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1 — Classic Iterative Methods

‘ 1.1 — Basic Concept I

First of all we give an example to illustrate the process of iterative methods for solving

systems of linear equations.

Consider solving
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1 — Classic Iterative Methods

‘ 1.1 — Basic Concept I

First of all we give an example to illustrate the process of iterative methods for solving

systems of linear equations.

Consider solving

This system has the exact solution £1 = x5 = 1.
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1 — Classic lterative Methods

‘ 1.1 — Basic Concept I

First of all we give an example to illustrate the process of iterative methods for solving

systems of linear equations.

Consider solving

This system has the exact solution £1 = x9 = 1. Equivalently we can write the system as

3561+2332:5
5131—|—4$2:5
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This implies that
(5 — 25[72)
(5 — 331)

D~ Wl
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This implies that
1
Ir1 — 3
1
Iy — 1(5 — 331)
A naive idea is to solve the system by
) =

1
3
a:'gk) =2(5— x(k_l))
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This implies that
71 = L
zo = 2(5— 1)
A naive idea is to solve the system by
o — 1
(k) _ i(5 . x(k—l))

Loy =

that is, to use the iterative formulation

:ng) _ % 0 5 B 0 2 :cgk_l)
a:gk) 0 3 5 1 0 a:ék_l)
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If we choose the initial guess x§0) = xéo) = 0, we would obtain

- i _
L I I 5 0 2|0} | 16667
zg) 0 1 5 1 0[]0 1.2500
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If we choose the initial guess x§0) = xéo) = 0, we would obtain
e 1 oo (51 | 176 i 1
Tq B 3 0 5 B 0 2 0 B 1.6667
zg) 0 1 5 1 0[]0 1.2500
and
Rt I (N S 5 0 2 || 1.6667 |\ | 0.8333
x5 0 1 5 1 0 | | 1.2500 0.8333
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If we choose the initial guess x§0) = xéo) = 0, we would obtain
L I I 5 0 2|0} | 16667
zg) 0 1 5 1 0[]0 1.2500
and
Rt I (N S 5 0 2 || 1.6667 |\ | 0.8333
x5 0 1 5 1 0 | | 1.2500 0.8333

By repeating the process, we have the following table

k 3 4 5 6 7

2\ | 11111 09722 10185 09954 1.0031

2 | 1.0417 09722 1.0000 0.9954 1.0012
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From this example, we observe that the basic idea is to split the coefficient matrix A into
A=M— (M- A),

for some matrix V/, which is called the splitting matrix.
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From this example, we observe that the basic idea is to split the coefficient matrix A into
A=M— (M- A),

for some matrix /', which is called the splitting matrix. Here we assume that A and M are

both nonsingular.
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From this example, we observe that the basic idea is to split the coefficient matrix A into
A=M— (M- A),

for some matrix /', which is called the splitting matrix. Here we assume that A and M are

both nonsingular. Then the original problem is rewritten in the equivalent form

Mx= (M — A)x +b.
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From this example, we observe that the basic idea is to split the coefficient matrix A into
A=M— (M- A),

for some matrix /', which is called the splitting matrix. Here we assume that A and M are

both nonsingular. Then the original problem is rewritten in the equivalent form
Mx = (M — A)x + b.
This suggests an iterative process
e ®) = (T — M 1A z*Y 4+ Mo =Tze®D 4 ¢

where 7' is usually called the iteration matrix. The initial vector z(9) can be arbitrary or be

chosen according to certain conditions.
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From this example, we observe that the basic idea is to split the coefficient matrix A into
A=M— (M- A),

for some matrix /', which is called the splitting matrix. Here we assume that A and M are

both nonsingular. Then the original problem is rewritten in the equivalent form
Mx = (M — A)x + b.
This suggests an iterative process
e ®) = (T — M 1A z*Y 4+ Mo =Tze®D 4 ¢

where 7' is usually called the iteration matrix. The initial vector z(9) can be arbitrary or be

chosen according to certain conditions.

Two criteria for choosing the splitting matrix \/ are

0 2(F) s easily computed. More precisely, the system Mz(F) = Y is easy to solve;
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From this example, we observe that the basic idea is to split the coefficient matrix A into
A=M— (M- A),

for some matrix /', which is called the splitting matrix. Here we assume that A and M are

both nonsingular. Then the original problem is rewritten in the equivalent form
Mx = (M — A)x + b.
This suggests an iterative process
e ®) = (T — M 1A z*Y 4+ Mo =Tze®D 4 ¢

where 7' is usually called the iteration matrix. The initial vector z(9) can be arbitrary or be

chosen according to certain conditions.

Two criteria for choosing the splitting matrix \/ are
0 2(F) s easily computed. More precisely, the system Mz(F) = Y is easy to solve;

[1 the sequence {x(k)} converges rapidly to the exact solution.
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| 1.2 — Richard’s Method I

When we choose M = [ suchthat A = I — (I — A), we obtain the iteration procedure
e ®) = (I — A)z* D 4 p =gk — A=) 4 p = gk=D 4 (k1)

This algorithm is called the Richard’s method.
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| 1.2 — Richard’s Method I

When we choose M = [ suchthat A = I — (I — A), we obtain the iteration procedure
e ®) = (I — A)z* D 4 p =gk — A=) 4 p = gk=D 4 (k1)
This algorithm is called the Richard’s method.

Algorithm 1 (Richard’s Method)
fork=1,2,...do

forr=1,2,...,ndo
mn

’I“,Ek_l) p— bz — Za¢j$§k_1)

j=1
x@(k) _ xz(_k—l) N rz(k:—l)

end for

end for
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| 1.3 — Jacobi Method I

If we decompose the coefficient matrix A as
A=L+D+U,

where D) is the diagonal part, L is the strictly lower triangular part, and U is the strictly

upper triangular part, of A,
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| 1.3 — Jacobi Method I

If we decompose the coefficient matrix A as
A=L+D+U,

where D) is the diagonal part, L is the strictly lower triangular part, and U is the strictly

upper triangular part, of A, and choose M = D,
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| 1.3 — Jacobi Method I

If we decompose the coefficient matrix A as

A=L+D+U,

where D) is the diagonal part, L is the strictly lower triangular part, and U is the strictly
upper triangular part, of A, and choose M = D, then we derive the iterative formulation for

Jacobi method:

t®) = —D YL+ U)z*V + D1,
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| 1.3 — Jacobi Method I

If we decompose the coefficient matrix A as

A=L+D+U,

where D) is the diagonal part, L is the strictly lower triangular part, and U is the strictly

upper triangular part, of A, and choose M = D, then we derive the iterative formulation for

Jacobi method:
t®) = —D YL+ U)z*V + D1,

With this method, the iteration matrix 7' = — D~ '(L + U) and ¢ = D~ 'b.
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| 1.3 — Jacobi Method I

If we decompose the coefficient matrix A as

A=L+D+U,

where D) is the diagonal part, L is the strictly lower triangular part, and U is the strictly

upper triangular part, of A, and choose M = D, then we derive the iterative formulation for

Jacobi method:
t®) = —D YL+ U)z*V + D1,

With this method, the iteration matrix 7" = — D~ '(L + U) and ¢ = D~ 'b. Each
(k)

component , * can be computed by

1—1 n
ZCEk) — Zawx(k 1) Z CLZJZU;k 2 /am
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a11$(1k) + a1233;k_1) + a13$:(>,k_1) + -+ a1n$7(zk_1) = b
a21$§k_1) =+ azﬂgk) T a2393:(3k_1) T a2n$o(zk_l) = by
anﬁgk_l) - anﬂék_l) + an3$;(),k_1) T annSC?(zk) ="

Department of Mathematics — NTNU Tsung-Min Hwang November 1, 2003



lterative Methods for LS 9

(k—1)

a11$(1k) + a1237§k_1) =+ a13$:(>,k_1) T T A1nTn = b
a21$§_)+a2 SC()-FCL xék_l)—l---'—l-an%(zk D= bo
am:vgk_l) - anﬂék_l) + an3$;(),k_1) T annx( )= by,

Algorithm 2 (Jacobi Method)

fork=1,2,.
forto =1,2,...,ndo
1—1
a:,gk) = awx<k b _
g=1
end for
end for
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allx(lk) + algx;k_l) + a13 ngk_l) +---t+a nﬂjq(lk 1) — bl
CL2137§ - =+ @22$;k) + a2 xz(sk 2 Tt a n%(zk D= b2
am:cgk_l) + anzxék_l) + ansxék_l) Fo Ay = by

Algorithm 2 (Jacobi Method)
fork=1,2,...do
forto =1,2,...,ndo

1—1

J=1 j=i+1
end for
end for
Only the components of =1 are used to compute z (k)
= a:,gk),z' = 1,...,n, can be computed in parallel at each iteration k.
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| 1.4 — Gauss-Seidel Method I

When computing m,gk) fort > 1, Qfgk), e ,x,gli)l have already been computed and are
. : : —1 1
likely to be better approximations to the exact x1,...,x;_1 than xgk ), .. ,a:z(-ﬁl ).
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| 1.4 — Gauss-Seidel Method I

When computing m,gk) fort > 1, Qfgk), e ,x,gli)l have already been computed and are
likely to be better approximations to the exact 1, ..., x;_1 than xgk_l), .. ,x,gﬁzl). It

(k)

seems reasonable to compute x, * using these most recently computed values.
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likely to be better approximations to the exact 1, ..., x;_1 than xgk_l), .. ,x,gﬁzl). It

(k)
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| 1.4 — Gauss-Seidel Method I

When computing zgk) fort > 1, Qfgk), e ,x,gli)l have already been computed and are
: L —1 —1
likely to be better approximations to the exact x1,...,x;_1 than xgk ), .. ,a:z(-ﬁl ). It

(k)

seems reasonable to compute x, * using these most recently computed values. That is

a11$(1k) + a1233ék_1) + a13x§k_1> Fodamay Y = by
a21$§k) + a22$ék) + azswék_l) + a2n33?(1k_1) = by
a»3195§k) T a3295§k) + &3355:(),k) Tt a3n$o(1k_1) = b3
anlxgk_l) - aangk_l) + anSZCék_l) T annx"glk) — bn

This improvement induce the Gauss-Seidel method.
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| 1.4 — Gauss-Seidel Method I

: : k k
When computing x,gk) fort > 1, Qfg ), e ,xf;_)l have already been computed and are
: . k—1 k—1
likely to be better approximations to the exact x1,...,x;_1 than ajg ), .. 7372('—1 ). It

(k)

seems reasonable to compute x, * using these most recently computed values. That is

a11$(1k) + a1233ék_1) + a13x§k_1> Fodamay Y = by
a21$§k) + a22fffék) + azswék_l) + a2n337(1k_1) = b
a»3195§k) T a3295§k) + @3355:(),k) Tt a3n$o(1k_1) = b3
anﬂ’gk_l) - aangk_l) + anSZCék_l) T annx"glk) — bn

This improvement induce the Gauss-Seidel method.

The Gauss-Seidel method sets M/ = D + [ and defines the iteration as

t®) = (D4 L)~ tUuz*Y 4+ (D+ L) .
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That is, Gauss-Seidel method uses 7' = — (D + L)~ U as the iteration matrix.
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That is, Gauss-Seidel method uses 7' = — (D + L)' U as the iteration matrix. The

formulation above can be rewritten as

z*) = —p~1 (Laz<k> + Uzt — b) :
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That is, Gauss-Seidel method uses 7' = — (D + L)' U as the iteration matrix. The

formulation above can be rewritten as
k) = _p-1 (LZIZ’<k> + Ugk—1) _ b) .

(k)

Hence each component z;

1—1 n
Qfgk) = ZCLZJZE Z Cszwgk 2 /au

can be computed by
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That is, Gauss-Seidel method uses 7' = — (D + L)' U as the iteration matrix. The

formulation above can be rewritten as
k) = _p-1 (L:l:‘<k) + Ugk—1) _ b) .

(k)

Hence each component z;

1—1 n
ZE,Ek) = ZCLZJZIZ Z Cblngk 2 /azz

can be computed by

Algorithm 3 (Gauss-Seidel Method)
fork=1,2,...do

forto =1,2,...,ndo

1—1 n
k k k—1
CEE )= (b — E aija:§- ) g aijmg ) /am-
end for

end for
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‘ 1.5 — Successive Over Relaxation (SOR) Method I

The successive over relaxation (SOR) method choose M = w ™! (D 4+ wl),
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‘ 1.5 — Successive Over Relaxation (SOR) Method I

The successive over relaxation (SOR) method choose M = w ™! (D 4 wL), where

0 < w < 2is called the relaxation parameter,
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‘ 1.5 — Successive Over Relaxation (SOR) Method I

The successive over relaxation (SOR) method choose M = w ™! (D 4 wL), where

0 < w < 2is called the relaxation parameter, and defines the iteration

(D +wL)z™ =[(1 —w)D — wU] 2%~V + wb.
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‘ 1.5 — Successive Over Relaxation (SOR) Method I

The successive over relaxation (SOR) method choose M = w ™! (D 4 wL), where

0 < w < 2is called the relaxation parameter, and defines the iteration
(D +wL)z™ =[(1 —w)D — wU] 2%~V + wb.

Hence the iteration matrix 7' = (D + wL) ' ((1 — w)D — wlU).
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‘ 1.5 — Successive Over Relaxation (SOR) Method I

The successive over relaxation (SOR) method choose M = w ™! (D 4 wL), where

0 < w < 2is called the relaxation parameter, and defines the iteration
(D +wL)z™ =[(1 —w)D — wU] 2%~V + wb.

Hence the iteration matrix 7' = (D + wL) ' ((1 — w)D — wU). Each component a:?(:k)
can be computed by the formulation

1—1 n
CCq(;k) =w | b — Z aijx§-k) — Z aiijk_l) /am- + (1 — w)xgk_l).

j=1 j=i+1
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‘ 1.5 — Successive Over Relaxation (SOR) Method I

The successive over relaxation (SOR) method choose M = w ™! (D 4 wL), where

0 < w < 2is called the relaxation parameter, and defines the iteration
(D +wL)z™ =[(1 —w)D — wU] 2%~V + wb.

Hence the iteration matrix 7' = (D + wL) ' ((1 — w)D — wU). Each component a:?(;k)

can be computed by the formulation

1—1 n
.CC?(;k) =w | b — Z aijx§-k) — Z aijx§k_1) /am- + (1 — w)xz(-k_l).

j=1 j=i+1

The guestion of choosing a good relaxation parameter w is a very complex topic.
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‘ 1.6 — Symmetric Successive Over Relaxation (SSOR) Method I

In theory the symmetric successive over relaxation (SSOR) method chooses the splitting

matrix M = m (D + wL)D~ (D + wU) and iterates with the iteration matrix

T=(D+wU) ' ((1-w)D—-wL)(D+wL) (1 -w)D —wl).
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‘ 1.6 — Symmetric Successive Over Relaxation (SSOR) Method I

In theory the symmetric successive over relaxation (SSOR) method chooses the splitting
matrix M/ = —5—— (D + wL)D~Y(D + wU) and iterates with the iteration matrix

w(2—w)
T=(D+wlU) ' ((1—-w)D—-wL)(D+wL) (1 -w)D —wlU).
The idea is in fact to implement the SOR formulation twice, one forward and one backward,

at each iteration.
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‘ 1.6 — Symmetric Successive Over Relaxation (SSOR) Method I

In theory the symmetric successive over relaxation (SSOR) method chooses the splitting

matrix M = m (D + wL)D~ (D + wU) and iterates with the iteration matrix
T=(D+wU) ' ((1-w)D—-wL)(D+wL) (1 -w)D —wl).

The idea is in fact to implement the SOR formulation twice, one forward and one backward,

at each iteration. That is, SSOR method defines

(D +wL)z®*"2) = ((1-w)D—wU)z®Y +wb
(D +wlz® = (1-w)D—wl) zF=2) 4 wb
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(k)

Each component x; ~ is obtained by first computing

1

1—1 n
xgk_§> —w | b — Zaijx§k_§) _ Z aijx§k_1) /az‘i + (1 — w):cq(;k)
j=1

j=i+1
followed by
k - k - (k—1) (k—1)
CIZ,E >:w bi—Zaij:c; )— Z CLZ'j.CCj 2 /aer(lw):cz 27,
j=1 j=i+1
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2 — Convergence Analysis

Definition 1 (Spectrum and Spectral Radius) The set of all eigenvalues of a

matrix A is called the spectrum of A and is denoted by A(A).
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2 — Convergence Analysis

Definition 1 (Spectrum and Spectral Radius) The set of all eigenvalues of a
matrix A is called the spectrum of A and is denoted by A\(A). The spectral

radius of A is

p(A) = maxi|A[|A € A(A)}.
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2 — Convergence Analysis

Definition 1 (Spectrum and Spectral Radius) The set of all eigenvalues of a
matrix A is called the spectrum of A and is denoted by A\(A). The spectral

radius of A is

p(A) = max{|A[|]A € A\(A4)}.
Lemmal If A € R™"*™ then

1. [|All2 = /p(AT A);

2. p(A) < ||Al| for any subordinate matrix norm.
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2 — Convergence Analysis

Definition 1 (Spectrum and Spectral Radius) The set of all eigenvalues of a
matrix A is called the spectrum of A and is denoted by A\(A). The spectral

radius of A is

p(A) = max{|A[|]A € A\(A4)}.
Lemmal If A € R™"*™ then

1. [|All2 = /p(AT A);
2. p(A) < ||Al| for any subordinate matrix norm.

Proof: Proof for the second part.
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2 — Convergence Analysis

Definition 1 (Spectrum and Spectral Radius) The set of all eigenvalues of a
matrix A is called the spectrum of A and is denoted by A\(A). The spectral

radius of A is

p(A) = max{|A[|]A € A\(A4)}.
Lemmal If A € R™"*™ then

1. [|All2 = /p(AT A);
2. p(A) < ||Al| for any subordinate matrix norm.

Proof: Proof for the second part. Suppose A is an eigenvalue of A and z # 0

is a corresponding eigenvector such that Az = Az and ||x|| = 1.
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2 — Convergence Analysis

Definition 1 (Spectrum and Spectral Radius) The set of all eigenvalues of a
matrix A is called the spectrum of A and is denoted by A\(A). The spectral

radius of A is

p(A) = max{|A[|]A € A\(A4)}.
Lemmal If A € R™"*™ then

1. [|All2 = /p(AT A);
2. p(A) < ||Al| for any subordinate matrix norm.

Proof: Proof for the second part. Suppose A is an eigenvalue of A and z # 0

is a corresponding eigenvector such that Az = Az and ||z|| = 1. Then

Al = Mzl = lIAz] = [[Az]] < [[A[[[[=]] = [lA]];
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2 — Convergence Analysis

Definition 1 (Spectrum and Spectral Radius) The set of all eigenvalues of a
matrix A is called the spectrum of A and is denoted by A\(A). The spectral

radius of A is

p(A) = max{|A[|]A € A\(A4)}.
Lemmal If A € R™"*™ then

1. [|All2 = /p(AT A);
2. p(A) < ||Al| for any subordinate matrix norm.

Proof: Proof for the second part. Suppose A is an eigenvalue of A and z # 0

is a corresponding eigenvector such that Az = Az and ||z|| = 1. Then
Al = Mzl = lIAz] = [[Az]] < [[A[[[[=]] = [lA]];

thatis, || < [|A]|.
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2 — Convergence Analysis

Definition 1 (Spectrum and Spectral Radius) The set of all eigenvalues of a
matrix A is called the spectrum of A and is denoted by A\(A). The spectral

radius of A is

p(A) = maxi|A[|A € A(A)}.
Lemmal If A € R™ ™ then
1. [|All2 = /p(AT A);
2. p(A) < ||Al| for any subordinate matrix norm.

Proof: Proof for the second part. Suppose A is an eigenvalue of A and z # 0

is a corresponding eigenvector such that Az = Az and ||z|| = 1. Then
Al = [zl = [[Az]| = ||Az]| < ||All||=]| = [|A]l,
thatis, |A| < ||A||. Since A is arbitrary, this implies that
p(A) = max [A| < [[A]]. _
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Theorem 1 For any A and any ¢ > 0, there exists a subordinate norm such
that

p(A) < |A]l < p(A) +e.
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Theorem 1 For any A and any ¢ > 0, there exists a subordinate norm such
that

p(A) < | A]l < p(A) +e.
Lemma 2 If p(A) < 1,then (I — A)~! exists and

(I-A) "= A=T+A+A%+...

1=0
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Theorem 1 For any A and any ¢ > 0, there exists a subordinate norm such
that

p(A) < | A]l < p(A) +e.
Lemma 2 If p(A) < 1,then (I — A)~! exists and

(I—A) "= A=T+A+A>+.-..

1=0

Proof: Let A be an eigenvalue of A, then 1 — )\ is an eigenvalue of I — A.
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Theorem 1 For any A and any ¢ > 0, there exists a subordinate norm such
that

p(A) < | A]l < p(A) +e.
Lemma 2 If p(A) < 1,then (I — A)~! exists and

(I—A) "= A=T+A+A>+.-..

1=0

Proof: Let A be an eigenvalue of A, then 1 — )\ is an eigenvalue of I — A.

A< p(4) <1
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Theorem 1 For any A and any ¢ > 0, there exists a subordinate norm such
that

p(A) < | A]l < p(A) +e.
Lemma 2 If p(A) < 1,then (I — A)~! exists and

(I—A) "= A=T+A+A>+.-..

1=0

Proof: Let A be an eigenvalue of A, then 1 — )\ is an eigenvalue of I — A.
Al < p(4) <1
=1—-A#0.
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Theorem 1 For any A and any ¢ > 0, there exists a subordinate norm such
that

p(A) < | A]l < p(A) +e.
Lemma 2 If p(A) < 1,then (I — A)~! exists and
(I—A) "= A=T+A+A>+.-..
i=0

Proof: Let A be an eigenvalue of A, then 1 — )\ is an eigenvalue of I — A.
Al < p(4) <1
=1—-A#0.

= ( is not an eigenvalue of I — A, which means (I — A) is nonsingular.

Department of Mathematics — NTNU Tsung-Min Hwang November 1, 2003



lterative Methods for LS 16

Theorem 1 For any A and any ¢ > 0, there exists a subordinate norm such
that

p(A) < | A]l < p(A) +e.
Lemma 2 If p(A) < 1,then (I — A)~! exists and
(I—A) "= A=T+A+A>+.-..
i=0

Proof: Let A be an eigenvalue of A, then 1 — )\ is an eigenvalue of I — A.
Al < p(4) <1
=1—-A#0.

= ( is not an eigenvalue of I — A, which means (I — A) is nonsingular.

Nextwe showthat (I — A)" ' =T+ A+ A% + ...
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Since
(I —A) (Z Ai> — ] — A™H,
i=0
and p(A) < 1
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Since
(I —A) (Z AZ’) =] — A"
i=0
and p(A) < 1 implies ||A™|| — 0as m — oo,
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Since
S
i=0
and p(A) < 1 implies ||A™|| — 0 as m — oo, we have

(I —A) (Tr}znooiAi> = 1.

1=0
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Since
S
i=0
and p(A) < 1 implies ||A™|| — 0 as m — oo, we have

(I —A) (Tr}znooiAi> = 1.

1=0

This proves (I — A)~1 =77 | A N
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Since
S
i=0
and p(A) < 1 implies ||A™|| — 0 as m — oo, we have

a—A)<mn§:m>—1.
This proves (I — A)~1 =77 | A N

Lemma 3 Suppose that A € R"*"™ and || - || is a subordinate matrix norm. If
|A|l < 1,then I — Ais nonsingular and

(I o A)_l — ZAkv
k=0

with
1

I—A < — .
(=47 < 7=
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Proof: Suppose I — A is singular.
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Proof: Suppose I — A is singular.
= Jx € R", x # 0 (so ||z|| # 0) such that (I — A)z = 0.
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Proof: Suppose I — A is singular.
= Jx € R", x # 0 (so ||z|| # 0) such that (I — A)z = 0.
= = Azand |z|| = ||Az| < [[A]||z]
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Proof: Suppose I — A is singular.

= Jx € R", x # 0 (so ||z|| # 0) such that (I — A)z = 0.
= = = Az and [|z]| = || Az[| < [[A]][=|

= ||AJ|| > 1 which contradicts to the assumption that || A|| < 1.
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Proof: Suppose I — A is singular.

= Jx € R", x # 0 (so ||z|| # 0) such that (I — A)z = 0.
= © = Azand [|z| = [|Az[| < [[A]/|||

= ||AJ|| > 1 which contradicts to the assumption that || A|| < 1.
= [ — A is nonsingular.
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Proof: Suppose I — A is singular.

= Jx € R", x # 0 (so ||z|| # 0) such that (I — A)z = 0.
= © = Azand [|z| = [|Az[| < [[A]/|||

= ||AJ|| > 1 which contradicts to the assumption that || A|| < 1.
= [ — A is nonsingular.

Next, one can verify that

(I —A) (izﬂf) =] — A™H,

k=0
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Proof: Suppose I — A is singular.

= Jx € R", x # 0 (so ||z|| # 0) such that (I — A)z = 0.
= © = Azand [|z| = [|Az[| < [[A]/|||

= ||AJ|| > 1 which contradicts to the assumption that || A|| < 1.
= [ — A is nonsingular.

Next, one can verify that

(I —A) (izﬂf) =] — A™H,

k=0

Since [|A|| < 1, lim,, o A™ =0,
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Proof: Suppose I — A is singular.

= Jx € R", x # 0 (so ||z|| # 0) such that (I — A)z = 0.
= © = Azand [|z| = [|Az[| < [[A]/|||

= ||AJ|| > 1 which contradicts to the assumption that || A|| < 1.
= [ — A is nonsingular.

Next, one can verify that

Since [|A|| < 1, lim,, .o, A™ = 0, hence

<Z Ak> (I—A) < lim ZA’“) = J— lim A™T'=1.

k=0

This shows that (I — A)~1 =77  A*
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Finally, since || A|| < 1,

I = A) 1H—

< Z | AR < Z |4 = +— HAH
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Finally, since || A|| < 1,

I = A) 1||—

< Z | AR < Z A" =

Theorem 2 The following statements are equivalent.

1. Ais a convergent matrix, i.e., A¥ — 0as k — o0:

2. klim |A¥|| = 0 for some subordinate matrix norm;
— OO

3. klim |A®|| = 0 for all subordinate matrix norm;
— 00

4. p(A) < 1;

5. lim A"z = 0 forany z.

k— 00

19

1 - HAII

Department of Mathematics — NTNU Tsung-Min Hwang November 1, 2003



lterative Methods for LS 20
Theorem 3 For any AN R™, the sequence produced by
(k) = Tp(k=1) +c, k=1,2,...,
converges to the unique solution of & = 1'x + cif and only if

p(T) < 1.
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Theorem 3 For any AN R™, the sequence produced by
(k) = Tp(k=1) +c, k=1,2,...,
converges to the unique solution of & = 1'x + cif and only if

p(T) < 1.

Proof: Suppose p(T") < 1.
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Theorem 3 For any AN R™, the sequence produced by
(k) = Tp(k=1) +c, k=1,2,...,
converges to the unique solution of & = 1'x + cif and only if

p(T) < 1.

Proof: Suppose p(T) < 1. The sequence of vectors (k) produced by the
iterative formulation are

B = Tz 4
2 = TeW 4 e=1%20 + (T + e
2@ = T2 4e=1320 + (T2 +T+ e
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Theorem 3 For any AN R™, the sequence produced by
(k) = Tp(k=1) +c, k=1,2,...,
converges to the unique solution of & = 1'x + cif and only if

p(T) < 1.

Proof: Suppose p(T) < 1. The sequence of vectors (k) produced by the
iterative formulation are

B = Tz 4
2 = TeW 4 e=1%20 + (T + e
2@ = T2 4e=1320 + (T2 +T+ e

In general

e ®) =Tk (T L TR=2 T 4 e
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since p(T) < 1,limy_ o, T*2(®) = 0 forany () € R™.
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since p(T) < 1, limp_.0o T*2(® = 0 for any (%) € R™. By Lemma 2,

(TF 4T 24+ . T+ De—- T -T)"te, as k— oo.

Department of Mathematics — NTNU Tsung-Min Hwang November 1, 2003



lterative Methods for LS 21

since p(T) < 1, limp_.0o T*2(® = 0 for any (%) € R™. By Lemma 2,
(TF 4T 24+ . T+ De—- T -T)"te, as k— oo.

Therefore

t*) (I -T)"lc as k— oo
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since p(T) < 1, limp_.0o T*2(® = 0 for any (%) € R™. By Lemma 2,
(TF 4T 24+ . T+ De—- T -T)"te, as k— oo.

Therefore

t*) - (I—-T)"tc as k — oo.

Conversely, suppose {z¥)} — z = (I —T) 'c.
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since p(T) < 1, limp_.0o T*2(® = 0 for any (%) € R™. By Lemma 2,
(TF 4T 24+ . T+ De—- T -T)"te, as k— oo.

Therefore

t*) (I -T)"lc as k— oo
Conversely, suppose {z¥)} — & = (I — T)'c. Since

-z = Toe+ce—T2% Y —c=T(x— 2% V) =12 — 2F2)
= . =TFg—2O).
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since p(T) < 1, limp_.0o T*2(® = 0 for any (%) € R™. By Lemma 2,
(TF 4T 24+ . T+ De—- T -T)"te, as k— oo.

Therefore

t*) (I -T)"lc as k— oo

Conversely, suppose {z¥)} — & = (I — T)'c. Since

-z = Toe+ce—T2% Y —c=T(x— 2% V) =12 — 2F2)
= . =TFg—2O).

Letz = 1 — :1:(0>.
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since p(T) < 1, limp_.0o T*2(® = 0 for any (%) € R™. By Lemma 2,
(TF 4T 24+ . T+ De—- T -T)"te, as k— oo.

Therefore

t*) (I -T)"lc as k— oo

Conversely, suppose {z¥)} — & = (I — T)'c. Since

-z = Toe+ce—T2% Y —c=T(x— 2% V) =12 — 2F2)
= . =TFg—2O).

Let 2z = x — :1:(0>. Then

lim T%z = lim (z —z®)) = 0.

k— o0 k— o0
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since p(T) < 1, limp_.0o T*2(® = 0 for any (%) € R™. By Lemma 2,
(TF 4T 24+ . T+ De—- T -T)"te, as k— oo.

Therefore

t*) (I -T)"lc as k— oo

Conversely, suppose {z¥)} — & = (I — T)'c. Since

-z = Toe+ce—T2% Y —c=T(x— 2% V) =12 — 2F2)
— =Tk —20).

Let z = 2 — (9. Then

lim T%z = lim (z —z®)) = 0.

k— o0 k— o0

It follows from theorem p(7T") < 1. N
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Corollary 1 If || T"|| < 1 for some subordinate matrix norm, then the

sequence produced by
e®) = Tek=h 4 ¢

converges to the solution of Ax = b for any initial vector z(0),
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Corollary 1 If || T"|| < 1 for some subordinate matrix norm, then the

sequence produced by
e®) = Tek=h 4 ¢

converges to the solution of Ax = b for any initial vector z(0),
Proof: Since p(T") < ||T|| for any subordinate matrix norm, the result follows

immediately from the previous theorem. N
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Corollary 1 If || T"|| < 1 for some subordinate matrix norm, then the
sequence produced by

e®) = Tek=h 4 ¢

converges to the solution of Ax = b for any initial vector z(0),
Proof: Since p(T") < ||T|| for any subordinate matrix norm, the result follows
immediately from the previous theorem. N

Theorem 4 If 6 = ||T'|| < 1, then

5 .
) — ]| < |l — 27D
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Corollary 1 If || T"|| < 1 for some subordinate matrix norm, then the
sequence produced by

e®) = Tek=h 4 ¢

converges to the solution of Ax = b for any initial vector z(0),
Proof: Since p(T") < ||T|| for any subordinate matrix norm, the result follows

immediately from the previous theorem. N

Theorem 4 If 6 = ||T'|| < 1, then

5 .
) — ]| < |l — 27D

Proof: Since z(¥) — z = T'(2x(k=1) — ),
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Corollary 1 If || T"|| < 1 for some subordinate matrix norm, then the
sequence produced by

e®) = Tek=h 4 ¢

converges to the solution of Ax = b for any initial vector z(0),
Proof: Since p(T") < ||T|| for any subordinate matrix norm, the result follows

immediately from the previous theorem. N

Theorem 4 If 6 = ||T'|| < 1, then

5 .
) — ]| < |l — 27D

Proof: Since z(¥) — z = T'(2x(k=1) — ),
|z — | |7l — ]| = o)l — 2 4+ 2™ — |
ol * = — 2| + 6|z —

IA - IA
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Corollary 1 If || T"|| < 1 for some subordinate matrix norm, then the
sequence produced by

e®) = Tek=h 4 ¢

converges to the solution of Ax = b for any initial vector z(0),
Proof: Since p(T") < ||T|| for any subordinate matrix norm, the result follows

immediately from the previous theorem. N

Theorem 4 If 6 = ||T'|| < 1, then

5 .
) — ]| < |l — 27D

Proof: Since z(¥) — z = T'(2x(k=1) — ),
|z — | |7l — ]| = o)l — 2 4+ 2™ — |
ol * = — 2| + 6|z —

IA - IA

and 1 — 9 > 0,
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Corollary 1 If || T"|| < 1 for some subordinate matrix norm, then the
sequence produced by

e®) = Tek=h 4 ¢

converges to the solution of Ax = b for any initial vector z(0),
Proof: Since p(T") < ||T|| for any subordinate matrix norm, the result follows

immediately from the previous theorem. N

Theorem 4 If 6 = ||T'|| < 1, then

5 .
) — ]| < |l — 27D

Proof: Since z(¥) — z = T'(2x(k=1) — ),
|z — | |7l — ]| = o)l — 2 4+ 2™ — |
ol * = — 2| + 6|z —

IA - IA

and 1 — & > 0, we obtain
)

1 —9

) — ]| < |l — 27D
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This theorem implies that we can stop the iteration if ||z (%) — 2(*=1)|| is less

than a small tolerance.
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This theorem implies that we can stop the iteration if ||z (%) — 2(*=1)|| is less

than a small tolerance.

Theorem 5 If || 7'|| < 1, then the sequence (%) converges to z for any initial
(%) and

Lz — @] < IT[*]lz — 2

T k
2. |lz —2®| < Sl — 2O
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This theorem implies that we can stop the iteration if ||z (%) — 2(*=1)|| is less

than a small tolerance.

Theorem 5 If || 7'|| < 1, then the sequence (%) converges to z for any initial
(%) and

Lz — @] < IT[*]lz — 2

T k
2. |lz —2®| < Sl — 2O

Proof: Since x = Tz + cand z(F) = Tx(k—=1) 4 C,
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This theorem implies that we can stop the iteration if ||z (%) — 2(*=1)|| is less

than a small tolerance.

Theorem 5 If || 7'|| < 1, then the sequence (%) converges to z for any initial
(%) and

Lz — @] < IT[*]lz — 2

T k
2. |lz —2®| < Sl — 2O

Proof: Since x = Tz + cand z(F) = Tx(k—=1) 4 C,
r— ) = T:I;—I—C—Ta:(k_l)—c
= T(zx—z®b)
— T2(a’j — Qj(k_Q)) — e e — Tk(.’l? _ .CI?(O))
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This theorem implies that we can stop the iteration if ||z (%) — 2(*=1)|| is less

than a small tolerance.

Theorem 5 If || 7'|| < 1, then the sequence (%) converges to z for any initial
(%) and

Lz — @] < IT[*]lz — 2

T k
2. [}z = 2| < tEygyllat) — 2O,

Proof: Since x = Tz + cand z(F) = Tx(k—=1) 4 C,
r— ) = T:I;—I—C—Ta:(k_l)—c
= T(zx—z®b)
— T2(a’j — Qj(k_Q)) — e e — Tk(.’l? _ .CI?(O))

The first statement can then be derived

|z — 2| = IT*(z — )| < |T||*l2 — 2.

23
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For the second result, we first show that

2™ — =D < |T)" 2 — 2@ forany n > 1.
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For the second result, we first show that

2™ — =D < |T)" 2 — 2@ forany n > 1.

Since
A e N AL e
_ T(x(n—l) o x(n—Q))
= T2 — 3y = = 7"z — £,
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For the second result, we first show that

2™ — =D < |T)" 2 — 2@ forany n > 1.

Since
S B A e e

_ T(x(n—l) o x(n—Q))

— T2(33(”_2) _ x(n—?))) — . — Tn—l(x(l) _ x(())),
we have

| — 2D < 7|2 = 2O,
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For the second result, we first show that

2™ — =D < |T)" 2 — 2@ forany n > 1.

Since
S B A e e

_ T(x(n—l) o x(n—Q))

— T2(a;(”_2) _ :13(”_3)) — . — N 1( (1) _ (0)>’
we have

2™ = D < T 2D — 2O,
Let m > k,
2(m) _ (k)

L (x@n) _ x(m—l)) n <x<m—1> _ x(m—m) R <x<k+1> _ x(k))
— pm-l (xu) _ x<o>) 4 m=2 ( (1) _ <o>) LTk (xu) _ x<0>)

= (T 4T Tk)( (1) _ <o>),
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hence
o™ —2®)|

< (171 + I  + T)F) [l = 2]
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hence
o™ —2®)|
< (TN 4 T ) = 2O
= [|T* (7" TR 4 1) [l = 2O,
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hence
o™ —2®)|
< (TN 4 T ) = 2O
= [|T* (7" TR 4 1) [l = 2O,

Since lim,,, o, (™) = z,
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hence
2 — 2®)|
< (It T e T 2 =2
= TI"TIm I T 1) fl2 — 2O)
Since lim,,, o, (™) = z,

|z — 2|
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hence
2 — 2®)|
< (It T e T 2 =2
= TI"TIm I T 1) fl2 — 2O)
Since lim,,, o, (™) = z,

|z — 2|

= lim ||z(™ —z®)|
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hence
2 — 2®)|
< (It T e T 2 =2
= TI"TIm I T 1) fl2 — 2O)
Since lim,,, o, (™) = z,

|z — 2|

= lim [jz™ — 2P|

< im [T (IT TR 1) 2O - 2O

Department of Mathematics — NTNU Tsung-Min Hwang November 1, 2003



lterative Methods for LS 25

hence
™) — 2]
< (It T e T 2 =2
= TI"TIm I T 1) fl2 — 2O)
Since lim,,, o, (™) = z,
|z — 2]
— ’mlgnoo [z(m) — (k)

< im [T (IT TR 1) 2O - 2O

= |TI"e™ = 2O lm (7T 4 4 )
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hence
™) — 2]
< (T + T2 4+ TR ) — 2]
= TI"TIm I T 1) fl2 — 2O)
Since lim,,, o, (™) = z,
|z — ™|
— ’mlgnoo [z(m) — (k)

< im [T (IT TR 1) 2O - 2O

= |TI"e™ = 2O lm (7T 4 4 )

1

— ||IT|F——

|2 — 2.

This proves the second result. N
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Theorem 6 If A is strictly diagonal dominant, then both the Jacobi and

Gauss-Seidel methods converges for any initial vector z(9).
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Theorem 6 If A is strictly diagonal dominant, then both the Jacobi and

Gauss-Seidel methods converges for any initial vector z(9).

Proof: By assumption, A is strictly diagonal dominant,
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lterative Methods for LS 26

Theorem 6 If A is strictly diagonal dominant, then both the Jacobi and

Gauss-Seidel methods converges for any initial vector z(9).

Proof: By assumption, A is strictly diagonal dominant, hence a;; 7% 0

(otherwise A is singular) and

n
|CL7;7;’ > Z |CLij|, 1=1,2,...,n.
J=1,5#1
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lterative Methods for LS 26

Theorem 6 If A is strictly diagonal dominant, then both the Jacobi and

Gauss-Seidel methods converges for any initial vector z(9).

Proof: By assumption, A is strictly diagonal dominant, hence a;; 7% 0

(otherwise A is singular) and

n
|CL7;7;’ > Z |CLij|, 1=1,2,...,n.

j=1,j#i
For Jacobi method, the iteration matrix T'; = —D~!(L + U) has entries
Q;j . .
—anr 1F]
Trlij=9§_. """~
0 1=
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lterative Methods for LS

Theorem 6 If A is strictly diagonal dominant, then both the Jacobi and

Gauss-Seidel methods converges for any initial vector z(9).

Proof: By assumption, A is strictly diagonal dominant, hence a;; 7% 0

(otherwise A is singular) and

n
|CL7;7;’ > Z |CLij|, 1=1,2,...,n.

j=1,j#i
For Jacobi method, the iteration matrix T'; = —D~!(L + U) has entries
a”Lj . .
—an 1F
—_ Q44
[Tlij = o
0 1=
Hence
n n
@ j 1
ITilloo = max > | =2 = max — > |ay] <1,
1<i<n | Q4 1<i<n |Clz'7;\ =
j=1g#1 Jj=1,g#1

and this implies that the Jacobi method converges.

26
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For Gauss-Seidel method, the iteration matrix Tgs = —(D + L) 1U.
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lterative Methods for LS 27

For Gauss-Seidel method, the iteration matrix Tgg = —(D + L)~ 1U. Let A

be any eigenvalue of Tz and ¥, ||y||.c = 1, is a corresponding eigenvector.
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lterative Methods for LS 27

For Gauss-Seidel method, the iteration matrix Tgs = —(D + L)1U. Let A
be any eigenvalue of Tz and ¥, ||y||.c = 1, is a corresponding eigenvector.
Thus

Tasy=Ay = —-Uy-= )\(D + L)y
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lterative Methods for LS 27

For Gauss-Seidel method, the iteration matrix Tgs = —(D + L)1U. Let A
be any eigenvalue of Tz and ¥, ||y||.c = 1, is a corresponding eigenvector.
Thus

Tasy=Ay = —-Uy-= )\(D + L)y

Henceforiz =1,...,n,

— Z AijY; — Ay + )\Zazjyj

J=1+1
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lterative Methods for LS 27

For Gauss-Seidel method, the iteration matrix Tgs = —(D + L)1U. Let A
be any eigenvalue of Tz and ¥, ||y||.c = 1, is a corresponding eigenvector.
Thus

Tasy=Ay = —-Uy-= )\(D + L)y

Henceforiz =1,...,n,
— Z Ai5Y5 = AQiiYi + A Z QY-
J=1+1
This gives

A Yi = )\Zazjyj + Z AijY;

J=14+1
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lterative Methods for LS 27

For Gauss-Seidel method, the iteration matrix Tgs = —(D + L)1U. Let A
be any eigenvalue of Tz and ¥, ||y||.c = 1, is a corresponding eigenvector.
Thus

Tasy=Ay = —-Uy-= )\(D + L)y

Henceforiz =1,...,n,
— Z Ai5Y5 = AQiiYi + A Z QY-
J=1+1
This gives

A Yi = )\Zazjyj + Z AijY;

J=1+1
and

[Allaiillyil < Al Z aij||y;] + Z |aij||y;]-

J=1+1
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lterative Methods for LS 28

Choose the index k such that |y;| = 1 > |y;| (this index can always be

found since |||/ = 1).
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Choose the index k such that |y;| = 1 > |y;| (this index can always be

found since ||y||cc = 1). Then

Allakk| < WZ\%H Z ;]

j=k+1
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Choose the index k such that |y;| = 1 > |y;| (this index can always be

found since ||y||cc = 1). Then

Allakk| < WZ\%H Z ;]

j=k+1
which gives
Al < Z?:kﬂ jag;| Z?:kﬂ |ag;| 1
= S okl
’akk| - Zj:1 |akj‘ j=k+1 |Qkj
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Choose the index k such that |y;| = 1 > |y;| (this index can always be

found since ||y||cc = 1). Then

Allakk| < WZ\%H Z ;]

j=k+1
which gives
A < Djmrar |kl Do Lol
- — mn
agk| — 25:11 |ak;| Zj:k+1 |aj|

Since A is arbitrary, p(Tgs) < 1.

Department of Mathematics — NTNU Tsung-Min Hwang November 1, 2003
y



lterative Methods for LS 28

Choose the index k such that |y;| = 1 > |y;| (this index can always be

found since ||y||cc = 1). Then

Allakk| < WZ\%H Z ;]

j=k+1
which gives
Al < Z?:kﬂ jag;| Z?:kﬂ |ag;| 1
= S okl
’akk| - Zj:1 |akj‘ j=k+1 |Qkj

Since A is arbitrary, p(Tgs) < 1. This means the Gauss-Seidel method

converges. H
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Theorem 7 If A is positive definite and the relaxation parameter w satisfying

0 < w < 2, then the SOR iteration converges for any initial vector z(9).
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Theorem 7 If A is positive definite and the relaxation parameter w satisfying

0 < w < 2, then the SOR iteration converges for any initial vector z(9).

Theorem 8 If A is positive definite and tridiagonal, then

p(Tes) = [p(T5)]> < 1 and the optimal choice of w for the SOR iteration is

2
1+ \/1 - [P(TJ)]?

With this choice of w, p(Tsor) = w — 1.
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