AllIZ])

VAN
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Hence
|z -zl < [JATH (|AD] + |AAN]Z])
< AT (olpll + o]l AllllZ]))
= OlIA7| (Il Az + || AlllIZ]))
< SAIATH Ul + 121)
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Hence
17—z < [[ATHI(20] + [AALZ])
< [l AT (slloll + Sl AlIZ1)
= AT (I A=]l + [LA[IZ])
< SIANATH el + 1211)
which gives
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Hence
17—z < [[ATHI(20] + [AALZ])

< [l AT (slloll + Sl AlIZ1)
= AT (I A=]l + [LA[IZ])
< SIANATH el + 1211)

which gives

|7 — ] ( II%’\I)

<Jok(A) |1+ ——
|| (Ed|
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Hence
17—z < [[ATHI(20] + [AALZ])
< [l AT (slloll + Sl AlIZ1)
= AT (I A=]l + [LA[IZ])
< SIANATH el + 1211)
which gives
|7 — ] ( II%’H) ( 1+%(A)5>
<O0Rk(A) 14+ 57— ) <0r(A) | 1+
|| (Ed| 1 —r(A)o
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Hence
1z —=z|| < [JATY (|Ab] + |AA]Z])
< |lATH|olp) + SsllAlZ)
= || A7Y (| 4z| + [|Al|I1Z])
< SIAINAT (=] + N1Z]))
which gives
17— z| ( ||53\|) ( 1+/<L(A)5> 26k (A)
<Ok(A)[1+ — | <or(A)(1+ = :
el =S (Mg ) < o5 (M 1705 ) = T m(A)
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