Direct Methods for Solving Systems of Linear Equations

NTNU

Tsung-Min Hwang
October 5, 2003
1 - Triangular Systems 5
1.1 - Forward Substitution 6
1.2 - Back Substitution 9
2 - Gaussian Elimination and LU Factorization 11
2.1 - Gaussian Elimination 12
2.2 - Gaussian Transformation and LU Factorization 21
2.3 - Existence and Uniqueness of LU Factorization 29
3 - Pivoting 34
3.1 - The Need for Pivoting 34
3.2 - Partial Pivoting and Complete Pivoting 37
4 - Some Special Linear Systems 43
4.1 - Symmetric Positive Definite System and Cholesky Factorization 43
4.2 - Diagonally Dominant Systems 49
4.3 - Tridiagonal System 53
4.4 - General Banded Systems 55
5 - Perturbation Analysis 56

Direct Methods for LS

Solve linear systems of equations

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{array}\right.
$$

Solve linear systems of equations

$$
\left\{\begin{array}{ccc}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & = & b_{2} \\
\vdots & & \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}= & b_{n}
\end{array}\right.
$$

Rewrite in the matrix form

$$
\begin{equation*}
A x=b, \tag{1}
\end{equation*}
$$

where

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right], \quad b=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right], \quad x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] .
$$

Direct Methods for LS

This equation has a unique solution $x=A^{-1} b$ when the coefficient matrix A is nonsingular.

Direct Methods for LS

This equation has a unique solution $x=A^{-1} b$ when the coefficient matrix A is nonsingular.

Direct methods are considered in this chapter.

This equation has a unique solution $x=A^{-1} b$ when the coefficient matrix A is nonsingular.

Direct methods are considered in this chapter.
Gaussian elimination is the principal tool in the direct solution of (1).

This equation has a unique solution $x=A^{-1} b$ when the coefficient matrix A is nonsingular.

Direct methods are considered in this chapter.
Gaussian elimination is the principal tool in the direct solution of (1).
Use Gaussian elimination to factor the coefficient matrix into a product of matrices.

This equation has a unique solution $x=A^{-1} b$ when the coefficient matrix A is nonsingular.

Direct methods are considered in this chapter.
Gaussian elimination is the principal tool in the direct solution of (1).
Use Gaussian elimination to factor the coefficient matrix into a product of matrices. The factorization is called $L U$-factorization

This equation has a unique solution $x=A^{-1} b$ when the coefficient matrix A is nonsingular.

Direct methods are considered in this chapter.
Gaussian elimination is the principal tool in the direct solution of (1).
Use Gaussian elimination to factor the coefficient matrix into a product of matrices. The factorization is called $L U$-factorization and has the form $A=L U$,

This equation has a unique solution $x=A^{-1} b$ when the coefficient matrix A is nonsingular.

Direct methods are considered in this chapter.
Gaussian elimination is the principal tool in the direct solution of (1).
Use Gaussian elimination to factor the coefficient matrix into a product of matrices. The factorization is called $L U$-factorization and has the form $A=L U$, where L is unit lower triangular and U is upper triangular.

1 - Triangular Systems

1 - Triangular Systems

Let

$$
A=\left[\begin{array}{cccc}
a_{11} & 0 & \cdots & 0 \\
0 & a_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{n n}
\end{array}\right]
$$

1 - Triangular Systems

Let

$$
A=\left[\begin{array}{cccc}
a_{11} & 0 & \cdots & 0 \\
0 & a_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{n n}
\end{array}\right]
$$

Provided that all $a_{i i} \neq 0$, then

$$
x=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]^{T}=\left[\begin{array}{llll}
b_{1} / a_{11} & b_{2} / a_{22} & \cdots & b_{n} / a_{n n}
\end{array}\right]^{T} .
$$

1 - Triangular Systems

Let

$$
A=\left[\begin{array}{cccc}
a_{11} & 0 & \cdots & 0 \\
0 & a_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{n n}
\end{array}\right]
$$

Provided that all $a_{i i} \neq 0$, then

$$
x=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]^{T}=\left[\begin{array}{llll}
b_{1} / a_{11} & b_{2} / a_{22} & \cdots & b_{n} / a_{n n}
\end{array}\right]^{T} .
$$

If $a_{i i}=0$ and $b_{i}=0$ for some index i, then x_{i} can be any real number.

1 - Triangular Systems

Let

$$
A=\left[\begin{array}{cccc}
a_{11} & 0 & \cdots & 0 \\
0 & a_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{n n}
\end{array}\right]
$$

Provided that all $a_{i i} \neq 0$, then

$$
x=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]^{T}=\left[\begin{array}{llll}
b_{1} / a_{11} & b_{2} / a_{22} & \cdots & b_{n} / a_{n n}
\end{array}\right]^{T} .
$$

If $a_{i i}=0$ and $b_{i}=0$ for some index i, then x_{i} can be any real number.
If $a_{i i}=0$ but $b_{i} \neq 0$, no solution of the system exists.

1.1 - Forward Substitution

1.1 - Forward Substitution

When a linear system $L x=b$ is lower triangular of the form

where all diagonals $\ell_{i i} \neq 0$,

1.1 - Forward Substitution

When a linear system $L x=b$ is lower triangular of the form

where all diagonals $\ell_{i i} \neq 0, x_{i}$ can be obtained by the following procedure

1.1 - Forward Substitution

When a linear system $L x=b$ is lower triangular of the form

where all diagonals $\ell_{i i} \neq 0, x_{i}$ can be obtained by the following procedure

1.1 - Forward Substitution

When a linear system $L x=b$ is lower triangular of the form

where all diagonals $\ell_{i i} \neq 0, x_{i}$ can be obtained by the following procedure

1.1 - Forward Substitution

When a linear system $L x=b$ is lower triangular of the form

where all diagonals $\ell_{i i} \neq 0, x_{i}$ can be obtained by the following procedure

$$
x_{1}=b_{1} / \ell_{11}
$$

1.1 - Forward Substitution

When a linear system $L x=b$ is lower triangular of the form

where all diagonals $\ell_{i i} \neq 0, x_{i}$ can be obtained by the following procedure

$$
\begin{aligned}
& x_{1}=b_{1} / \ell_{11} \\
& x_{2}
\end{aligned}
$$

1.1 - Forward Substitution

When a linear system $L x=b$ is lower triangular of the form

where all diagonals $\ell_{i i} \neq 0, x_{i}$ can be obtained by the following procedure

$$
\begin{aligned}
& x_{1}=b_{1} / \ell_{11} \\
& x_{2}=
\end{aligned}
$$

1.1 - Forward Substitution

When a linear system $L x=b$ is lower triangular of the form

where all diagonals $\ell_{i i} \neq 0, x_{i}$ can be obtained by the following procedure

$$
\begin{aligned}
& x_{1}=b_{1} / \ell_{11} \\
& x_{2}=\left(b_{2}-\ell_{21} x_{1}\right) / \ell_{22}
\end{aligned}
$$

1.1 - Forward Substitution

When a linear system $L x=b$ is lower triangular of the form

where all diagonals $\ell_{i i} \neq 0, x_{i}$ can be obtained by the following procedure

$$
\begin{aligned}
& x_{1}=b_{1} / \ell_{11} \\
& x_{2}=\left(b_{2}-\ell_{21} x_{1}\right) / \ell_{22} \\
& x_{3}
\end{aligned}
$$

1.1 - Forward Substitution

When a linear system $L x=b$ is lower triangular of the form

where all diagonals $\ell_{i i} \neq 0, x_{i}$ can be obtained by the following procedure

$$
\begin{aligned}
& x_{1}=b_{1} / \ell_{11} \\
& x_{2}=\left(b_{2}-\ell_{21} x_{1}\right) / \ell_{22} \\
& x_{3}=
\end{aligned}
$$

1.1 - Forward Substitution

When a linear system $L x=b$ is lower triangular of the form

$$
\left[\begin{array}{cccc}
\ell_{11} & 0 & \cdots & 0 \\
\ell_{21} & \ell_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\ell_{n 1} & \ell_{n 2} & \cdots & \ell_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

where all diagonals $\ell_{i i} \neq 0, x_{i}$ can be obtained by the following procedure

$$
\begin{aligned}
x_{1} & =b_{1} / \ell_{11} \\
x_{2} & =\left(b_{2}-\ell_{21} x_{1}\right) / \ell_{22} \\
x_{3} & =\left(b_{3}-\ell_{31} x_{1}-\ell_{32} x_{2}\right) / \ell_{33}
\end{aligned}
$$

1.1 - Forward Substitution

When a linear system $L x=b$ is lower triangular of the form

$$
\left[\begin{array}{cccc}
\ell_{11} & 0 & \cdots & 0 \\
\ell_{21} & \ell_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\ell_{n 1} & \ell_{n 2} & \cdots & \ell_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

where all diagonals $\ell_{i i} \neq 0, x_{i}$ can be obtained by the following procedure

$$
\begin{aligned}
x_{1} & =b_{1} / \ell_{11} \\
x_{2} & =\left(b_{2}-\ell_{21} x_{1}\right) / \ell_{22} \\
x_{3} & =\left(b_{3}-\ell_{31} x_{1}-\ell_{32} x_{2}\right) / \ell_{33}
\end{aligned}
$$

1.1 - Forward Substitution

When a linear system $L x=b$ is lower triangular of the form

$$
\left[\begin{array}{cccc}
\ell_{11} & 0 & \cdots & 0 \\
\ell_{21} & \ell_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\ell_{n 1} & \ell_{n 2} & \cdots & \ell_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

where all diagonals $\ell_{i i} \neq 0, x_{i}$ can be obtained by the following procedure

$$
\begin{aligned}
x_{1} & =b_{1} / \ell_{11} \\
x_{2} & =\left(b_{2}-\ell_{21} x_{1}\right) / \ell_{22} \\
x_{3} & =\left(b_{3}-\ell_{31} x_{1}-\ell_{32} x_{2}\right) / \ell_{33} \\
& \vdots \\
x_{n} &
\end{aligned}
$$

1.1 - Forward Substitution

When a linear system $L x=b$ is lower triangular of the form

$$
\left[\begin{array}{cccc}
\ell_{11} & 0 & \cdots & 0 \\
\ell_{21} & \ell_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\ell_{n 1} & \ell_{n 2} & \cdots & \ell_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

where all diagonals $\ell_{i i} \neq 0, x_{i}$ can be obtained by the following procedure

$$
\begin{aligned}
x_{1} & =b_{1} / \ell_{11} \\
x_{2} & =\left(b_{2}-\ell_{21} x_{1}\right) / \ell_{22} \\
x_{3} & =\left(b_{3}-\ell_{31} x_{1}-\ell_{32} x_{2}\right) / \ell_{33} \\
& \vdots \\
x_{n} & =
\end{aligned}
$$

1.1 - Forward Substitution

When a linear system $L x=b$ is lower triangular of the form

$$
\left[\begin{array}{cccc}
\ell_{11} & 0 & \cdots & 0 \\
\ell_{21} & \ell_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\ell_{n 1} & \ell_{n 2} & \cdots & \ell_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

where all diagonals $\ell_{i i} \neq 0, x_{i}$ can be obtained by the following procedure

$$
\begin{aligned}
x_{1} & =b_{1} / \ell_{11} \\
x_{2} & =\left(b_{2}-\ell_{21} x_{1}\right) / \ell_{22} \\
x_{3} & =\left(b_{3}-\ell_{31} x_{1}-\ell_{32} x_{2}\right) / \ell_{33} \\
& \vdots \\
x_{n} & =\left(b_{n}-\ell_{n 1} x_{1}-\ell_{n 2} x_{2}-\cdots-\ell_{n, n-1} x_{n-1}\right) / \ell_{n n}
\end{aligned}
$$

The general formulation for computing x_{i} is

The general formulation for computing x_{i} is

$$
x_{i}=\left(b_{i}-\sum_{j=1}^{i-1} \ell_{i j} x_{j}\right) / \ell_{i i}, \quad i=1,2, \ldots, n
$$

The general formulation for computing x_{i} is

$$
x_{i}=\left(b_{i}-\sum_{j=1}^{i-1} \ell_{i j} x_{j}\right) / \ell_{i i}, \quad i=1,2, \ldots, n
$$

Algorithm 1 (Forward Substitution) Suppose that $L \in \mathbb{R}^{n \times n}$ is nonsingular lower triangular and $b \in \mathbb{R}^{n}$. This algorithm computes the solution of $L x=b$.

The general formulation for computing x_{i} is

$$
x_{i}=\left(b_{i}-\sum_{j=1}^{i-1} \ell_{i j} x_{j}\right) / \ell_{i i}, \quad i=1,2, \ldots, n
$$

Algorithm 1 (Forward Substitution) Suppose that $L \in \mathbb{R}^{n \times n}$ is nonsingular lower triangular and $b \in \mathbb{R}^{n}$. This algorithm computes the solution of $L x=b$.

$$
\text { For } i=1, \ldots, n
$$

The general formulation for computing x_{i} is

$$
x_{i}=\left(b_{i}-\sum_{j=1}^{i-1} \ell_{i j} x_{j}\right) / \ell_{i i}, \quad i=1,2, \ldots, n
$$

Algorithm 1 (Forward Substitution) Suppose that $L \in \mathbb{R}^{n \times n}$ is nonsingular lower triangular and $b \in \mathbb{R}^{n}$. This algorithm computes the solution of $L x=b$.

$$
\begin{gathered}
\text { For } i=1, \ldots, n \\
t m p=0
\end{gathered}
$$

The general formulation for computing x_{i} is

$$
x_{i}=\left(b_{i}-\sum_{j=1}^{i-1} \ell_{i j} x_{j}\right) / \ell_{i i}, \quad i=1,2, \ldots, n
$$

Algorithm 1 (Forward Substitution) Suppose that $L \in \mathbb{R}^{n \times n}$ is nonsingular lower triangular and $b \in \mathbb{R}^{n}$. This algorithm computes the solution of $L x=b$.

$$
\begin{aligned}
& \text { For } i=1, \ldots, n \\
& \qquad \begin{array}{l}
\text { tmp }=0 \\
\text { For } j=1, \ldots, i-1
\end{array}
\end{aligned}
$$

The general formulation for computing x_{i} is

$$
x_{i}=\left(b_{i}-\sum_{j=1}^{i-1} \ell_{i j} x_{j}\right) / \ell_{i i}, \quad i=1,2, \ldots, n
$$

Algorithm 1 (Forward Substitution) Suppose that $L \in \mathbb{R}^{n \times n}$ is nonsingular lower triangular and $b \in \mathbb{R}^{n}$. This algorithm computes the solution of $L x=b$.

$$
\begin{aligned}
& \text { For } i=1, \ldots, n \\
& \qquad \begin{array}{l}
\text { tmp }=0 \\
\text { For } j=1, \ldots, i-1 \\
\quad t m p=t m p+L(i, j) * x(j)
\end{array}
\end{aligned}
$$

The general formulation for computing x_{i} is

$$
x_{i}=\left(b_{i}-\sum_{j=1}^{i-1} \ell_{i j} x_{j}\right) / \ell_{i i}, \quad i=1,2, \ldots, n
$$

Algorithm 1 (Forward Substitution) Suppose that $L \in \mathbb{R}^{n \times n}$ is nonsingular lower triangular and $b \in \mathbb{R}^{n}$. This algorithm computes the solution of $L x=b$.

$$
\begin{aligned}
& \text { For } i=1, \ldots, n \\
& \qquad \begin{array}{l}
\text { tmp }=0 \\
\text { For } j=1, \ldots, i-1 \\
\quad \operatorname{tmp}=t m p+L(i, j) * x(j)
\end{array}
\end{aligned}
$$

End for

The general formulation for computing x_{i} is

$$
x_{i}=\left(b_{i}-\sum_{j=1}^{i-1} \ell_{i j} x_{j}\right) / \ell_{i i}, \quad i=1,2, \ldots, n
$$

Algorithm 1 (Forward Substitution) Suppose that $L \in \mathbb{R}^{n \times n}$ is nonsingular lower triangular and $b \in \mathbb{R}^{n}$. This algorithm computes the solution of $L x=b$.

$$
\begin{aligned}
& \text { For } i=1, \ldots, n \\
& \qquad \begin{array}{l}
\operatorname{tmp}=0 \\
\text { For } j=1, \ldots, i-1 \\
\quad t m p=t m p+L(i, j) * x(j) \\
\text { End for } \\
x(i)=(b(i)-t m p) / L(i, i)
\end{array}
\end{aligned}
$$

The general formulation for computing x_{i} is

$$
x_{i}=\left(b_{i}-\sum_{j=1}^{i-1} \ell_{i j} x_{j}\right) / \ell_{i i}, \quad i=1,2, \ldots, n
$$

Algorithm 1 (Forward Substitution) Suppose that $L \in \mathbb{R}^{n \times n}$ is nonsingular lower triangular and $b \in \mathbb{R}^{n}$. This algorithm computes the solution of $L x=b$.

```
For \(i=1, \ldots, n\)
    \(t m p=0\)
    For \(j=1, \ldots, i-1\)
        \(t m p=t m p+L(i, j) * x(j)\)
    End for
    \(x(i)=(b(i)-t m p) / L(i, i)\)
    End for
```

The number of floating-point operations, flops, involved in the forward substitution are

The number of floating-point operations, flops, involved in the forward substitution are

$$
\sum_{i=1}^{n}[2(i-1)+2]=n^{2}+n
$$

The number of floating-point operations, flops, involved in the forward substitution are

$$
\sum_{i=1}^{n}[2(i-1)+2]=n^{2}+n
$$

Hence the forward substitution algorithm is an $O\left(n^{2}\right)$ algorithm.

Direct Methods for LS

1.2 - Back Substitution

1.2 - Back Substitution

Consider the upper triangular system $U x=b$:

provided that all $u_{i i} \neq 0$.

1.2 - Back Substitution

Consider the upper triangular system $U x=b$:

provided that all $u_{i i} \neq 0$. The solution x_{i} are computed in a reversed order by

1.2 - Back Substitution

Consider the upper triangular system $U x=b$:

provided that all $u_{i i} \neq 0$. The solution x_{i} are computed in a reversed order by

$$
x_{n}
$$

1.2 - Back Substitution

Consider the upper triangular system $U x=b$:

provided that all $u_{i i} \neq 0$. The solution x_{i} are computed in a reversed order by

1.2 - Back Substitution

Consider the upper triangular system $U x=b$:

provided that all $u_{i i} \neq 0$. The solution x_{i} are computed in a reversed order by

$$
x_{n}=b_{n} / u_{n n}
$$

1.2 - Back Substitution

Consider the upper triangular system $U x=b$:

provided that all $u_{i i} \neq 0$. The solution x_{i} are computed in a reversed order by

$$
\begin{array}{r}
x_{n}=b_{n} / u_{n n} \\
x_{n-1}
\end{array}
$$

1.2 - Back Substitution

Consider the upper triangular system $U x=b$:

provided that all $u_{i i} \neq 0$. The solution x_{i} are computed in a reversed order by

$$
\begin{aligned}
x_{n} & =b_{n} / u_{n n} \\
x_{n-1} & =
\end{aligned}
$$

1.2 - Back Substitution

Consider the upper triangular system $U x=b$:

provided that all $u_{i i} \neq 0$. The solution x_{i} are computed in a reversed order by

$$
\begin{aligned}
x_{n} & =b_{n} / u_{n n} \\
x_{n-1} & =\left(b_{n-1}-u_{n-1, n} x_{n}\right) / u_{n-1, n-1}
\end{aligned}
$$

1.2 - Back Substitution

Consider the upper triangular system $U x=b$:

provided that all $u_{i i} \neq 0$. The solution x_{i} are computed in a reversed order by

$$
\begin{aligned}
& x_{n}=b_{n} / u_{n n} \\
& x_{n-1}=\left(b_{n-1}-u_{n-1, n} x_{n}\right) / u_{n-1, n-1} \\
& x_{n-2}
\end{aligned}
$$

1.2 - Back Substitution

Consider the upper triangular system $U x=b$:

provided that all $u_{i i} \neq 0$. The solution x_{i} are computed in a reversed order by

$$
\begin{aligned}
x_{n} & =b_{n} / u_{n n} \\
x_{n-1} & =\left(b_{n-1}-u_{n-1, n} x_{n}\right) / u_{n-1, n-1} \\
x_{n-2} & =
\end{aligned}
$$

1.2 - Back Substitution

Consider the upper triangular system $U x=b$:

provided that all $u_{i i} \neq 0$. The solution x_{i} are computed in a reversed order by

$$
\begin{aligned}
x_{n} & =b_{n} / u_{n n} \\
x_{n-1} & =\left(b_{n-1}-u_{n-1, n} x_{n}\right) / u_{n-1, n-1} \\
x_{n-2} & =\left(b_{n-2}-u_{n-2, n-1} x_{n-1}-u_{n-2, n} x_{n}\right) / u_{n-2, n-2}
\end{aligned}
$$

1.2 - Back Substitution

Consider the upper triangular system $U x=b$:

provided that all $u_{i i} \neq 0$. The solution x_{i} are computed in a reversed order by

$$
\begin{aligned}
x_{n} & =b_{n} / u_{n n} \\
x_{n-1} & =\left(b_{n-1}-u_{n-1, n} x_{n}\right) / u_{n-1, n-1} \\
x_{n-2} & =\left(b_{n-2}-u_{n-2, n-1} x_{n-1}-u_{n-2, n} x_{n}\right) / u_{n-2, n-2}
\end{aligned}
$$

1.2 - Back Substitution

Consider the upper triangular system $U x=b$:

provided that all $u_{i i} \neq 0$. The solution x_{i} are computed in a reversed order by

$$
\begin{aligned}
x_{n} & =b_{n} / u_{n n} \\
x_{n-1} & =\left(b_{n-1}-u_{n-1, n} x_{n}\right) / u_{n-1, n-1} \\
x_{n-2} & =\left(b_{n-2}-u_{n-2, n-1} x_{n-1}-u_{n-2, n} x_{n}\right) / u_{n-2, n-2}
\end{aligned}
$$

1.2 - Back Substitution

Consider the upper triangular system $U x=b$:

provided that all $u_{i i} \neq 0$. The solution x_{i} are computed in a reversed order by

$$
\begin{aligned}
x_{n} & =b_{n} / u_{n n} \\
x_{n-1} & =\left(b_{n-1}-u_{n-1, n} x_{n}\right) / u_{n-1, n-1} \\
x_{n-2} & =\left(b_{n-2}-u_{n-2, n-1} x_{n-1}-u_{n-2, n} x_{n}\right) / u_{n-2, n-2}
\end{aligned}
$$

1.2 - Back Substitution

Consider the upper triangular system $U x=b$:

provided that all $u_{i i} \neq 0$. The solution x_{i} are computed in a reversed order by

$$
\begin{aligned}
x_{n} & =b_{n} / u_{n n} \\
x_{n-1} & =\left(b_{n-1}-u_{n-1, n} x_{n}\right) / u_{n-1, n-1} \\
x_{n-2} & =\left(b_{n-2}-u_{n-2, n-1} x_{n-1}-u_{n-2, n} x_{n}\right) / u_{n-2, n-2} \\
& \vdots \\
x_{1} & =\left(b_{1}-u_{12} x_{2}-u_{13} x_{3}-\cdots-u_{1 n} x_{n}\right) / u_{11}
\end{aligned}
$$

The general formulation is

$$
x_{i}=\left(b_{i}-\sum_{j=i+1}^{n} u_{i j} x_{j}\right) / u_{i i}, \quad i=n, n-1, \ldots, 1
$$

The general formulation is

$$
x_{i}=\left(b_{i}-\sum_{j=i+1}^{n} u_{i j} x_{j}\right) / u_{i i}, \quad i=n, n-1, \ldots, 1
$$

Algorithm 2 (Back Substitution) Suppose that $U \in \mathbb{R}^{n \times n}$ is nonsingular upper triangular and $b \in \mathbb{R}^{n}$. This algorithm computes the solution of $U x=b$.

The general formulation is

$$
x_{i}=\left(b_{i}-\sum_{j=i+1}^{n} u_{i j} x_{j}\right) / u_{i i}, \quad i=n, n-1, \ldots, 1
$$

Algorithm 2 (Back Substitution) Suppose that $U \in \mathbb{R}^{n \times n}$ is nonsingular upper triangular and $b \in \mathbb{R}^{n}$. This algorithm computes the solution of $U x=b$.

$$
\text { For } i=n, \ldots, 1
$$

The general formulation is

$$
x_{i}=\left(b_{i}-\sum_{j=i+1}^{n} u_{i j} x_{j}\right) / u_{i i}, \quad i=n, n-1, \ldots, 1
$$

Algorithm 2 (Back Substitution) Suppose that $U \in \mathbb{R}^{n \times n}$ is nonsingular upper triangular and $b \in \mathbb{R}^{n}$. This algorithm computes the solution of $U x=b$.

The general formulation is

$$
x_{i}=\left(b_{i}-\sum_{j=i+1}^{n} u_{i j} x_{j}\right) / u_{i i}, \quad i=n, n-1, \ldots, 1
$$

Algorithm 2 (Back Substitution) Suppose that $U \in \mathbb{R}^{n \times n}$ is nonsingular upper triangular and $b \in \mathbb{R}^{n}$. This algorithm computes the solution of $U x=b$.

$$
\begin{aligned}
& \text { For } i=n, \ldots, 1 \\
& \quad \operatorname{tmp}=0 \\
& \quad \text { For } j=i+1, \ldots, n
\end{aligned}
$$

The general formulation is

$$
x_{i}=\left(b_{i}-\sum_{j=i+1}^{n} u_{i j} x_{j}\right) / u_{i i}, \quad i=n, n-1, \ldots, 1
$$

Algorithm 2 (Back Substitution) Suppose that $U \in \mathbb{R}^{n \times n}$ is nonsingular upper triangular and $b \in \mathbb{R}^{n}$. This algorithm computes the solution of $U x=b$.

$$
\begin{aligned}
& \text { For } i=n, \ldots, 1 \\
& \quad \operatorname{tmp}=0 \\
& \text { For } j=i+1, \ldots, n \\
& \quad t m p=t m p+U(i, j) * x(j)
\end{aligned}
$$

The general formulation is

$$
x_{i}=\left(b_{i}-\sum_{j=i+1}^{n} u_{i j} x_{j}\right) / u_{i i}, \quad i=n, n-1, \ldots, 1
$$

Algorithm 2 (Back Substitution) Suppose that $U \in \mathbb{R}^{n \times n}$ is nonsingular upper triangular and $b \in \mathbb{R}^{n}$. This algorithm computes the solution of $U x=b$.

$$
\begin{aligned}
& \text { For } i=n, \ldots, 1 \\
& \quad \begin{array}{l}
\text { tmp }=0 \\
\text { For } j=i+1, \ldots, n \\
\quad t m p=t m p+U(i, j) * x(j)
\end{array}
\end{aligned}
$$

End for

The general formulation is

$$
x_{i}=\left(b_{i}-\sum_{j=i+1}^{n} u_{i j} x_{j}\right) / u_{i i}, \quad i=n, n-1, \ldots, 1
$$

Algorithm 2 (Back Substitution) Suppose that $U \in \mathbb{R}^{n \times n}$ is nonsingular upper triangular and $b \in \mathbb{R}^{n}$. This algorithm computes the solution of $U x=b$.

$$
\begin{aligned}
& \text { For } i=n, \ldots, 1 \\
& \quad \operatorname{tmp}=0 \\
& \text { For } j=i+1, \ldots, n \\
& \quad t m p=t m p+U(i, j) * x(j)
\end{aligned}
$$

End for
$x(i)=(b(i)-t m p) / U(i, i)$

The general formulation is

$$
x_{i}=\left(b_{i}-\sum_{j=i+1}^{n} u_{i j} x_{j}\right) / u_{i i}, \quad i=n, n-1, \ldots, 1
$$

Algorithm 2 (Back Substitution) Suppose that $U \in \mathbb{R}^{n \times n}$ is nonsingular upper triangular and $b \in \mathbb{R}^{n}$. This algorithm computes the solution of $U x=b$.

$$
\begin{aligned}
& \text { For } i=n, \ldots, 1 \\
& \quad \operatorname{tmp}=0 \\
& \text { For } j=i+1, \ldots, n \\
& \quad t m p=t m p+U(i, j) * x(j)
\end{aligned}
$$

End for
$x(i)=(b(i)-t m p) / U(i, i)$
End for

The general formulation is

$$
x_{i}=\left(b_{i}-\sum_{j=i+1}^{n} u_{i j} x_{j}\right) / u_{i i}, \quad i=n, n-1, \ldots, 1
$$

Algorithm 2 (Back Substitution) Suppose that $U \in \mathbb{R}^{n \times n}$ is nonsingular upper triangular and $b \in \mathbb{R}^{n}$. This algorithm computes the solution of $U x=b$.

$$
\begin{aligned}
& \text { For } i=n, \ldots, 1 \\
& \quad \begin{array}{l}
\text { tmp }=0 \\
\text { For } j=i+1, \ldots, n \\
\quad t m p=t m p+U(i, j) * x(j)
\end{array}
\end{aligned}
$$

End for
$x(i)=(b(i)-t m p) / U(i, i)$
End for

Back substitution requires $n^{2}+O(n)$ flops.

2 - Gaussian Elimination and LU Factorization

Direct Methods for LS

2 - Gaussian Elimination and LU Factorization

In this section we will derive an algorithm that computes a matrix factorization called $L U$ factorization such that $A=L U$, where L is unit lower triangular and U is upper triangular.

2 - Gaussian Elimination and LU Factorization

In this section we will derive an algorithm that computes a matrix factorization called $L U$ factorization such that $A=L U$, where L is unit lower triangular and U is upper triangular. The solution to the original problem $A x=L U x=b$ is then found by a two-step triangular solve process:

$$
\begin{equation*}
L y=b, \quad U x=y \tag{2}
\end{equation*}
$$

Direct Methods for LS

Three types of elementary row operations for a system of linear equations:

Direct Methods for LS

Three types of elementary row operations for a system of linear equations:

1. Interchange two equations in the system (or equivalently, interchange two rows in A):

$$
\mathcal{E}_{i} \leftrightarrow \mathcal{E}_{j} ;
$$

Here \mathcal{E}_{i} denotes the i-th equation in the system.

Direct Methods for LS

Three types of elementary row operations for a system of linear equations:

1. Interchange two equations in the system (or equivalently, interchange two rows in A):

$$
\mathcal{E}_{i} \leftrightarrow \mathcal{E}_{j} ;
$$

Here \mathcal{E}_{i} denotes the i-th equation in the system.
2. Multiply an equation by a non-zero constant (multiply one row of A by a non-zero constant):

$$
\mathcal{E}_{i} \leftarrow \lambda \mathcal{E}_{i} .
$$

Direct Methods for LS

Three types of elementary row operations for a system of linear equations:

1. Interchange two equations in the system (or equivalently, interchange two rows in A):

$$
\mathcal{E}_{i} \leftrightarrow \mathcal{E}_{j} ;
$$

Here \mathcal{E}_{i} denotes the i-th equation in the system.
2. Multiply an equation by a non-zero constant (multiply one row of A by a non-zero constant):

$$
\mathcal{E}_{i} \leftarrow \lambda \mathcal{E}_{i} .
$$

3. Add to an equation a multiple of some other equation (add to a row a multiple of some other row):

$$
\mathcal{E}_{i} \leftarrow \mathcal{E}_{i}+\lambda \mathcal{E}_{j} .
$$

Direct Methods for LS

Direct Methods for LS

$1 \approx 8$ The first step in the Gaussian elimination process:

Direct Methods for LS

The first step in the Gaussian elimination process: for each $i=2,3, \ldots, n$,

$$
\begin{equation*}
\mathcal{E}_{i} \leftarrow\left(\mathcal{E}_{i}-m_{i, 1} \mathcal{E}_{1}\right), \quad \text { where } \quad m_{i, 1}=\frac{a_{i 1}}{a_{11}} \tag{3}
\end{equation*}
$$

The first step in the Gaussian elimination process: for each $i=2,3, \ldots, n$,

$$
\begin{equation*}
\mathcal{E}_{i} \leftarrow\left(\mathcal{E}_{i}-m_{i, 1} \mathcal{E}_{1}\right), \quad \text { where } \quad m_{i, 1}=\frac{a_{i 1}}{a_{11}} \tag{3}
\end{equation*}
$$

\Rightarrow Transform all the entries in the first column below the diagonal are zero.

The first step in the Gaussian elimination process: for each $i=2,3, \ldots, n$,

$$
\begin{equation*}
\mathcal{E}_{i} \leftarrow\left(\mathcal{E}_{i}-m_{i, 1} \mathcal{E}_{1}\right), \quad \text { where } \quad m_{i, 1}=\frac{a_{i 1}}{a_{11}} \tag{3}
\end{equation*}
$$

\Rightarrow Transform all the entries in the first column below the diagonal are zero. For example,

$$
A_{1} \equiv\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \Rightarrow A_{2} \equiv\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & \tilde{a}_{22} & \tilde{a}_{23} \\
0 & \tilde{a}_{32} & \tilde{a}_{33}
\end{array}\right]
$$

The first step in the Gaussian elimination process: for each $i=2,3, \ldots, n$,

$$
\begin{equation*}
\mathcal{E}_{i} \leftarrow\left(\mathcal{E}_{i}-m_{i, 1} \mathcal{E}_{1}\right), \quad \text { where } \quad m_{i, 1}=\frac{a_{i 1}}{a_{11}} \tag{3}
\end{equation*}
$$

\Rightarrow Transform all the entries in the first column below the diagonal are zero. For example,

$$
A_{1} \equiv\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \Rightarrow A_{2} \equiv\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & \tilde{a}_{22} & \tilde{a}_{23} \\
0 & \tilde{a}_{32} & \tilde{a}_{33}
\end{array}\right]
$$

Then the process is repeated on the resulting equations $\mathcal{E}_{2}, \ldots, \mathcal{E}_{n}$, and so on.

Direct Methods for LS

The first step in the Gaussian elimination process: for each $i=2,3, \ldots, n$,

$$
\begin{equation*}
\mathcal{E}_{i} \leftarrow\left(\mathcal{E}_{i}-m_{i, 1} \mathcal{E}_{1}\right), \quad \text { where } \quad m_{i, 1}=\frac{a_{i 1}}{a_{11}} \tag{3}
\end{equation*}
$$

\Rightarrow Transform all the entries in the first column below the diagonal are zero. For example,

$$
A_{1} \equiv\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \Rightarrow A_{2} \equiv\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & \tilde{a}_{22} & \tilde{a}_{23} \\
0 & \tilde{a}_{32} & \tilde{a}_{33}
\end{array}\right]
$$

Then the process is repeated on the resulting equations $\mathcal{E}_{2}, \ldots, \mathcal{E}_{n}$, and so on.

$$
A_{2}=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & \tilde{a}_{22} & \tilde{a}_{23} \\
0 & \tilde{a}_{32} & \tilde{a}_{33}
\end{array}\right] \Rightarrow A_{3} \equiv\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & \tilde{a}_{22} & \tilde{a}_{23} \\
0 & 0 & \hat{a}_{33}
\end{array}\right]
$$

Direct Methods for LS

The first step in the Gaussian elimination process: for each $i=2,3, \ldots, n$,

$$
\begin{equation*}
\mathcal{E}_{i} \leftarrow\left(\mathcal{E}_{i}-m_{i, 1} \mathcal{E}_{1}\right), \quad \text { where } \quad m_{i, 1}=\frac{a_{i 1}}{a_{11}} \tag{3}
\end{equation*}
$$

\Rightarrow Transform all the entries in the first column below the diagonal are zero. For example,

$$
A_{1} \equiv\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \Rightarrow A_{2} \equiv\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & \tilde{a}_{22} & \tilde{a}_{23} \\
0 & \tilde{a}_{32} & \tilde{a}_{33}
\end{array}\right]
$$

Then the process is repeated on the resulting equations $\mathcal{E}_{2}, \ldots, \mathcal{E}_{n}$, and so on.

$$
A_{2}=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & \tilde{a}_{22} & \tilde{a}_{23} \\
0 & \tilde{a}_{32} & \tilde{a}_{33}
\end{array}\right] \Rightarrow A_{3} \equiv\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & \tilde{a}_{22} & \tilde{a}_{23} \\
0 & 0 & \hat{a}_{33}
\end{array}\right]
$$

A_{3} is upper triangular.

Direct Methods for LS

The process of Gaussian elimination result in a sequence of matrices as follows:

$$
A=A^{(1)} \rightarrow A^{(2)} \rightarrow \cdots \rightarrow A^{(n)}=\text { upper triangular matrix, }
$$

Direct Methods for LS

The process of Gaussian elimination result in a sequence of matrices as follows:

$$
A=A^{(1)} \rightarrow A^{(2)} \rightarrow \cdots \rightarrow A^{(n)}=\text { upper triangular matrix, }
$$

The matrix $A^{(k)}$ has the following form:
$A^{(k)}=\left[\begin{array}{lll|l|llll}a_{11}^{(k)} & \cdots & a_{1, k-1}^{(k)} & a_{1 k}^{(k)} & \cdots & a_{1 j}^{(k)} & \cdots & a_{1 n}^{(k)} \\ \vdots & \ddots & \vdots & \vdots & & \vdots & & \vdots \\ 0 & \cdots & a_{k-1, k-1}^{(k)} & a_{k-1, k}^{(k)} & \cdots & a_{k-1, j}^{(k)} & \cdots & a_{k-1, n}^{(k)} \\ \hline 0 & \cdots & 0 & a_{k k}^{(k)} & \cdots & a_{k j}^{(k)} & \cdots & a_{k n}^{(k)} \\ \hline \vdots & & \vdots & \vdots & & \vdots & & \vdots \\ 0 & \cdots & 0 & a_{i k}^{(k)} & \cdots & a_{i j}^{(k)} & \cdots & a_{i n}^{(k)} \\ \vdots & & \vdots & \vdots & & \vdots & & \vdots \\ 0 & \cdots & 0 & a_{n k}^{(k)} & \cdots & a_{n j}^{(k)} & \cdots & a_{n n}^{(k)}\end{array}\right]$

Direct Methods for LS

In the k-th step,

Direct Methods for LS

In the k-th step,
$a_{k k}^{(k)}$ is used as a pivot element

Direct Methods for LS

In the k-th step,
$a_{k k}^{(k)}$ is used as a pivot element
Elementary operations are applied to rows $k+1$ through n so that zeros are produced in column k below the diagonal.

Direct Methods for LS

In the k-th step,
$a_{k k}^{(k)}$ is used as a pivot element
Elementary operations are applied to rows $k+1$ through n so that zeros are produced in column k below the diagonal.

That is, $A^{(k+1)}$ is obtained from $A^{(k)}$ in which

Direct Methods for LS

In the k-th step,
$a_{k k}^{(k)}$ is used as a pivot element
Elementary operations are applied to rows $k+1$ through n so that zeros are produced in column k below the diagonal.

That is, $A^{(k+1)}$ is obtained from $A^{(k)}$ in which
$a_{k+1, k}^{(k+1)}, \cdots, a_{n k}^{(k+1)}$ are zero

Direct Methods for LS

In the k-th step,
$a_{k k}^{(k)}$ is used as a pivot element
Elementary operations are applied to rows $k+1$ through n so that zeros are produced in column k below the diagonal.

That is, $A^{(k+1)}$ is obtained from $A^{(k)}$ in which
$a_{k+1, k}^{(k+1)}, \cdots, a_{n k}^{(k+1)}$ are zero
row $k+1$ through n are modified

Direct Methods for LS

In the k-th step,
$a_{k k}^{(k)}$ is used as a pivot element
Elementary operations are applied to rows $k+1$ through n so that zeros are produced in column k below the diagonal.

That is, $A^{(k+1)}$ is obtained from $A^{(k)}$ in which
$a_{k+1, k}^{(k+1)}, \cdots, a_{n k}^{(k+1)}$ are zero
row $k+1$ through n are modified
row 1 through row k are unchanged.

Direct Methods for LS

More precisely, the entries of $A^{(k+1)}$ are produced by the formula

More precisely, the entries of $A^{(k+1)}$ are produced by the formula

$$
a_{i j}^{(k+1)}= \begin{cases}a_{i j}^{(k)}, & \text { for } i=1, \ldots, k, \text { and } j=1, \ldots, n \tag{4}\\ 0, & \text { for } i=k+1, \ldots, n, \text { and } j=1, \ldots, k \\ a_{i j}^{(k)}-\frac{a_{i k}^{(k)}}{a_{k k}^{(k)}} \times a_{k j}^{(k)}, & \text { for } i=k+1, \ldots, n, \text { and } j=k+1, \ldots, n\end{cases}
$$

More precisely, the entries of $A^{(k+1)}$ are produced by the formula

$$
a_{i j}^{(k+1)}= \begin{cases}a_{i j}^{(k)}, & \text { for } i=1, \ldots, k, \text { and } j=1, \ldots, n \tag{4}\\ 0, & \text { for } i=k+1, \ldots, n, \text { and } j=1, \ldots, k \\ a_{i j}^{(k)}-\frac{a_{i k}^{(k)}}{a_{k k}^{(k)}} \times a_{k j}^{(k)}, & \text { for } i=k+1, \ldots, n, \text { and } j=k+1, \ldots, n\end{cases}
$$

Let $L=\left[\ell_{i k}\right]$ with

$$
\ell_{i k}= \begin{cases}0, & \text { if } i<k \tag{5}\\ 1, & \text { if } i=k \\ \frac{a_{i k}^{(k)}}{a_{k k}^{(k)}}, & \text { if } i>k\end{cases}
$$

More precisely, the entries of $A^{(k+1)}$ are produced by the formula

$$
a_{i j}^{(k+1)}= \begin{cases}a_{i j}^{(k)}, & \text { for } i=1, \ldots, k, \text { and } j=1, \ldots, n \tag{4}\\ 0, & \text { for } i=k+1, \ldots, n, \text { and } j=1, \ldots, k \\ a_{i j}^{(k)}-\frac{a_{i k}^{(k)}}{a_{k k}^{(k)}} \times a_{k j}^{(k)}, & \text { for } i=k+1, \ldots, n, \text { and } j=k+1, \ldots, n\end{cases}
$$

Let $L=\left[\ell_{i k}\right]$ with

$$
\ell_{i k}= \begin{cases}0, & \text { if } i<k \tag{5}\\ 1, & \text { if } i=k \\ \frac{a_{i k}^{(k)}}{a_{k k}^{(k)}}, & \text { if } i>k\end{cases}
$$

and $U=A^{(n)}$,

More precisely, the entries of $A^{(k+1)}$ are produced by the formula

$$
a_{i j}^{(k+1)}= \begin{cases}a_{i j}^{(k)}, & \text { for } i=1, \ldots, k, \text { and } j=1, \ldots, n \tag{4}\\ 0, & \text { for } i=k+1, \ldots, n, \text { and } j=1, \ldots, k \\ a_{i j}^{(k)}-\frac{a_{i k}^{(k)}}{a_{k k}^{(k)}} \times a_{k j}^{(k)}, & \text { for } i=k+1, \ldots, n, \text { and } j=k+1, \ldots, n\end{cases}
$$

Let $L=\left[\ell_{i k}\right]$ with

$$
\ell_{i k}= \begin{cases}0, & \text { if } i<k \tag{5}\\ 1, & \text { if } i=k \\ \frac{a_{i k}^{(k)}}{a_{k k}^{(k)}}, & \text { if } i>k\end{cases}
$$

and $U=A^{(n)}$, then L is unit lower triangular, U is upper triangular,

More precisely, the entries of $A^{(k+1)}$ are produced by the formula

$$
a_{i j}^{(k+1)}= \begin{cases}a_{i j}^{(k)}, & \text { for } i=1, \ldots, k, \text { and } j=1, \ldots, n \tag{4}\\ 0, & \text { for } i=k+1, \ldots, n, \text { and } j=1, \ldots, k \\ a_{i j}^{(k)}-\frac{a_{i k}^{(k)}}{a_{k k}^{(k)}} \times a_{k j}^{(k)}, & \text { for } i=k+1, \ldots, n, \text { and } j=k+1, \ldots, n\end{cases}
$$

Let $L=\left[\ell_{i k}\right]$ with

$$
\ell_{i k}= \begin{cases}0, & \text { if } i<k \tag{5}\\ 1, & \text { if } i=k \\ \frac{a_{i k}^{(k)}}{a_{k k}^{(k)}}, & \text { if } i>k\end{cases}
$$

and $U=A^{(n)}$, then L is unit lower triangular, U is upper triangular, and later we shall show that $A=L U$.

Direct Methods for LS

Direct Methods for LS

Algorithm 3 (Gaussian elimination) Given $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$, this algorithm implements the Gaussian elimination procedure to reduce A to upper triangular and modify the entries of b accordingly.

Direct Methods for LS

Algorithm 3 (Gaussian elimination) Given $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$, this algorithm implements the Gaussian elimination procedure to reduce A to upper triangular and modify the entries of b accordingly.

Direct Methods for LS

Algorithm 3 (Gaussian elimination) Given $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$, this algorithm implements the Gaussian elimination procedure to reduce A to upper triangular and modify the entries of b accordingly.

$$
\begin{aligned}
& \text { For } k=1, \ldots, n-1 \\
& \quad \text { For } i=k+1, \ldots, n
\end{aligned}
$$

Direct Methods for LS

Algorithm 3 (Gaussian elimination) Given $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$, this algorithm implements the Gaussian elimination procedure to reduce A to upper triangular and modify the entries of b accordingly.

$$
\begin{aligned}
& \text { For } k=1, \ldots, n-1 \\
& \qquad \begin{aligned}
\text { For } i & =k+1, \ldots, n \\
t & =A(i, k) / A(k, k)
\end{aligned}
\end{aligned}
$$

Direct Methods for LS

Algorithm 3 (Gaussian elimination) Given $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$, this algorithm implements the Gaussian elimination procedure to reduce A to upper triangular and modify the entries of b accordingly.

$$
\begin{aligned}
& \text { For } k=1, \ldots, n-1 \\
& \qquad \begin{array}{c}
\text { For } i=k+1, \ldots, n \\
t=A(i, k) / A(k, k) \\
A(i, k)=0
\end{array}
\end{aligned}
$$

Direct Methods for LS

Algorithm 3 (Gaussian elimination) Given $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$, this algorithm implements the Gaussian elimination procedure to reduce A to upper triangular and modify the entries of b accordingly.

$$
\begin{aligned}
& \text { For } k=1, \ldots, n-1 \\
& \qquad \begin{array}{l}
\text { For } i=k+1, \ldots, n \\
t=A(i, k) / A(k, k) \\
A(i, k)=0 \\
b(i)=b(i)-t \times b(k)
\end{array}
\end{aligned}
$$

Direct Methods for LS

Algorithm 3 (Gaussian elimination) Given $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$, this algorithm implements the Gaussian elimination procedure to reduce A to upper triangular and modify the entries of b accordingly.

$$
\begin{aligned}
& \text { For } k=1, \ldots, n-1 \\
& \qquad \begin{array}{l}
\text { For } i=k+1, \ldots, n \\
t=A(i, k) / A(k, k) \\
A(i, k)=0 \\
b(i)=b(i)-t \times b(k) \\
\text { For } j=k+1, \ldots, n
\end{array}
\end{aligned}
$$

Direct Methods for LS

Algorithm 3 (Gaussian elimination) Given $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$, this algorithm implements the Gaussian elimination procedure to reduce A to upper triangular and modify the entries of b accordingly.

$$
\begin{aligned}
& \text { For } k=1, \ldots, n-1 \\
& \qquad \begin{array}{l}
\text { For } i=k+1, \ldots, n \\
\quad t=A(i, k) / A(k, k) \\
A(i, k)=0 \\
b(i)=b(i)-t \times b(k) \\
\text { For } j=k+1, \ldots, n \\
\quad A(i, j)=A(i, j)-t \times A(k, j)
\end{array}
\end{aligned}
$$

Direct Methods for LS

Algorithm 3 (Gaussian elimination) Given $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$, this algorithm implements the Gaussian elimination procedure to reduce A to upper triangular and modify the entries of b accordingly.

$$
\begin{aligned}
& \text { For } k=1, \ldots, n-1 \\
& \qquad \begin{array}{l}
\text { For } i=k+1, \ldots, n \\
\quad t=A(i, k) / A(k, k) \\
A(i, k)=0 \\
b(i)=b(i)-t \times b(k) \\
\text { For } j=k+1, \ldots, n \\
\quad A(i, j)=A(i, j)-t \times A(k, j)
\end{array}
\end{aligned}
$$

End for

Direct Methods for LS

Algorithm 3 (Gaussian elimination) Given $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$, this algorithm implements the Gaussian elimination procedure to reduce A to upper triangular and modify the entries of b accordingly.

$$
\begin{aligned}
& \text { For } k=1, \ldots, n-1 \\
& \qquad \begin{array}{l}
\text { For } i=k+1, \ldots, n \\
\quad t=A(i, k) / A(k, k) \\
A(i, k)=0 \\
b(i)=b(i)-t \times b(k) \\
\text { For } j=k+1, \ldots, n \\
\quad A(i, j)=A(i, j)-t \times A(k, j)
\end{array}
\end{aligned}
$$

End for
End for

Direct Methods for LS

Algorithm 3 (Gaussian elimination) Given $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$, this algorithm implements the Gaussian elimination procedure to reduce A to upper triangular and modify the entries of b accordingly.

$$
\begin{aligned}
& \text { For } k=1, \ldots, n-1 \\
& \qquad \begin{array}{l}
\text { For } i=k+1, \ldots, n \\
\quad t=A(i, k) / A(k, k) \\
\quad b(i)=b(i)-t \times b(k) \\
\text { For } j=k+1, \ldots, n \\
\quad A(i, j)=A(i, j)-t \times A(k, j) \\
\quad \text { End for }
\end{array} \\
& \text { End for } \\
& \text { End for }
\end{aligned}
$$

Direct Methods for LS

Direct Methods for LS

Example 1 Solve system of linear equations.

$$
\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
12 & -8 & 6 & 10 \\
3 & -13 & 9 & 3 \\
-6 & 4 & 1 & -18
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
12 \\
34 \\
27 \\
-38
\end{array}\right]
$$

Solution:

Example 1 Solve system of linear equations.

$$
\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
12 & -8 & 6 & 10 \\
3 & -13 & 9 & 3 \\
-6 & 4 & 1 & -18
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
12 \\
34 \\
27 \\
-38
\end{array}\right]
$$

Solution:
$1^{\text {st }}$ step Use 6 as pivot element, the first row as pivot row, and multipliers $2, \frac{1}{2},-1$ are produced to reduce the system to

$$
\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
0 & -4 & 2 & 2 \\
0 & -12 & 8 & 1 \\
0 & 2 & 3 & -14
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
12 \\
10 \\
21 \\
-26
\end{array}\right]
$$

$2^{\text {nd }}$ step Use -4 as pivot element, the second row as pivot row, and multipliers $3,-\frac{1}{2}$ are computed to reduce the system to

$$
\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
0 & -4 & 2 & 2 \\
0 & 0 & 2 & -5 \\
0 & 0 & 4 & -13
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
12 \\
10 \\
-9 \\
-21
\end{array}\right]
$$

Direct Methods for LS

$2^{\text {nd }}$ step Use -4 as pivot element, the second row as pivot row, and multipliers $3,-\frac{1}{2}$ are computed to reduce the system to

$$
\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
0 & -4 & 2 & 2 \\
0 & 0 & 2 & -5 \\
0 & 0 & 4 & -13
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
12 \\
10 \\
-9 \\
-21
\end{array}\right]
$$

$3^{r d}$ step Use 2 as pivot element, the third row as pivot row, and multipliers 2 is found to reduce the system to

$$
\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
0 & -4 & 2 & 2 \\
0 & 0 & 2 & -5 \\
0 & 0 & 0 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
12 \\
10 \\
-9 \\
-3
\end{array}\right]
$$

Collect all the multipliers and let

$$
L=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
\frac{1}{2} & 3 & 1 & 0 \\
-1 & -\frac{1}{2} & 2 & 1
\end{array}\right] \text { and } U=\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
0 & -4 & 2 & 2 \\
0 & 0 & 2 & -5 \\
0 & 0 & 0 & -3
\end{array}\right]
$$

then one can verify that $L U=A$.

2.2 - Gaussian Transformation and LU Factorization

For a given vector $v \in \mathbb{R}^{n}$ with $v_{k} \neq 0$ for some $1 \leq k \leq n$, let

2.2 - Gaussian Transformation and LU Factorization

For a given vector $v \in \mathbb{R}^{n}$ with $v_{k} \neq 0$ for some $1 \leq k \leq n$, let

$$
\ell_{i k}=\frac{v_{i}}{v_{k}}, \quad i=k+1, \ldots, n
$$

2.2 - Gaussian Transformation and LU Factorization

For a given vector $v \in \mathbb{R}^{n}$ with $v_{k} \neq 0$ for some $1 \leq k \leq n$, let

$$
\begin{aligned}
& \ell_{i k}=\frac{v_{i}}{v_{k}}, \quad i=k+1, \ldots, n \\
& l_{k}=\left[\begin{array}{llllll}
0 & \cdots & 0 & \ell_{k+1, k} & \cdots & \ell_{n, k}
\end{array}\right]^{T}
\end{aligned}
$$

2.2 - Gaussian Transformation and LU Factorization

For a given vector $v \in \mathbb{R}^{n}$ with $v_{k} \neq 0$ for some $1 \leq k \leq n$, let

$$
\begin{aligned}
& \ell_{i k}=\frac{v_{i}}{v_{k}}, \quad i=k+1, \ldots, n \\
& l_{k}=\left[\begin{array}{llllll}
0 & \cdots & 0 & \ell_{k+1, k} & \cdots & \ell_{n, k}
\end{array}\right]^{T}
\end{aligned}
$$

and

$$
M_{k}=I-l_{k} e_{k}^{T}=\left[\begin{array}{cccccc}
1 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & & \vdots \\
0 & \cdots & 1 & 0 & \cdots & 0 \\
0 & \cdots & -\ell_{k+1, k} & 1 & \cdots & 0 \\
\vdots & & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & -\ell_{n, k} & 0 & \cdots & 1
\end{array}\right]
$$

Direct Methods for LS

Then one can verify that

$$
M_{k} v=\left[\begin{array}{llllll}
v_{1} & \cdots & v_{k} & 0 & \cdots & 0
\end{array}\right]^{T}
$$

Direct Methods for LS

Then one can verify that

$$
M_{k} v=\left[\begin{array}{llllll}
v_{1} & \cdots & v_{k} & 0 & \cdots & 0
\end{array}\right]^{T} .
$$

M_{k} is called a Gaussian transformation, the vector l_{k} a Gauss vector.

Then one can verify that

$$
M_{k} v=\left[\begin{array}{llllll}
v_{1} & \cdots & v_{k} & 0 & \cdots & 0
\end{array}\right]^{T}
$$

M_{k} is called a Gaussian transformation, the vector l_{k} a Gauss vector. Furthermore, one can verify that

$$
M_{k}^{-1}=\left(I-l_{k} e_{k}^{T}\right)^{-1}=I+l_{k} e_{k}^{T}=\left[\begin{array}{cccccc}
1 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & & \vdots \\
0 & \cdots & 1 & 0 & \cdots & 0 \\
0 & \cdots & \ell_{k+1, k} & 1 & \cdots & 0 \\
\vdots & & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & \ell_{n, k} & 0 & \cdots & 1
\end{array}\right]
$$

Direct Methods for LS

Given a nonsingular matrix $A \in \mathbb{R}^{n \times n}$, denote $A^{(1)} \equiv\left[a_{i j}^{(1)}\right]=A$.

Direct Methods for LS

Given a nonsingular matrix $A \in \mathbb{R}^{n \times n}$, denote $A^{(1)} \equiv\left[a_{i j}^{(1)}\right]=A$. If $a_{11}^{(1)} \neq 0$,

Direct Methods for LS

Given a nonsingular matrix $A \in \mathbb{R}^{n \times n}$, denote $A^{(1)} \equiv\left[a_{i j}^{(1)}\right]=A$. If $a_{11}^{(1)} \neq 0$, then

$$
M_{1}=I-l_{1} e_{1}^{T}
$$

Given a nonsingular matrix $A \in \mathbb{R}^{n \times n}$, denote $A^{(1)} \equiv\left[a_{i j}^{(1)}\right]=A$. If $a_{11}^{(1)} \neq 0$, then

$$
M_{1}=I-l_{1} e_{1}^{T}
$$

where

$$
l_{1}=\left[\begin{array}{llll}
0 & \ell_{21} & \cdots & \ell_{n 1}
\end{array}\right]^{T}, \quad \ell_{i 1}=\frac{a_{i 1}^{(1)}}{a_{11}^{(1)}}, i=2, \ldots, n
$$

can be formed such that

Given a nonsingular matrix $A \in \mathbb{R}^{n \times n}$, denote $A^{(1)} \equiv\left[a_{i j}^{(1)}\right]=A$. If $a_{11}^{(1)} \neq 0$, then

$$
M_{1}=I-l_{1} e_{1}^{T}
$$

where

$$
l_{1}=\left[\begin{array}{llll}
0 & \ell_{21} & \cdots & \ell_{n 1}
\end{array}\right]^{T}, \quad \ell_{i 1}=\frac{a_{i 1}^{(1)}}{a_{11}^{(1)}}, i=2, \ldots, n
$$

can be formed such that

$$
A^{(2)}=M_{1} A^{(1)}=\left[\begin{array}{cccc}
a_{11}^{(2)} & a_{12}^{(2)} & \cdots & a_{1 n}^{(2)} \\
0 & a_{22}^{(2)} & \cdots & a_{2 n}^{(2)} \\
\vdots & \vdots & \ddots & \vdots \\
0 & a_{n 2}^{(2)} & \cdots & a_{n n}^{(2)}
\end{array}\right]
$$

Given a nonsingular matrix $A \in \mathbb{R}^{n \times n}$, denote $A^{(1)} \equiv\left[a_{i j}^{(1)}\right]=A$. If $a_{11}^{(1)} \neq 0$, then

$$
M_{1}=I-l_{1} e_{1}^{T}
$$

where

$$
l_{1}=\left[\begin{array}{llll}
0 & \ell_{21} & \cdots & \ell_{n 1}
\end{array}\right]^{T}, \quad \ell_{i 1}=\frac{a_{i 1}^{(1)}}{a_{11}^{(1)}}, i=2, \ldots, n
$$

can be formed such that

$$
A^{(2)}=M_{1} A^{(1)}=\left[\begin{array}{cccc}
a_{11}^{(2)} & a_{12}^{(2)} & \cdots & a_{1 n}^{(2)} \\
0 & a_{22}^{(2)} & \cdots & a_{2 n}^{(2)} \\
\vdots & \vdots & \ddots & \vdots \\
0 & a_{n 2}^{(2)} & \cdots & a_{n n}^{(2)}
\end{array}\right]
$$

where

$$
a_{i j}^{(2)}= \begin{cases}a_{i j}^{(1)}, & \text { for } i=1 \text { and } j=1, \ldots, n ; \\ a_{i j}^{(1)}-\ell_{i 1} \times a_{1 j}^{(1)}, & \text { for } i=2, \ldots, n \text { and } j=2, \ldots, n\end{cases}
$$

Direct Methods for LS

In general, at the k-th step, we are confronted with a matrix

Direct Methods for LS

In general, at the k-th step, we are confronted with a matrix
$A^{(k)}$

Direct Methods for LS

In general, at the k-th step, we are confronted with a matrix

$$
A^{(k)}=
$$

Direct Methods for LS

In general, at the k-th step, we are confronted with a matrix

$$
A^{(k)}=M_{k-1} \cdots M_{2} M_{1} A^{(1)}
$$

Direct Methods for LS

In general, at the k-th step, we are confronted with a matrix

$$
A^{(k)}=M_{k-1} \cdots M_{2} M_{1} A^{(1)}
$$

Direct Methods for LS

In general, at the k-th step, we are confronted with a matrix

$$
\begin{aligned}
A^{(k)} & =M_{k-1} \cdots M_{2} M_{1} A^{(1)} \\
& =\left[\begin{array}{cccc|ccc}
a_{11}^{(k)} & a_{12}^{(k)} & \cdots & a_{1, k-1}^{(k)} & a_{1 k}^{(k)} & \cdots & a_{1 n}^{(k)} \\
0 & a_{22}^{(k)} & \cdots & a_{2, k-1}^{(k)} & a_{2 k}^{(k)} & \cdots & a_{2 n}^{(k)} \\
\vdots & \vdots & \ddots & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & a_{k-1, k-1}^{(k)} & a_{k-1, k}^{(k)} & \cdots & a_{k-1, n}^{(k)} \\
\hline 0 & 0 & \cdots & 0 & a_{k k}^{(k)} & \cdots & a_{k n}^{(k)} \\
\vdots & \vdots & & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & a_{k n}^{(k)} & \cdots & a_{n n}^{(k)}
\end{array}\right]
\end{aligned}
$$

Direct Methods for LS

In general, at the k-th step, we are confronted with a matrix

$$
\begin{aligned}
A^{(k)} & =M_{k-1} \cdots M_{2} M_{1} A^{(1)} \\
& =\left[\begin{array}{cccc|ccc}
a_{11}^{(k)} & a_{12}^{(k)} & \cdots & a_{1, k-1}^{(k)} & a_{1 k}^{(k)} & \cdots & a_{1 n}^{(k)} \\
0 & a_{22}^{(k)} & \cdots & a_{2, k-1}^{(k)} & a_{2 k}^{(k)} & \cdots & a_{2 n}^{(k)} \\
\vdots & \vdots & \ddots & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & a_{k-1, k-1}^{(k)} & a_{k-1, k}^{(k)} & \cdots & a_{k-1, n}^{(k)} \\
\hline 0 & 0 & \cdots & 0 & a_{k k}^{(k)} & \cdots & a_{k n}^{(k)} \\
\vdots & \vdots & & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & a_{k n}^{(k)} & \cdots & a_{n n}^{(k)}
\end{array}\right]
\end{aligned}
$$

If the pivot $a_{k k}^{(k)} \neq 0$,

Direct Methods for LS

In general, at the k-th step, we are confronted with a matrix

$$
\begin{aligned}
A^{(k)} & =M_{k-1} \cdots M_{2} M_{1} A^{(1)} \\
& =\left[\begin{array}{cccc|ccc}
a_{11}^{(k)} & a_{12}^{(k)} & \cdots & a_{1, k-1}^{(k)} & a_{1 k}^{(k)} & \cdots & a_{1 n}^{(k)} \\
0 & a_{22}^{(k)} & \cdots & a_{2, k-1}^{(k)} & a_{2 k}^{(k)} & \cdots & a_{2 n}^{(k)} \\
\vdots & \vdots & \ddots & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & a_{k-1, k-1}^{(k)} & a_{k-1, k}^{(k)} & \cdots & a_{k-1, n}^{(k)} \\
\hline 0 & 0 & \cdots & 0 & a_{k k}^{(k)} & \cdots & a_{k n}^{(k)} \\
\vdots & \vdots & & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & a_{k n}^{(k)} & \cdots & a_{n n}^{(k)}
\end{array}\right]
\end{aligned}
$$

If the pivot $a_{k k}^{(k)} \neq 0$, then the multipliers

$$
\ell_{i k}=\frac{a_{i k}^{(k)}}{a_{k k}^{(k)}}, \quad i=k+1, \ldots, n
$$

Direct Methods for LS

can be computed

Direct Methods for LS

can be computed and the Gaussian transformation

$$
M_{k}=I-l_{k} e_{k}^{T}, \quad \text { where } \quad l_{k}=\left[\begin{array}{llllll}
0 & \cdots & 0 & \ell_{k+1, k} & \cdots & \ell_{n k}
\end{array}\right]
$$

can be applied to the left of $A^{(k)}$ to obtain

Direct Methods for LS

can be computed and the Gaussian transformation

$$
M_{k}=I-l_{k} e_{k}^{T}, \quad \text { where } \quad l_{k}=\left[\begin{array}{llllll}
0 & \cdots & 0 & \ell_{k+1, k} & \cdots & \ell_{n k}
\end{array}\right]
$$

can be applied to the left of $A^{(k)}$ to obtain

$$
A^{(k+1)}=M_{k} A^{(k)}
$$

can be computed and the Gaussian transformation

$$
M_{k}=I-l_{k} e_{k}^{T}, \quad \text { where } \quad l_{k}=\left[\begin{array}{llllll}
0 & \cdots & 0 & \ell_{k+1, k} & \cdots & \ell_{n k}
\end{array}\right]
$$

can be applied to the left of $A^{(k)}$ to obtain

$$
A^{(k+1)}=M_{k} A^{(k)}
$$

Direct Methods for LS

can be computed and the Gaussian transformation

$$
M_{k}=I-l_{k} e_{k}^{T}, \quad \text { where } \quad l_{k}=\left[\begin{array}{llllll}
0 & \cdots & 0 & \ell_{k+1, k} & \cdots & \ell_{n k}
\end{array}\right]
$$

can be applied to the left of $A^{(k)}$ to obtain

$$
\begin{aligned}
& A^{(k+1)}=M_{k} A^{(k)} \\
& =\left[\begin{array}{cccc|cccc}
a_{11}^{(k+1)} & a_{12}^{(k+1)} & \cdots & a_{1, k-1}^{(k+1)} & a_{1 k}^{(k+1)} & a_{1, k+1}^{(k+1)} & \cdots & a_{1 n}^{(k+1)} \\
0 & a_{22}^{(k+1)} & \cdots & a_{2, k-1}^{(k+1)} & a_{2 k}^{(k+1)} & a_{2, k+1}^{(k+1)} & \cdots & a_{2 n}^{(k+1)} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & a_{k-1, k-1}^{(k+1)} & a_{k-1, k}^{(k+1)} & a_{k-1, k+1}^{(k+1)} & \cdots & a_{k-1, n}^{(k+1)} \\
\hline 0 & 0 & \cdots & 0 & a_{k k}^{(k+1)} & a_{k, k+1}^{(k+1)} & \cdots & a_{k n}^{(k+1)} \\
\vdots & \vdots & & \vdots & 0 & a_{k+1, k+1}^{(k+1)} & \cdots & \vdots \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 0 & 0 & a_{n, k+1}^{(k+1)} & \cdots & a_{n n}^{(k+1)}
\end{array}\right],
\end{aligned}
$$

Direct Methods for LS

in which

$$
a_{i j}^{(k+1)}= \begin{cases}a_{i j}^{(k)}, & \text { for } i=1, \ldots, k, j=1, \ldots, n \\ 0, & \text { for } i=k+1, \ldots, n, j=k \\ a_{i j}^{(k)}-\ell_{i k} a_{k j}^{(k)}, & \text { for } i=k+1, \ldots, n, j=k+1, \ldots, n\end{cases}
$$

Direct Methods for LS

in which

$$
a_{i j}^{(k+1)}= \begin{cases}a_{i j}^{(k)}, & \text { for } i=1, \ldots, k, j=1, \ldots, n \\ 0, & \text { for } i=k+1, \ldots, n, j=k \\ a_{i j}^{(k)}-\ell_{i k} a_{k j}^{(k)}, & \text { for } i=k+1, \ldots, n, j=k+1, \ldots, n\end{cases}
$$

Upon the completion,

$$
U \equiv A^{(n)}=M_{n-1} \cdots M_{2} M_{1} A
$$

is upper triangular.

Direct Methods for LS

Hence

Hence

$$
A=M_{1}^{-1} M_{2}^{-1} \cdots M_{n-1}^{-1} U \equiv L U
$$

Hence

$$
A=M_{1}^{-1} M_{2}^{-1} \cdots M_{n-1}^{-1} U \equiv L U
$$

where

Hence

$$
A=M_{1}^{-1} M_{2}^{-1} \cdots M_{n-1}^{-1} U \equiv L U
$$

where

$$
L \equiv M_{1}^{-1} M_{2}^{-1} \cdots M_{n-1}^{-1}
$$

Hence

$$
A=M_{1}^{-1} M_{2}^{-1} \cdots M_{n-1}^{-1} U \equiv L U
$$

where

$$
L \equiv M_{1}^{-1} M_{2}^{-1} \cdots M_{n-1}^{-1}
$$

Direct Methods for LS

Hence

$$
A=M_{1}^{-1} M_{2}^{-1} \cdots M_{n-1}^{-1} U \equiv L U
$$

where

$$
L \equiv M_{1}^{-1} M_{2}^{-1} \cdots M_{n-1}^{-1}=\left(I-l_{1} e_{1}^{T}\right)^{-1}\left(I-l_{2} e_{2}^{T}\right)^{-1} \cdots\left(I-l_{n-1} e_{n-1}^{T}\right)^{-1}
$$

Direct Methods for LS

Hence

$$
A=M_{1}^{-1} M_{2}^{-1} \cdots M_{n-1}^{-1} U \equiv L U
$$

where

$$
L \equiv M_{1}^{-1} M_{2}^{-1} \cdots M_{n-1}^{-1}=\left(I-l_{1} e_{1}^{T}\right)^{-1}\left(I-l_{2} e_{2}^{T}\right)^{-1} \cdots\left(I-l_{n-1} e_{n-1}^{T}\right)^{-1}
$$

Hence

$$
A=M_{1}^{-1} M_{2}^{-1} \cdots M_{n-1}^{-1} U \equiv L U
$$

where

$$
\begin{aligned}
L \equiv M_{1}^{-1} M_{2}^{-1} \cdots M_{n-1}^{-1} & =\left(I-l_{1} e_{1}^{T}\right)^{-1}\left(I-l_{2} e_{2}^{T}\right)^{-1} \cdots\left(I-l_{n-1} e_{n-1}^{T}\right)^{-1} \\
& =\left(I+l_{1} e_{1}^{T}\right)\left(I+l_{2} e_{2}^{T}\right) \cdots\left(I+l_{n-1} e_{n-1}^{T}\right)
\end{aligned}
$$

Hence

$$
A=M_{1}^{-1} M_{2}^{-1} \cdots M_{n-1}^{-1} U \equiv L U
$$

where

$$
\begin{aligned}
L \equiv M_{1}^{-1} M_{2}^{-1} \cdots M_{n-1}^{-1} & =\left(I-l_{1} e_{1}^{T}\right)^{-1}\left(I-l_{2} e_{2}^{T}\right)^{-1} \cdots\left(I-l_{n-1} e_{n-1}^{T}\right)^{-1} \\
& =\left(I+l_{1} e_{1}^{T}\right)\left(I+l_{2} e_{2}^{T}\right) \cdots\left(I+l_{n-1} e_{n-1}^{T}\right) \\
& =
\end{aligned}
$$

Hence

$$
A=M_{1}^{-1} M_{2}^{-1} \cdots M_{n-1}^{-1} U \equiv L U
$$

where

$$
\begin{aligned}
L \equiv M_{1}^{-1} M_{2}^{-1} \cdots M_{n-1}^{-1} & =\left(I-l_{1} e_{1}^{T}\right)^{-1}\left(I-l_{2} e_{2}^{T}\right)^{-1} \cdots\left(I-l_{n-1} e_{n-1}^{T}\right)^{-1} \\
& =\left(I+l_{1} e_{1}^{T}\right)\left(I+l_{2} e_{2}^{T}\right) \cdots\left(I+l_{n-1} e_{n-1}^{T}\right) \\
& =I+l_{1} e_{1}^{T}+l_{2} e_{2}^{T}+\cdots+l_{n-1} e_{n-1}^{T}
\end{aligned}
$$

Hence

$$
A=M_{1}^{-1} M_{2}^{-1} \cdots M_{n-1}^{-1} U \equiv L U
$$

where

$$
\begin{aligned}
L \equiv M_{1}^{-1} M_{2}^{-1} \cdots M_{n-1}^{-1} & =\left(I-l_{1} e_{1}^{T}\right)^{-1}\left(I-l_{2} e_{2}^{T}\right)^{-1} \cdots\left(I-l_{n-1} e_{n-1}^{T}\right)^{-1} \\
& =\left(I+l_{1} e_{1}^{T}\right)\left(I+l_{2} e_{2}^{T}\right) \cdots\left(I+l_{n-1} e_{n-1}^{T}\right) \\
& =I+l_{1} e_{1}^{T}+l_{2} e_{2}^{T}+\cdots+l_{n-1} e_{n-1}^{T}
\end{aligned}
$$

Hence

$$
A=M_{1}^{-1} M_{2}^{-1} \cdots M_{n-1}^{-1} U \equiv L U
$$

where

$$
\begin{aligned}
L \equiv M_{1}^{-1} M_{2}^{-1} \cdots M_{n-1}^{-1} & =\left(I-l_{1} e_{1}^{T}\right)^{-1}\left(I-l_{2} e_{2}^{T}\right)^{-1} \cdots\left(I-l_{n-1} e_{n-1}^{T}\right)^{-1} \\
& =\left(I+l_{1} e_{1}^{T}\right)\left(I+l_{2} e_{2}^{T}\right) \cdots\left(I+l_{n-1} e_{n-1}^{T}\right) \\
& =I+l_{1} e_{1}^{T}+l_{2} e_{2}^{T}+\cdots+l_{n-1} e_{n-1}^{T} \\
& =\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
\ell_{21} & 1 & 0 & \cdots & 0 \\
\ell_{31} & \ell_{32} & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\ell_{n 1} & \ell_{n 2} & \ell_{n 3} & \cdots & 1
\end{array}\right]
\end{aligned}
$$

Hence

$$
A=M_{1}^{-1} M_{2}^{-1} \cdots M_{n-1}^{-1} U \equiv L U
$$

where

$$
\begin{aligned}
L \equiv M_{1}^{-1} M_{2}^{-1} \cdots M_{n-1}^{-1} & =\left(I-l_{1} e_{1}^{T}\right)^{-1}\left(I-l_{2} e_{2}^{T}\right)^{-1} \cdots\left(I-l_{n-1} e_{n-1}^{T}\right)^{-1} \\
& =\left(I+l_{1} e_{1}^{T}\right)\left(I+l_{2} e_{2}^{T}\right) \cdots\left(I+l_{n-1} e_{n-1}^{T}\right) \\
& =I+l_{1} e_{1}^{T}+l_{2} e_{2}^{T}+\cdots+l_{n-1} e_{n-1}^{T} \\
& =\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
\ell_{21} & 1 & 0 & \cdots & 0 \\
\ell_{31} & \ell_{32} & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\ell_{n 1} & \ell_{n 2} & \ell_{n 3} & \cdots & 1
\end{array}\right]
\end{aligned}
$$

is unit lower triangular.

Hence

$$
A=M_{1}^{-1} M_{2}^{-1} \cdots M_{n-1}^{-1} U \equiv L U
$$

where

$$
\begin{aligned}
L \equiv M_{1}^{-1} M_{2}^{-1} \cdots M_{n-1}^{-1} & =\left(I-l_{1} e_{1}^{T}\right)^{-1}\left(I-l_{2} e_{2}^{T}\right)^{-1} \cdots\left(I-l_{n-1} e_{n-1}^{T}\right)^{-1} \\
& =\left(I+l_{1} e_{1}^{T}\right)\left(I+l_{2} e_{2}^{T}\right) \cdots\left(I+l_{n-1} e_{n-1}^{T}\right) \\
& =I+l_{1} e_{1}^{T}+l_{2} e_{2}^{T}+\cdots+l_{n-1} e_{n-1}^{T} \\
& =\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
\ell_{21} & 1 & 0 & \cdots & 0 \\
\ell_{31} & \ell_{32} & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\ell_{n 1} & \ell_{n 2} & \ell_{n 3} & \cdots & 1
\end{array}\right]
\end{aligned}
$$

is unit lower triangular. This matrix factorization is called the $L U$-factorization of A.

Direct Methods for LS

Algorithm 4 ($L U$ Factorization) Given a nonsingular square matrix $A \in \mathbb{R}^{n \times n}$, this algorithm computes a unit lower triangular matrix L and an upper triangular matrix U such that $A=L U$. The matrix A is overwritten by L and U.

Direct Methods for LS

Algorithm 4 (LU Factorization) Given a nonsingular square matrix $A \in \mathbb{R}^{n \times n}$, this algorithm computes a unit lower triangular matrix L and an upper triangular matrix U such that $A=L U$. The matrix A is overwritten by L and U.

$$
\text { For } k=1, \ldots, n-1
$$

Direct Methods for LS

Algorithm 4 (LU Factorization) Given a nonsingular square matrix $A \in \mathbb{R}^{n \times n}$, this algorithm computes a unit lower triangular matrix L and an upper triangular matrix U such that $A=L U$. The matrix A is overwritten by L and U.

$$
\begin{aligned}
& \text { For } k=1, \ldots, n-1 \\
& \qquad \text { For } i=k+1, \ldots, n
\end{aligned}
$$

Direct Methods for LS

Algorithm 4 ($L U$ Factorization) Given a nonsingular square matrix $A \in \mathbb{R}^{n \times n}$, this algorithm computes a unit lower triangular matrix L and an upper triangular matrix U such that $A=L U$. The matrix A is overwritten by L and U.

$$
\begin{aligned}
& \text { For } k=1, \ldots, n-1 \\
& \qquad \begin{array}{l}
\text { For } i=k+1, \ldots, n \\
\quad A(i, k)=A(i, k) / A(k, k)
\end{array}
\end{aligned}
$$

Direct Methods for LS

Algorithm 4 (LU Factorization) Given a nonsingular square matrix $A \in \mathbb{R}^{n \times n}$, this algorithm computes a unit lower triangular matrix L and an upper triangular matrix U such that $A=L U$. The matrix A is overwritten by L and U.

$$
\begin{aligned}
& \text { For } k=1, \ldots, n-1 \\
& \text { For } i=k+1, \ldots, n \\
& A(i, k)=A(i, k) / A(k, k) \\
& \text { For } j=k+1, \ldots, n
\end{aligned}
$$

Direct Methods for LS

Algorithm 4 ($L U$ Factorization) Given a nonsingular square matrix $A \in \mathbb{R}^{n \times n}$, this algorithm computes a unit lower triangular matrix L and an upper triangular matrix U such that $A=L U$. The matrix A is overwritten by L and U.

$$
\begin{aligned}
& \text { For } k=1, \ldots, n-1 \\
& \text { For } i=k+1, \ldots, n \\
& A(i, k)=A(i, k) / A(k, k) \\
& \text { For } j=k+1, \ldots, n \\
& A(i, j)=A(i, j)-A(i, k) \times A(k, j)
\end{aligned}
$$

Direct Methods for LS

Algorithm 4 ($L U$ Factorization) Given a nonsingular square matrix $A \in \mathbb{R}^{n \times n}$, this algorithm computes a unit lower triangular matrix L and an upper triangular matrix U such that $A=L U$. The matrix A is overwritten by L and U.

$$
\begin{aligned}
& \text { For } k=1, \ldots, n-1 \\
& \qquad \begin{array}{l}
\text { For } i=k+1, \ldots, n \\
\quad A(i, k)=A(i, k) / A(k, k) \\
\text { For } j=k+1, \ldots, n \\
\quad A(i, j)=A(i, j)-A(i, k) \times A(k, j)
\end{array}
\end{aligned}
$$

End for

Direct Methods for LS

Algorithm 4 ($L U$ Factorization) Given a nonsingular square matrix $A \in \mathbb{R}^{n \times n}$, this algorithm computes a unit lower triangular matrix L and an upper triangular matrix U such that $A=L U$. The matrix A is overwritten by L and U.

$$
\begin{aligned}
& \text { For } k=1, \ldots, n-1 \\
& \qquad \begin{array}{l}
\text { For } i=k+1, \ldots, n \\
\quad A(i, k)=A(i, k) / A(k, k) \\
\text { For } j=k+1, \ldots, n \\
\quad A(i, j)=A(i, j)-A(i, k) \times A(k, j) \\
\text { End for }
\end{array} \\
& \text { End for }
\end{aligned}
$$

Direct Methods for LS

Algorithm 4 ($L U$ Factorization) Given a nonsingular square matrix $A \in \mathbb{R}^{n \times n}$, this algorithm computes a unit lower triangular matrix L and an upper triangular matrix U such that $A=L U$. The matrix A is overwritten by L and U.

```
For \(k=1, \ldots, n-1\)
    For \(i=k+1, \ldots, n\)
        \(A(i, k)=A(i, k) / A(k, k)\)
        For \(j=k+1, \ldots, n\)
        \(A(i, j)=A(i, j)-A(i, k) \times A(k, j)\)
    End for
    End for
End for
```


Direct Methods for LS

Algorithm 4 ($L U$ Factorization) Given a nonsingular square matrix $A \in \mathbb{R}^{n \times n}$, this algorithm computes a unit lower triangular matrix L and an upper triangular matrix U such that $A=L U$. The matrix A is overwritten by L and U.

$$
\begin{aligned}
& \text { For } k=1, \ldots, n-1 \\
& \qquad \begin{array}{l}
\text { For } i=k+1, \ldots, n \\
\quad A(i, k)=A(i, k) / A(k, k) \\
\text { For } j=k+1, \ldots, n \\
\quad A(i, j)=A(i, j)-A(i, k) \times A(k, j)
\end{array}
\end{aligned}
$$

End for
End for
End for
This algorithm requires

$$
\sum_{k=1}^{n-1} \sum_{i=k+1}^{n} 2(n-k)=\frac{2}{3} n^{3}-\frac{1}{2} n^{2}+\frac{1}{3} n \text { flops. }
$$

2.3 - Existence and Uniqueness of LU Factorization

Definition 1 (Leading principal minor) Let A be an $n \times n$ matrix. The upper left $k \times k$ submatrix, denoted as

$$
A_{k}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 k} \\
a_{21} & a_{22} & \cdots & a_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{k 1} & a_{k 2} & \cdots & a_{k k}
\end{array}\right]
$$

is called the leading $k \times k$ principal submatrix, and the determinant of A_{k}, $\operatorname{det}\left(A_{k}\right)$, is called the leading principal minor.

Direct Methods for LS

Theorem 1 If all leading principal minor of $A \in \mathbb{R}^{n \times n}$ are nonzero, that is, all leading principal submatrices are nonsingular, then A has an $L U$-factorization.

Direct Methods for LS

Theorem 1 If all leading principal minor of $A \in \mathbb{R}^{n \times n}$ are nonzero, that is, all leading principal submatrices are nonsingular, then A has an $L U$-factorization.

Proof: Proof by mathematical induction.

Direct Methods for LS

Theorem 1 If all leading principal minor of $A \in \mathbb{R}^{n \times n}$ are nonzero, that is, all leading principal submatrices are nonsingular, then A has an $L U$-factorization.

Proof: Proof by mathematical induction.
(i) $n=1, A_{1}=\left[a_{11}\right]$ is nonsingular, then $a_{11} \neq 0$. Let $L_{1}=[1]$ and $U_{1}=\left[a_{11}\right]$. Then $A_{1}=L_{1} U_{1}$. The theorem holds.

Direct Methods for LS

Theorem 1 If all leading principal minor of $A \in \mathbb{R}^{n \times n}$ are nonzero, that is, all leading principal submatrices are nonsingular, then A has an $L U$-factorization.

Proof: Proof by mathematical induction.
(i) $n=1, A_{1}=\left[a_{11}\right]$ is nonsingular, then $a_{11} \neq 0$. Let $L_{1}=[1]$ and $U_{1}=\left[a_{11}\right]$. Then $A_{1}=L_{1} U_{1}$. The theorem holds.
(ii) Assume that the leading principal submatrices A_{1}, \ldots, A_{k} are nonsingular and A_{k} has an LU-factorization $A_{k}=L_{k} U_{k}$, where L_{k} is unit lower triangular and U_{k} is upper triangular.

Direct Methods for LS

Theorem 1 If all leading principal minor of $A \in \mathbb{R}^{n \times n}$ are nonzero, that is, all leading principal submatrices are nonsingular, then A has an $L U$-factorization.

Proof: Proof by mathematical induction.
(i) $n=1, A_{1}=\left[a_{11}\right]$ is nonsingular, then $a_{11} \neq 0$. Let $L_{1}=[1]$ and $U_{1}=\left[a_{11}\right]$. Then $A_{1}=L_{1} U_{1}$. The theorem holds.
(ii) Assume that the leading principal submatrices A_{1}, \ldots, A_{k} are nonsingular and A_{k} has an LU-factorization $A_{k}=L_{k} U_{k}$, where L_{k} is unit lower triangular and U_{k} is upper triangular.
(iii) Show that there exist an unit lower triangular matrix L_{k+1} and an upper triangular matrix U_{k+1} such that $A_{k+1}=L_{k+1} U_{k+1}$.

Direct Methods for LS

Write

$$
A_{k+1}=\left[\begin{array}{cc}
A_{k} & v_{k} \\
w_{k}^{T} & a_{k+1, k+1}
\end{array}\right]
$$

Direct Methods for LS

Write

$$
A_{k+1}=\left[\begin{array}{cc}
A_{k} & v_{k} \\
w_{k}^{T} & a_{k+1, k+1}
\end{array}\right]
$$

where

$$
v_{k}=\left[\begin{array}{c}
a_{1, k+1} \\
a_{2, k+1} \\
\vdots \\
a_{k, k+1}
\end{array}\right] \quad \text { and } \quad w_{k}=\left[\begin{array}{c}
a_{k+1,1} \\
a_{k+1,2} \\
\vdots \\
a_{k+1, k}
\end{array}\right]
$$

Direct Methods for LS

Write

$$
A_{k+1}=\left[\begin{array}{cc}
A_{k} & v_{k} \\
w_{k}^{T} & a_{k+1, k+1}
\end{array}\right]
$$

where

$$
v_{k}=\left[\begin{array}{c}
a_{1, k+1} \\
a_{2, k+1} \\
\vdots \\
a_{k, k+1}
\end{array}\right] \quad \text { and } \quad w_{k}=\left[\begin{array}{c}
a_{k+1,1} \\
a_{k+1,2} \\
\vdots \\
a_{k+1, k}
\end{array}\right] .
$$

Since A_{k} is nonsingular, both L_{k} and U_{k} are nonsingular.

Direct Methods for LS

Write

$$
A_{k+1}=\left[\begin{array}{cc}
A_{k} & v_{k} \\
w_{k}^{T} & a_{k+1, k+1}
\end{array}\right]
$$

where

$$
v_{k}=\left[\begin{array}{c}
a_{1, k+1} \\
a_{2, k+1} \\
\vdots \\
a_{k, k+1}
\end{array}\right] \quad \text { and } \quad w_{k}=\left[\begin{array}{c}
a_{k+1,1} \\
a_{k+1,2} \\
\vdots \\
a_{k+1, k}
\end{array}\right]
$$

Since A_{k} is nonsingular, both L_{k} and U_{k} are nonsingular.
$\Rightarrow L_{k} y_{k}=v_{k}$ has a unique solution $y_{k} \in \mathbb{R}^{k}$, and $z^{t} U_{k}=w_{k}^{T}$ has a unique solution $z_{k} \in \mathbb{R}^{k}$.

Direct Methods for LS

Write

$$
A_{k+1}=\left[\begin{array}{cc}
A_{k} & v_{k} \\
w_{k}^{T} & a_{k+1, k+1}
\end{array}\right]
$$

where

$$
v_{k}=\left[\begin{array}{c}
a_{1, k+1} \\
a_{2, k+1} \\
\vdots \\
a_{k, k+1}
\end{array}\right] \quad \text { and } \quad w_{k}=\left[\begin{array}{c}
a_{k+1,1} \\
a_{k+1,2} \\
\vdots \\
a_{k+1, k}
\end{array}\right] .
$$

Since A_{k} is nonsingular, both L_{k} and U_{k} are nonsingular.
$\Rightarrow L_{k} y_{k}=v_{k}$ has a unique solution $y_{k} \in \mathbb{R}^{k}$, and $z^{t} U_{k}=w_{k}^{T}$ has a unique solution $z_{k} \in \mathbb{R}^{k}$. Let

$$
L_{k+1}=\left[\begin{array}{cc}
L_{k} & 0 \\
z_{k}^{T} & 1
\end{array}\right] \quad \text { and } \quad U_{k+1}=\left[\begin{array}{cc}
U_{k} & y_{k} \\
0 & a_{k+1, k+1}-z_{k}^{T} y_{k}
\end{array}\right]
$$

Direct Methods for LS

Then L_{k+1} is unit lower triangular, U_{k+1} is upper triangular,

Then L_{k+1} is unit lower triangular, U_{k+1} is upper triangular, and

$$
\begin{aligned}
L_{k+1} U_{k+1} & =\left[\begin{array}{cc}
L_{k} U_{k} & L_{k} y_{k} \\
z_{k}^{T} U_{k} & z_{k}^{T} y_{k}+a_{k+1, k+1}-z_{k}^{T} y_{k}
\end{array}\right] \\
& =\left[\begin{array}{cc}
A_{k} & v_{k} \\
w_{k}^{T} & a_{k+1, k+1}
\end{array}\right]=A_{k+1}
\end{aligned}
$$

Then L_{k+1} is unit lower triangular, U_{k+1} is upper triangular, and

$$
\begin{aligned}
L_{k+1} U_{k+1} & =\left[\begin{array}{cc}
L_{k} U_{k} & L_{k} y_{k} \\
z_{k}^{T} U_{k} & z_{k}^{T} y_{k}+a_{k+1, k+1}-z_{k}^{T} y_{k}
\end{array}\right] \\
& =\left[\begin{array}{cc}
A_{k} & v_{k} \\
w_{k}^{T} & a_{k+1, k+1}
\end{array}\right]=A_{k+1}
\end{aligned}
$$

This proves the theorem.

Direct Methods for LS

Theorem 2 If A is nonsingular and the $L U$ factorization exists, then the $L U$ factorization is unique and $\operatorname{det}(A)=u_{11} \cdots u_{n n}$.

Direct Methods for LS

Theorem 2 If A is nonsingular and the $L U$ factorization exists, then the $L U$ factorization is unique and $\operatorname{det}(A)=u_{11} \cdots u_{n n}$.

Proof: Suppose both $A=L_{1} U_{1}$ and $A=L_{2} U_{2}$ are LU factorizations.

Direct Methods for LS

Theorem 2 If A is nonsingular and the $L U$ factorization exists, then the $L U$ factorization is unique and $\operatorname{det}(A)=u_{11} \cdots u_{n n}$.

Proof: Suppose both $A=L_{1} U_{1}$ and $A=L_{2} U_{2}$ are LU factorizations. Since A is nonsingular, $L_{1}, U_{1}, L_{2}, U_{2}$ are all nonsingular,

Direct Methods for LS

Theorem 2 If A is nonsingular and the $L U$ factorization exists, then the $L U$ factorization is unique and $\operatorname{det}(A)=u_{11} \cdots u_{n n}$.

Proof: Suppose both $A=L_{1} U_{1}$ and $A=L_{2} U_{2}$ are LU factorizations. Since A is nonsingular, $L_{1}, U_{1}, L_{2}, U_{2}$ are all nonsingular, and

$$
A=L_{1} U_{1}=L_{2} U_{2} \Longrightarrow L_{2}^{-1} L_{1}=U_{2} U_{1}^{-1}
$$

Direct Methods for LS

Theorem 2 If A is nonsingular and the $L U$ factorization exists, then the $L U$ factorization is unique and $\operatorname{det}(A)=u_{11} \cdots u_{n n}$.

Proof: Suppose both $A=L_{1} U_{1}$ and $A=L_{2} U_{2}$ are LU factorizations. Since A is nonsingular, $L_{1}, U_{1}, L_{2}, U_{2}$ are all nonsingular, and

$$
A=L_{1} U_{1}=L_{2} U_{2} \Longrightarrow L_{2}^{-1} L_{1}=U_{2} U_{1}^{-1}
$$

L_{1} and L_{2} are unit lower triangular

Direct Methods for LS

Theorem 2 If A is nonsingular and the $L U$ factorization exists, then the $L U$ factorization is unique and $\operatorname{det}(A)=u_{11} \cdots u_{n n}$.

Proof: Suppose both $A=L_{1} U_{1}$ and $A=L_{2} U_{2}$ are LU factorizations. Since A is nonsingular, $L_{1}, U_{1}, L_{2}, U_{2}$ are all nonsingular, and

$$
A=L_{1} U_{1}=L_{2} U_{2} \Longrightarrow L_{2}^{-1} L_{1}=U_{2} U_{1}^{-1}
$$

L_{1} and L_{2} are unit lower triangular $\Rightarrow L_{2}^{-1} L_{1}$ is unit lower triangular

Direct Methods for LS

Theorem 2 If A is nonsingular and the $L U$ factorization exists, then the $L U$ factorization is unique and $\operatorname{det}(A)=u_{11} \cdots u_{n n}$.

Proof: Suppose both $A=L_{1} U_{1}$ and $A=L_{2} U_{2}$ are LU factorizations. Since A is nonsingular, $L_{1}, U_{1}, L_{2}, U_{2}$ are all nonsingular, and

$$
A=L_{1} U_{1}=L_{2} U_{2} \Longrightarrow L_{2}^{-1} L_{1}=U_{2} U_{1}^{-1}
$$

L_{1} and L_{2} are unit lower triangular $\Rightarrow L_{2}^{-1} L_{1}$ is unit lower triangular
U_{1} and U_{2} are upper triangular

Direct Methods for LS

Theorem 2 If A is nonsingular and the $L U$ factorization exists, then the $L U$ factorization is unique and $\operatorname{det}(A)=u_{11} \cdots u_{n n}$.

Proof: Suppose both $A=L_{1} U_{1}$ and $A=L_{2} U_{2}$ are LU factorizations. Since A is nonsingular, $L_{1}, U_{1}, L_{2}, U_{2}$ are all nonsingular, and

$$
A=L_{1} U_{1}=L_{2} U_{2} \Longrightarrow L_{2}^{-1} L_{1}=U_{2} U_{1}^{-1}
$$

L_{1} and L_{2} are unit lower triangular $\Rightarrow L_{2}^{-1} L_{1}$ is unit lower triangular
U_{1} and U_{2} are upper triangular $\Rightarrow U_{2} U_{1}^{-1}$ is upper triangular

Direct Methods for LS

Theorem 2 If A is nonsingular and the $L U$ factorization exists, then the $L U$ factorization is unique and $\operatorname{det}(A)=u_{11} \cdots u_{n n}$.

Proof: Suppose both $A=L_{1} U_{1}$ and $A=L_{2} U_{2}$ are LU factorizations. Since A is nonsingular, $L_{1}, U_{1}, L_{2}, U_{2}$ are all nonsingular, and

$$
A=L_{1} U_{1}=L_{2} U_{2} \Longrightarrow L_{2}^{-1} L_{1}=U_{2} U_{1}^{-1}
$$

L_{1} and L_{2} are unit lower triangular $\Rightarrow L_{2}^{-1} L_{1}$ is unit lower triangular
U_{1} and U_{2} are upper triangular $\Rightarrow U_{2} U_{1}^{-1}$ is upper triangular
$\therefore L_{2}^{-1} L_{1}=I=U_{2} U_{1}^{-1}$

Direct Methods for LS

Theorem 2 If A is nonsingular and the $L U$ factorization exists, then the $L U$ factorization is unique and $\operatorname{det}(A)=u_{11} \cdots u_{n n}$.

Proof: Suppose both $A=L_{1} U_{1}$ and $A=L_{2} U_{2}$ are LU factorizations. Since A is nonsingular, $L_{1}, U_{1}, L_{2}, U_{2}$ are all nonsingular, and

$$
A=L_{1} U_{1}=L_{2} U_{2} \Longrightarrow L_{2}^{-1} L_{1}=U_{2} U_{1}^{-1}
$$

L_{1} and L_{2} are unit lower triangular $\Rightarrow L_{2}^{-1} L_{1}$ is unit lower triangular
U_{1} and U_{2} are upper triangular $\Rightarrow U_{2} U_{1}^{-1}$ is upper triangular
$\therefore L_{2}^{-1} L_{1}=I=U_{2} U_{1}^{-1} \Rightarrow L_{1}=L_{2}$ and $U_{1}=U_{2}$

Direct Methods for LS

```
3- Pivoting
```


3.1 - The Need for Pivoting

Example. The algorithm would fail at the first step on

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

since the first pivot element is zero.

Direct Methods for LS

```
3- Pivoting
```


3.1 - The Need for Pivoting

Example. The algorithm would fail at the first step on

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

since the first pivot element is zero. But if we interchange the rows, the system

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

becomes trivial to solve.

Example. The simple Gaussian elimination algorithm would produce relatively large error on the system

$$
\left[\begin{array}{ll}
\varepsilon & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

where $\varepsilon<\varepsilon_{M}$.

Direct Methods for LS

Example. The simple Gaussian elimination algorithm would produce relatively large error on the system

$$
\left[\begin{array}{ll}
\varepsilon & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

where $\varepsilon<\varepsilon_{M}$. Algorithm 3 would compute

$$
\left[\begin{array}{cc}
\varepsilon & 1 \\
0 & 1-\frac{1}{\varepsilon}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
2-\frac{1}{\varepsilon}
\end{array}\right] \Longrightarrow\left[\begin{array}{cc}
\varepsilon & 1 \\
0 & -\frac{1}{\varepsilon}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-\frac{1}{\varepsilon}
\end{array}\right]
$$

since in the computer, if ε is small enough, $1-\frac{1}{\varepsilon}$ and $2-\frac{1}{\varepsilon}$ will be computed to be the same as $-\frac{1}{\varepsilon}$.

Direct Methods for LS

Example. The simple Gaussian elimination algorithm would produce relatively large error on the system

$$
\left[\begin{array}{ll}
\varepsilon & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

where $\varepsilon<\varepsilon_{M}$. Algorithm 3 would compute

$$
\left[\begin{array}{cc}
\varepsilon & 1 \\
0 & 1-\frac{1}{\varepsilon}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
2-\frac{1}{\varepsilon}
\end{array}\right] \Longrightarrow\left[\begin{array}{cc}
\varepsilon & 1 \\
0 & -\frac{1}{\varepsilon}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-\frac{1}{\varepsilon}
\end{array}\right]
$$

since in the computer, if ε is small enough, $1-\frac{1}{\varepsilon}$ and $2-\frac{1}{\varepsilon}$ will be computed to be the same as $-\frac{1}{\varepsilon}$. Hence,

$$
x_{2}=\frac{-\frac{1}{\varepsilon}}{-\frac{1}{\varepsilon}}=1 \quad \text { and } \quad x_{1}=\frac{1-1}{\varepsilon}=0 .
$$

Direct Methods for LS

Example. The simple Gaussian elimination algorithm would produce relatively large error on the system

$$
\left[\begin{array}{ll}
\varepsilon & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

where $\varepsilon<\varepsilon_{M}$. Algorithm 3 would compute

$$
\left[\begin{array}{cc}
\varepsilon & 1 \\
0 & 1-\frac{1}{\varepsilon}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
2-\frac{1}{\varepsilon}
\end{array}\right] \Longrightarrow\left[\begin{array}{cc}
\varepsilon & 1 \\
0 & -\frac{1}{\varepsilon}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-\frac{1}{\varepsilon}
\end{array}\right]
$$

since in the computer, if ε is small enough, $1-\frac{1}{\varepsilon}$ and $2-\frac{1}{\varepsilon}$ will be computed to be the same as $-\frac{1}{\varepsilon}$. Hence,

$$
\Rightarrow
$$

$$
\begin{aligned}
& x_{2}=\frac{-\frac{1}{\varepsilon}}{-\frac{1}{\varepsilon}}=1 \text { and } x_{1}=\frac{1-1}{\varepsilon}=0 . \\
& {\left[\begin{array}{ll}
\varepsilon & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \neq\left[\begin{array}{l}
1 \\
2
\end{array}\right] .}
\end{aligned}
$$

But actually $x_{1}=x_{2}=1$ would be a much better solution since

$$
\left[\begin{array}{ll}
\varepsilon & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1+\varepsilon \\
2
\end{array}\right] \approx\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

But actually $x_{1}=x_{2}=1$ would be a much better solution since

$$
\left[\begin{array}{ll}
\varepsilon & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1+\varepsilon \\
2
\end{array}\right] \approx\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

If we interchange the rows, then Gaussian elimination would compute

$$
\left[\begin{array}{ll}
1 & 1 \\
\varepsilon & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \Longrightarrow\left[\begin{array}{cc}
1 & 1 \\
0 & 1-\varepsilon
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
2 \\
1-2 \varepsilon
\end{array}\right]
$$

But actually $x_{1}=x_{2}=1$ would be a much better solution since

$$
\left[\begin{array}{ll}
\varepsilon & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1+\varepsilon \\
2
\end{array}\right] \approx\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

If we interchange the rows, then Gaussian elimination would compute

$$
\left[\begin{array}{ll}
1 & 1 \\
\varepsilon & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \Longrightarrow\left[\begin{array}{cc}
1 & 1 \\
0 & 1-\varepsilon
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
2 \\
1-2 \varepsilon
\end{array}\right]
$$

and

$$
x_{2}=\frac{1-2 \epsilon}{1-\varepsilon} \approx 1 \quad \text { and } \quad x_{1}=2-x_{2} \approx 2-1=1
$$

Direct Methods for LS

But actually $x_{1}=x_{2}=1$ would be a much better solution since

$$
\left[\begin{array}{ll}
\varepsilon & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1+\varepsilon \\
2
\end{array}\right] \approx\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

If we interchange the rows, then Gaussian elimination would compute

$$
\left[\begin{array}{ll}
1 & 1 \\
\varepsilon & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \Longrightarrow\left[\begin{array}{cc}
1 & 1 \\
0 & 1-\varepsilon
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
2 \\
1-2 \varepsilon
\end{array}\right]
$$

and

$$
x_{2}=\frac{1-2 \epsilon}{1-\varepsilon} \approx 1 \quad \text { and } \quad x_{1}=2-x_{2} \approx 2-1=1
$$

The strategy of interchange rows/columns as described above is called "pivoting".

Direct Methods for LS

3.2 - Partial Pivoting and Complete Pivoting

If $a_{k k}^{(k)}$ is small in magnitude compared to $a_{i k}^{(k)}, i=k+1, \ldots, n$,

Direct Methods for LS

3.2 - Partial Pivoting and Complete Pivoting

If $a_{k k}^{(k)}$ is small in magnitude compared to $a_{i k}^{(k)}, i=k+1, \ldots, n$, then the multipliers

$$
\ell_{i k}=\frac{a_{i k}^{(k)}}{a_{k k}^{(k)}} \gg 1
$$

Direct Methods for LS

3.2 - Partial Pivoting and Complete Pivoting

If $a_{k k}^{(k)}$ is small in magnitude compared to $a_{i k}^{(k)}, i=k+1, \ldots, n$, then the multipliers

$$
\ell_{i k}=\frac{a_{i k}^{(k)}}{a_{k k}^{(k)}} \gg 1
$$

Roundoff introduced in computing

$$
a_{i j}^{(k+1)}=a_{i j}^{(k)}-\ell_{i k} a_{k j}^{(k)}, \quad i=k+1, \ldots, n, \quad j=k+1, \ldots, n
$$

will be large.

Direct Methods for LS

3.2 - Partial Pivoting and Complete Pivoting

If $a_{k k}^{(k)}$ is small in magnitude compared to $a_{i k}^{(k)}, i=k+1, \ldots, n$, then the multipliers

$$
\ell_{i k}=\frac{a_{i k}^{(k)}}{a_{k k}^{(k)}} \gg 1
$$

Roundoff introduced in computing

$$
a_{i j}^{(k+1)}=a_{i j}^{(k)}-\ell_{i k} a_{k j}^{(k)}, \quad i=k+1, \ldots, n, \quad j=k+1, \ldots, n
$$

will be large. Also when performing the back substitution for

$$
x_{k}=\left(\widetilde{b}_{k}-\sum_{j=k+1}^{n} a_{k j}^{(k)} x_{j}\right) / a_{k k}^{(k)},
$$

any error in the numerator will be dramatically increased when dividing by a small $a_{k k}^{(k)}$.

Direct Methods for LS

3.2 - Partial Pivoting and Complete Pivoting

If $a_{k k}^{(k)}$ is small in magnitude compared to $a_{i k}^{(k)}, i=k+1, \ldots, n$, then the multipliers

$$
\ell_{i k}=\frac{a_{i k}^{(k)}}{a_{k k}^{(k)}} \gg 1
$$

Roundoff introduced in computing

$$
a_{i j}^{(k+1)}=a_{i j}^{(k)}-\ell_{i k} a_{k j}^{(k)}, \quad i=k+1, \ldots, n, \quad j=k+1, \ldots, n,
$$

will be large. Also when performing the back substitution for

$$
x_{k}=\left(\widetilde{b}_{k}-\sum_{j=k+1}^{n} a_{k j}^{(k)} x_{j}\right) / a_{k k}^{(k)},
$$

any error in the numerator will be dramatically increased when dividing by a small $a_{k k}^{(k)}$.
To ensure that no large entries appear in the computed triangular factors, one can choose a pivot element to be the largest entry among $\left|a_{k k}^{(k)}\right|, \ldots,\left|a_{n k}^{(k)}\right|$.

Direct Methods for LS

Let P_{1}, \ldots, P_{k-1} be the permutations chosen and $M_{1}, \ldots M_{k-1}$ denote the Gaussian transformations performed in the first $k-1$ steps.

Direct Methods for LS

Let P_{1}, \ldots, P_{k-1} be the permutations chosen and $M_{1}, \ldots M_{k-1}$ denote the Gaussian transformations performed in the first $k-1$ steps. At the k-th step, a permutation matrix P_{k} is chosen so that

$$
\left|\left(P_{k} M_{k-1} \cdots M_{1} P_{1} A\right)_{k k}\right|=\max _{k \leq i \leq n}\left|\left(M_{k-1} \cdots M_{1} P_{1} A\right)_{i k}\right|
$$

Direct Methods for LS

Let P_{1}, \ldots, P_{k-1} be the permutations chosen and $M_{1}, \ldots M_{k-1}$ denote the Gaussian transformations performed in the first $k-1$ steps. At the k-th step, a permutation matrix P_{k} is chosen so that

$$
\left|\left(P_{k} M_{k-1} \cdots M_{1} P_{1} A\right)_{k k}\right|=\max _{k \leq i \leq n}\left|\left(M_{k-1} \cdots M_{1} P_{1} A\right)_{i k}\right| .
$$

This row interchange strategy is called partial pivoting.

Direct Methods for LS

Let P_{1}, \ldots, P_{k-1} be the permutations chosen and $M_{1}, \ldots M_{k-1}$ denote the Gaussian transformations performed in the first $k-1$ steps. At the k-th step, a permutation matrix P_{k} is chosen so that

$$
\left|\left(P_{k} M_{k-1} \cdots M_{1} P_{1} A\right)_{k k}\right|=\max _{k \leq i \leq n}\left|\left(M_{k-1} \cdots M_{1} P_{1} A\right)_{i k}\right| .
$$

This row interchange strategy is called partial pivoting. As a consequence, $\left|\ell_{i j}\right| \leq 1$ for $i=1, \ldots, n, j=1, \ldots, i$.

Direct Methods for LS

Let P_{1}, \ldots, P_{k-1} be the permutations chosen and $M_{1}, \ldots M_{k-1}$ denote the Gaussian transformations performed in the first $k-1$ steps. At the k-th step, a permutation matrix P_{k} is chosen so that

$$
\left|\left(P_{k} M_{k-1} \cdots M_{1} P_{1} A\right)_{k k}\right|=\max _{k \leq i \leq n}\left|\left(M_{k-1} \cdots M_{1} P_{1} A\right)_{i k}\right| .
$$

This row interchange strategy is called partial pivoting. As a consequence, $\left|\ell_{i j}\right| \leq 1$ for $i=1, \ldots, n, j=1, \ldots, i$. Upon completion, we obtain an upper triangular matrix

$$
\begin{equation*}
U \equiv M_{n-1} P_{n-1} \cdots M_{1} P_{1} A \tag{6}
\end{equation*}
$$

Direct Methods for LS

Let P_{1}, \ldots, P_{k-1} be the permutations chosen and $M_{1}, \ldots M_{k-1}$ denote the Gaussian transformations performed in the first $k-1$ steps. At the k-th step, a permutation matrix P_{k} is chosen so that

$$
\left|\left(P_{k} M_{k-1} \cdots M_{1} P_{1} A\right)_{k k}\right|=\max _{k \leq i \leq n}\left|\left(M_{k-1} \cdots M_{1} P_{1} A\right)_{i k}\right| .
$$

This row interchange strategy is called partial pivoting. As a consequence, $\left|\ell_{i j}\right| \leq 1$ for $i=1, \ldots, n, j=1, \ldots, i$. Upon completion, we obtain an upper triangular matrix

$$
\begin{equation*}
U \equiv M_{n-1} P_{n-1} \cdots M_{1} P_{1} A \tag{6}
\end{equation*}
$$

Since any P_{k} is symmetric and $P_{k}^{T} P_{k}=P_{k}^{2}=I$,

Direct Methods for LS

Let P_{1}, \ldots, P_{k-1} be the permutations chosen and $M_{1}, \ldots M_{k-1}$ denote the Gaussian transformations performed in the first $k-1$ steps. At the k-th step, a permutation matrix P_{k} is chosen so that

$$
\left|\left(P_{k} M_{k-1} \cdots M_{1} P_{1} A\right)_{k k}\right|=\max _{k \leq i \leq n}\left|\left(M_{k-1} \cdots M_{1} P_{1} A\right)_{i k}\right| .
$$

This row interchange strategy is called partial pivoting. As a consequence, $\left|\ell_{i j}\right| \leq 1$ for $i=1, \ldots, n, j=1, \ldots, i$. Upon completion, we obtain an upper triangular matrix

$$
\begin{equation*}
U \equiv M_{n-1} P_{n-1} \cdots M_{1} P_{1} A \tag{6}
\end{equation*}
$$

Since any P_{k} is symmetric and $P_{k}^{T} P_{k}=P_{k}^{2}=I$, we have

$$
M_{n-1} P_{n-1} \cdots M_{2} P_{2} M_{1} P_{2} \cdots P_{n-1} P_{n-1} \cdots P_{2} P_{1} A=U
$$

Direct Methods for LS

Let P_{1}, \ldots, P_{k-1} be the permutations chosen and $M_{1}, \ldots M_{k-1}$ denote the Gaussian transformations performed in the first $k-1$ steps. At the k-th step, a permutation matrix P_{k} is chosen so that

$$
\left|\left(P_{k} M_{k-1} \cdots M_{1} P_{1} A\right)_{k k}\right|=\max _{k \leq i \leq n}\left|\left(M_{k-1} \cdots M_{1} P_{1} A\right)_{i k}\right| .
$$

This row interchange strategy is called partial pivoting. As a consequence, $\left|\ell_{i j}\right| \leq 1$ for $i=1, \ldots, n, j=1, \ldots, i$. Upon completion, we obtain an upper triangular matrix

$$
\begin{equation*}
U \equiv M_{n-1} P_{n-1} \cdots M_{1} P_{1} A \tag{6}
\end{equation*}
$$

Since any P_{k} is symmetric and $P_{k}^{T} P_{k}=P_{k}^{2}=I$, we have

$$
M_{n-1} P_{n-1} \cdots M_{2} P_{2} M_{1} P_{2} \cdots P_{n-1} P_{n-1} \cdots P_{2} P_{1} A=U
$$

therefore,

$$
P_{n-1} \cdots P_{1} A=\left(M_{n-1} P_{n-1} \cdots M_{2} P_{2} M_{1} P_{2} \cdots P_{n-1}\right)^{-1} U .
$$

Direct Methods for LS

In summary, Gaussian elimination with partial pivoting leads to the $L U$ factorization

$$
\begin{equation*}
P A=L U, \tag{7}
\end{equation*}
$$

where

$$
P=P_{n-1} \cdots P_{1}
$$

is a permutation matrix, and

$$
\begin{aligned}
L & \equiv\left(M_{n-1} P_{n-1} \cdots M_{2} P_{2} M_{1} P_{2} \cdots P_{n-1}\right)^{-1} \\
& =P_{n-1} \cdots P_{2} M_{1}^{-1} P_{2} M_{2}^{-1} \cdots P_{n-1} M_{n-1}^{-1}
\end{aligned}
$$

Direct Methods for LS

In summary, Gaussian elimination with partial pivoting leads to the $L U$ factorization

$$
\begin{equation*}
P A=L U, \tag{7}
\end{equation*}
$$

where

$$
P=P_{n-1} \cdots P_{1}
$$

is a permutation matrix, and

$$
\begin{aligned}
L & \equiv\left(M_{n-1} P_{n-1} \cdots M_{2} P_{2} M_{1} P_{2} \cdots P_{n-1}\right)^{-1} \\
& =P_{n-1} \cdots P_{2} M_{1}^{-1} P_{2} M_{2}^{-1} \cdots P_{n-1} M_{n-1}^{-1}
\end{aligned}
$$

Since, for $i<j$,

$$
\begin{aligned}
& e_{i}^{T} P_{j}=e_{i}^{T}, \quad e_{i}^{T} \ell_{j}=0 \\
& P_{j} \ell_{i}=\left[\begin{array}{llllll}
0 & \cdots & 0 & \tilde{\ell}_{i+1, i} & \cdots & \tilde{\ell}_{n, i}
\end{array}\right]^{T} \equiv \tilde{\ell}_{i}
\end{aligned}
$$

Direct Methods for LS

In summary, Gaussian elimination with partial pivoting leads to the $L U$ factorization

$$
\begin{equation*}
P A=L U, \tag{7}
\end{equation*}
$$

where

$$
P=P_{n-1} \cdots P_{1}
$$

is a permutation matrix, and

$$
\begin{aligned}
L & \equiv\left(M_{n-1} P_{n-1} \cdots M_{2} P_{2} M_{1} P_{2} \cdots P_{n-1}\right)^{-1} \\
& =P_{n-1} \cdots P_{2} M_{1}^{-1} P_{2} M_{2}^{-1} \cdots P_{n-1} M_{n-1}^{-1}
\end{aligned}
$$

Since, for $i<j$,

$$
\begin{aligned}
& e_{i}^{T} P_{j}=e_{i}^{T}, \quad e_{i}^{T} \ell_{j}=0 \\
& P_{j} \ell_{i}=\left[\begin{array}{llllll}
0 & \cdots & 0 & \tilde{\ell}_{i+1, i} & \cdots & \tilde{\ell}_{n, i}
\end{array}\right]^{T} \equiv \tilde{\ell}_{i}
\end{aligned}
$$

$$
\Rightarrow
$$

$$
P_{2} M_{1}^{-1} P_{2}=P_{2}\left(I+\ell_{1} e_{1}^{T}\right) P_{2}=I+\tilde{\ell}_{1} e_{1}^{T}
$$

Direct Methods for LS

$$
P_{2} M_{1}^{-1} P_{2} M_{2}^{-1}=\left(I+\tilde{\ell}_{1} e_{1}^{T}\right)\left(I+\ell_{2} e_{2}^{T}\right)=I+\tilde{\ell}_{1} e_{1}^{T}+\ell_{2} e_{2}^{T}
$$

Direct Methods for LS

$$
\begin{gathered}
P_{2} M_{1}^{-1} P_{2} M_{2}^{-1}=\left(I+\tilde{\ell}_{1} e_{1}^{T}\right)\left(I+\ell_{2} e_{2}^{T}\right)=I+\tilde{\ell}_{1} e_{1}^{T}+\ell_{2} e_{2}^{T} \\
\Rightarrow \\
P_{3}\left(P_{2} M_{1}^{-1} P_{2} M_{2}^{-1}\right) P_{3}=I+\hat{\ell}_{1} e_{1}^{T}+\tilde{\ell}_{2} e_{2}^{T}
\end{gathered}
$$

$$
\begin{aligned}
& P_{2} M_{1}^{-1} P_{2} M_{2}^{-1}=\left(I+\tilde{\ell}_{1} e_{1}^{T}\right)\left(I+\ell_{2} e_{2}^{T}\right)=I+\tilde{\ell}_{1} e_{1}^{T}+\ell_{2} e_{2}^{T}, \\
\Rightarrow & P_{3}\left(P_{2} M_{1}^{-1} P_{2} M_{2}^{-1}\right) P_{3}=I+\hat{\ell}_{1} e_{1}^{T}+\tilde{\ell}_{2} e_{2}^{T} \\
\Rightarrow & \cdots
\end{aligned}
$$

Therefore, L is unit lower triangular.
\Rightarrow

$$
\begin{aligned}
& P_{2} M_{1}^{-1} P_{2} M_{2}^{-1}=\left(I+\tilde{\ell}_{1} e_{1}^{T}\right)\left(I+\ell_{2} e_{2}^{T}\right)=I+\tilde{\ell}_{1} e_{1}^{T}+\ell_{2} e_{2}^{T}, \\
\Rightarrow & P_{3}\left(P_{2} M_{1}^{-1} P_{2} M_{2}^{-1}\right) P_{3}=I+\hat{\ell}_{1} e_{1}^{T}+\tilde{\ell}_{2} e_{2}^{T} \\
& \Rightarrow \cdots
\end{aligned}
$$

Therefore, L is unit lower triangular.
Algorithm 5 [$L U$-factorization with Partial Pivoting]
\Rightarrow

$$
\begin{aligned}
& P_{2} M_{1}^{-1} P_{2} M_{2}^{-1}=\left(I+\tilde{\ell}_{1} e_{1}^{T}\right)\left(I+\ell_{2} e_{2}^{T}\right)=I+\tilde{\ell}_{1} e_{1}^{T}+\ell_{2} e_{2}^{T} \\
\Rightarrow &
\end{aligned}
$$

$$
P_{3}\left(P_{2} M_{1}^{-1} P_{2} M_{2}^{-1}\right) P_{3}=I+\hat{\ell}_{1} e_{1}^{T}+\tilde{\ell}_{2} e_{2}^{T}
$$

\Rightarrow...
Therefore, L is unit lower triangular.
Algorithm 5 [$L U$-factorization with Partial Pivoting] Given a nonsingular square matrix $A \in \mathbb{R}^{n \times n}$, this algorithm finds an appropriate permutation matrix P,
\Rightarrow

$$
\begin{aligned}
& P_{2} M_{1}^{-1} P_{2} M_{2}^{-1}=\left(I+\tilde{\ell}_{1} e_{1}^{T}\right)\left(I+\ell_{2} e_{2}^{T}\right)=I+\tilde{\ell}_{1} e_{1}^{T}+\ell_{2} e_{2}^{T} \\
\Rightarrow &
\end{aligned}
$$

$$
P_{3}\left(P_{2} M_{1}^{-1} P_{2} M_{2}^{-1}\right) P_{3}=I+\hat{\ell}_{1} e_{1}^{T}+\tilde{\ell}_{2} e_{2}^{T}
$$

\Rightarrow...
Therefore, L is unit lower triangular.
Algorithm 5 [$L U$-factorization with Partial Pivoting] Given a nonsingular square matrix
$A \in \mathbb{R}^{n \times n}$, this algorithm finds an appropriate permutation matrix P, and computes a unit lower triangular matrix L

Direct Methods for LS

\Rightarrow

$$
\begin{aligned}
& P_{2} M_{1}^{-1} P_{2} M_{2}^{-1}=\left(I+\tilde{\ell}_{1} e_{1}^{T}\right)\left(I+\ell_{2} e_{2}^{T}\right)=I+\tilde{\ell}_{1} e_{1}^{T}+\ell_{2} e_{2}^{T} \\
\Rightarrow &
\end{aligned}
$$

$$
P_{3}\left(P_{2} M_{1}^{-1} P_{2} M_{2}^{-1}\right) P_{3}=I+\hat{\ell}_{1} e_{1}^{T}+\tilde{\ell}_{2} e_{2}^{T}
$$

\Rightarrow...
Therefore, L is unit lower triangular.
Algorithm 5 [$L U$-factorization with Partial Pivoting] Given a nonsingular square matrix
$A \in \mathbb{R}^{n \times n}$, this algorithm finds an appropriate permutation matrix P, and computes a unit lower triangular matrix L and an upper triangular matrix U

Direct Methods for LS

\Rightarrow

$$
\begin{aligned}
& P_{2} M_{1}^{-1} P_{2} M_{2}^{-1}=\left(I+\tilde{\ell}_{1} e_{1}^{T}\right)\left(I+\ell_{2} e_{2}^{T}\right)=I+\tilde{\ell}_{1} e_{1}^{T}+\ell_{2} e_{2}^{T} \\
\Rightarrow &
\end{aligned}
$$

$$
P_{3}\left(P_{2} M_{1}^{-1} P_{2} M_{2}^{-1}\right) P_{3}=I+\hat{\ell}_{1} e_{1}^{T}+\tilde{\ell}_{2} e_{2}^{T}
$$

\Rightarrow...
Therefore, L is unit lower triangular.
Algorithm 5 [$L U$-factorization with Partial Pivoting] Given a nonsingular square matrix
$A \in \mathbb{R}^{n \times n}$, this algorithm finds an appropriate permutation matrix P, and computes a unit lower triangular matrix L and an upper triangular matrix U such that $P A=L U$.

Direct Methods for LS

\Rightarrow

$$
\begin{aligned}
& P_{2} M_{1}^{-1} P_{2} M_{2}^{-1}=\left(I+\tilde{\ell}_{1} e_{1}^{T}\right)\left(I+\ell_{2} e_{2}^{T}\right)=I+\tilde{\ell}_{1} e_{1}^{T}+\ell_{2} e_{2}^{T} \\
\Rightarrow &
\end{aligned}
$$

$$
P_{3}\left(P_{2} M_{1}^{-1} P_{2} M_{2}^{-1}\right) P_{3}=I+\hat{\ell}_{1} e_{1}^{T}+\tilde{\ell}_{2} e_{2}^{T}
$$

\Rightarrow...
Therefore, L is unit lower triangular.
Algorithm 5 [$L U$-factorization with Partial Pivoting] Given a nonsingular square matrix $A \in \mathbb{R}^{n \times n}$, this algorithm finds an appropriate permutation matrix P, and computes a unit lower triangular matrix L and an upper triangular matrix U such that $P A=L U$. The matrix A is overwritten by L and U,

Direct Methods for LS

\Rightarrow

$$
\begin{aligned}
& P_{2} M_{1}^{-1} P_{2} M_{2}^{-1}=\left(I+\tilde{\ell}_{1} e_{1}^{T}\right)\left(I+\ell_{2} e_{2}^{T}\right)=I+\tilde{\ell}_{1} e_{1}^{T}+\ell_{2} e_{2}^{T} \\
\Rightarrow &
\end{aligned}
$$

$$
P_{3}\left(P_{2} M_{1}^{-1} P_{2} M_{2}^{-1}\right) P_{3}=I+\hat{\ell}_{1} e_{1}^{T}+\tilde{\ell}_{2} e_{2}^{T}
$$

\Rightarrow...
Therefore, L is unit lower triangular.
Algorithm 5 [$L U$-factorization with Partial Pivoting] Given a nonsingular square matrix $A \in \mathbb{R}^{n \times n}$, this algorithm finds an appropriate permutation matrix P, and computes a unit lower triangular matrix L and an upper triangular matrix U such that $P A=L U$. The matrix A is overwritten by L and U, and the matrix P is not formed.

Direct Methods for LS

\Rightarrow

$$
\begin{aligned}
& P_{2} M_{1}^{-1} P_{2} M_{2}^{-1}=\left(I+\tilde{\ell}_{1} e_{1}^{T}\right)\left(I+\ell_{2} e_{2}^{T}\right)=I+\tilde{\ell}_{1} e_{1}^{T}+\ell_{2} e_{2}^{T} \\
\Rightarrow &
\end{aligned}
$$

$$
P_{3}\left(P_{2} M_{1}^{-1} P_{2} M_{2}^{-1}\right) P_{3}=I+\hat{\ell}_{1} e_{1}^{T}+\tilde{\ell}_{2} e_{2}^{T}
$$

\Rightarrow...
Therefore, L is unit lower triangular.
Algorithm 5 [$L U$-factorization with Partial Pivoting] Given a nonsingular square matrix
$A \in \mathbb{R}^{n \times n}$, this algorithm finds an appropriate permutation matrix P, and computes a unit lower triangular matrix L and an upper triangular matrix U such that $P A=L U$. The matrix A is overwritten by L and U, and the matrix P is not formed. An integer array p is instead used for storing the row/column indices.

$$
p(1: n)=1: n
$$

$$
p(1: n)=1: n
$$

$$
\text { For } k=1, \ldots, n-1
$$

End For

$$
\begin{aligned}
& p(1: n)=1: n \\
& \text { For } k=1, \ldots, n-1 \\
& \quad m=k \\
& \quad \text { For } i=k+1, \ldots, n
\end{aligned}
$$

End For

End For

Direct Methods for LS

$$
p(1: n)=1: n
$$

$$
\begin{aligned}
& \text { For } k=1, \ldots, n-1 \\
& \qquad \begin{array}{l}
m=k \\
\text { For } i=k+1, \ldots, n \\
\quad \text { If }|A(p(m), k)|<|A(p(i), k)| \text {, then } m=i
\end{array}
\end{aligned}
$$

End For

End For

Direct Methods for LS

$$
p(1: n)=1: n
$$

$$
\begin{aligned}
& \text { For } k=1, \ldots, n-1 \\
& \qquad \begin{array}{l}
m=k \\
\text { For } i=k+1, \ldots, n \\
\quad \text { If }|A(p(m), k)|<|A(p(i), k)| \text {, then } m=i
\end{array}
\end{aligned}
$$

End For

$$
\ell=p(k) ; p(k)=p(m) ; p(m)=\ell
$$

End For

Direct Methods for LS

$p(1: n)=1: n$

$$
\begin{aligned}
& \text { For } k=1, \ldots, n-1 \\
& \qquad \begin{array}{l}
m=k \\
\text { For } i=k+1, \ldots, n \\
\quad \text { If }|A(p(m), k)|<|A(p(i), k)| \text {, then } m=i
\end{array}
\end{aligned}
$$

End For

$$
\begin{aligned}
& \ell=p(k) ; p(k)=p(m) ; p(m)=\ell \\
& \text { For } i=k+1, \ldots, n
\end{aligned}
$$

End For
End For

Direct Methods for LS

$$
\begin{aligned}
& p(1: n)=1: n \\
& \text { For } k=1, \ldots, n-1 \\
& \quad m=k \\
& \quad \text { For } i=k+1, \ldots, n \\
& \quad \text { If }|A(p(m), k)|<|A(p(i), k)| \text {, then } m=i
\end{aligned}
$$

End For

$$
\ell=p(k) ; p(k)=p(m) ; p(m)=\ell
$$

$$
\text { For } i=k+1, \ldots, n
$$

$$
A(p(i), k)=A(p(i), k) / A(p(k), k)
$$

End For

End For

Direct Methods for LS

$$
\begin{aligned}
& p(1: n)=1: n \\
& \text { For } k=1, \ldots, n-1 \\
& \quad m=k \\
& \quad \text { For } i=k+1, \ldots, n \\
& \quad \text { If }|A(p(m), k)|<|A(p(i), k)| \text {, then } m=i
\end{aligned}
$$

End For

$$
\ell=p(k) ; p(k)=p(m) ; p(m)=\ell
$$

$$
\text { For } i=k+1, \ldots, n
$$

$$
A(p(i), k)=A(p(i), k) / A(p(k), k)
$$

$$
\text { For } j=k+1, \ldots, n
$$

End For
End For
End For

Direct Methods for LS

$$
\begin{aligned}
& p(1: n)=1: n \\
& \text { For } k=1, \ldots, n-1 \\
& \quad m=k \\
& \quad \text { For } i=k+1, \ldots, n \\
& \quad \text { If }|A(p(m), k)|<|A(p(i), k)| \text {, then } m=i
\end{aligned}
$$

End For

$$
\ell=p(k) ; p(k)=p(m) ; p(m)=\ell
$$

$$
\text { For } i=k+1, \ldots, n
$$

$$
A(p(i), k)=A(p(i), k) / A(p(k), k)
$$

$$
\text { For } j=k+1, \ldots, n
$$

$$
A(p(i), j)=A(p(i), j)-A(p(i), k) A(p(k), j)
$$

End For
End For
End For

Direct Methods for LS

Since the Gaussian elimination with partial pivoting produces the factorization (7), the linear system problem should comply accordingly

$$
A x=b \Longrightarrow P A x=P b \Longrightarrow L U x=P b
$$

Direct Methods for LS

Since the Gaussian elimination with partial pivoting produces the factorization (7), the linear system problem should comply accordingly

$$
A x=b \Longrightarrow P A x=P b \Longrightarrow L U x=P b
$$

While in the partial pivoting algorithm, the k-th pivot is determined by scanning the current k-th subcolumn $A^{(k)}(k: n, k)$,

Direct Methods for LS

Since the Gaussian elimination with partial pivoting produces the factorization (7), the linear system problem should comply accordingly

$$
A x=b \Longrightarrow P A x=P b \Longrightarrow L U x=P b
$$

While in the partial pivoting algorithm, the k-th pivot is determined by scanning the current k-th subcolumn $A^{(k)}(k: n, k)$, another pivoting strategy called complete pivoting searches for the largest entry in magnitude in the current submatrix $A^{(k)}(k: n, k: n)$

Direct Methods for LS

Since the Gaussian elimination with partial pivoting produces the factorization (7), the linear system problem should comply accordingly

$$
A x=b \Longrightarrow P A x=P b \Longrightarrow L U x=P b
$$

While in the partial pivoting algorithm, the k-th pivot is determined by scanning the current k-th subcolumn $A^{(k)}(k: n, k)$, another pivoting strategy called complete pivoting searches for the largest entry in magnitude in the current submatrix $A^{(k)}(k: n, k: n)$ and permutes to the (k, k) position.

Direct Methods for LS

Since the Gaussian elimination with partial pivoting produces the factorization (7), the linear system problem should comply accordingly

$$
A x=b \Longrightarrow P A x=P b \Longrightarrow L U x=P b
$$

While in the partial pivoting algorithm, the k-th pivot is determined by scanning the current k-th subcolumn $A^{(k)}(k: n, k)$, another pivoting strategy called complete pivoting searches for the largest entry in magnitude in the current submatrix $A^{(k)}(k: n, k: n)$ and permutes to the (k, k) position. That is, at the k-th step two permutation matrices P_{k} and Q_{k} are determined

Direct Methods for LS

Since the Gaussian elimination with partial pivoting produces the factorization (7), the linear system problem should comply accordingly

$$
A x=b \Longrightarrow P A x=P b \Longrightarrow L U x=P b
$$

While in the partial pivoting algorithm, the k-th pivot is determined by scanning the current k-th subcolumn $A^{(k)}(k: n, k)$, another pivoting strategy called complete pivoting searches for the largest entry in magnitude in the current submatrix $A^{(k)}(k: n, k: n)$ and permutes to the (k, k) position. That is, at the k-th step two permutation matrices P_{k} and Q_{k} are determined so that

$$
\left|\left(P_{k} A^{(k)} Q_{k}\right)_{k k}\right|=\max _{k \leq i, j \leq n}\left|\left(A^{(k)}\right)_{i j}\right| .
$$

Direct Methods for LS

Since the Gaussian elimination with partial pivoting produces the factorization (7), the linear system problem should comply accordingly

$$
A x=b \Longrightarrow P A x=P b \Longrightarrow L U x=P b
$$

While in the partial pivoting algorithm, the k-th pivot is determined by scanning the current k-th subcolumn $A^{(k)}(k: n, k)$, another pivoting strategy called complete pivoting searches for the largest entry in magnitude in the current submatrix $A^{(k)}(k: n, k: n)$ and permutes to the (k, k) position. That is, at the k-th step two permutation matrices P_{k} and Q_{k} are determined so that

$$
\left|\left(P_{k} A^{(k)} Q_{k}\right)_{k k}\right|=\max _{k \leq i, j \leq n}\left|\left(A^{(k)}\right)_{i j}\right| .
$$

Gaussian elimination with complete pivoting leads to the $L U$ factorization

$$
\begin{equation*}
P A Q=L U, \tag{8}
\end{equation*}
$$

Direct Methods for LS

Since the Gaussian elimination with partial pivoting produces the factorization (7), the linear system problem should comply accordingly

$$
A x=b \Longrightarrow P A x=P b \Longrightarrow L U x=P b
$$

While in the partial pivoting algorithm, the k-th pivot is determined by scanning the current k-th subcolumn $A^{(k)}(k: n, k)$, another pivoting strategy called complete pivoting searches for the largest entry in magnitude in the current submatrix $A^{(k)}(k: n, k: n)$ and permutes to the (k, k) position. That is, at the k-th step two permutation matrices P_{k} and Q_{k} are determined so that

$$
\left|\left(P_{k} A^{(k)} Q_{k}\right)_{k k}\right|=\max _{k \leq i, j \leq n}\left|\left(A^{(k)}\right)_{i j}\right| .
$$

Gaussian elimination with complete pivoting leads to the $L U$ factorization

$$
\begin{equation*}
P A Q=L U, \tag{8}
\end{equation*}
$$

where P, Q are permutation matrices, L is unit lower triangular, and U is upper triangular.

```
4-Some Special Linear Systems
```


4.1 - Symmetric Positive Definite System and Cholesky Factorization

An $n \times n$ matrix A is positive definite

```
4-Some Special Linear Systems
```


4.1 - Symmetric Positive Definite System and Cholesky Factorization

An $n \times n$ matrix A is positive definite if $x^{T} A x>0$, for all $x \in \mathbb{R}^{n}, x \neq 0$.

```
4-Some Special Linear Systems
```


4.1 - Symmetric Positive Definite System and Cholesky Factorization

An $n \times n$ matrix A is positive definite if $x^{T} A x>0$, for all $x \in \mathbb{R}^{n}, x \neq 0$. If A is both symmetric and positive definite (spd),

```
4-Some Special Linear Systems
```


4.1 - Symmetric Positive Definite System and Cholesky Factorization

An $n \times n$ matrix A is positive definite if $x^{T} A x>0$, for all $x \in \mathbb{R}^{n}, x \neq 0$. If A is both symmetric and positive definite ($s p d$), then we can derive a stable $L U$ factorization called the Choleseky factorization.

4 - Some Special Linear Systems

4.1 - Symmetric Positive Definite System and Cholesky Factorization

An $n \times n$ matrix A is positive definite if $x^{T} A x>0$, for all $x \in \mathbb{R}^{n}, x \neq 0$. If A is both symmetric and positive definite ($s p d$), then we can derive a stable $L U$ factorization called the Choleseky factorization.

Lemma 1 If $A \in \mathbb{R}^{n \times n}$ is positive definite, then A is nonsingular and $a_{i i}>0$ for $i=1, \ldots, n$.

4 - Some Special Linear Systems

4.1 - Symmetric Positive Definite System and Cholesky Factorization

An $n \times n$ matrix A is positive definite if $x^{T} A x>0$, for all $x \in \mathbb{R}^{n}, x \neq 0$. If A is both symmetric and positive definite ($s p d$), then we can derive a stable $L U$ factorization called the Choleseky factorization.

Lemma 1 If $A \in \mathbb{R}^{n \times n}$ is positive definite, then A is nonsingular and $a_{i i}>0$ for $i=1, \ldots, n$.

Proof: Suppose A is singular.

4 - Some Special Linear Systems

4.1 - Symmetric Positive Definite System and Cholesky Factorization

An $n \times n$ matrix A is positive definite if $x^{T} A x>0$, for all $x \in \mathbb{R}^{n}, x \neq 0$. If A is both symmetric and positive definite ($s p d$), then we can derive a stable $L U$ factorization called the Choleseky factorization.

Lemma 1 If $A \in \mathbb{R}^{n \times n}$ is positive definite, then A is nonsingular and $a_{i i}>0$ for $i=1, \ldots, n$.

Proof: Suppose A is singular.
$\Rightarrow \exists x \in \mathbb{R}^{n}$ and $x \neq 0$ such that $A x=0$.

4 - Some Special Linear Systems

4.1 - Symmetric Positive Definite System and Cholesky Factorization

An $n \times n$ matrix A is positive definite if $x^{T} A x>0$, for all $x \in \mathbb{R}^{n}, x \neq 0$. If A is both symmetric and positive definite ($s p d$), then we can derive a stable $L U$ factorization called the Choleseky factorization.

Lemma 1 If $A \in \mathbb{R}^{n \times n}$ is positive definite, then A is nonsingular and $a_{i i}>0$ for $i=1, \ldots, n$.

Proof: Suppose A is singular.
$\Rightarrow \exists x \in \mathbb{R}^{n}$ and $x \neq 0$ such that $A x=0$.
$\Rightarrow x^{T} A x=0$, which contradicts the fact that A is positive definite.

4 - Some Special Linear Systems

4.1 - Symmetric Positive Definite System and Cholesky Factorization

An $n \times n$ matrix A is positive definite if $x^{T} A x>0$, for all $x \in \mathbb{R}^{n}, x \neq 0$. If A is both symmetric and positive definite ($s p d$), then we can derive a stable $L U$ factorization called the Choleseky factorization.

Lemma 1 If $A \in \mathbb{R}^{n \times n}$ is positive definite, then A is nonsingular and $a_{i i}>0$ for $i=1, \ldots, n$.

Proof: Suppose A is singular.
$\Rightarrow \exists x \in \mathbb{R}^{n}$ and $x \neq 0$ such that $A x=0$.
$\Rightarrow x^{T} A x=0$, which contradicts the fact that A is positive definite.
$\Rightarrow A$ is nonsingular.

Since A is positive definite,

Since A is positive definite,

$$
a_{i i}=e_{i}^{T} A e_{i}>0
$$

where e_{i} is the i-th column of the $n \times n$ identify matrix.

Since A is positive definite,

$$
a_{i i}=e_{i}^{T} A e_{i}>0,
$$

where e_{i} is the i-th column of the $n \times n$ identify matrix.
Lemma 2 If $A \in \mathbb{R}^{n \times n}$ is positive definite, then all leading principal submatrices of A are nonsingular.

Since A is positive definite,

$$
a_{i i}=e_{i}^{T} A e_{i}>0,
$$

where e_{i} is the i-th column of the $n \times n$ identify matrix.
Lemma 2 If $A \in \mathbb{R}^{n \times n}$ is positive definite, then all leading principal submatrices of A are nonsingular.

Proof: For $1 \leq k \leq n$, let

$$
z_{k}=\left[x_{1}, \ldots, x_{k}\right]^{T} \in \mathbb{R}^{k} \text { and } x=\left[x_{1}, \ldots, x_{k}, 0, \ldots, 0\right]^{T} \in \mathbb{R}^{n}
$$

where $x_{1}, \ldots, x_{k} \in \mathbb{R}$ are not all zero.

Since A is positive definite,

$$
a_{i i}=e_{i}^{T} A e_{i}>0,
$$

where e_{i} is the i-th column of the $n \times n$ identify matrix.
Lemma 2 If $A \in \mathbb{R}^{n \times n}$ is positive definite, then all leading principal submatrices of A are nonsingular.

Proof: For $1 \leq k \leq n$, let

$$
z_{k}=\left[x_{1}, \ldots, x_{k}\right]^{T} \in \mathbb{R}^{k} \text { and } x=\left[x_{1}, \ldots, x_{k}, 0, \ldots, 0\right]^{T} \in \mathbb{R}^{n}
$$

where $x_{1}, \ldots, x_{k} \in \mathbb{R}$ are not all zero. Since A is positive definite,

Since A is positive definite,

$$
a_{i i}=e_{i}^{T} A e_{i}>0
$$

where e_{i} is the i-th column of the $n \times n$ identify matrix.
Lemma 2 If $A \in \mathbb{R}^{n \times n}$ is positive definite, then all leading principal submatrices of A are nonsingular.

Proof: For $1 \leq k \leq n$, let

$$
z_{k}=\left[x_{1}, \ldots, x_{k}\right]^{T} \in \mathbb{R}^{k} \text { and } x=\left[x_{1}, \ldots, x_{k}, 0, \ldots, 0\right]^{T} \in \mathbb{R}^{n},
$$

where $x_{1}, \ldots, x_{k} \in \mathbb{R}$ are not all zero. Since A is positive definite,

$$
z_{k}^{T} A_{k} z_{k}=x^{T} A x>0
$$

where A_{k} is the $k \times k$ leading principal submatrix of A.

Since A is positive definite,

$$
a_{i i}=e_{i}^{T} A e_{i}>0
$$

where e_{i} is the i-th column of the $n \times n$ identify matrix.
Lemma 2 If $A \in \mathbb{R}^{n \times n}$ is positive definite, then all leading principal submatrices of A are nonsingular.

Proof: For $1 \leq k \leq n$, let

$$
z_{k}=\left[x_{1}, \ldots, x_{k}\right]^{T} \in \mathbb{R}^{k} \text { and } x=\left[x_{1}, \ldots, x_{k}, 0, \ldots, 0\right]^{T} \in \mathbb{R}^{n}
$$

where $x_{1}, \ldots, x_{k} \in \mathbb{R}$ are not all zero. Since A is positive definite,

$$
z_{k}^{T} A_{k} z_{k}=x^{T} A x>0
$$

where A_{k} is the $k \times k$ leading principal submatrix of A. This shows that A_{k} are also positive definite, hence A_{k} are nonsingular.

Theorem 3 If $A \in \mathbb{R}^{n \times n}$ is symmetric positive definite, then there exists a unique lower triangular matrix $G \in \mathbb{R}^{n \times n}$ with positive diagonal entries such that A has the factorization

$$
\begin{equation*}
A=G G^{T} . \tag{9}
\end{equation*}
$$

Theorem 3 If $A \in \mathbb{R}^{n \times n}$ is symmetric positive definite, then there exists a unique lower
triangular matrix $G \in \mathbb{R}^{n \times n}$ with positive diagonal entries such that A has the factorization

$$
\begin{equation*}
A=G G^{T} . \tag{9}
\end{equation*}
$$

Proof: A is positive definite

Theorem 3 If $A \in \mathbb{R}^{n \times n}$ is symmetric positive definite, then there exists a unique lower triangular matrix $G \in \mathbb{R}^{n \times n}$ with positive diagonal entries such that A has the factorization

$$
\begin{equation*}
A=G G^{T} \tag{9}
\end{equation*}
$$

Proof: A is positive definite
\Rightarrow all leading principal submatrices of A are nonsingular (from Lemma 2)

Theorem 3 If $A \in \mathbb{R}^{n \times n}$ is symmetric positive definite, then there exists a unique lower triangular matrix $G \in \mathbb{R}^{n \times n}$ with positive diagonal entries such that A has the factorization

$$
\begin{equation*}
A=G G^{T} \tag{9}
\end{equation*}
$$

Proof: A is positive definite
\Rightarrow all leading principal submatrices of A are nonsingular (from Lemma 2)
$\Rightarrow A$ has the $L U$ factorization $A=L U$, where L is unit lower triangular and U is upper triangular.

Theorem 3 If $A \in \mathbb{R}^{n \times n}$ is symmetric positive definite, then there exists a unique lower triangular matrix $G \in \mathbb{R}^{n \times n}$ with positive diagonal entries such that A has the factorization

$$
\begin{equation*}
A=G G^{T} \tag{9}
\end{equation*}
$$

Proof: A is positive definite
\Rightarrow all leading principal submatrices of A are nonsingular (from Lemma 2)
$\Rightarrow A$ has the $L U$ factorization $A=L U$, where L is unit lower triangular and U is upper triangular.
Since A is symmetric,

Theorem 3 If $A \in \mathbb{R}^{n \times n}$ is symmetric positive definite, then there exists a unique lower triangular matrix $G \in \mathbb{R}^{n \times n}$ with positive diagonal entries such that A has the factorization

$$
\begin{equation*}
A=G G^{T} \tag{9}
\end{equation*}
$$

Proof: A is positive definite
\Rightarrow all leading principal submatrices of A are nonsingular (from Lemma 2)
$\Rightarrow A$ has the $L U$ factorization $A=L U$, where L is unit lower triangular and U is upper triangular.
Since A is symmetric,

$$
L U=A=A^{T}=U^{T} L^{T}
$$

Theorem 3 If $A \in \mathbb{R}^{n \times n}$ is symmetric positive definite, then there exists a unique lower triangular matrix $G \in \mathbb{R}^{n \times n}$ with positive diagonal entries such that A has the factorization

$$
\begin{equation*}
A=G G^{T} \tag{9}
\end{equation*}
$$

Proof: A is positive definite
\Rightarrow all leading principal submatrices of A are nonsingular (from Lemma 2)
$\Rightarrow A$ has the $L U$ factorization $A=L U$, where L is unit lower triangular and U is upper triangular.
Since A is symmetric,

$$
L U=A=A^{T}=U^{T} L^{T} \quad \Longrightarrow \quad U\left(L^{T}\right)^{-1}=L^{-1} U^{T}
$$

Theorem 3 If $A \in \mathbb{R}^{n \times n}$ is symmetric positive definite, then there exists a unique lower triangular matrix $G \in \mathbb{R}^{n \times n}$ with positive diagonal entries such that A has the factorization

$$
\begin{equation*}
A=G G^{T} \tag{9}
\end{equation*}
$$

Proof: A is positive definite
\Rightarrow all leading principal submatrices of A are nonsingular (from Lemma 2)
$\Rightarrow A$ has the $L U$ factorization $A=L U$, where L is unit lower triangular and U is upper triangular.
Since A is symmetric,

$$
L U=A=A^{T}=U^{T} L^{T} \quad \Longrightarrow \quad U\left(L^{T}\right)^{-1}=L^{-1} U^{T}
$$

$U\left(L^{T}\right)^{-1}$ is upper triangular and $L^{-1} U^{T}$ is lower triangular

Theorem 3 If $A \in \mathbb{R}^{n \times n}$ is symmetric positive definite, then there exists a unique lower triangular matrix $G \in \mathbb{R}^{n \times n}$ with positive diagonal entries such that A has the factorization

$$
\begin{equation*}
A=G G^{T} \tag{9}
\end{equation*}
$$

Proof: A is positive definite
\Rightarrow all leading principal submatrices of A are nonsingular (from Lemma 2)
$\Rightarrow A$ has the $L U$ factorization $A=L U$, where L is unit lower triangular and U is upper triangular.
Since A is symmetric,

$$
L U=A=A^{T}=U^{T} L^{T} \quad \Longrightarrow \quad U\left(L^{T}\right)^{-1}=L^{-1} U^{T}
$$

$U\left(L^{T}\right)^{-1}$ is upper triangular and $L^{-1} U^{T}$ is lower triangular $\Rightarrow U\left(L^{T}\right)^{-1}$ to be a diagonal matrix, say, $U\left(L^{T}\right)^{-1}=D$.

Theorem 3 If $A \in \mathbb{R}^{n \times n}$ is symmetric positive definite, then there exists a unique lower triangular matrix $G \in \mathbb{R}^{n \times n}$ with positive diagonal entries such that A has the factorization

$$
\begin{equation*}
A=G G^{T} \tag{9}
\end{equation*}
$$

Proof: A is positive definite
\Rightarrow all leading principal submatrices of A are nonsingular (from Lemma 2)
$\Rightarrow A$ has the $L U$ factorization $A=L U$, where L is unit lower triangular and U is upper triangular.
Since A is symmetric,

$$
L U=A=A^{T}=U^{T} L^{T} \quad \Longrightarrow \quad U\left(L^{T}\right)^{-1}=L^{-1} U^{T}
$$

$U\left(L^{T}\right)^{-1}$ is upper triangular and $L^{-1} U^{T}$ is lower triangular
$\Rightarrow U\left(L^{T}\right)^{-1}$ to be a diagonal matrix, say, $U\left(L^{T}\right)^{-1}=D$.
$\Rightarrow U=D L^{T}$. Hence

$$
A=L D L^{T}
$$

Since A is positive definite,

Since A is positive definite,

$$
x^{T} A x>0
$$

Since A is positive definite,

$$
x^{T} A x>0 \quad \Longrightarrow \quad x^{T} L D L^{T} x=\left(L^{T} x\right)^{T} D\left(L^{T} x\right)>0
$$

Since A is positive definite,

$$
x^{T} A x>0 \quad \Longrightarrow \quad x^{T} L D L^{T} x=\left(L^{T} x\right)^{T} D\left(L^{T} x\right)>0
$$

This means D is also positive definite,

Since A is positive definite,

$$
x^{T} A x>0 \quad \Longrightarrow \quad x^{T} L D L^{T} x=\left(L^{T} x\right)^{T} D\left(L^{T} x\right)>0
$$

This means D is also positive definite, and hence $d_{i i}>0$.

Since A is positive definite,

$$
x^{T} A x>0 \quad \Longrightarrow \quad x^{T} L D L^{T} x=\left(L^{T} x\right)^{T} D\left(L^{T} x\right)>0
$$

This means D is also positive definite, and hence $d_{i i}>0$. Thus $D^{1 / 2}$ is well-defined

Since A is positive definite,

$$
x^{T} A x>0 \quad \Longrightarrow \quad x^{T} L D L^{T} x=\left(L^{T} x\right)^{T} D\left(L^{T} x\right)>0
$$

This means D is also positive definite, and hence $d_{i i}>0$. Thus $D^{1 / 2}$ is well-defined and we have

$$
A=L D L^{T}=L D^{1 / 2} D^{1 / 2} L^{T} \equiv G G^{T}
$$

where $G \equiv L D^{1 / 2}$.

Since A is positive definite,

$$
x^{T} A x>0 \quad \Longrightarrow \quad x^{T} L D L^{T} x=\left(L^{T} x\right)^{T} D\left(L^{T} x\right)>0
$$

This means D is also positive definite, and hence $d_{i i}>0$. Thus $D^{1 / 2}$ is well-defined and we have

$$
A=L D L^{T}=L D^{1 / 2} D^{1 / 2} L^{T} \equiv G G^{T}
$$

where $G \equiv L D^{1 / 2}$. Since the $L U$ factorization is unique,

Since A is positive definite,

$$
x^{T} A x>0 \quad \Longrightarrow \quad x^{T} L D L^{T} x=\left(L^{T} x\right)^{T} D\left(L^{T} x\right)>0 .
$$

This means D is also positive definite, and hence $d_{i i}>0$. Thus $D^{1 / 2}$ is well-defined and we have

$$
A=L D L^{T}=L D^{1 / 2} D^{1 / 2} L^{T} \equiv G G^{T}
$$

where $G \equiv L D^{1 / 2}$. Since the $L U$ factorization is unique, G is unique.

Since A is positive definite,

$$
x^{T} A x>0 \quad \Longrightarrow \quad x^{T} L D L^{T} x=\left(L^{T} x\right)^{T} D\left(L^{T} x\right)>0
$$

This means D is also positive definite, and hence $d_{i i}>0$. Thus $D^{1 / 2}$ is well-defined and we have

$$
A=L D L^{T}=L D^{1 / 2} D^{1 / 2} L^{T} \equiv G G^{T}
$$

where $G \equiv L D^{1 / 2}$. Since the $L U$ factorization is unique, G is unique.
The factorization (9) is referred to as the Cholesky factorization.

Since A is positive definite,

$$
x^{T} A x>0 \quad \Longrightarrow \quad x^{T} L D L^{T} x=\left(L^{T} x\right)^{T} D\left(L^{T} x\right)>0
$$

This means D is also positive definite, and hence $d_{i i}>0$. Thus $D^{1 / 2}$ is well-defined and we have

$$
A=L D L^{T}=L D^{1 / 2} D^{1 / 2} L^{T} \equiv G G^{T}
$$

where $G \equiv L D^{1 / 2}$. Since the $L U$ factorization is unique, G is unique.
The factorization (9) is referred to as the Cholesky factorization.
Derive an algorithm for computing the Cholesky factorization:

Since A is positive definite,

$$
x^{T} A x>0 \quad \Longrightarrow \quad x^{T} L D L^{T} x=\left(L^{T} x\right)^{T} D\left(L^{T} x\right)>0
$$

This means D is also positive definite, and hence $d_{i i}>0$. Thus $D^{1 / 2}$ is well-defined and we have

$$
A=L D L^{T}=L D^{1 / 2} D^{1 / 2} L^{T} \equiv G G^{T}
$$

where $G \equiv L D^{1 / 2}$. Since the $L U$ factorization is unique, G is unique.
The factorization (9) is referred to as the Cholesky factorization.
Derive an algorithm for computing the Cholesky factorization:
Assume the first $k-1$ columns of G have been determined after $k-1$ steps.

Since A is positive definite,

$$
x^{T} A x>0 \quad \Longrightarrow \quad x^{T} L D L^{T} x=\left(L^{T} x\right)^{T} D\left(L^{T} x\right)>0
$$

This means D is also positive definite, and hence $d_{i i}>0$. Thus $D^{1 / 2}$ is well-defined and we have

$$
A=L D L^{T}=L D^{1 / 2} D^{1 / 2} L^{T} \equiv G G^{T}
$$

where $G \equiv L D^{1 / 2}$. Since the $L U$ factorization is unique, G is unique.
The factorization (9) is referred to as the Cholesky factorization.
Derive an algorithm for computing the Cholesky factorization:
Assume the first $k-1$ columns of G have been determined after $k-1$ steps. By componentwise comparison with equation (9),

Since A is positive definite,

$$
x^{T} A x>0 \quad \Longrightarrow \quad x^{T} L D L^{T} x=\left(L^{T} x\right)^{T} D\left(L^{T} x\right)>0
$$

This means D is also positive definite, and hence $d_{i i}>0$. Thus $D^{1 / 2}$ is well-defined and we have

$$
A=L D L^{T}=L D^{1 / 2} D^{1 / 2} L^{T} \equiv G G^{T}
$$

where $G \equiv L D^{1 / 2}$. Since the $L U$ factorization is unique, G is unique.
The factorization (9) is referred to as the Cholesky factorization.
Derive an algorithm for computing the Cholesky factorization:
Assume the first $k-1$ columns of G have been determined after $k-1$ steps. By componentwise comparison with equation (9), one has

$$
a_{k k}=\sum_{j=1}^{k} g_{k j}^{2}
$$

which gives

$$
\begin{equation*}
g_{k k}^{2}=a_{k k}-\sum_{j=1}^{k-1} g_{k j}^{2} \tag{10}
\end{equation*}
$$

which gives

$$
\begin{equation*}
g_{k k}^{2}=a_{k k}-\sum_{j=1}^{k-1} g_{k j}^{2} \tag{10}
\end{equation*}
$$

Moreover,

$$
a_{i k}=\sum_{j=1}^{k} g_{i j} g_{k j}, \quad i=k+1, \ldots, n
$$

which gives

$$
\begin{equation*}
g_{k k}^{2}=a_{k k}-\sum_{j=1}^{k-1} g_{k j}^{2} \tag{10}
\end{equation*}
$$

Moreover,

$$
a_{i k}=\sum_{j=1}^{k} g_{i j} g_{k j}, \quad i=k+1, \ldots, n
$$

hence the k-th column of G can be computed by

$$
\begin{equation*}
g_{i k}=\left(a_{i k}-\sum_{j=1}^{k-1} g_{i j} g_{k j}\right) / g_{k k}, \quad i=k+1, \ldots, n \tag{11}
\end{equation*}
$$

Algorithm 6 (Cholesky Factorization) Given an $n \times n$ symmetric positive definite matrix
A, this algorithm computes the Cholesky factorization $A=G G^{T}$.

Algorithm 6 (Cholesky Factorization) Given an $n \times n$ symmetric positive definite matrix
A, this algorithm computes the Cholesky factorization $A=G G^{T}$.
Initialize $G=0$

Algorithm 6 (Cholesky Factorization) Given an $n \times n$ symmetric positive definite matrix
A, this algorithm computes the Cholesky factorization $A=G G^{T}$.
Initialize $G=0$
For $k=1, \ldots, n$

End For

Algorithm 6 (Cholesky Factorization) Given an $n \times n$ symmetric positive definite matrix
A, this algorithm computes the Cholesky factorization $A=G G^{T}$.
Initialize $G=0$

$$
\text { For } k=1, \ldots, n
$$

$$
G(k, k)=\sqrt{A(k, k)-\sum_{j=1}^{k-1} G(k, j) G(k, j)}
$$

End For

Algorithm 6 (Cholesky Factorization) Given an $n \times n$ symmetric positive definite matrix
A, this algorithm computes the Cholesky factorization $A=G G^{T}$.
Initialize $G=0$

$$
\text { For } k=1, \ldots, n
$$

$$
G(k, k)=\sqrt{A(k, k)-\sum_{j=1}^{k-1} G(k, j) G(k, j)}
$$

$$
\text { For } i=k+1, \ldots, n
$$

End For
End For

Algorithm 6 (Cholesky Factorization) Given an $n \times n$ symmetric positive definite matrix
A, this algorithm computes the Cholesky factorization $A=G G^{T}$.
Initialize $G=0$
For $k=1, \ldots, n$
$G(k, k)=\sqrt{A(k, k)-\sum_{j=1}^{k-1} G(k, j) G(k, j)}$
For $i=k+1, \ldots, n$
$G(i, k)=\left(A(i, k)-\sum_{j=1}^{k-1} G(i, j) G(k, j)\right) / G(k, k)$
End For
End For

Algorithm 6 (Cholesky Factorization) Given an $n \times n$ symmetric positive definite matrix
A, this algorithm computes the Cholesky factorization $A=G G^{T}$.

$$
\text { Initialize } G=0
$$

$$
\text { For } k=1, \ldots, n
$$

$$
G(k, k)=\sqrt{A(k, k)-\sum_{j=1}^{k-1} G(k, j) G(k, j)}
$$

$$
\text { For } i=k+1, \ldots, n
$$

$$
G(i, k)=\left(A(i, k)-\sum_{j=1}^{k-1} G(i, j) G(k, j)\right) / G(k, k)
$$

End For
End For

In addition to n square root operations, there are approximately

$$
\sum_{k=1}^{n}[2 k-1+2 k(n-k)]=\frac{1}{3} n^{3}+n^{2}-\frac{1}{3} n
$$

floating-point arithmetic required by the algorithm.

4.2 - Diagonally Dominant Systems

Definition $2 A$ matrix $A \in \mathbb{R}^{n \times n}$ is said to be strictly diagonally dominant

4.2 - Diagonally Dominant Systems

Definition 2 A matrix $A \in \mathbb{R}^{n \times n}$ is said to be strictly diagonally dominant if

$$
\left|a_{i i}\right|>\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right| .
$$

4.2 - Diagonally Dominant Systems

Definition $2 A$ matrix $A \in \mathbb{R}^{n \times n}$ is said to be strictly diagonally dominant if

$$
\left|a_{i i}\right|>\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|
$$

Lemma 3 If $A \in \mathbb{R}^{n \times n}$ is strictly diagonally dominant, then A is nonsingular.

4.2 - Diagonally Dominant Systems

Definition $2 A$ matrix $A \in \mathbb{R}^{n \times n}$ is said to be strictly diagonally dominant if

$$
\left|a_{i i}\right|>\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|
$$

Lemma 3 If $A \in \mathbb{R}^{n \times n}$ is strictly diagonally dominant, then A is nonsingular.
Proof: Suppose A is singular.

4.2 - Diagonally Dominant Systems

Definition $2 A$ matrix $A \in \mathbb{R}^{n \times n}$ is said to be strictly diagonally dominant if

$$
\left|a_{i i}\right|>\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|
$$

Lemma 3 If $A \in \mathbb{R}^{n \times n}$ is strictly diagonally dominant, then A is nonsingular.
Proof: Suppose A is singular. Then there exists $x \in \mathbb{R}^{n}, x \neq 0$ such that $A x=0$.

4.2 - Diagonally Dominant Systems

Definition 2 A matrix $A \in \mathbb{R}^{n \times n}$ is said to be strictly diagonally dominant if

$$
\left|a_{i i}\right|>\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|
$$

Lemma 3 If $A \in \mathbb{R}^{n \times n}$ is strictly diagonally dominant, then A is nonsingular.
Proof: Suppose A is singular. Then there exists $x \in \mathbb{R}^{n}, x \neq 0$ such that $A x=0$. Let k be the integer index such that

$$
\left|x_{k}\right|=\max _{1 \leq i \leq n}\left|x_{i}\right| \quad \Longrightarrow \quad \frac{\left|x_{i}\right|}{\left|x_{k}\right|}<1, \quad \forall\left|x_{i}\right| \neq\left|x_{k}\right| .
$$

4.2 - Diagonally Dominant Systems

Definition 2 A matrix $A \in \mathbb{R}^{n \times n}$ is said to be strictly diagonally dominant if

$$
\left|a_{i i}\right|>\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|
$$

Lemma 3 If $A \in \mathbb{R}^{n \times n}$ is strictly diagonally dominant, then A is nonsingular.
Proof: Suppose A is singular. Then there exists $x \in \mathbb{R}^{n}, x \neq 0$ such that $A x=0$. Let k be the integer index such that

$$
\left|x_{k}\right|=\max _{1 \leq i \leq n}\left|x_{i}\right| \quad \Longrightarrow \quad \frac{\left|x_{i}\right|}{\left|x_{k}\right|}<1, \quad \forall\left|x_{i}\right| \neq\left|x_{k}\right|
$$

Since $A x=0$, for the fixed k,

4.2 - Diagonally Dominant Systems

Definition $2 A$ matrix $A \in \mathbb{R}^{n \times n}$ is said to be strictly diagonally dominant if

$$
\left|a_{i i}\right|>\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|
$$

Lemma 3 If $A \in \mathbb{R}^{n \times n}$ is strictly diagonally dominant, then A is nonsingular.
Proof: Suppose A is singular. Then there exists $x \in \mathbb{R}^{n}, x \neq 0$ such that $A x=0$. Let k be the integer index such that

$$
\left|x_{k}\right|=\max _{1 \leq i \leq n}\left|x_{i}\right| \quad \Longrightarrow \quad \frac{\left|x_{i}\right|}{\left|x_{k}\right|}<1, \quad \forall\left|x_{i}\right| \neq\left|x_{k}\right|
$$

Since $A x=0$, for the fixed k, we have

$$
\sum_{j=1}^{n} a_{k j} x_{j}=0 \Rightarrow a_{k k} x_{k}=-\sum_{j=1, j \neq k}^{n} a_{k j} x_{j} \Rightarrow\left|a_{k k}\right|\left|x_{k}\right| \leq \sum_{j=1, j \neq k}^{n}\left|a_{k j} \| x_{j}\right|
$$

which implies

$$
\left|a_{k k}\right| \leq \sum_{j=1, j \neq k}^{n}\left|a_{k j}\right| \frac{\left|x_{j}\right|}{\left|x_{k}\right|}<\sum_{j=1, j \neq k}^{n}\left|a_{k j}\right|
$$

which implies

$$
\left|a_{k k}\right| \leq \sum_{j=1, j \neq k}^{n}\left|a_{k j}\right| \frac{\left|x_{j}\right|}{\left|x_{k}\right|}<\sum_{j=1, j \neq k}^{n}\left|a_{k j}\right|
$$

But this contradicts the assumption that A is diagonally dominant.
which implies

$$
\left|a_{k k}\right| \leq \sum_{j=1, j \neq k}^{n}\left|a_{k j}\right| \frac{\left|x_{j}\right|}{\left|x_{k}\right|}<\sum_{j=1, j \neq k}^{n}\left|a_{k j}\right| .
$$

But this contradicts the assumption that A is diagonally dominant. Therefore A must be nonsingular.
which implies

$$
\left|a_{k k}\right| \leq \sum_{j=1, j \neq k}^{n}\left|a_{k j}\right| \frac{\left|x_{j}\right|}{\left|x_{k}\right|}<\sum_{j=1, j \neq k}^{n}\left|a_{k j}\right|
$$

But this contradicts the assumption that A is diagonally dominant. Therefore A must be nonsingular.

Theorem 4 Gaussian elimination without pivoting preserve the diagonal dominance of a matrix.
which implies

$$
\left|a_{k k}\right| \leq \sum_{j=1, j \neq k}^{n}\left|a_{k j}\right| \frac{\left|x_{j}\right|}{\left|x_{k}\right|}<\sum_{j=1, j \neq k}^{n}\left|a_{k j}\right|
$$

But this contradicts the assumption that A is diagonally dominant. Therefore A must be nonsingular.

Theorem 4 Gaussian elimination without pivoting preserve the diagonal dominance of a matrix.

Proof: Let $A \in \mathbb{R}^{n \times n}$ be a diagonally dominant matrix and $A^{(2)}=\left[a_{i j}^{(2)}\right]$ is the result of applying one step of Gaussian elimination to $A^{(1)}=A$ without any pivoting strategy.
which implies

$$
\left|a_{k k}\right| \leq \sum_{j=1, j \neq k}^{n}\left|a_{k j}\right| \frac{\left|x_{j}\right|}{\left|x_{k}\right|}<\sum_{j=1, j \neq k}^{n}\left|a_{k j}\right| .
$$

But this contradicts the assumption that A is diagonally dominant. Therefore A must be nonsingular.

Theorem 4 Gaussian elimination without pivoting preserve the diagonal dominance of a matrix.

Proof: Let $A \in \mathbb{R}^{n \times n}$ be a diagonally dominant matrix and $A^{(2)}=\left[a_{i j}^{(2)}\right]$ is the result of applying one step of Gaussian elimination to $A^{(1)}=A$ without any pivoting strategy.

After one step of Gaussian elimination, $a_{i 1}^{(2)}=0$ for $i=2, \ldots, n$, and the first row is unchanged.
which implies

$$
\left|a_{k k}\right| \leq \sum_{j=1, j \neq k}^{n}\left|a_{k j}\right| \frac{\left|x_{j}\right|}{\left|x_{k}\right|}<\sum_{j=1, j \neq k}^{n}\left|a_{k j}\right| .
$$

But this contradicts the assumption that A is diagonally dominant. Therefore A must be nonsingular.

Theorem 4 Gaussian elimination without pivoting preserve the diagonal dominance of a matrix.

Proof: Let $A \in \mathbb{R}^{n \times n}$ be a diagonally dominant matrix and $A^{(2)}=\left[a_{i j}^{(2)}\right]$ is the result of applying one step of Gaussian elimination to $A^{(1)}=A$ without any pivoting strategy.

After one step of Gaussian elimination, $a_{i 1}^{(2)}=0$ for $i=2, \ldots, n$, and the first row is unchanged. Therefore, the property

$$
a_{11}^{(2)}>\sum_{j=2}^{n}\left|a_{1 j}^{(2)}\right|
$$

is preserved,
is preserved, and all we need to show is that

$$
a_{i i}^{(2)}>\sum_{j=2, j \neq i}^{n}\left|a_{i j}^{(2)}\right|, \quad \text { for } \quad i=2, \ldots, n
$$

is preserved, and all we need to show is that

$$
a_{i i}^{(2)}>\sum_{j=2, j \neq i}^{n}\left|a_{i j}^{(2)}\right|, \quad \text { for } \quad i=2, \ldots, n
$$

Using the Gaussian elimination formula (4), we have
is preserved, and all we need to show is that

$$
a_{i i}^{(2)}>\sum_{j=2, j \neq i}^{n}\left|a_{i j}^{(2)}\right|, \quad \text { for } \quad i=2, \ldots, n
$$

Using the Gaussian elimination formula (4), we have

$$
\left|a_{i i}^{(2)}\right|=
$$

is preserved, and all we need to show is that

$$
a_{i i}^{(2)}>\sum_{j=2, j \neq i}^{n}\left|a_{i j}^{(2)}\right|, \quad \text { for } \quad i=2, \ldots, n
$$

Using the Gaussian elimination formula (4), we have

$$
\left|a_{i i}^{(2)}\right|=\left|a_{i i}^{(1)}-\frac{a_{i 1}^{(1)}}{a_{11}^{(1)}} a_{1 i}^{(1)}\right|=\left|a_{i i}-\frac{a_{i 1}}{a_{11}} a_{1 i}\right|
$$

is preserved, and all we need to show is that

$$
a_{i i}^{(2)}>\sum_{j=2, j \neq i}^{n}\left|a_{i j}^{(2)}\right|, \quad \text { for } \quad i=2, \ldots, n
$$

Using the Gaussian elimination formula (4), we have

$$
\begin{aligned}
\left|a_{i i}^{(2)}\right| & =\left|a_{i i}^{(1)}-\frac{a_{i 1}^{(1)}}{a_{11}^{(1)}} a_{1 i}^{(1)}\right|=\left|a_{i i}-\frac{a_{i 1}}{a_{11}} a_{1 i}\right| \\
& \geq\left|a_{i i}\right|-\frac{\left|a_{i 1}\right|}{\left|a_{11}\right|}\left|a_{1 i}\right|
\end{aligned}
$$

is preserved, and all we need to show is that

$$
a_{i i}^{(2)}>\sum_{j=2, j \neq i}^{n}\left|a_{i j}^{(2)}\right|, \quad \text { for } \quad i=2, \ldots, n
$$

Using the Gaussian elimination formula (4), we have

$$
\begin{aligned}
\left|a_{i i}^{(2)}\right| & =\left|a_{i i}^{(1)}-\frac{a_{i 1}^{(1)}}{a_{11}^{(1)}} a_{1 i}^{(1)}\right|=\left|a_{i i}-\frac{a_{i 1}}{a_{11}} a_{1 i}\right| \\
& \geq\left|a_{i i}\right|-\frac{\left|a_{i 1}\right|}{\left|a_{11}\right|}\left|a_{1 i}\right| \\
& =\left|a_{i i}\right|-\left|a_{i 1}\right|+\left|a_{i 1}\right|-\frac{\left|a_{i 1}\right|}{\left|a_{11}\right|}\left|a_{1 i}\right|
\end{aligned}
$$

is preserved, and all we need to show is that

$$
a_{i i}^{(2)}>\sum_{j=2, j \neq i}^{n}\left|a_{i j}^{(2)}\right|, \quad \text { for } \quad i=2, \ldots, n
$$

Using the Gaussian elimination formula (4), we have

$$
\begin{aligned}
\left|a_{i i}^{(2)}\right| & =\left|a_{i i}^{(1)}-\frac{a_{i 1}^{(1)}}{a_{11}^{(1)}} a_{1 i}^{(1)}\right|=\left|a_{i i}-\frac{a_{i 1}}{a_{11}} a_{1 i}\right| \\
& \geq\left|a_{i i}\right|-\frac{\left|a_{i 1}\right|}{\left|a_{11}\right|}\left|a_{1 i}\right| \\
& =\left|a_{i i}\right|-\left|a_{i 1}\right|+\left|a_{i 1}\right|-\frac{\left|a_{i 1}\right|}{\left|a_{11}\right|}\left|a_{1 i}\right| \\
& =\left|a_{i i}\right|-\left|a_{i 1}\right|+\frac{\left|a_{i 1}\right|}{\left|a_{11}\right|}\left(\left|a_{11}\right|-\left|a_{1 i}\right|\right)
\end{aligned}
$$

is preserved, and all we need to show is that

$$
a_{i i}^{(2)}>\sum_{j=2, j \neq i}^{n}\left|a_{i j}^{(2)}\right|, \quad \text { for } \quad i=2, \ldots, n
$$

Using the Gaussian elimination formula (4), we have

$$
\begin{aligned}
\left|a_{i i}^{(2)}\right| & =\left|a_{i i}^{(1)}-\frac{a_{i 1}^{(1)}}{a_{11}^{(1)}} a_{1 i}^{(1)}\right|=\left|a_{i i}-\frac{a_{i 1}}{a_{11}} a_{1 i}\right| \\
& \geq\left|a_{i i}\right|-\frac{\left|a_{i 1}\right|}{\left|a_{11}\right|}\left|a_{1 i}\right| \\
& =\left|a_{i i}\right|-\left|a_{i 1}\right|+\left|a_{i 1}\right|-\frac{\left|a_{i 1}\right|}{\left|a_{11}\right|}\left|a_{1 i}\right| \\
& =\left|a_{i i}\right|-\left|a_{i 1}\right|+\frac{\left|a_{i 1}\right|}{\left|a_{11}\right|}\left(\left|a_{11}\right|-\left|a_{1 i}\right|\right) \\
& >\sum_{j=2, j \neq i}^{n}\left|a_{i j}\right|+\frac{\left|a_{i 1}\right|}{\left|a_{11}\right|} \sum_{j=2, j \neq i}^{n}\left|a_{1 j}\right|
\end{aligned}
$$

$$
\left|a_{i i}^{(2)}\right|>\sum_{j=2, j \neq i}^{n}\left|a_{i j}\right|+\sum_{j=2, j \neq i}^{n} \frac{\left|a_{i 1}\right|}{\left|a_{11}\right|}\left|a_{1 j}\right|
$$

$$
\begin{aligned}
\left|a_{i i}^{(2)}\right| & >\sum_{j=2, j \neq i}^{n}\left|a_{i j}\right|+\sum_{j=2, j \neq i}^{n} \frac{\left|a_{i 1}\right|}{\left|a_{11}\right|}\left|a_{1 j}\right| \\
& \geq \sum_{j=2, j \neq i}^{n}\left|a_{i j}-\frac{a_{i 1}}{a_{11}} a_{1 j}\right|
\end{aligned}
$$

$$
\begin{aligned}
\left|a_{i i}^{(2)}\right| & >\sum_{j=2, j \neq i}^{n}\left|a_{i j}\right|+\sum_{j=2, j \neq i}^{n} \frac{\left|a_{i 1}\right|}{\left|a_{11}\right|}\left|a_{1 j}\right| \\
& \geq \sum_{j=2, j \neq i}^{n}\left|a_{i j}-\frac{a_{i 1}}{a_{11}} a_{1 j}\right| \\
& =\sum_{j=2, j \neq i}^{n}\left|a_{i j}^{(2)}\right|
\end{aligned}
$$

$$
\begin{aligned}
\left|a_{i i}^{(2)}\right| & >\sum_{j=2, j \neq i}^{n}\left|a_{i j}\right|+\sum_{j=2, j \neq i}^{n} \frac{\left|a_{i 1}\right|}{\left|a_{11}\right|}\left|a_{1 j}\right| \\
& \geq \sum_{j=2, j \neq i}^{n}\left|a_{i j}-\frac{a_{i 1}}{a_{11}} a_{1 j}\right| \\
& =\sum_{j=2, j \neq i}^{n}\left|a_{i j}^{(2)}\right|
\end{aligned}
$$

Thus $A^{(2)}$ is still diagonally dominant.

$$
\begin{aligned}
\left|a_{i i}^{(2)}\right| & >\sum_{j=2, j \neq i}^{n}\left|a_{i j}\right|+\sum_{j=2, j \neq i}^{n} \frac{\left|a_{i 1}\right|}{\left|a_{11}\right|}\left|a_{1 j}\right| \\
& \geq \sum_{j=2, j \neq i}^{n}\left|a_{i j}-\frac{a_{i 1}}{a_{11}} a_{1 j}\right| \\
& =\sum_{j=2, j \neq i}^{n}\left|a_{i j}^{(2)}\right|
\end{aligned}
$$

Thus $A^{(2)}$ is still diagonally dominant. Since the subsequent steps of Gaussian elimination mimic the first, except for being applied to submatrices of smaller size, it suffices to conclude that Gaussian elimination without pivoting preserves the diagonal dominance of a matrix.

4.3 - Tridiagonal System

A square matrix $A=\left[a_{i j}\right]$ is said to be tridiagonal if

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & & \\
a_{21} & a_{22} & \ddots & \\
& \ddots & \ddots & a_{n-1, n} \\
& & a_{n, n-1} & a_{n, n}
\end{array}\right]
$$

4.3 - Tridiagonal System

A square matrix $A=\left[a_{i j}\right]$ is said to be tridiagonal if

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & & \\
a_{21} & a_{22} & \ddots & \\
& \ddots & \ddots & a_{n-1, n} \\
& & a_{n, n-1} & a_{n, n}
\end{array}\right]
$$

If Gaussian elimination can be applied safely without pivoting.

4.3 - Tridiagonal System

A square matrix $A=\left[a_{i j}\right]$ is said to be tridiagonal if

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & & \\
a_{21} & a_{22} & \ddots & \\
& \ddots & \ddots & a_{n-1, n} \\
& & a_{n, n-1} & a_{n, n}
\end{array}\right]
$$

If Gaussian elimination can be applied safely without pivoting. Then L and U factors would have the form

$$
L=\left[\begin{array}{cccc}
1 & & & \\
\ell_{21} & 1 & & \\
& \ddots & \ddots & \\
& & \ell_{n, n-1} & 1
\end{array}\right] \text { and } U=\left[\begin{array}{cccc}
u_{11} & u_{12} & & \\
& u_{22} & \ddots & \\
& & \ddots & u_{n-1, n} \\
& & & u_{n n}
\end{array}\right]
$$

and the entries are computed by the simple algorithm which only costs $3 n$ flops.
and the entries are computed by the simple algorithm which only costs $3 n$ flops.
Algorithm 7 (Tridiagonal $L U$ Factorization) This algorithm computes the $L U$ factorization for a tridiagonal matrix without using pivoting strategy.
and the entries are computed by the simple algorithm which only costs $3 n$ flops.
Algorithm 7 (Tridiagonal $L U$ Factorization) This algorithm computes the $L U$ factorization for a tridiagonal matrix without using pivoting strategy.

$$
U(1,1)=A(1,1)
$$

and the entries are computed by the simple algorithm which only costs $3 n$ flops.
Algorithm 7 (Tridiagonal $L U$ Factorization) This algorithm computes the $L U$ factorization for a tridiagonal matrix without using pivoting strategy.

$$
\begin{aligned}
& U(1,1)=A(1,1) \\
& \text { For } i=2, \ldots, n
\end{aligned}
$$

End For
and the entries are computed by the simple algorithm which only costs $3 n$ flops.
Algorithm 7 (Tridiagonal $L U$ Factorization) This algorithm computes the $L U$ factorization for a tridiagonal matrix without using pivoting strategy.

$$
\begin{aligned}
& U(1,1)=A(1,1) \\
& \text { For } i=2, \ldots, n \\
& \quad U(i-1, i)=A(i-1, i)
\end{aligned}
$$

End For
and the entries are computed by the simple algorithm which only costs $3 n$ flops.
Algorithm 7 (Tridiagonal $L U$ Factorization) This algorithm computes the $L U$ factorization for a tridiagonal matrix without using pivoting strategy.

$$
\begin{aligned}
& U(1,1)=A(1,1) \\
& \text { For } i=2, \ldots, n \\
& \qquad \begin{array}{r}
U(i-1, i)=A(i-1, i) \\
L(i, i-1)=A(i, i-1) / U(i-1, i-1)
\end{array}
\end{aligned}
$$

End For
and the entries are computed by the simple algorithm which only costs $3 n$ flops.
Algorithm 7 (Tridiagonal $L U$ Factorization) This algorithm computes the $L U$ factorization for a tridiagonal matrix without using pivoting strategy.

$$
\begin{aligned}
& U(1,1)=A(1,1) \\
& \text { For } i=2, \ldots, n \\
& \quad U(i-1, i)=A(i-1, i) \\
& \quad L(i, i-1)=A(i, i-1) / U(i-1, i-1) \\
& U(i, i)=A(i, i)-L(i, i-1) U(i-1, i)
\end{aligned}
$$

End For
and the entries are computed by the simple algorithm which only costs $3 n$ flops.
Algorithm 7 (Tridiagonal $L U$ Factorization) This algorithm computes the $L U$ factorization for a tridiagonal matrix without using pivoting strategy.

$$
\begin{aligned}
& U(1,1)=A(1,1) \\
& \text { For } i=2, \ldots, n \\
& \quad U(i-1, i)=A(i-1, i) \\
& \quad L(i, i-1)=A(i, i-1) / U(i-1, i-1) \\
& \quad U(i, i)=A(i, i)-L(i, i-1) U(i-1, i)
\end{aligned}
$$

End For

A tridiagonal linear system arises in many applications, such as finite difference discretization to second order linear boundary-value problem and the cubic spline approximations.

4.4 - General Banded Systems

In many applications that involve linear systems, the coefficient matrix is banded. Formally, we say that $A=\left[a_{i j}\right]$ has upper bandwidth q if $a_{i j}=0$ whenever $j>i+q$ and lower bandwidth p if $a_{i j}=0$ whenever $i>j+p$. Substantial economies can be realized when solving banded systems because the triangular factors in the $L U$ factorization are also banded.

```
5 - Perturbation Analysis
```

In this section, we develop some perturbation theory for the problem of solving linear systems $A x=b$.

```
5 - Perturbation Analysis
```

In this section, we develop some perturbation theory for the problem of solving linear systems $A x=b$. If we solve such a system numerically, we obtain not the exact solution x but an approximate computed solution \widehat{x}.

```
5 - Perturbation Analysis
```

In this section, we develop some perturbation theory for the problem of solving linear systems $A x=b$. If we solve such a system numerically, we obtain not the exact solution x but an approximate computed solution \widehat{x}. The difference

$$
e=x-\widehat{x}
$$

is called the error vector which is, however, not known.

```
5 - Perturbation Analysis
```

In this section, we develop some perturbation theory for the problem of solving linear systems $A x=b$. If we solve such a system numerically, we obtain not the exact solution x but an approximate computed solution \widehat{x}. The difference

$$
e=x-\widehat{x}
$$

is called the error vector which is, however, not known. Instead one can test the accuracy of \widehat{x} by forming $A \widehat{x}$ to see whether it is close to b.

5 - Perturbation Analysis

In this section, we develop some perturbation theory for the problem of solving linear systems $A x=b$. If we solve such a system numerically, we obtain not the exact solution x but an approximate computed solution \widehat{x}. The difference

$$
e=x-\widehat{x}
$$

is called the error vector which is, however, not known. Instead one can test the accuracy of \widehat{x} by forming $A \widehat{x}$ to see whether it is close to b. Thus we have the definition for the residual vector.

5 - Perturbation Analysis

In this section, we develop some perturbation theory for the problem of solving linear systems $A x=b$. If we solve such a system numerically, we obtain not the exact solution x but an approximate computed solution \widehat{x}. The difference

$$
e=x-\widehat{x}
$$

is called the error vector which is, however, not known. Instead one can test the accuracy of \widehat{x} by forming $A \widehat{x}$ to see whether it is close to b. Thus we have the definition for the residual vector.

Definition 3 Let \widehat{x} be the computed solution to the linear system of equations $A x=b$.
Then the vector

$$
r=b-A \widehat{x}
$$

is called the residual vector.

Then we can derive the residual equation

$$
\begin{equation*}
A e=A x-A \widehat{x}=b-A \widehat{x}=r \tag{12}
\end{equation*}
$$

between the error vector and the residual vector.

Then we can derive the residual equation

$$
\begin{equation*}
A e=A x-A \widehat{x}=b-A \widehat{x}=r \tag{12}
\end{equation*}
$$

between the error vector and the residual vector.
Notice that \widehat{x} is the exact solution of the linear system

$$
A \widehat{x}=\widehat{b}
$$

which has a perturbed right-hand side

$$
\widehat{b}=b-r .
$$

Then

Then we can derive the residual equation

$$
\begin{equation*}
A e=A x-A \widehat{x}=b-A \widehat{x}=r \tag{12}
\end{equation*}
$$

between the error vector and the residual vector.
Notice that \widehat{x} is the exact solution of the linear system

$$
A \widehat{x}=\widehat{b}
$$

which has a perturbed right-hand side

$$
\widehat{b}=b-r .
$$

Then

$$
\|x-\widehat{x}\|
$$

Then we can derive the residual equation

$$
\begin{equation*}
A e=A x-A \widehat{x}=b-A \widehat{x}=r \tag{12}
\end{equation*}
$$

between the error vector and the residual vector.
Notice that \widehat{x} is the exact solution of the linear system

$$
A \widehat{x}=\widehat{b}
$$

which has a perturbed right-hand side

$$
\widehat{b}=b-r .
$$

Then

$$
\|x-\widehat{x}\|=\left\|A^{-1} b-A^{-1} \widehat{b}\right\|=\left\|A^{-1}(b-\widehat{b})\right\|
$$

Then we can derive the residual equation

$$
\begin{equation*}
A e=A x-A \widehat{x}=b-A \widehat{x}=r \tag{12}
\end{equation*}
$$

between the error vector and the residual vector.
Notice that \widehat{x} is the exact solution of the linear system

$$
A \widehat{x}=\widehat{b}
$$

which has a perturbed right-hand side

$$
\widehat{b}=b-r .
$$

Then

$$
\begin{aligned}
\|x-\widehat{x}\| & =\left\|A^{-1} b-A^{-1} \widehat{b}\right\|=\left\|A^{-1}(b-\widehat{b})\right\| \\
& \leq\left\|A^{-1}\right\|\|b-\widehat{b}\|
\end{aligned}
$$

Then we can derive the residual equation

$$
\begin{equation*}
A e=A x-A \widehat{x}=b-A \widehat{x}=r \tag{12}
\end{equation*}
$$

between the error vector and the residual vector.
Notice that \widehat{x} is the exact solution of the linear system

$$
A \widehat{x}=\widehat{b}
$$

which has a perturbed right-hand side

$$
\widehat{b}=b-r .
$$

Then

$$
\begin{aligned}
\|x-\widehat{x}\| & =\left\|A^{-1} b-A^{-1} \widehat{b}\right\|=\left\|A^{-1}(b-\widehat{b})\right\| \\
& \leq\left\|A^{-1}\right\|\|b-\widehat{b}\|=\left\|A^{-1}\right\|\|b\| \frac{\|b-\widehat{b}\|}{\|b\|}
\end{aligned}
$$

Then we can derive the residual equation

$$
\begin{equation*}
A e=A x-A \widehat{x}=b-A \widehat{x}=r \tag{12}
\end{equation*}
$$

between the error vector and the residual vector.
Notice that \widehat{x} is the exact solution of the linear system

$$
A \widehat{x}=\widehat{b}
$$

which has a perturbed right-hand side

$$
\widehat{b}=b-r .
$$

Then

$$
\begin{aligned}
\|x-\widehat{x}\| & =\left\|A^{-1} b-A^{-1} \widehat{b}\right\|=\left\|A^{-1}(b-\widehat{b})\right\| \\
& \leq\left\|A^{-1}\right\|\|b-\widehat{b}\|=\left\|A^{-1}\right\|\|b\| \frac{\|b-\widehat{b}\|}{\|b\|}=\left\|A^{-1}\right\|\|A x\| \frac{\|b-\widehat{b}\|}{\|b\|}
\end{aligned}
$$

Then we can derive the residual equation

$$
\begin{equation*}
A e=A x-A \widehat{x}=b-A \widehat{x}=r \tag{12}
\end{equation*}
$$

between the error vector and the residual vector.
Notice that \widehat{x} is the exact solution of the linear system

$$
A \widehat{x}=\widehat{b}
$$

which has a perturbed right-hand side

$$
\widehat{b}=b-r .
$$

Then

$$
\begin{aligned}
\|x-\widehat{x}\| & =\left\|A^{-1} b-A^{-1} \widehat{b}\right\|=\left\|A^{-1}(b-\widehat{b})\right\| \\
& \leq\left\|A^{-1}\right\|\|b-\widehat{b}\|=\left\|A^{-1}\right\|\|b\| \frac{\|b-\widehat{b}\|}{\|b\|}=\left\|A^{-1}\right\|\|A x\| \frac{\|b-\widehat{b}\|}{\|b\|} \\
& \leq\left\|A^{-1}\right\|\|A\|\|x\| \frac{\|b-\widehat{b}\|}{\|b\|}
\end{aligned}
$$

Therefore

$$
\frac{\|x-\widehat{x}\|}{\|x\|} \leq \kappa(A) \frac{\|b-\widehat{b}\|}{\|b\|}=\kappa(A) \frac{\|r\|}{\|b\|}
$$

Therefore

$$
\frac{\|x-\widehat{x}\|}{\|x\|} \leq \kappa(A) \frac{\|b-\widehat{b}\|}{\|b\|}=\kappa(A) \frac{\|r\|}{\|b\|}
$$

where

$$
\kappa(A)=\|A\|\left\|A^{-1}\right\|
$$

is called the condition number of A.

Therefore

$$
\frac{\|x-\widehat{x}\|}{\|x\|} \leq \kappa(A) \frac{\|b-\widehat{b}\|}{\|b\|}=\kappa(A) \frac{\|r\|}{\|b\|}
$$

where

$$
\kappa(A)=\|A\|\left\|A^{-1}\right\|
$$

is called the condition number of A.
On the other hand, by the residual vector, we have

Therefore

$$
\frac{\|x-\widehat{x}\|}{\|x\|} \leq \kappa(A) \frac{\|b-\widehat{b}\|}{\|b\|}=\kappa(A) \frac{\|r\|}{\|b\|},
$$

where

$$
\kappa(A)=\|A\|\left\|A^{-1}\right\|
$$

is called the condition number of A.
On the other hand, by the residual vector, we have

$$
\|r\|\|x\|=\|A e\|\left\|A^{-1} b\right\|
$$

Therefore

$$
\frac{\|x-\widehat{x}\|}{\|x\|} \leq \kappa(A) \frac{\|b-\widehat{b}\|}{\|b\|}=\kappa(A) \frac{\|r\|}{\|b\|},
$$

where

$$
\kappa(A)=\|A\|\left\|A^{-1}\right\|
$$

is called the condition number of A.
On the other hand, by the residual vector, we have

$$
\|r\|\|x\|=\|A e\|\left\|A^{-1} b\right\| \leq\|A\|\left\|A^{-1}\right\|\|e\|\|b\|
$$

Therefore

$$
\frac{\|x-\widehat{x}\|}{\|x\|} \leq \kappa(A) \frac{\|b-\widehat{b}\|}{\|b\|}=\kappa(A) \frac{\|r\|}{\|b\|},
$$

where

$$
\kappa(A)=\|A\|\left\|A^{-1}\right\|
$$

is called the condition number of A.
On the other hand, by the residual vector, we have

$$
\|r\|\|x\|=\|A e\|\left\|A^{-1} b\right\| \leq\|A\|\left\|A^{-1}\right\|\|e\|\|b\|=\kappa(A)\|x-\widehat{x}\|\|b\| .
$$

Therefore

$$
\frac{\|x-\widehat{x}\|}{\|x\|} \leq \kappa(A) \frac{\|b-\widehat{b}\|}{\|b\|}=\kappa(A) \frac{\|r\|}{\|b\|},
$$

where

$$
\kappa(A)=\|A\|\left\|A^{-1}\right\|
$$

is called the condition number of A.
On the other hand, by the residual vector, we have

$$
\|r\|\|x\|=\|A e\|\left\|A^{-1} b\right\| \leq\|A\|\left\|A^{-1}\right\|\|e\|\|b\|=\kappa(A)\|x-\widehat{x}\|\|b\| .
$$

Hence

$$
\begin{equation*}
\frac{1}{\kappa(A)} \frac{\|r\|}{\|b\|} \leq \frac{\|x-\widehat{x}\|}{\|x\|} \tag{13}
\end{equation*}
$$

Therefore

$$
\frac{\|x-\widehat{x}\|}{\|x\|} \leq \kappa(A) \frac{\|b-\widehat{b}\|}{\|b\|}=\kappa(A) \frac{\|r\|}{\|b\|},
$$

where

$$
\kappa(A)=\|A\|\left\|A^{-1}\right\|
$$

is called the condition number of A.
On the other hand, by the residual vector, we have

$$
\|r\|\|x\|=\|A e\|\left\|A^{-1} b\right\| \leq\|A\|\left\|A^{-1}\right\|\|e\|\|b\|=\kappa(A)\|x-\widehat{x}\|\|b\| .
$$

Hence

$$
\begin{equation*}
\frac{1}{\kappa(A)} \frac{\|r\|}{\|b\|} \leq \frac{\|x-\widehat{x}\|}{\|x\|} . \tag{13}
\end{equation*}
$$

Theorem 5

$$
\frac{1}{\kappa(A)} \frac{\|r\|}{\|b\|} \leq \frac{\|x-\widehat{x}\|}{\|x\|} \leq \kappa(A) \frac{\|r\|}{\|b\|}
$$

Lemma 4 Suppose that x and \widetilde{x} satisfy

$$
\begin{array}{r}
A x=b \quad \text { and } \quad(A+\triangle A) \widetilde{x}=b+\triangle b, \\
\text { where } A \in \mathbb{R}^{n \times n}, \triangle A \in \mathbb{R}^{n \times n}, 0 \neq b \in \mathbb{R}^{n} \text {, and } \triangle b \in \mathbb{R}^{n} \text {, with } \\
\frac{\|\triangle A\|}{\|A\|} \leq \delta \quad \text { and } \quad \frac{\|\Delta b\|}{\|b\|} \leq \delta .
\end{array}
$$

Lemma 4 Suppose that x and \widetilde{x} satisfy

$$
\begin{aligned}
& \qquad A x=b \quad \text { and } \quad(A+\triangle A) \widetilde{x}=b+\triangle b, \\
& \text { where } A \in \mathbb{R}^{n \times n}, \triangle A \in \mathbb{R}^{n \times n}, 0 \neq b \in \mathbb{R}^{n} \text {, and } \triangle b \in \mathbb{R}^{n} \text {, with } \\
& \frac{\|\triangle A\|}{\|A\|} \leq \delta \quad \text { and } \quad \frac{\|\triangle b\|}{\|b\|} \leq \delta .
\end{aligned}
$$

Lemma 4 Suppose that x and \widetilde{x} satisfy

$$
\begin{aligned}
& \qquad A x=b \quad \text { and } \quad(A+\triangle A) \widetilde{x}=b+\triangle b, \\
& \text { where } A \in \mathbb{R}^{n \times n}, \triangle A \in \mathbb{R}^{n \times n}, 0 \neq b \in \mathbb{R}^{n} \text {, and } \triangle b \in \mathbb{R}^{n} \text {, with } \\
& \frac{\|\triangle A\|}{\|A\|} \leq \delta \quad \text { and } \quad \frac{\|\triangle b\|}{\|b\|} \leq \delta .
\end{aligned}
$$

Lemma 4 Suppose that x and \widetilde{x} satisfy

$$
\begin{aligned}
& \qquad A x=b \quad \text { and } \quad(A+\triangle A) \widetilde{x}=b+\triangle b, \\
& \text { where } A \in \mathbb{R}^{n \times n}, \triangle A \in \mathbb{R}^{n \times n}, 0 \neq b \in \mathbb{R}^{n} \text {, and } \triangle b \in \mathbb{R}^{n} \text {, with } \\
& \frac{\|\triangle A\|}{\|A\|} \leq \delta \quad \text { and } \quad \frac{\|\Delta b\|}{\|b\|} \leq \delta . \\
& \text { If } \kappa(A) \cdot \delta<1 \text {, then } A+\triangle A \text { is nonsingular and } \\
& \qquad \frac{\|\widetilde{x}\|}{\|x\|} \leq \frac{1+\kappa(A) \delta}{1-\kappa(A) \delta} .
\end{aligned}
$$

Lemma 4 Suppose that x and \widetilde{x} satisfy

$$
\begin{aligned}
& \qquad A x=b \quad \text { and } \quad(A+\triangle A) \widetilde{x}=b+\triangle b, \\
& \text { where } A \in \mathbb{R}^{n \times n}, \triangle A \in \mathbb{R}^{n \times n}, 0 \neq b \in \mathbb{R}^{n} \text {, and } \triangle b \in \mathbb{R}^{n} \text {, with } \\
& \frac{\|\triangle A\|}{\|A\|} \leq \delta \quad \text { and } \quad \frac{\|\Delta b\|}{\|b\|} \leq \delta . \\
& \text { If } \kappa(A) \cdot \delta<1 \text {, then } A+\triangle A \text { is nonsingular and } \\
& \qquad \frac{\|\widetilde{x}\|}{\|x\|} \leq \frac{1+\kappa(A) \delta}{1-\kappa(A) \delta} .
\end{aligned}
$$

Proof: Since $\left\|A^{-1} \triangle A\right\| \leq\left\|A^{-1}\right\|\|\triangle A\| \leq \delta\left\|A^{-1}\right\|\|A\|=\delta \kappa(A)<1$,

Lemma 4 Suppose that x and \widetilde{x} satisfy

$$
\begin{aligned}
& \qquad A x=b \quad \text { and } \quad(A+\triangle A) \widetilde{x}=b+\triangle b, \\
& \text { where } A \in \mathbb{R}^{n \times n}, \triangle A \in \mathbb{R}^{n \times n}, 0 \neq b \in \mathbb{R}^{n} \text {, and } \triangle b \in \mathbb{R}^{n} \text {, with } \\
& \frac{\|\triangle A\|}{\|A\|} \leq \delta \quad \text { and } \quad \frac{\|\Delta b\|}{\|b\|} \leq \delta . \\
& \text { If } \kappa(A) \cdot \delta<1 \text {, then } A+\triangle A \text { is nonsingular and } \\
& \qquad \frac{\|\widetilde{x}\|}{\|x\|} \leq \frac{1+\kappa(A) \delta}{1-\kappa(A) \delta} .
\end{aligned}
$$

Proof: Since $\left\|A^{-1} \triangle A\right\| \leq\left\|A^{-1}\right\|\|\triangle A\| \leq \delta\left\|A^{-1}\right\|\|A\|=\delta \kappa(A)<1$, it follows from Theorem ?? that $A+\triangle A$ is nonsingular.

Lemma 4 Suppose that x and \widetilde{x} satisfy

$$
A x=b \quad \text { and } \quad(A+\triangle A) \widetilde{x}=b+\triangle b
$$

where $A \in \mathbb{R}^{n \times n}, \triangle A \in \mathbb{R}^{n \times n}, 0 \neq b \in \mathbb{R}^{n}$, and $\triangle b \in \mathbb{R}^{n}$, with

$$
\frac{\|\triangle A\|}{\|A\|} \leq \delta \quad \text { and } \quad \frac{\|\triangle b\|}{\|b\|} \leq \delta
$$

If $\kappa(A) \cdot \delta<1$, then $A+\triangle A$ is nonsingular and

$$
\frac{\|\widetilde{x}\|}{\|x\|} \leq \frac{1+\kappa(A) \delta}{1-\kappa(A) \delta} .
$$

Proof: Since $\left\|A^{-1} \triangle A\right\| \leq\left\|A^{-1}\right\|\|\triangle A\| \leq \delta\left\|A^{-1}\right\|\|A\|=\delta \kappa(A)<1$, it follows from Theorem ?? that $A+\triangle A$ is nonsingular. Now $(A+\triangle A) \widetilde{x}=b+\triangle b$,

Lemma 4 Suppose that x and \widetilde{x} satisfy

$$
A x=b \quad \text { and } \quad(A+\triangle A) \widetilde{x}=b+\triangle b
$$

where $A \in \mathbb{R}^{n \times n}, \triangle A \in \mathbb{R}^{n \times n}, 0 \neq b \in \mathbb{R}^{n}$, and $\triangle b \in \mathbb{R}^{n}$, with

$$
\frac{\|\triangle A\|}{\|A\|} \leq \delta \quad \text { and } \quad \frac{\|\triangle b\|}{\|b\|} \leq \delta
$$

If $\kappa(A) \cdot \delta<1$, then $A+\triangle A$ is nonsingular and

$$
\frac{\|\widetilde{x}\|}{\|x\|} \leq \frac{1+\kappa(A) \delta}{1-\kappa(A) \delta} .
$$

Proof: Since $\left\|A^{-1} \triangle A\right\| \leq\left\|A^{-1}\right\|\|\triangle A\| \leq \delta\left\|A^{-1}\right\|\|A\|=\delta \kappa(A)<1$, it follows from Theorem ?? that $A+\triangle A$ is nonsingular. Now $(A+\triangle A) \widetilde{x}=b+\triangle b$,

$$
\left(I+A^{-1} \triangle A\right) \widetilde{x}=A^{-1} b+A^{-1} \triangle b
$$

Lemma 4 Suppose that x and \widetilde{x} satisfy

$$
A x=b \quad \text { and } \quad(A+\triangle A) \widetilde{x}=b+\triangle b
$$

where $A \in \mathbb{R}^{n \times n}, \triangle A \in \mathbb{R}^{n \times n}, 0 \neq b \in \mathbb{R}^{n}$, and $\triangle b \in \mathbb{R}^{n}$, with

$$
\frac{\|\triangle A\|}{\|A\|} \leq \delta \quad \text { and } \quad \frac{\|\triangle b\|}{\|b\|} \leq \delta
$$

If $\kappa(A) \cdot \delta<1$, then $A+\triangle A$ is nonsingular and

$$
\frac{\|\widetilde{x}\|}{\|x\|} \leq \frac{1+\kappa(A) \delta}{1-\kappa(A) \delta} .
$$

Proof: Since $\left\|A^{-1} \triangle A\right\| \leq\left\|A^{-1}\right\|\|\triangle A\| \leq \delta\left\|A^{-1}\right\|\|A\|=\delta \kappa(A)<1$, it follows from Theorem ?? that $A+\triangle A$ is nonsingular. Now $(A+\triangle A) \widetilde{x}=b+\triangle b$,

$$
\left(I+A^{-1} \triangle A\right) \widetilde{x}=A^{-1} b+A^{-1} \triangle b=x+A^{-1} \triangle b
$$

and so by taking norms and using Theorem ?? we find
and so by taking norms and using Theorem ?? we find

$$
\|\widetilde{x}\| \leq
$$

and so by taking norms and using Theorem ?? we find

$$
\|\widetilde{x}\| \leq\left\|\left(I+A^{-1} \triangle A\right)^{-1}\right\|\left(\|x\|+\left\|A^{-1}\right\|\|\Delta b\|\right)
$$

and so by taking norms and using Theorem ?? we find

$$
\begin{aligned}
\|\widetilde{x}\| & \leq\left\|\left(I+A^{-1} \triangle A\right)^{-1}\right\|\left(\|x\|+\left\|A^{-1}\right\|\|\Delta b\|\right) \\
& \leq\left\|\left(I+A^{-1} \triangle A\right)^{-1}\right\|\left(\|x\|+\delta\left\|A^{-1}\right\|\|b\|\right)
\end{aligned}
$$

and so by taking norms and using Theorem ?? we find

$$
\begin{aligned}
\|\widetilde{x}\| & \leq\left\|\left(I+A^{-1} \triangle A\right)^{-1}\right\|\left(\|x\|+\left\|A^{-1}\right\|\|\Delta b\|\right) \\
& \leq\left\|\left(I+A^{-1} \triangle A\right)^{-1}\right\|\left(\|x\|+\delta\left\|A^{-1}\right\|\|b\|\right) \\
& \leq \frac{1}{1-\left\|A^{-1} \triangle A\right\|}\left(\|x\|+\delta\left\|A^{-1}\right\|\|b\|\right)
\end{aligned}
$$

and so by taking norms and using Theorem ?? we find

$$
\begin{aligned}
\|\widetilde{x}\| & \leq\left\|\left(I+A^{-1} \triangle A\right)^{-1}\right\|\left(\|x\|+\left\|A^{-1}\right\|\|\Delta b\|\right) \\
& \leq\left\|\left(I+A^{-1} \triangle A\right)^{-1}\right\|\left(\|x\|+\delta\left\|A^{-1}\right\|\|b\|\right) \\
& \leq \frac{1}{1-\left\|A^{-1} \triangle A\right\|}\left(\|x\|+\delta\left\|A^{-1}\right\|\|b\|\right) \\
& \leq \frac{1}{1-\delta k(A)}\left(\|x\|+\delta\left\|A^{-1}\right\|\|b\|\right)
\end{aligned}
$$

and so by taking norms and using Theorem ?? we find

$$
\begin{aligned}
\|\widetilde{x}\| & \leq\left\|\left(I+A^{-1} \triangle A\right)^{-1}\right\|\left(\|x\|+\left\|A^{-1}\right\|\|\Delta b\|\right) \\
& \leq\left\|\left(I+A^{-1} \triangle A\right)^{-1}\right\|\left(\|x\|+\delta\left\|A^{-1}\right\|\|b\|\right) \\
& \leq \frac{1}{1-\left\|A^{-1} \triangle A\right\|}\left(\|x\|+\delta\left\|A^{-1}\right\|\|b\|\right) \\
& \leq \frac{1}{1-\delta k(A)}\left(\|x\|+\delta\left\|A^{-1}\right\|\|b\|\right) \\
& =\frac{1}{1-\delta k(A)}\left(\|x\|+\delta\left\|A^{-1}\right\|\|A x\|\right)
\end{aligned}
$$

and so by taking norms and using Theorem ?? we find

$$
\begin{aligned}
\|\widetilde{x}\| & \leq\left\|\left(I+A^{-1} \triangle A\right)^{-1}\right\|\left(\|x\|+\left\|A^{-1}\right\|\|\Delta b\|\right) \\
& \leq\left\|\left(I+A^{-1} \triangle A\right)^{-1}\right\|\left(\|x\|+\delta\left\|A^{-1}\right\|\|b\|\right) \\
& \leq \frac{1}{1-\left\|A^{-1} \triangle A\right\|}\left(\|x\|+\delta\left\|A^{-1}\right\|\|b\|\right) \\
& \leq \frac{1}{1-\delta \kappa(A)}\left(\|x\|+\delta\left\|A^{-1}\right\|\|b\|\right) \\
& =\frac{1}{1-\delta \kappa(A)}\left(\|x\|+\delta\left\|A^{-1}\right\|\|A x\|\right) \\
& \leq \frac{1}{1-\delta \kappa(A)}\left(\|x\|+\delta\left\|A^{-1}\right\|\|A\|\|x\|\right)
\end{aligned}
$$

and so by taking norms and using Theorem ?? we find

$$
\begin{aligned}
\|\widetilde{x}\| & \leq\left\|\left(I+A^{-1} \triangle A\right)^{-1}\right\|\left(\|x\|+\left\|A^{-1}\right\|\|\Delta b\|\right) \\
& \leq\left\|\left(I+A^{-1} \triangle A\right)^{-1}\right\|\left(\|x\|+\delta\left\|A^{-1}\right\|\|b\|\right) \\
& \leq \frac{1}{1-\left\|A^{-1} \triangle A\right\|}\left(\|x\|+\delta\left\|A^{-1}\right\|\|b\|\right) \\
& \leq \frac{1}{1-\delta \kappa(A)}\left(\|x\|+\delta\left\|A^{-1}\right\|\|b\|\right) \\
& =\frac{1}{1-\delta \kappa(A)}\left(\|x\|+\delta\left\|A^{-1}\right\|\|A x\|\right) \\
& \leq \frac{1}{1-\delta \kappa(A)}\left(\|x\|+\delta\left\|A^{-1}\right\|\|A\|\|x\|\right) \\
& =\frac{1}{1-\delta \kappa(A)}(\|x\|+\delta \kappa(A)\|x\|)
\end{aligned}
$$

and so by taking norms and using Theorem ?? we find

$$
\begin{aligned}
\|\widetilde{x}\| & \leq\left\|\left(I+A^{-1} \triangle A\right)^{-1}\right\|\left(\|x\|+\left\|A^{-1}\right\|\|\Delta b\|\right) \\
& \leq\left\|\left(I+A^{-1} \triangle A\right)^{-1}\right\|\left(\|x\|+\delta\left\|A^{-1}\right\|\|b\|\right) \\
& \leq \frac{1}{1-\left\|A^{-1} \triangle A\right\|}\left(\|x\|+\delta\left\|A^{-1}\right\|\|b\|\right) \\
& \leq \frac{1}{1-\delta \kappa(A)}\left(\|x\|+\delta\left\|A^{-1}\right\|\|b\|\right) \\
& =\frac{1}{1-\delta \kappa(A)}\left(\|x\|+\delta\left\|A^{-1}\right\|\|A x\|\right) \\
& \leq \frac{1}{1-\delta \kappa(A)}\left(\|x\|+\delta\left\|A^{-1}\right\|\|A\|\|x\|\right) \\
& =\frac{1}{1-\delta \kappa(A)}(\|x\|+\delta \kappa(A)\|x\|) \\
& =\frac{1}{1-\delta \kappa(A)}(1+\delta \kappa(A))\|x\| .
\end{aligned}
$$

Therefore

$$
\frac{\|\widetilde{x}\|}{\|x\|} \leq \frac{1+\delta \kappa(A)}{1-\delta \kappa(A)}
$$

Therefore

$$
\frac{\|\widetilde{x}\|}{\|x\|} \leq \frac{1+\delta \kappa(A)}{1-\delta \kappa(A)}
$$

Theorem 6 If the conditions of Lemma 4 hold then

$$
\frac{\|x-\widetilde{x}\|}{\|x\|} \leq \frac{2 \delta}{1-\kappa(A) \delta} \kappa(A)
$$

Therefore

$$
\frac{\|\widetilde{x}\|}{\|x\|} \leq \frac{1+\delta \kappa(A)}{1-\delta \kappa(A)}
$$

Theorem 6 If the conditions of Lemma 4 hold then

$$
\frac{\|x-\widetilde{x}\|}{\|x\|} \leq \frac{2 \delta}{1-\kappa(A) \delta} \kappa(A)
$$

Proof: Since \widetilde{x} satisfies $(A+\triangle A) \widetilde{x}=b+\triangle b, A \widetilde{x}=b+\triangle b-\triangle A \widetilde{x}$. Then we have

Therefore

$$
\frac{\|\widetilde{x}\|}{\|x\|} \leq \frac{1+\delta \kappa(A)}{1-\delta \kappa(A)}
$$

Theorem 6 If the conditions of Lemma 4 hold then

$$
\frac{\|x-\widetilde{x}\|}{\|x\|} \leq \frac{2 \delta}{1-\kappa(A) \delta} \kappa(A)
$$

Proof: Since \widetilde{x} satisfies $(A+\triangle A) \widetilde{x}=b+\triangle b, A \widetilde{x}=b+\triangle b-\triangle A \widetilde{x}$. Then we have

$$
A \widetilde{x}-A x=\triangle b+\triangle A \widetilde{x}
$$

Therefore

$$
\frac{\|\widetilde{x}\|}{\|x\|} \leq \frac{1+\delta \kappa(A)}{1-\delta \kappa(A)}
$$

Theorem 6 If the conditions of Lemma 4 hold then

$$
\frac{\|x-\widetilde{x}\|}{\|x\|} \leq \frac{2 \delta}{1-\kappa(A) \delta} \kappa(A)
$$

Proof: Since \widetilde{x} satisfies $(A+\triangle A) \widetilde{x}=b+\triangle b, A \widetilde{x}=b+\triangle b-\triangle A \widetilde{x}$. Then we have

$$
A \widetilde{x}-A x=\triangle b+\triangle A \widetilde{x}
$$

and

$$
\widetilde{x}-x=A^{-1}(\triangle b+\triangle A \widetilde{x}) .
$$

Hence

$$
\|\widetilde{x}-x\| \leq\left\|A^{-1}\right\|(\|\Delta b\|+\|\triangle A\|\|\widetilde{x}\|)
$$

Hence

$$
\begin{aligned}
\|\widetilde{x}-x\| & \leq\left\|A^{-1}\right\|(\|\triangle b\|+\|\triangle A\|\|\widetilde{x}\|) \\
& \leq\left\|A^{-1}\right\|(\delta\|b\|+\delta\|A\|\|\widetilde{x}\|)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\|\widetilde{x}-x\| & \leq\left\|A^{-1}\right\|(\|\triangle b\|+\|\triangle A\|\|\widetilde{x}\|) \\
& \leq\left\|A^{-1}\right\|(\delta\|b\|+\delta\|A\|\|\widetilde{x}\|) \\
& =\delta\left\|A^{-1}\right\|(\|A x\|+\|A\|\|\widetilde{x}\|)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\|\widetilde{x}-x\| & \leq\left\|A^{-1}\right\|(\|\triangle b\|+\|\triangle A\|\|\widetilde{x}\|) \\
& \leq\left\|A^{-1}\right\|(\delta\|b\|+\delta\|A\|\|\widetilde{x}\|) \\
& =\delta\left\|A^{-1}\right\|(\|A x\|+\|A\|\|\widetilde{x}\|) \\
& \leq \delta\|A\|\left\|A^{-1}\right\|(\|x\|+\|\widetilde{x}\|)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\|\widetilde{x}-x\| & \leq\left\|A^{-1}\right\|(\|\triangle b\|+\|\triangle A\|\|\widetilde{x}\|) \\
& \leq\left\|A^{-1}\right\|(\delta\|b\|+\delta\|A\|\|\widetilde{x}\|) \\
& =\delta\left\|A^{-1}\right\|(\|A x\|+\|A\|\|\widetilde{x}\|) \\
& \leq \delta\|A\|\left\|A^{-1}\right\|(\|x\|+\|\widetilde{x}\|)
\end{aligned}
$$

which gives

Hence

$$
\begin{aligned}
\|\widetilde{x}-x\| & \leq\left\|A^{-1}\right\|(\|\triangle b\|+\|\triangle A\|\|\widetilde{x}\|) \\
& \leq\left\|A^{-1}\right\|(\delta\|b\|+\delta\|A\|\|\widetilde{x}\|) \\
& =\delta\left\|A^{-1}\right\|(\|A x\|+\|A\|\|\widetilde{x}\|) \\
& \leq \delta\|A\|\left\|A^{-1}\right\|(\|x\|+\|\widetilde{x}\|)
\end{aligned}
$$

which gives

$$
\frac{\|\widetilde{x}-x\|}{\|x\|} \leq \delta \kappa(A)\left(1+\frac{\|\widetilde{x}\|}{\|x\|}\right)
$$

Hence

$$
\begin{aligned}
\|\widetilde{x}-x\| & \leq\left\|A^{-1}\right\|(\|\triangle b\|+\|\triangle A\|\|\widetilde{x}\|) \\
& \leq\left\|A^{-1}\right\|(\delta\|b\|+\delta\|A\|\|\widetilde{x}\|) \\
& =\delta\left\|A^{-1}\right\|(\|A x\|+\|A\|\|\widetilde{x}\|) \\
& \leq \delta\|A\|\left\|A^{-1}\right\|(\|x\|+\|\widetilde{x}\|)
\end{aligned}
$$

which gives

$$
\frac{\|\widetilde{x}-x\|}{\|x\|} \leq \delta \kappa(A)\left(1+\frac{\|\widetilde{x}\|}{\|x\|}\right) \leq \delta \kappa(A)\left(1+\frac{1+\kappa(A) \delta}{1-\kappa(A) \delta}\right)
$$

Hence

$$
\begin{aligned}
\|\widetilde{x}-x\| & \leq\left\|A^{-1}\right\|(\|\triangle b\|+\|\triangle A\|\|\widetilde{x}\|) \\
& \leq\left\|A^{-1}\right\|(\delta\|b\|+\delta\|A\|\|\widetilde{x}\|) \\
& =\delta\left\|A^{-1}\right\|(\|A x\|+\|A\|\|\widetilde{x}\|) \\
& \leq \delta\|A\|\left\|A^{-1}\right\|(\|x\|+\|\widetilde{x}\|)
\end{aligned}
$$

which gives

$$
\frac{\|\widetilde{x}-x\|}{\|x\|} \leq \delta \kappa(A)\left(1+\frac{\|\widetilde{x}\|}{\|x\|}\right) \leq \delta \kappa(A)\left(1+\frac{1+\kappa(A) \delta}{1-\kappa(A) \delta}\right)=\frac{2 \delta \kappa(A)}{1-\delta \kappa(A)}
$$

