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1 – Classic Iterative Methods

1.1 – Basic Concept

First of all we give an example to illustrate the process of iterative methods for solving

systems of linear equations.

Consider solving




3 2

1 4









x1

x2



 =





5

5



 .

This system has the exact solution x1 = x2 = 1. Equivalently we can write the system as






3x1 + 2x2 = 5

x1 + 4x2 = 5
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This implies that






x1 = 1
3 (5 − 2x2)

x2 = 1
4 (5 − x1)

A naive idea is to solve the system by






x
(k)
1 = 1

3 (5 − 2x
(k−1)
2 )

x
(k)
2 = 1

4 (5 − x
(k−1)
1 )

that is, to use the iterative formulation




x
(k)
1

x
(k)
2



 =





1
3 0

0 1
4













5

5



−





0 2

1 0









x
(k−1)
1

x
(k−1)
2
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If we choose the initial guess x
(0)
1 = x

(0)
2 = 0, we would obtain





x
(1)
1

x
(1)
2



 =





1
3 0

0 1
4













5

5



−





0 2

1 0









0

0







 =





1.6667

1.2500





and




x
(2)
1

x
(2)
2



 =





1
3 0

0 1
4













5

5



−





0 2

1 0









1.6667

1.2500







 =





0.8333

0.8333





By repeating the process, we have the following table

k 3 4 5 6 7

x
(k)
1 1.1111 0.9722 1.0185 0.9954 1.0031

x
(k)
2 1.0417 0.9722 1.0000 0.9954 1.0012
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From this example, we observe that the basic idea is to split the coefficient matrix A into

A = M − (M − A),

for some matrix M , which is called the splitting matrix.

Here we assume that A and M are

both nonsingular. Then the original problem is rewritten in the equivalent form

Mx = (M − A)x + b.

This suggests an iterative process

x(k) = (I − M−1A)x(k−1) + M−1b ≡ Tx(k−1) + c,

where T is usually called the iteration matrix. The initial vector x(0) can be arbitrary or be

chosen according to certain conditions.

Two criteria for choosing the splitting matrix M are

☞ x(k) is easily computed. More precisely, the system Mx(k) = y is easy to solve;

☞ the sequence {x(k)} converges rapidly to the exact solution.
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1.2 – Richard’s Method

When we choose M = I such that A = I − (I − A), we obtain the iteration procedure

x(k) = (I − A)x(k−1) + b = x(k−1) − Ax(k−1) + b ≡ x(k−1) + r(k−1).

This algorithm is called the Richard’s method.

Algorithm 1 (Richard’s Method)

for k = 1, 2, . . . do

for i = 1, 2, . . . , n do

r
(k−1)
i = bi −

n
∑

j=1

aijx
(k−1)
j

x
(k)
i = x

(k−1)
i + r

(k−1)
i

end for

end for
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1.3 – Jacobi Method

If we decompose the coefficient matrix A as

A = L + D + U,

where D is the diagonal part, L is the strictly lower triangular part, and U is the strictly

upper triangular part, of A,

and choose M = D, then we derive the iterative formulation for

Jacobi method:

x(k) = −D−1(L + U)x(k−1) + D−1b.

With this method, the iteration matrix T = −D−1(L + U) and c = D−1b. Each

component x
(k)
i can be computed by

x
(k)
i =



bi −

i−1
∑

j=1

aijx
(k−1)
j −

n
∑

j=i+1

aijx
(k−1)
j





/

aii.
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a11x
(k)
1 + a12x

(k−1)
2 + a13x

(k−1)
3 + · · · + a1nx

(k−1)
n = b1

a21x
(k−1)
1 + a22x

(k)
2 + a23x

(k−1)
3 + · · · + a2nx

(k−1)
n = b2

...

an1x
(k−1)
1 + an2x

(k−1)
2 + an3x

(k−1)
3 + · · · + annx

(k)
n = bn.

Algorithm 2 (Jacobi Method)

for k = 1, 2, . . . do

for i = 1, 2, . . . , n do

x
(k)
i =



bi −

i−1
∑

j=1

aijx
(k−1)
j −

n
∑

j=i+1

aijx
(k−1)
j





/

aii

end for

end for

Only the components of x(k−1) are used to compute x(k).

⇒ x
(k)
i , i = 1, . . . , n, can be computed in parallel at each iteration k.
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a11x
(k)
1 + a12x

(k−1)
2 + a13x

(k−1)
3 + · · · + a1nx

(k−1)
n = b1

a21x
(k−1)
1 + a22x

(k)
2 + a23x

(k−1)
3 + · · · + a2nx

(k−1)
n = b2

...

an1x
(k−1)
1 + an2x

(k−1)
2 + an3x

(k−1)
3 + · · · + annx

(k)
n = bn.
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x
(k)
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bi −

i−1
∑
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aijx
(k−1)
j





/

aii

end for

end for
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1.4 – Gauss-Seidel Method

When computing x
(k)
i for i > 1, x

(k)
1 , . . . , x

(k)
i−1 have already been computed and are

likely to be better approximations to the exact x1, . . . , xi−1 than x
(k−1)
1 , . . . , x

(k−1)
i−1 .

It

seems reasonable to compute x
(k)
i using these most recently computed values. That is

a11x
(k)
1 + a12x

(k−1)
2 + a13x

(k−1)
3 + · · · + a1nx

(k−1)
n = b1

a21x
(k)
1 + a22x

(k)
2 + a23x

(k−1)
3 + · · · + a2nx

(k−1)
n = b2

a31x
(k)
1 + a32x

(k)
2 + a33x

(k)
3 + · · · + a3nx

(k−1)
n = b3

...

an1x
(k−1)
1 + an2x

(k−1)
2 + an3x

(k−1)
3 + · · · + annx

(k)
n = bn.

This improvement induce the Gauss-Seidel method.

The Gauss-Seidel method sets M = D + L and defines the iteration as

x(k) = −(D + L)−1Ux(k−1) + (D + L)−1b.
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That is, Gauss-Seidel method uses T = −(D + L)−1U as the iteration matrix.

The

formulation above can be rewritten as

x(k) = −D−1
(

Lx(k) + Ux(k−1) − b
)

.

Hence each component x
(k)
i can be computed by

x
(k)
i =



bi −

i−1
∑

j=1

aijx
(k)
j −

n
∑

j=i+1

aijx
(k−1)
j





/

aii.

Algorithm 3 (Gauss-Seidel Method)

for k = 1, 2, . . . do

for i = 1, 2, . . . , n do

x
(k)
i =



bi −

i−1
∑

j=1

aijx
(k)
j −

n
∑

j=i+1

aijx
(k−1)
j





/

aii

end for

end for
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1.5 – Successive Over Relaxation (SOR) Method

The successive over relaxation (SOR) method choose M = ω−1(D + ωL),

where

0 < ω < 2 is called the relaxation parameter, and defines the iteration

(D + ωL)x(k) = [(1 − ω)D − ωU ] x(k−1) + ωb.

Hence the iteration matrix T = (D + ωL)−1((1 − ω)D − ωU). Each component x
(k)
i

can be computed by the formulation

x
(k)
i = ω



bi −

i−1
∑

j=1

aijx
(k)
j −

n
∑

j=i+1

aijx
(k−1)
j





/

aii + (1 − ω)x
(k−1)
i .

The question of choosing a good relaxation parameter ω is a very complex topic.
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1.6 – Symmetric Successive Over Relaxation (SSOR) Method

In theory the symmetric successive over relaxation (SSOR) method chooses the splitting

matrix M = 1
ω(2−ω) (D + ωL)D−1(D + ωU) and iterates with the iteration matrix

T = (D + ωU)−1 ((1 − ω)D − ωL) (D + ωL)−1 ((1 − ω)D − ωU) .

The idea is in fact to implement the SOR formulation twice, one forward and one backward,

at each iteration. That is, SSOR method defines

(D + ωL)x(k− 1

2
) = ((1 − ω)D − ωU)x(k−1) + ωb

(D + ωU)x(k) = ((1 − ω)D − ωL) x(k− 1

2
) + ωb
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Each component x
(k)
i is obtained by first computing

x
(k− 1

2
)

i = ω



bi −

i−1
∑

j=1

aijx
(k− 1

2
)

j −

n
∑

j=i+1

aijx
(k−1)
j





/

aii + (1 − ω)x
(k)
i

followed by

x
(k)
i = ω



bi −

i−1
∑

j=1

aijx
(k)
j −

n
∑

j=i+1

aijx
(k− 1

2
)

j





/

aii + (1 − ω)x
(k− 1

2
)

i .
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2 – Convergence Analysis

Definition 1 (Spectrum and Spectral Radius) The set of all eigenvalues of a

matrix A is called the spectrum of A and is denoted by λ(A).

The spectral

radius of A is

ρ(λ) = max{|λ||λ ∈ λ(A)}.

Lemma 1 If A ∈ R
n×n, then

1. ‖A‖2 =
√

ρ(AT A);

2. ρ(A) ≤ ‖A‖ for any subordinate matrix norm.

Proof: Proof for the second part. Suppose λ is an eigenvalue of A and x 6= 0

is a corresponding eigenvector such that Ax = λx and ‖x‖ = 1. Then

|λ| = |λ|‖x‖ = ‖λx‖ = ‖Ax‖ ≤ ‖A‖‖x‖ = ‖A‖,

that is, |λ| ≤ ‖A‖. Since λ is arbitrary, this implies that

ρ(A) = max |λ| ≤ ‖A‖.
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Theorem 1 For any A and any ε > 0, there exists a subordinate norm such

that

ρ(A) < ‖A‖ < ρ(A) + ε.

Lemma 2 If ρ(A) < 1, then (I − A)−1 exists and

(I − A)−1 =

∞
∑

i=0

Ai = I + A + A2 + · · · .

Proof: Let λ be an eigenvalue of A, then 1 − λ is an eigenvalue of I − A.

∵ |λ| ≤ ρ(A) < 1

⇒ 1 − λ 6= 0.

⇒ 0 is not an eigenvalue of I − A, which means (I − A) is nonsingular.

Next we show that (I − A)−1 = I + A + A2 + · · · .
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Since

(I − A)

(

m
∑

i=0

Ai

)

= I − Am+1,

and ρ(A) < 1

implies ‖Am‖ → 0 as m → ∞, we have

(I − A)

(

lim
m→∞

m
∑

i=0

Ai

)

= I.

This proves (I − A)−1 =
∑∞

k=1 Ak.

Lemma 3 Suppose that A ∈ R
n×n and ‖ · ‖ is a subordinate matrix norm. If

‖A‖ < 1, then I − A is nonsingular and

(I − A)−1 =

∞
∑

k=0

Ak,

with

‖(I − A)−1‖ ≤
1

1 − ‖A‖
.
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Proof: Suppose I − A is singular.

⇒ ∃ x ∈ R
n, x 6= 0 (so ‖x‖ 6= 0) such that (I − A)x = 0.

⇒ x = Ax and ‖x‖ = ‖Ax‖ ≤ ‖A‖‖x‖

⇒ ‖A‖ > 1 which contradicts to the assumption that ‖A‖ < 1.

⇒ I − A is nonsingular.

Next, one can verify that

(I − A)

(

m
∑

k=0

Ak

)

= I − Am+1.

Since ‖A‖ < 1, limm→∞ Am = 0, hence

(I−A)

(

∞
∑

k=0

Ak

)

= (I−A)

(

lim
m→∞

m
∑

k=0

Ak

)

= I− lim
m→∞

Am+1 = I.

This shows that (I − A)−1 =
∑∞

k=0 Ak.
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Finally, since ‖A‖ < 1,

‖(I − A)−1‖ =

∥

∥

∥

∥

∥

∞
∑

k=0

Ak

∥

∥

∥

∥

∥

≤

∞
∑

k=0

‖Ak‖ ≤

∞
∑

k=0

‖A‖k =
1

1 − ‖A‖
.

Theorem 2 The following statements are equivalent.

1. A is a convergent matrix, i.e., Ak → 0 as k → ∞;

2. lim
k→∞

‖Ak‖ = 0 for some subordinate matrix norm;

3. lim
k→∞

‖Ak‖ = 0 for all subordinate matrix norm;

4. ρ(A) < 1;

5. lim
k→∞

Akx = 0 for any x.
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Theorem 3 For any x(0) ∈ R
n, the sequence produced by

x(k) = Tx(k−1) + c, k = 1, 2, . . . ,

converges to the unique solution of x = Tx + c if and only if

ρ(T ) < 1.

Proof: Suppose ρ(T ) < 1. The sequence of vectors x(k) produced by the

iterative formulation are

x(1) = Tx(0) + c

x(2) = Tx(1) + c = T 2x(0) + (T + I)c

x(3) = Tx(2) + c = T 3x(0) + (T 2 + T + I)c

...

In general

x(k) = T kx(0) + (T k−1 + T k−2 + · · ·T + I)c.
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Since ρ(T ) < 1, limk→∞ T kx(0) = 0 for any x(0) ∈ R
n.

By Lemma 2,

(T k−1 + T k−2 + · · ·T + I)c → (I − T )−1c, as k → ∞.

Therefore

x(k) → (I − T )−1c as k → ∞.

Conversely, suppose {x(k)} → x = (I − T )−1c. Since

x − x(k) = Tx + c − Tx(k−1) − c = T (x − x(k−1)) = T 2(x − x(k−2))

= · · · = T k(x − x(0)).

Let z = x − x(0). Then

lim
k→∞

T kz = lim
k→∞

(x − x(k)) = 0.

It follows from theorem ρ(T ) < 1.
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Corollary 1 If ‖T‖ < 1 for some subordinate matrix norm, then the

sequence produced by

x(k) = Tx(k−1) + c

converges to the solution of Ax = b for any initial vector x(0).

Proof: Since ρ(T ) < ‖T‖ for any subordinate matrix norm, the result follows

immediately from the previous theorem.

Theorem 4 If δ = ‖T‖ < 1, then

‖x(k) − x‖ ≤
δ

1 − δ
‖x(k) − x(k−1)‖.

Proof: Since x(k) − x = T (x(k−1) − x),

‖x(k) − x‖ ≤ ‖T‖‖x(k−1) − x‖ = δ‖x(k−1) − x(k) + x(k) − x‖

≤ δ‖x(k−1) − x(k)‖ + δ‖x(k) − x‖,

and 1 − δ > 0, we obtain

‖x(k) − x‖ ≤
δ

1 − δ
‖x(k) − x(k−1)‖.
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This theorem implies that we can stop the iteration if ‖x(k) − x(k−1)‖ is less

than a small tolerance.

Theorem 5 If ‖T‖ < 1, then the sequence x(k) converges to x for any initial

x(0) and

1. ‖x − x(k)‖ ≤ ‖T‖k‖x − x(0)‖

2. ‖x − x(k)‖ ≤ ‖T‖k

1−‖T‖‖x
(1) − x(0)‖.

Proof: Since x = Tx + c and x(k) = Tx(k−1) + c,

x − x(k) = Tx + c − Tx(k−1) − c

= T (x − x(k−1))

= T 2(x − x(k−2)) = · · · · · · = T k(x − x(0)).

The first statement can then be derived

‖x − x(k)‖ = ‖T k(x − x(0))‖ ≤ ‖T‖k‖x − x(0)‖.
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For the second result, we first show that

‖x(n) − x(n−1)‖ ≤ ‖T‖n−1‖x(1) − x(0)‖ for any n ≥ 1.

Since

x(n) − x(n−1) = Tx(n−1) + c − Tx(n−2) − c

= T (x(n−1) − x(n−2))

= T 2(x(n−2) − x(n−3)) = · · · · · · = T n−1(x(1) − x(0)),
we have

‖x(n) − x(n−1)‖ ≤ ‖T‖n−1‖x(1) − x(0)‖.

Let m ≥ k,

x(m) − x(k)

=
(

x(m) − x(m−1)
)

+
(

x(m−1) − x(m−2)
)

+ · · · +
(

x(k+1) − x(k)
)

= Tm−1
(

x(1) − x(0)
)

+ Tm−2
(

x(1) − x(0)
)

+ · · · + T k
(

x(1) − x(0)
)

=
(

Tm−1 + Tm−2 + · · ·T k
)

(

x(1) − x(0)
)

,
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hence

‖x(m) − x(k)‖

≤
(

‖T‖m−1 + ‖T‖m−2 + · · · + ‖T‖k
)

‖x(1) − x(0)‖

= ‖T‖k
(

‖T‖m−k−1 + ‖T‖m−k−2 + · · · + 1
)

‖x(1) − x(0)‖.

Since limm→∞ x(m) = x,

‖x − x(k)‖

= lim
m→∞

‖x(m) − x(k)‖

≤ lim
m→∞

‖T‖k
(

‖T‖m−k−1 + ‖T‖m−k−2 + · · · + 1
)

‖x(1) − x(0)‖

= ‖T‖k‖x(1) − x(0)‖ lim
m→∞

(

‖T‖m−k−1 + ‖T‖m−k−2 + · · · + 1
)

= ‖T‖k 1

1 − ‖T‖
‖x(1) − x(0)‖.

This proves the second result.
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Theorem 6 If A is strictly diagonal dominant, then both the Jacobi and

Gauss-Seidel methods converges for any initial vector x(0).

Proof: By assumption, A is strictly diagonal dominant, hence aii 6= 0

(otherwise A is singular) and

|aii| >

n
∑

j=1,j 6=i

|aij |, i = 1, 2, . . . , n.

For Jacobi method, the iteration matrix TJ = −D−1(L + U) has entries

[TJ ]ij =







−
aij

aii
i 6= j

0 i = j

Hence

‖TJ‖∞ = max
1≤i≤n

n
∑

j=1,j 6=i

∣

∣

∣

∣

aij

aii

∣

∣

∣

∣

= max
1≤i≤n

1

|aii|

n
∑

j=1,j 6=i

|aij | < 1,

and this implies that the Jacobi method converges.
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For Gauss-Seidel method, the iteration matrix TGS = −(D + L)−1U .

Let λ

be any eigenvalue of TGS and y, ‖y‖∞ = 1, is a corresponding eigenvector.

Thus

TGSy = λy =⇒ −Uy = λ(D + L)y.

Hence for i = 1, . . . , n,

−

n
∑

j=i+1

aijyj = λaiiyi + λ

i−1
∑

j=1

aijyj .

This gives

λaiiyi = −λ

i−1
∑

j=1

aijyj +
n
∑

j=i+1

aijyj

and

|λ||aii||yi| ≤ |λ|

i−1
∑

j=1

|aij ||yj | +

n
∑

j=i+1

|aij ||yj |.
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Choose the index k such that |yk| = 1 ≥ |yj | (this index can always be

found since ‖y‖∞ = 1).

Then

|λ||akk| ≤ |λ|

k−1
∑

j=1

|akj | +

n
∑

j=k+1

|akj |

which gives

|λ| ≤

∑n

j=k+1 |akj |

|akk| −
∑k−1

j=1 |akj |
<

∑n

j=k+1 |akj |
∑n

j=k+1 |akj |
= 1

Since λ is arbitrary, ρ(TGS) < 1. This means the Gauss-Seidel method

converges.
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Theorem 7 If A is positive definite and the relaxation parameter ω satisfying

0 < ω < 2, then the SOR iteration converges for any initial vector x(0).

Theorem 8 If A is positive definite and tridiagonal, then

ρ(TGS) = [ρ(TJ)]
2

< 1 and the optimal choice of ω for the SOR iteration is

ω =
2

1 +

√

1 − [ρ(TJ)]
2
.

With this choice of ω, ρ(TSOR) = ω − 1.
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