

1 – Classic Iterative Methods	•	•	•		•		•		3
1.1 – Basic Concept					•	•	•		3
1.2 – Richard's Method		•			•				7
1.3 – Jacobi Method					•	•	•		8
1.4 – Gauss-Seidel Method				•	•	•		 . 1	0
1.5 – Successive Over Relaxation (SOR) Method				•	•	•		 . 1	2
1.6 – Symmetric Successive Over Relaxation (SSOR) Method				•		•		 . 1	3
2 – Convergence Analysis								 . 1	5

Department of Mathematics – NTNU

Tsung-Min Hwang November 1, 2003

If we choose the initial guess
$$x_1^{(0)} = x_2^{(0)} = 0$$
, we would obtain

$$\begin{bmatrix} x_1^{(1)} \\ x_2^{(1)} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{4} \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 5 \\ 5 \end{bmatrix} - \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1.6667 \\ 1.2500 \end{bmatrix}$$
and

$$\begin{bmatrix} x_1^{(2)} \\ x_2^{(2)} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{4} \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 5 \\ 5 \end{bmatrix} - \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1.6667 \\ 1.2500 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 0.8333 \\ 0.8333 \end{bmatrix}$$

If we choose the initial guess $x_1^{(0)} = x_2^{(0)} = 0$, we would obtain $\begin{vmatrix} x_1^{(1)} \\ x_2^{(1)} \end{vmatrix} = \begin{vmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{4} \end{vmatrix} \begin{pmatrix} 5 \\ 5 \\ 0 \end{vmatrix} - \begin{vmatrix} 0 & 2 \\ 1 & 0 \end{vmatrix} \begin{vmatrix} 0 \\ 0 \\ 0 \end{vmatrix} = \begin{vmatrix} 1.6667 \\ 1.2500 \end{vmatrix}$ and $\begin{vmatrix} x_1^{(2)} \\ x_2^{(2)} \end{vmatrix} = \begin{vmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{4} \end{vmatrix} \begin{pmatrix} 5 \\ 5 \end{vmatrix} - \begin{vmatrix} 0 & 2 \\ 1 & 0 \end{vmatrix} \begin{vmatrix} 1.6667 \\ 1.2500 \end{vmatrix} = \begin{vmatrix} 0.8333 \\ 0.8333 \end{vmatrix}$ By repeating the process, we have the following table

From this example, we observe that the basic idea is to split the coefficient matrix A into

$$A = M - (M - A)$$

for some matrix M, which is called the splitting matrix.

$$A = M - (M - A),$$

for some matrix M, which is called the splitting matrix. Here we assume that A and M are both nonsingular.

Department of Mathematics – NTNU

A = M - (M - A),

for some matrix M, which is called the splitting matrix. Here we assume that A and M are both nonsingular. Then the original problem is rewritten in the equivalent form

Mx = (M - A)x + b.

Department of Mathematics – NTNU

A = M - (M - A),

for some matrix M, which is called the splitting matrix. Here we assume that A and M are both nonsingular. Then the original problem is rewritten in the equivalent form

Mx = (M - A)x + b.

This suggests an iterative process

$$x^{(k)} = (I - M^{-1}A)x^{(k-1)} + M^{-1}b \equiv Tx^{(k-1)} + c_{2}$$

where T is usually called the iteration matrix. The initial vector $x^{(0)}$ can be arbitrary or be chosen according to certain conditions.

A = M - (M - A),

for some matrix M, which is called the splitting matrix. Here we assume that A and M are both nonsingular. Then the original problem is rewritten in the equivalent form

Mx = (M - A)x + b.

This suggests an iterative process

$$x^{(k)} = (I - M^{-1}A)x^{(k-1)} + M^{-1}b \equiv Tx^{(k-1)} + c$$

where T is usually called the iteration matrix. The initial vector $x^{(0)}$ can be arbitrary or be chosen according to certain conditions.

Two criteria for choosing the splitting matrix ${\it M}$ are

A = M - (M - A),

for some matrix M, which is called the splitting matrix. Here we assume that A and M are both nonsingular. Then the original problem is rewritten in the equivalent form

Mx = (M - A)x + b.

This suggests an iterative process

$$x^{(k)} = (I - M^{-1}A)x^{(k-1)} + M^{-1}b \equiv Tx^{(k-1)} + c_{2}$$

where T is usually called the iteration matrix. The initial vector $x^{(0)}$ can be arbitrary or be chosen according to certain conditions.

Two criteria for choosing the splitting matrix ${\it M}$ are

 $x^{(k)}$ is easily computed. More precisely, the system $Mx^{(k)} = y$ is easy to solve;

Department of Mathematics – NTNU

A = M - (M - A),

for some matrix M, which is called the splitting matrix. Here we assume that A and M are both nonsingular. Then the original problem is rewritten in the equivalent form

Mx = (M - A)x + b.

This suggests an iterative process

$$x^{(k)} = (I - M^{-1}A)x^{(k-1)} + M^{-1}b \equiv Tx^{(k-1)} + c$$

where T is usually called the iteration matrix. The initial vector $x^{(0)}$ can be arbitrary or be chosen according to certain conditions.

Two criteria for choosing the splitting matrix ${\it M}$ are

 $x^{(k)}$ is easily computed. More precisely, the system $Mx^{(k)} = y$ is easy to solve;

The sequence $\{x^{(k)}\}$ converges rapidly to the exact solution.

Department of Mathematics – NTNU

Tsung-Min Hwang November 1, 2003

1.2 – Richard's Method

When we choose M = I such that A = I - (I - A), we obtain the iteration procedure

$$x^{(k)} = (I - A)x^{(k-1)} + b = x^{(k-1)} - Ax^{(k-1)} + b \equiv x^{(k-1)} + r^{(k-1)}$$

This algorithm is called the Richard's method.

Department of Mathematics – NTNU

1.2 – Richard's Method

When we choose M = I such that A = I - (I - A), we obtain the iteration procedure

$$x^{(k)} = (I - A)x^{(k-1)} + b = x^{(k-1)} - Ax^{(k-1)} + b \equiv x^{(k-1)} + r^{(k-1)}$$

This algorithm is called the Richard's method.

Algorithm 1 (Richard's Method)

or
$$k = 1, 2, \dots$$
 do
for $i = 1, 2, \dots, n$ do
 $r_i^{(k-1)} = b_i - \sum_{j=1}^n a_{ij} x_j^{(k-1)}$
 $x_i^{(k)} = x_i^{(k-1)} + r_i^{(k-1)}$

end for

end for

Department of Mathematics – NTNU

Tsung-Min Hwang November 1, 2003

If we decompose the coefficient matrix A as

A = L + D + U,

where D is the diagonal part, L is the strictly lower triangular part, and U is the strictly upper triangular part, of A, and choose M = D, then we derive the iterative formulation for Jacobi method:

$$x^{(k)} = -D^{-1}(L+U)x^{(k-1)} + D^{-1}b.$$

If we decompose the coefficient matrix A as

A = L + D + U,

where D is the diagonal part, L is the strictly lower triangular part, and U is the strictly upper triangular part, of A, and choose M = D, then we derive the iterative formulation for Jacobi method:

$$x^{(k)} = -D^{-1}(L+U)x^{(k-1)} + D^{-1}b.$$

With this method, the iteration matrix $T = -D^{-1}(L+U)$ and $c = D^{-1}b$.

If we decompose the coefficient matrix A as

A = L + D + U,

where D is the diagonal part, L is the strictly lower triangular part, and U is the strictly upper triangular part, of A, and choose M = D, then we derive the iterative formulation for Jacobi method:

$$x^{(k)} = -D^{-1}(L+U)x^{(k-1)} + D^{-1}b$$

With this method, the iteration matrix $T = -D^{-1}(L+U)$ and $c = D^{-1}b$. Each component $x_i^{(k)}$ can be computed by

$$x_{i}^{(k)} = \left(b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(k-1)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k-1)}\right) \left/ a_{ii} \right|$$

Department of Mathematics – NTNU

Tsung-Min Hwang November 1, 2003

Department of Mathematics – NTNU

Tsung-Min Hwang November 1, 2003

$$\begin{aligned} a_{11}x_1^{(k)} + a_{12}x_2^{(k-1)} + a_{13}x_3^{(k-1)} + \dots + a_{1n}x_n^{(k-1)} &= b_1 \\ a_{21}x_1^{(k-1)} + a_{22}x_2^{(k)} + a_{23}x_3^{(k-1)} + \dots + a_{2n}x_n^{(k-1)} &= b_2 \\ &\vdots \\ a_{n1}x_1^{(k-1)} + a_{n2}x_2^{(k-1)} + a_{n3}x_3^{(k-1)} + \dots + a_{nn}x_n^{(k)} &= b_n. \end{aligned}$$
Algorithm 2 (Jacobi Method)
for $k = 1, 2, \dots, n$ do
for $i = 1, 2, \dots, n$ do
 $x_i^{(k)} = \left(b_i - \sum_{j=1}^{i-1} a_{ij}x_j^{(k-1)} - \sum_{j=i+1}^n a_{ij}x_j^{(k-1)}\right) \Big/ a_{ii}$
end for
end for

Department of Mathematics – NTNU

$$\begin{aligned} a_{11}x_{1}^{(k)} + a_{12}x_{2}^{(k-1)} + a_{13}x_{3}^{(k-1)} + \dots + a_{1n}x_{n}^{(k-1)} &= b_{1} \\ a_{21}x_{1}^{(k-1)} + a_{22}x_{2}^{(k)} + a_{23}x_{3}^{(k-1)} + \dots + a_{2n}x_{n}^{(k-1)} &= b_{2} \\ &\vdots \\ a_{n1}x_{1}^{(k-1)} + a_{n2}x_{2}^{(k-1)} + a_{n3}x_{3}^{(k-1)} + \dots + a_{nn}x_{n}^{(k)} &= b_{n}. \end{aligned}$$
Algorithm 2 (Jacobi Method)
for $k = 1, 2, \dots, n$ do
for $i = 1, 2, \dots, n$ do
 $x_{i}^{(k)} = \left(b_{i} - \sum_{j=1}^{i-1} a_{ij}x_{j}^{(k-1)} - \sum_{j=i+1}^{n} a_{ij}x_{j}^{(k-1)}\right) \Big/ a_{ii}$
end for
end for
Only the components of $x^{(k-1)}$ are used to compute $x^{(k)}$.
 $\Rightarrow x_{i}^{(k)}, i = 1, \dots, n$, can be computed in parallel at each iteration k .

When computing $x_i^{(k)}$ for i > 1, $x_1^{(k)}, \ldots, x_{i-1}^{(k)}$ have already been computed and are likely to be better approximations to the exact x_1, \ldots, x_{i-1} than $x_1^{(k-1)}, \ldots, x_{i-1}^{(k-1)}$.

Department of Mathematics – NTNU

When computing $x_i^{(k)}$ for $i > 1, x_1^{(k)}, \ldots, x_{i-1}^{(k)}$ have already been computed and are likely to be better approximations to the exact x_1, \ldots, x_{i-1} than $x_1^{(k-1)}, \ldots, x_{i-1}^{(k-1)}$. It seems reasonable to compute $x_i^{(k)}$ using these most recently computed values.

Department of Mathematics – NTNU

When computing $x_i^{(k)}$ for i > 1, $x_1^{(k)}, \ldots, x_{i-1}^{(k)}$ have already been computed and are likely to be better approximations to the exact x_1, \ldots, x_{i-1} than $x_1^{(k-1)}, \ldots, x_{i-1}^{(k-1)}$. It seems reasonable to compute $x_i^{(k)}$ using these most recently computed values. That is

$$\begin{array}{rcl} a_{11}x_1^{(k)} + a_{12}x_2^{(k-1)} + a_{13}x_3^{(k-1)} + \dots + a_{1n}x_n^{(k-1)} &=& b_1 \\ a_{21}x_1^{(k)} + a_{22}x_2^{(k)} + a_{23}x_3^{(k-1)} + \dots + a_{2n}x_n^{(k-1)} &=& b_2 \\ a_{31}x_1^{(k)} + a_{32}x_2^{(k)} + a_{33}x_3^{(k)} + \dots + a_{3n}x_n^{(k-1)} &=& b_3 \end{array}$$

$$a_{n1}x_1^{(k-1)} + a_{n2}x_2^{(k-1)} + a_{n3}x_3^{(k-1)} + \dots + a_{nn}x_n^{(k)} = b_n.$$

Department of Mathematics – NTNU

When computing $x_i^{(k)}$ for i > 1, $x_1^{(k)}, \ldots, x_{i-1}^{(k)}$ have already been computed and are likely to be better approximations to the exact x_1, \ldots, x_{i-1} than $x_1^{(k-1)}, \ldots, x_{i-1}^{(k-1)}$. It seems reasonable to compute $x_i^{(k)}$ using these most recently computed values. That is

$$\begin{array}{rcl} a_{11}x_1^{(k)} + a_{12}x_2^{(k-1)} + a_{13}x_3^{(k-1)} + \dots + a_{1n}x_n^{(k-1)} &=& b_1 \\ a_{21}x_1^{(k)} + a_{22}x_2^{(k)} + a_{23}x_3^{(k-1)} + \dots + a_{2n}x_n^{(k-1)} &=& b_2 \\ a_{31}x_1^{(k)} + a_{32}x_2^{(k)} + a_{33}x_3^{(k)} + \dots + a_{3n}x_n^{(k-1)} &=& b_3 \end{array}$$

$$a_{n1}x_1^{(k-1)} + a_{n2}x_2^{(k-1)} + a_{n3}x_3^{(k-1)} + \dots + a_{nn}x_n^{(k)} =$$

This improvement induce the Gauss-Seidel method.

Department of Mathematics – NTNU

 b_n .

When computing $x_i^{(k)}$ for i > 1, $x_1^{(k)}, \ldots, x_{i-1}^{(k)}$ have already been computed and are likely to be better approximations to the exact x_1, \ldots, x_{i-1} than $x_1^{(k-1)}, \ldots, x_{i-1}^{(k-1)}$. It seems reasonable to compute $x_i^{(k)}$ using these most recently computed values. That is

$$\begin{array}{rcl} a_{11}x_1^{(k)} + a_{12}x_2^{(k-1)} + a_{13}x_3^{(k-1)} + \dots + a_{1n}x_n^{(k-1)} &=& b_1 \\ a_{21}x_1^{(k)} + a_{22}x_2^{(k)} + a_{23}x_3^{(k-1)} + \dots + a_{2n}x_n^{(k-1)} &=& b_2 \\ a_{31}x_1^{(k)} + a_{32}x_2^{(k)} + a_{33}x_3^{(k)} + \dots + a_{3n}x_n^{(k-1)} &=& b_3 \end{array}$$

$$a_{n1}x_1^{(k-1)} + a_{n2}x_2^{(k-1)} + a_{n3}x_3^{(k-1)} + \dots + a_{nn}x_n^{(k)} = b_n.$$

This improvement induce the Gauss-Seidel method.

The Gauss-Seidel method sets M = D + L and defines the iteration as

$$x^{(k)} = -(D+L)^{-1}Ux^{(k-1)} + (D+L)^{-1}b.$$

Department of Mathematics – NTNU

Tsung-Min Hwang November 1, 2003

Iterative Methods for LS 11 That is, Gauss-Seidel method uses $T = -(D + L)^{-1}U$ as the iteration matrix. The formulation above can be rewritten as $x^{(k)} = -D^{-1} \left(Lx^{(k)} + Ux^{(k-1)} - b \right).$

Department of Mathematics – NTNU

11

That is, Gauss-Seidel method uses $T = -(D+L)^{-1}U$ as the iteration matrix. The formulation above can be rewritten as $x^{(k)} = -D^{-1} \left(L x^{(k)} + U x^{(k-1)} - b \right).$ Hence each component $x_i^{(k)}$ can be computed by $x_i^{(k)} = \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)} \right) / a_{ii}.$
11

That is, Gauss-Seidel method uses $T = -(D+L)^{-1}U$ as the iteration matrix. The formulation above can be rewritten as $x^{(k)} = -D^{-1} \left(L x^{(k)} + U x^{(k-1)} - b \right).$ Hence each component $x_i^{(k)}$ can be computed by $x_i^{(k)} = \left(b_i - \sum_{i=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{i=i+1}^n a_{ij} x_j^{(k-1)} \right) / a_{ii}.$ Algorithm 3 (Gauss-Seidel Method) for k = 1, 2, ... do for $i = 1, 2, \ldots, n$ do $x_i^{(k)} = \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)} \right) \Big/ a_{ii}$ end for end for

Department of Mathematics – NTNU

The successive over relaxation (SOR) method choose $M = \omega^{-1}(D + \omega L)$, where $0 < \omega < 2$ is called the relaxation parameter, and defines the iteration $(D + \omega L)x^{(k)} = [(1 - \omega)D - \omega U]x^{(k-1)} + \omega b.$

The successive over relaxation (SOR) method choose $M = \omega^{-1}(D + \omega L)$, where $0 < \omega < 2$ is called the relaxation parameter, and defines the iteration

$$(D + \omega L)x^{(k)} = [(1 - \omega)D - \omega U]x^{(k-1)} + \omega b.$$

Hence the iteration matrix $T = (D + \omega L)^{-1}((1 - \omega)D - \omega U)$.

The successive over relaxation (SOR) method choose $M = \omega^{-1}(D + \omega L)$, where $0 < \omega < 2$ is called the relaxation parameter, and defines the iteration

$$(D + \omega L)x^{(k)} = [(1 - \omega)D - \omega U]x^{(k-1)} + \omega b.$$

Hence the iteration matrix $T = (D + \omega L)^{-1}((1 - \omega)D - \omega U)$. Each component $x_i^{(k)}$ can be computed by the formulation

$$x_{i}^{(k)} = \omega \left(b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k-1)} \right) / a_{ii} + (1-\omega) x_{i}^{(k-1)}.$$

Department of Mathematics – NTNU

The successive over relaxation (SOR) method choose $M = \omega^{-1}(D + \omega L)$, where $0 < \omega < 2$ is called the relaxation parameter, and defines the iteration

$$(D + \omega L)x^{(k)} = [(1 - \omega)D - \omega U]x^{(k-1)} + \omega b.$$

Hence the iteration matrix $T = (D + \omega L)^{-1}((1 - \omega)D - \omega U)$. Each component $x_i^{(k)}$ can be computed by the formulation

$$x_{i}^{(k)} = \omega \left(b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k-1)} \right) \left/ a_{ii} + (1-\omega) x_{i}^{(k-1)} \right\}$$

The question of choosing a good relaxation parameter ω is a very complex topic.

1.6 – Symmetric Successive Over Relaxation (SSOR) Method

In theory the symmetric successive over relaxation (SSOR) method chooses the splitting matrix $M = \frac{1}{\omega(2-\omega)}(D+\omega L)D^{-1}(D+\omega U)$ and iterates with the iteration matrix $T = (D + \omega U)^{-1} ((1 - \omega)D - \omega L) (D + \omega L)^{-1} ((1 - \omega)D - \omega U).$

1.6 – Symmetric Successive Over Relaxation (SSOR) Method

In theory the symmetric successive over relaxation (SSOR) method chooses the splitting matrix $M = \frac{1}{\omega(2-\omega)}(D+\omega L)D^{-1}(D+\omega U)$ and iterates with the iteration matrix

$$T = (D + \omega U)^{-1} \left((1 - \omega)D - \omega L \right) \left(D + \omega L \right)^{-1} \left((1 - \omega)D - \omega U \right)$$

The idea is in fact to implement the SOR formulation twice, one forward and one backward, at each iteration.

Department of Mathematics – NTNU

1.6 – Symmetric Successive Over Relaxation (SSOR) Method

In theory the symmetric successive over relaxation (SSOR) method chooses the splitting matrix $M = \frac{1}{\omega(2-\omega)}(D+\omega L)D^{-1}(D+\omega U)$ and iterates with the iteration matrix

$$T = (D + \omega U)^{-1} ((1 - \omega)D - \omega L) (D + \omega L)^{-1} ((1 - \omega)D - \omega U)$$

The idea is in fact to implement the SOR formulation twice, one forward and one backward, at each iteration. That is, SSOR method defines

 $(D + \omega L)x^{(k - \frac{1}{2})} = ((1 - \omega)D - \omega U)x^{(k - 1)} + \omega b$ $(D + \omega U)x^{(k)} = ((1 - \omega)D - \omega L)x^{(k - \frac{1}{2})} + \omega b$

Department of Mathematics – NTNU

Each component $\boldsymbol{x}_i^{(k)}$ is obtained by first computing

$$x_{i}^{(k-\frac{1}{2})} = \omega \left(b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(k-\frac{1}{2})} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k-1)} \right) \Big/ a_{ii} + (1-\omega) x_{i}^{(k)}$$
 followed by

$$x_{i}^{(k)} = \omega \left(b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k-\frac{1}{2})} \right) / a_{ii} + (1-\omega) x_{i}^{(k-\frac{1}{2})}.$$

2 – Convergence Analysis

Definition 1 (Spectrum and Spectral Radius) The set of all eigenvalues of a matrix A is called the spectrum of A and is denoted by $\lambda(A)$.

2 – Convergence Analysis

Definition 1 (Spectrum and Spectral Radius) The set of all eigenvalues of a matrix A is called the spectrum of A and is denoted by $\lambda(A)$. The spectral radius of A is

 $\rho(\lambda) = \max\{|\lambda| | \lambda \in \lambda(A)\}.$

2 – Convergence Analysis

Definition 1 (Spectrum and Spectral Radius) The set of all eigenvalues of a matrix A is called the spectrum of A and is denoted by $\lambda(A)$. The spectral radius of A is

$$p(\lambda) = \max\{|\lambda||\lambda \in \lambda(A)\}.$$

Lemma 1 If $A \in \mathbb{R}^{n \times n}$, then

1. $||A||_2 = \sqrt{\rho(A^T A)};$

2. $\rho(A) \leq ||A||$ for any subordinate matrix norm.

2 – Convergence Analysis

Definition 1 (Spectrum and Spectral Radius) The set of all eigenvalues of a matrix A is called the spectrum of A and is denoted by $\lambda(A)$. The spectral radius of A is

$$p(\lambda) = \max\{|\lambda||\lambda \in \lambda(A)\}.$$

Lemma 1 If $A \in \mathbb{R}^{n \times n}$, then

1. $||A||_2 = \sqrt{\rho(A^T A)};$

2. $\rho(A) \leq ||A||$ for any subordinate matrix norm.

Proof: Proof for the second part.

2 – Convergence Analysis

Definition 1 (Spectrum and Spectral Radius) The set of all eigenvalues of a matrix A is called the spectrum of A and is denoted by $\lambda(A)$. The spectral radius of A is

$$p(\lambda) = \max\{|\lambda||\lambda \in \lambda(A)\}.$$

Lemma 1 If $A \in \mathbb{R}^{n \times n}$, then

1. $||A||_2 = \sqrt{\rho(A^T A)};$

2. $\rho(A) \leq ||A||$ for any subordinate matrix norm.

Proof: Proof for the second part. Suppose λ is an eigenvalue of A and $x \neq 0$ is a corresponding eigenvector such that $Ax = \lambda x$ and ||x|| = 1.

2 – Convergence Analysis

Definition 1 (Spectrum and Spectral Radius) The set of all eigenvalues of a matrix A is called the spectrum of A and is denoted by $\lambda(A)$. The spectral radius of A is

$$p(\lambda) = \max\{|\lambda||\lambda \in \lambda(A)\}.$$

Lemma 1 If $A \in \mathbb{R}^{n \times n}$, then

1. $||A||_2 = \sqrt{\rho(A^T A)};$

2. $\rho(A) \leq ||A||$ for any subordinate matrix norm.

Proof: Proof for the second part. Suppose λ is an eigenvalue of A and $x \neq 0$ is a corresponding eigenvector such that $Ax = \lambda x$ and ||x|| = 1. Then

$$|\lambda| = |\lambda| ||x|| = ||\lambda x|| = ||Ax|| \le ||A|| ||x|| = ||A||,$$

Department of Mathematics – NTNU

2 – Convergence Analysis

Definition 1 (Spectrum and Spectral Radius) The set of all eigenvalues of a matrix A is called the spectrum of A and is denoted by $\lambda(A)$. The spectral radius of A is

$$p(\lambda) = \max\{|\lambda||\lambda \in \lambda(A)\}.$$

Lemma 1 If $A \in \mathbb{R}^{n \times n}$, then

1. $||A||_2 = \sqrt{\rho(A^T A)};$

2. $\rho(A) \leq ||A||$ for any subordinate matrix norm.

Proof: Proof for the second part. Suppose λ is an eigenvalue of A and $x \neq 0$ is a corresponding eigenvector such that $Ax = \lambda x$ and ||x|| = 1. Then

$$|\lambda| = |\lambda| ||x|| = ||\lambda x|| = ||Ax|| \le ||A|| ||x|| = ||A||,$$

that is, $|\lambda| \leq ||A||$.

Department of Mathematics – NTNU

2 – Convergence Analysis

Definition 1 (Spectrum and Spectral Radius) The set of all eigenvalues of a matrix A is called the spectrum of A and is denoted by $\lambda(A)$. The spectral radius of A is

$$p(\lambda) = \max\{|\lambda||\lambda \in \lambda(A)\}.$$

Lemma 1 If $A \in \mathbb{R}^{n \times n}$, then

1. $||A||_2 = \sqrt{\rho(A^T A)};$

2. $\rho(A) \leq ||A||$ for any subordinate matrix norm.

Proof: Proof for the second part. Suppose λ is an eigenvalue of A and $x \neq 0$ is a corresponding eigenvector such that $Ax = \lambda x$ and ||x|| = 1. Then

$$|\lambda| = |\lambda| ||x|| = ||\lambda x|| = ||Ax|| \le ||A|| ||x|| = ||A||,$$

that is, $|\lambda| \leq ||A||$. Since λ is arbitrary, this implies that $\rho(A) = \max |\lambda| \leq ||A||$.

Department of Mathematics – NTNU

Theorem 1 For any A and any $\varepsilon > 0$, there exists a subordinate norm such that

 $\rho(A) < \|A\| < \rho(A) + \varepsilon.$

Theorem 1 For any A and any $\varepsilon > 0$, there exists a subordinate norm such that

 $\rho(A) < \|A\| < \rho(A) + \varepsilon.$

Lemma 2 If $\rho(A) < 1$, then $(I - A)^{-1}$ exists and

$$(I-A)^{-1} = \sum_{i=0}^{\infty} A^i = I + A + A^2 + \cdots$$

Theorem 1 For any A and any $\varepsilon > 0$, there exists a subordinate norm such that

 $\rho(A) < \|A\| < \rho(A) + \varepsilon.$

Lemma 2 If $\rho(A) < 1$, then $(I - A)^{-1}$ exists and

$$(I-A)^{-1} = \sum_{i=0}^{\infty} A^i = I + A + A^2 + \cdots$$

Proof: Let λ be an eigenvalue of A, then $1 - \lambda$ is an eigenvalue of I - A.

Theorem 1 For any A and any $\varepsilon > 0$, there exists a subordinate norm such that

 $\rho(A) < \|A\| < \rho(A) + \varepsilon.$

Lemma 2 If $\rho(A) < 1$, then $(I - A)^{-1}$ exists and

$$(I-A)^{-1} = \sum_{i=0}^{\infty} A^i = I + A + A^2 + \cdots$$

Proof: Let λ be an eigenvalue of A, then $1 - \lambda$ is an eigenvalue of I - A. $\therefore |\lambda| \le \rho(A) < 1$

Department of Mathematics – NTNU

Theorem 1 For any A and any $\varepsilon > 0$, there exists a subordinate norm such that

 $\rho(A) < \|A\| < \rho(A) + \varepsilon.$

Lemma 2 If $\rho(A) < 1$, then $(I - A)^{-1}$ exists and

$$(I-A)^{-1} = \sum_{i=0}^{\infty} A^i = I + A + A^2 + \cdots$$

Proof: Let λ be an eigenvalue of A, then $1 - \lambda$ is an eigenvalue of I - A. $\therefore |\lambda| \le \rho(A) < 1$ $\Rightarrow 1 - \lambda \ne 0.$

Department of Mathematics – NTNU

Theorem 1 For any A and any $\varepsilon > 0$, there exists a subordinate norm such that

 $\rho(A) < \|A\| < \rho(A) + \varepsilon.$

Lemma 2 If $\rho(A) < 1$, then $(I - A)^{-1}$ exists and

$$(I-A)^{-1} = \sum_{i=0}^{\infty} A^i = I + A + A^2 + \cdots$$

Proof: Let λ be an eigenvalue of A, then $1 - \lambda$ is an eigenvalue of I - A. $\therefore |\lambda| \le \rho(A) < 1$ $\Rightarrow 1 - \lambda \ne 0.$ $\Rightarrow 0$ is not an eigenvalue of I - A, which means (I - A) is nonsingular.

Department of Mathematics – NTNU

Theorem 1 For any A and any $\varepsilon > 0$, there exists a subordinate norm such that

 $\rho(A) < \|A\| < \rho(A) + \varepsilon.$

Lemma 2 If $\rho(A) < 1$, then $(I - A)^{-1}$ exists and

$$(I-A)^{-1} = \sum_{i=0}^{\infty} A^i = I + A + A^2 + \cdots$$

Proof: Let λ be an eigenvalue of A, then $1 - \lambda$ is an eigenvalue of I - A. $\therefore |\lambda| \le \rho(A) < 1$ $\Rightarrow 1 - \lambda \ne 0.$ $\Rightarrow 0$ is not an eigenvalue of I - A, which means (I - A) is nonsingular. Next we show that $(I - A)^{-1} = I + A + A^2 + \cdots$.

Department of Mathematics – NTNU

Since

$$(I-A)\left(\sum_{i=0}^{m} A^{i}\right) = I - A^{m+1},$$

and $\rho(A) < 1$

Department of Mathematics – NTNU

Since

$$(I-A)\left(\sum_{i=0}^{m} A^{i}\right) = I - A^{m+1},$$

and $\rho(A) < 1$ implies $\|A^m\| \to 0$ as $m \to \infty$,

Department of Mathematics – NTNU

Since

$$(I-A)\left(\sum_{i=0}^{m} A^i\right) = I - A^{m+1},$$

and $\rho(A) < 1$ implies $\|A^m\| \to 0$ as $m \to \infty,$ we have

$$(I-A)\left(\lim_{m\to\infty}\sum_{i=0}^m A^i\right) = I.$$

Department of Mathematics – NTNU

Since

$$(I-A)\left(\sum_{i=0}^{m} A^i\right) = I - A^{m+1},$$

and $\rho(A) < 1$ implies $\|A^m\| \to 0$ as $m \to \infty,$ we have

$$(I-A)\left(\lim_{m\to\infty}\sum_{i=0}^m A^i\right) = I.$$

This proves $(I - A)^{-1} = \sum_{k=1}^{\infty} A^k$.

Since

$$(I-A)\left(\sum_{i=0}^{m} A^{i}\right) = I - A^{m+1},$$

and $\rho(A) < 1$ implies $\|A^m\| \to 0$ as $m \to \infty,$ we have

$$(I-A)\left(\lim_{m\to\infty}\sum_{i=0}^m A^i\right) = I.$$

This proves $(I - A)^{-1} = \sum_{k=1}^{\infty} A^k$.

Lemma 3 Suppose that $A \in \mathbb{R}^{n \times n}$ and $\|\cdot\|$ is a subordinate matrix norm. If $\|A\| < 1$, then I - A is nonsingular and

$$(I - A)^{-1} = \sum_{k=0}^{\infty} A^k$$

with

$$||(I-A)^{-1}|| \le \frac{1}{1-||A||}.$$

Department of Mathematics – NTNU

Tsung-Min Hwang November 1, 2003

Proof: Suppose I - A is singular.

Department of Mathematics – NTNU

Proof: Suppose I - A is singular. $\Rightarrow \exists x \in \mathbb{R}^n, x \neq 0$ (so $||x|| \neq 0$) such that (I - A)x = 0.

Proof: Suppose I - A is singular. $\Rightarrow \exists x \in \mathbb{R}^n, x \neq 0$ (so $||x|| \neq 0$) such that (I - A)x = 0. $\Rightarrow x = Ax$ and $||x|| = ||Ax|| \leq ||A|| ||x||$

Proof: Suppose I - A is singular. $\Rightarrow \exists x \in \mathbb{R}^n, x \neq 0$ (so $||x|| \neq 0$) such that (I - A)x = 0. $\Rightarrow x = Ax$ and $||x|| = ||Ax|| \leq ||A|| ||x||$ $\Rightarrow ||A|| > 1$ which contradicts to the assumption that ||A|| < 1.

Proof: Suppose I - A is singular. $\Rightarrow \exists x \in \mathbb{R}^n, x \neq 0$ (so $||x|| \neq 0$) such that (I - A)x = 0. $\Rightarrow x = Ax$ and $||x|| = ||Ax|| \leq ||A|| ||x||$ $\Rightarrow ||A|| > 1$ which contradicts to the assumption that ||A|| < 1. $\Rightarrow I - A$ is nonsingular.
Proof: Suppose I - A is singular. $\Rightarrow \exists x \in \mathbb{R}^n, x \neq 0$ (so $||x|| \neq 0$) such that (I - A)x = 0. $\Rightarrow x = Ax$ and $||x|| = ||Ax|| \leq ||A|| ||x||$ $\Rightarrow ||A|| > 1$ which contradicts to the assumption that ||A|| < 1. $\Rightarrow I - A$ is nonsingular.

Next, one can verify that

$$(I-A)\left(\sum_{k=0}^{m} A^k\right) = I - A^{m+1}.$$

Proof: Suppose I - A is singular. $\Rightarrow \exists x \in \mathbb{R}^n, x \neq 0 \text{ (so } ||x|| \neq 0 \text{) such that } (I - A)x = 0.$ $\Rightarrow x = Ax \text{ and } ||x|| = ||Ax|| \leq ||A|| ||x||$ $\Rightarrow ||A|| > 1 \text{ which contradicts to the assumption that } ||A|| < 1.$ $\Rightarrow I - A \text{ is nonsingular.}$

Next, one can verify that

$$(I-A)\left(\sum_{k=0}^{m} A^k\right) = I - A^{m+1}.$$

Since ||A|| < 1, $\lim_{m \to \infty} A^m = 0$,

Proof: Suppose I - A is singular. $\Rightarrow \exists x \in \mathbb{R}^n, x \neq 0$ (so $||x|| \neq 0$) such that (I - A)x = 0. $\Rightarrow x = Ax$ and $||x|| = ||Ax|| \leq ||A|| ||x||$ $\Rightarrow ||A|| > 1$ which contradicts to the assumption that ||A|| < 1. $\Rightarrow I - A$ is nonsingular.

Next, one can verify that

$$(I-A)\left(\sum_{k=0}^{m} A^k\right) = I - A^{m+1}.$$

Since ||A|| < 1, $\lim_{m \to \infty} A^m = 0$, hence

$$(I-A)\left(\sum_{k=0}^{\infty} A^k\right) = (I-A)\left(\lim_{m \to \infty} \sum_{k=0}^m A^k\right) = I - \lim_{m \to \infty} A^{m+1} = I.$$

This shows that $(I - A)^{-1} = \sum_{k=0}^{\infty} A^k$.

Department of Mathematics – NTNU

Tsung-Min Hwang November 1, 2003

Finally, since $\|A\| < 1$,

$$\|(I-A)^{-1}\| = \left\|\sum_{k=0}^{\infty} A^k\right\| \le \sum_{k=0}^{\infty} \|A^k\| \le \sum_{k=0}^{\infty} \|A\|^k = \frac{1}{1-\|A\|}.$$

Department of Mathematics – NTNU

Finally, since ||A|| < 1,

$$\|(I-A)^{-1}\| = \left\|\sum_{k=0}^{\infty} A^k\right\| \le \sum_{k=0}^{\infty} \|A^k\| \le \sum_{k=0}^{\infty} \|A\|^k = \frac{1}{1-\|A\|}.$$

Theorem 2 The following statements are equivalent.

- 1. A is a convergent matrix, i.e., $A^k \to 0$ as $k \to \infty$;
- 2. $\lim_{k \to \infty} ||A^k|| = 0$ for some subordinate matrix norm;
- 3. $\lim_{k \to \infty} ||A^k|| = 0$ for all subordinate matrix norm;
- 4. $\rho(A) < 1;$
- 5. $\lim_{k \to \infty} A^k x = 0$ for any x.

Theorem 3 For any $x^{(0)} \in \mathbb{R}^n$, the sequence produced by

$$x^{(k)} = Tx^{(k-1)} + c, \quad k = 1, 2, \dots,$$

converges to the unique solution of x = Tx + c if and only if

 $\rho(T) < 1.$

Department of Mathematics – NTNU

Theorem 3 For any $x^{(0)} \in \mathbb{R}^n$, the sequence produced by

 $x^{(k)} = Tx^{(k-1)} + c, \quad k = 1, 2, \dots,$

converges to the unique solution of x = Tx + c if and only if

 $\rho(T) < 1.$

Proof: Suppose $\rho(T) < 1$.

Theorem 3 For any $x^{(0)} \in \mathbb{R}^n$, the sequence produced by

 $x^{(k)} = Tx^{(k-1)} + c, \quad k = 1, 2, \dots,$

converges to the unique solution of x = Tx + c if and only if

 $\rho(T) < 1.$

Proof: Suppose $\rho(T) < 1$. The sequence of vectors $x^{(k)}$ produced by the iterative formulation are

$$\begin{aligned} x^{(1)} &= Tx^{(0)} + c \\ x^{(2)} &= Tx^{(1)} + c = T^2 x^{(0)} + (T+I)c \\ x^{(3)} &= Tx^{(2)} + c = T^3 x^{(0)} + (T^2 + T + I)c \end{aligned}$$

Department of Mathematics – NTNU

Theorem 3 For any $x^{(0)} \in \mathbb{R}^n$, the sequence produced by

 $x^{(k)} = Tx^{(k-1)} + c, \quad k = 1, 2, \dots,$

converges to the unique solution of x = Tx + c if and only if

 $\rho(T) < 1.$

Proof: Suppose $\rho(T) < 1$. The sequence of vectors $x^{(k)}$ produced by the iterative formulation are

$$x^{(1)} = Tx^{(0)} + c$$

$$x^{(2)} = Tx^{(1)} + c = T^2x^{(0)} + (T+I)c$$

$$x^{(3)} = Tx^{(2)} + c = T^3x^{(0)} + (T^2 + T + I)c$$

In general

$$x^{(k)} = T^k x^{(0)} + (T^{k-1} + T^{k-2} + \dots T + I)c.$$

Department of Mathematics – NTNU

Tsung-Min Hwang November 1, 2003

Since $\rho(T) < 1$, $\lim_{k \to \infty} T^k x^{(0)} = 0$ for any $x^{(0)} \in \mathbb{R}^n$.

Department of Mathematics – NTNU

Since $\rho(T) < 1$, $\lim_{k \to \infty} T^k x^{(0)} = 0$ for any $x^{(0)} \in \mathbb{R}^n$. By Lemma 2, $(T^{k-1} + T^{k-2} + \cdots T + I)c \to (I - T)^{-1}c$, as $k \to \infty$.

Since
$$\rho(T) < 1$$
, $\lim_{k\to\infty} T^k x^{(0)} = 0$ for any $x^{(0)} \in \mathbb{R}^n$. By Lemma 2,
 $(T^{k-1} + T^{k-2} + \cdots T + I)c \to (I - T)^{-1}c$, as $k \to \infty$.

Therefore

$$x^{(k)} \to (I-T)^{-1}c \quad \text{as} \quad k \to \infty.$$

Since
$$\rho(T) < 1$$
, $\lim_{k\to\infty} T^k x^{(0)} = 0$ for any $x^{(0)} \in \mathbb{R}^n$. By Lemma 2,
 $(T^{k-1} + T^{k-2} + \cdots T + I)c \to (I - T)^{-1}c$, as $k \to \infty$.

Therefore

$$x^{(k)} \to (I-T)^{-1}c \text{ as } k \to \infty.$$

Conversely, suppose $\{x^{(k)}\} \rightarrow x = (I - T)^{-1}c$.

Since
$$\rho(T) < 1$$
, $\lim_{k\to\infty} T^k x^{(0)} = 0$ for any $x^{(0)} \in \mathbb{R}^n$. By Lemma 2,
 $(T^{k-1} + T^{k-2} + \cdots T + I)c \to (I - T)^{-1}c$, as $k \to \infty$.

Therefore

$$x^{(k)}
ightarrow (I-T)^{-1}c$$
 as $k
ightarrow \infty$.

Conversely, suppose $\{x^{(k)}\} \rightarrow x = (I - T)^{-1}c$. Since

$$\begin{array}{ll} x - x^{(k)} &=& Tx + c - Tx^{(k-1)} - c = T(x - x^{(k-1)}) = T^2(x - x^{(k-2)}) \\ &=& \cdots = T^k(x - x^{(0)}). \end{array}$$

Since
$$\rho(T) < 1$$
, $\lim_{k\to\infty} T^k x^{(0)} = 0$ for any $x^{(0)} \in \mathbb{R}^n$. By Lemma 2,
 $(T^{k-1} + T^{k-2} + \cdots T + I)c \to (I - T)^{-1}c$, as $k \to \infty$.

Therefore

$$x^{(k)} \to (I - T)^{-1}c \text{ as } k \to \infty.$$

Conversely, suppose $\{x^{(k)}\} \rightarrow x = (I - T)^{-1}c$. Since

$$\begin{aligned} x - x^{(k)} &= Tx + c - Tx^{(k-1)} - c = T(x - x^{(k-1)}) = T^2(x - x^{(k-2)}) \\ &= \cdots = T^k(x - x^{(0)}). \end{aligned}$$

Let $z = x - x^{(0)}$.

Department of Mathematics – NTNU

Since
$$\rho(T) < 1$$
, $\lim_{k\to\infty} T^k x^{(0)} = 0$ for any $x^{(0)} \in \mathbb{R}^n$. By Lemma 2,
 $(T^{k-1} + T^{k-2} + \cdots T + I)c \to (I - T)^{-1}c$, as $k \to \infty$.

Therefore

$$x^{(k)}
ightarrow (I-T)^{-1}c$$
 as $k
ightarrow \infty$.

Conversely, suppose $\{x^{(k)}\} \rightarrow x = (I - T)^{-1}c$. Since

$$\begin{aligned} x - x^{(k)} &= Tx + c - Tx^{(k-1)} - c = T(x - x^{(k-1)}) = T^2(x - x^{(k-2)}) \\ &= \cdots = T^k(x - x^{(0)}). \end{aligned}$$

Let $z = x - x^{(0)}$. Then

$$\lim_{k \to \infty} T^k z = \lim_{k \to \infty} (x - x^{(k)}) = 0.$$

Department of Mathematics – NTNU

Tsung-Min Hwang November 1, 2003

Since
$$\rho(T) < 1$$
, $\lim_{k\to\infty} T^k x^{(0)} = 0$ for any $x^{(0)} \in \mathbb{R}^n$. By Lemma 2,
 $(T^{k-1} + T^{k-2} + \cdots T + I)c \to (I - T)^{-1}c$, as $k \to \infty$.

Therefore

$$x^{(k)}
ightarrow (I-T)^{-1}c$$
 as $k
ightarrow \infty$.

Conversely, suppose $\{x^{(k)}\} \rightarrow x = (I - T)^{-1}c$. Since

$$\begin{aligned} x - x^{(k)} &= Tx + c - Tx^{(k-1)} - c = T(x - x^{(k-1)}) = T^2(x - x^{(k-2)}) \\ &= \cdots = T^k(x - x^{(0)}). \end{aligned}$$

Let $z = x - x^{(0)}$. Then

$$\lim_{k \to \infty} T^k z = \lim_{k \to \infty} (x - x^{(k)}) = 0.$$

It follows from theorem $\rho(T) < 1$.

Department of Mathematics – NTNU

Tsung-Min Hwang November 1, 2003

Corollary 1 If ||T|| < 1 for some subordinate matrix norm, then the sequence produced by

 $x^{(k)} = Tx^{(k-1)} + c$

converges to the solution of Ax = b for any initial vector $x^{(0)}$.

Corollary 1 If ||T|| < 1 for some subordinate matrix norm, then the sequence produced by

 $x^{(k)} = Tx^{(k-1)} + c$

converges to the solution of Ax = b for any initial vector $x^{(0)}$. *Proof:* Since $\rho(T) < ||T||$ for any subordinate matrix norm, the result follows immediately from the previous theorem.

Corollary 1 If ||T|| < 1 for some subordinate matrix norm, then the sequence produced by

$$x^{(k)} = Tx^{(k-1)} + c$$

converges to the solution of Ax = b for any initial vector $x^{(0)}$. *Proof:* Since $\rho(T) < ||T||$ for any subordinate matrix norm, the result follows immediately from the previous theorem.

Theorem 4 If $\delta = ||T|| < 1$, then

$$||x^{(k)} - x|| \le \frac{\delta}{1 - \delta} ||x^{(k)} - x^{(k-1)}||.$$

Corollary 1 If ||T|| < 1 for some subordinate matrix norm, then the sequence produced by

$$x^{(k)} = Tx^{(k-1)} + c$$

converges to the solution of Ax = b for any initial vector $x^{(0)}$. *Proof:* Since $\rho(T) < ||T||$ for any subordinate matrix norm, the result follows immediately from the previous theorem.

Theorem 4 If $\delta = ||T|| < 1$, then

$$||x^{(k)} - x|| \le \frac{\delta}{1 - \delta} ||x^{(k)} - x^{(k-1)}||.$$

Proof: Since $x^{(k)} - x = T(x^{(k-1)} - x)$,

Corollary 1 If ||T|| < 1 for some subordinate matrix norm, then the sequence produced by

$$x^{(k)} = Tx^{(k-1)} + c$$

converges to the solution of Ax = b for any initial vector $x^{(0)}$. *Proof:* Since $\rho(T) < ||T||$ for any subordinate matrix norm, the result follows immediately from the previous theorem.

Theorem 4 If $\delta = ||T|| < 1$, then

$$\begin{split} \|x^{(k)} - x\| &\leq \frac{\delta}{1 - \delta} \|x^{(k)} - x^{(k-1)}\|. \\ \text{Proof: Since } x^{(k)} - x &= T(x^{(k-1)} - x), \\ \|x^{(k)} - x\| &\leq \|T\| \|x^{(k-1)} - x\| = \delta \|x^{(k-1)} - x^{(k)} + x^{(k)} - x\| \\ &\leq \delta \|x^{(k-1)} - x^{(k)}\| + \delta \|x^{(k)} - x\|, \end{split}$$

Department of Mathematics – NTNU

Corollary 1 If ||T|| < 1 for some subordinate matrix norm, then the sequence produced by

$$x^{(k)} = Tx^{(k-1)} + c$$

converges to the solution of Ax = b for any initial vector $x^{(0)}$. *Proof:* Since $\rho(T) < ||T||$ for any subordinate matrix norm, the result follows immediately from the previous theorem.

Theorem 4 If $\delta = ||T|| < 1$, then

$$\begin{split} \|x^{(k)} - x\| &\leq \frac{\delta}{1 - \delta} \|x^{(k)} - x^{(k-1)}\|. \\ \text{Proof: Since } x^{(k)} - x &= T(x^{(k-1)} - x), \\ \|x^{(k)} - x\| &\leq \|T\| \|x^{(k-1)} - x\| = \delta \|x^{(k-1)} - x^{(k)} + x^{(k)} - x\| \\ &\leq \delta \|x^{(k-1)} - x^{(k)}\| + \delta \|x^{(k)} - x\|, \end{split}$$

and $1-\delta>0$,

Department of Mathematics – NTNU

Corollary 1 If ||T|| < 1 for some subordinate matrix norm, then the sequence produced by

$$x^{(k)} = Tx^{(k-1)} + c$$

converges to the solution of Ax = b for any initial vector $x^{(0)}$. *Proof:* Since $\rho(T) < ||T||$ for any subordinate matrix norm, the result follows immediately from the previous theorem.

Theorem 4 If $\delta = ||T|| < 1$, then

$$\begin{split} \|x^{(k)} - x\| &\leq \frac{\delta}{1 - \delta} \|x^{(k)} - x^{(k-1)}\|. \\ \text{Proof: Since } x^{(k)} - x &= T(x^{(k-1)} - x), \\ \|x^{(k)} - x\| &\leq \|T\| \|x^{(k-1)} - x\| = \delta \|x^{(k-1)} - x^{(k)} + x^{(k)} - x\| \\ &\leq \delta \|x^{(k-1)} - x^{(k)}\| + \delta \|x^{(k)} - x\|, \end{split}$$

and $1-\delta>0,$ we obtain

$$||x^{(k)} - x|| \le \frac{\delta}{1 - \delta} ||x^{(k)} - x^{(k-1)}||.$$

Department of Mathematics – NTNU

Tsung-Min Hwang November 1, 2003

This theorem implies that we can stop the iteration if $||x^{(k)} - x^{(k-1)}||$ is less than a small tolerance.

This theorem implies that we can stop the iteration if $||x^{(k)} - x^{(k-1)}||$ is less than a small tolerance.

Theorem 5 If ||T|| < 1, then the sequence $x^{(k)}$ converges to x for any initial $x^{(0)}$ and

- 1. $||x x^{(k)}|| \le ||T||^k ||x x^{(0)}||$
- **2.** $||x x^{(k)}|| \le \frac{||T||^k}{1 ||T||} ||x^{(1)} x^{(0)}||.$

This theorem implies that we can stop the iteration if $||x^{(k)} - x^{(k-1)}||$ is less than a small tolerance.

Theorem 5 If ||T|| < 1, then the sequence $x^{(k)}$ converges to x for any initial $x^{(0)}$ and

- 1. $||x x^{(k)}|| \le ||T||^k ||x x^{(0)}||$
- 2. $||x x^{(k)}|| \le \frac{||T||^k}{1 ||T||} ||x^{(1)} x^{(0)}||.$

Proof: Since x = Tx + c and $x^{(k)} = Tx^{(k-1)} + c$,

This theorem implies that we can stop the iteration if $||x^{(k)} - x^{(k-1)}||$ is less than a small tolerance.

Theorem 5 If ||T|| < 1, then the sequence $x^{(k)}$ converges to x for any initial $x^{(0)}$ and

- 1. $||x x^{(k)}|| \le ||T||^k ||x x^{(0)}||$
- 2. $||x x^{(k)}|| \le \frac{||T||^k}{1 ||T||} ||x^{(1)} x^{(0)}||.$

Proof: Since x = Tx + c and $x^{(k)} = Tx^{(k-1)} + c$,

$$\begin{aligned} x - x^{(k)} &= Tx + c - Tx^{(k-1)} - c \\ &= T(x - x^{(k-1)}) \\ &= T^2(x - x^{(k-2)}) = \dots = T^k(x - x^{(0)}). \end{aligned}$$

This theorem implies that we can stop the iteration if $||x^{(k)} - x^{(k-1)}||$ is less than a small tolerance.

Theorem 5 If ||T|| < 1, then the sequence $x^{(k)}$ converges to x for any initial $x^{(0)}$ and

- 1. $||x x^{(k)}|| \le ||T||^k ||x x^{(0)}||$
- 2. $||x x^{(k)}|| \le \frac{||T||^k}{1 ||T||} ||x^{(1)} x^{(0)}||.$

Proof: Since x = Tx + c and $x^{(k)} = Tx^{(k-1)} + c$,

$$\begin{aligned} x - x^{(k)} &= Tx + c - Tx^{(k-1)} - c \\ &= T(x - x^{(k-1)}) \\ &= T^2(x - x^{(k-2)}) = \dots = T^k(x - x^{(0)}). \end{aligned}$$

The first statement can then be derived

$$||x - x^{(k)}|| = ||T^k(x - x^{(0)})|| \le ||T||^k ||x - x^{(0)}||.$$

Department of Mathematics – NTNU

Tsung-Min Hwang November 1, 2003

For the second result, we first show that

$$\|x^{(n)} - x^{(n-1)}\| \le \|T\|^{n-1} \|x^{(1)} - x^{(0)}\|$$
 for any $n \ge 1$.

Department of Mathematics – NTNU

For the second result, we first show that

$$\|x^{(n)} - x^{(n-1)}\| \le \|T\|^{n-1} \|x^{(1)} - x^{(0)}\|$$
 for any $n \ge 1$.

Since

$$\begin{aligned} x^{(n)} - x^{(n-1)} &= T x^{(n-1)} + c - T x^{(n-2)} - c \\ &= T (x^{(n-1)} - x^{(n-2)}) \\ &= T^2 (x^{(n-2)} - x^{(n-3)}) = \dots = T^{n-1} (x^{(1)} - x^{(0)}), \end{aligned}$$

For the second result, we first show that

$$\|x^{(n)} - x^{(n-1)}\| \le \|T\|^{n-1} \|x^{(1)} - x^{(0)}\|$$
 for any $n \ge 1$.

Since

$$\begin{aligned} x^{(n)} - x^{(n-1)} &= T x^{(n-1)} + c - T x^{(n-2)} - c \\ &= T (x^{(n-1)} - x^{(n-2)}) \\ &= T^2 (x^{(n-2)} - x^{(n-3)}) = \dots = T^{n-1} (x^{(1)} - x^{(0)}), \end{aligned}$$

we have

$$||x^{(n)} - x^{(n-1)}|| \le ||T||^{n-1} ||x^{(1)} - x^{(0)}||.$$

For the second result, we first show that

$$\|x^{(n)} - x^{(n-1)}\| \le \|T\|^{n-1} \|x^{(1)} - x^{(0)}\|$$
 for any $n \ge 1$.

Since

$$\begin{aligned} x^{(n)} - x^{(n-1)} &= T x^{(n-1)} + c - T x^{(n-2)} - c \\ &= T (x^{(n-1)} - x^{(n-2)}) \\ &= T^2 (x^{(n-2)} - x^{(n-3)}) = \dots = T^{n-1} (x^{(1)} - x^{(0)}), \end{aligned}$$

we have

$$||x^{(n)} - x^{(n-1)}|| \le ||T||^{n-1} ||x^{(1)} - x^{(0)}||.$$

Let $m \ge k$,

$$\begin{aligned} x^{(m)} - x^{(k)} \\ &= \left(x^{(m)} - x^{(m-1)} \right) + \left(x^{(m-1)} - x^{(m-2)} \right) + \dots + \left(x^{(k+1)} - x^{(k)} \right) \\ &= T^{m-1} \left(x^{(1)} - x^{(0)} \right) + T^{m-2} \left(x^{(1)} - x^{(0)} \right) + \dots + T^k \left(x^{(1)} - x^{(0)} \right) \\ &= \left(T^{m-1} + T^{m-2} + \dots T^k \right) \left(x^{(1)} - x^{(0)} \right), \end{aligned}$$

Department of Mathematics – NTNU

Tsung-Min Hwang November 1, 2003

hence

$$||x^{(m)} - x^{(k)}|| \le (||T||^{m-1} + ||T||^{m-2} + \dots + ||T||^k) ||x^{(1)} - x^{(0)}|$$

Department of Mathematics – NTNU

hence

$$||x^{(m)} - x^{(k)}||$$

$$\leq (||T||^{m-1} + ||T||^{m-2} + \dots + ||T||^k) ||x^{(1)} - x^{(0)}||$$

$$= ||T||^k (||T||^{m-k-1} + ||T||^{m-k-2} + \dots + 1) ||x^{(1)} - x^{(0)}||.$$

Department of Mathematics – NTNU

hence

$$||x^{(m)} - x^{(k)}|| \le (||T||^{m-1} + ||T||^{m-2} + \dots + ||T||^k) ||x^{(1)} - x^{(0)}|| = ||T||^k (||T||^{m-k-1} + ||T||^{m-k-2} + \dots + 1) ||x^{(1)} - x^{(0)}||.$$

Since $\lim_{m\to\infty} x^{(m)} = x$,
hence

$$||x^{(m)} - x^{(k)}||$$

$$\leq (||T||^{m-1} + ||T||^{m-2} + \dots + ||T||^k) ||x^{(1)} - x^{(0)}||$$

$$= ||T||^k (||T||^{m-k-1} + ||T||^{m-k-2} + \dots + 1) ||x^{(1)} - x^{(0)}||.$$

Since $\lim_{m\to\infty} x^{(m)} = x$,

 $\|x - x^{(k)}\|$

Department of Mathematics – NTNU

hence

$$\begin{split} \|x^{(m)} - x^{(k)}\| \\ &\leq \quad \left(\|T\|^{m-1} + \|T\|^{m-2} + \dots + \|T\|^k\right) \|x^{(1)} - x^{(0)}\| \\ &= \quad \|T\|^k \left(\|T\|^{m-k-1} + \|T\|^{m-k-2} + \dots + 1\right) \|x^{(1)} - x^{(0)}\|. \end{split}$$

Since $\lim_{m \to \infty} x^{(m)} = x$,
 $\|x - x^{(k)}\| \\ &= \quad \lim_{m \to \infty} \|x^{(m)} - x^{(k)}\|$

hence

$$\begin{split} \|x^{(m)} - x^{(k)}\| \\ &\leq \quad \left(\|T\|^{m-1} + \|T\|^{m-2} + \dots + \|T\|^k\right) \|x^{(1)} - x^{(0)}\| \\ &= \quad \|T\|^k \left(\|T\|^{m-k-1} + \|T\|^{m-k-2} + \dots + 1\right) \|x^{(1)} - x^{(0)}\|. \end{split}$$

Since $\lim_{m \to \infty} x^{(m)} = x$,
 $\|x - x^{(k)}\| \\ &= \quad \lim_{m \to \infty} \|x^{(m)} - x^{(k)}\| \\ &\leq \quad \lim_{m \to \infty} \|T\|^k \left(\|T\|^{m-k-1} + \|T\|^{m-k-2} + \dots + 1\right) \|x^{(1)} - x^{(0)}\|$

hence

$$\begin{split} \|x^{(m)} - x^{(k)}\| \\ &\leq \quad \left(\|T\|^{m-1} + \|T\|^{m-2} + \dots + \|T\|^k\right) \|x^{(1)} - x^{(0)}\| \\ &= \quad \|T\|^k \left(\|T\|^{m-k-1} + \|T\|^{m-k-2} + \dots + 1\right) \|x^{(1)} - x^{(0)}\|. \end{split}$$

Since $\lim_{m \to \infty} x^{(m)} = x$,
 $\|x - x^{(k)}\| \\ &= \quad \lim_{m \to \infty} \|x^{(m)} - x^{(k)}\| \\ &\leq \quad \lim_{m \to \infty} \|T\|^k \left(\|T\|^{m-k-1} + \|T\|^{m-k-2} + \dots + 1\right) \|x^{(1)} - x^{(0)}\| \\ &= \quad \|T\|^k \|x^{(1)} - x^{(0)}\| \lim_{m \to \infty} \left(\|T\|^{m-k-1} + \|T\|^{m-k-2} + \dots + 1\right) \end{split}$

Department of Mathematics – NTNU

hence

$$\begin{split} \|x^{(m)} - x^{(k)}\| \\ &\leq \quad \left(\|T\|^{m-1} + \|T\|^{m-2} + \dots + \|T\|^k\right) \|x^{(1)} - x^{(0)}\| \\ &= \quad \|T\|^k \left(\|T\|^{m-k-1} + \|T\|^{m-k-2} + \dots + 1\right) \|x^{(1)} - x^{(0)}\|. \end{split}$$

Since $\lim_{m \to \infty} x^{(m)} = x$,
 $\|x - x^{(k)}\| \\ &= \quad \lim_{m \to \infty} \|x^{(m)} - x^{(k)}\| \\ &\leq \quad \lim_{m \to \infty} \|T\|^k \left(\|T\|^{m-k-1} + \|T\|^{m-k-2} + \dots + 1\right) \|x^{(1)} - x^{(0)}\| \\ &= \quad \|T\|^k \|x^{(1)} - x^{(0)}\| \lim_{m \to \infty} \left(\|T\|^{m-k-1} + \|T\|^{m-k-2} + \dots + 1\right) \\ &= \quad \|T\|^k \frac{1}{1 - \|T\|} \|x^{(1)} - x^{(0)}\|. \end{split}$

This proves the second result.

Department of Mathematics – NTNU

Theorem 6 If *A* is strictly diagonal dominant, then both the Jacobi and Gauss-Seidel methods converges for any initial vector $x^{(0)}$.

Theorem 6 If *A* is strictly diagonal dominant, then both the Jacobi and Gauss-Seidel methods converges for any initial vector $x^{(0)}$.

Proof: By assumption, A is strictly diagonal dominant,

Theorem 6 If *A* is strictly diagonal dominant, then both the Jacobi and Gauss-Seidel methods converges for any initial vector $x^{(0)}$.

Proof: By assumption, A is strictly diagonal dominant, hence $a_{ii} \neq 0$ (otherwise A is singular) and

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|, \quad i = 1, 2, \dots, n.$$

Theorem 6 If *A* is strictly diagonal dominant, then both the Jacobi and Gauss-Seidel methods converges for any initial vector $x^{(0)}$.

Proof: By assumption, A is strictly diagonal dominant, hence $a_{ii} \neq 0$ (otherwise A is singular) and

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|, \quad i = 1, 2, \dots, n.$$

For Jacobi method, the iteration matrix $T_J = -D^{-1}(L+U)$ has entries

$$[T_J]_{ij} = \begin{cases} -\frac{a_{ij}}{a_{ii}} & i \neq j \\ 0 & i = j \end{cases}$$

Theorem 6 If *A* is strictly diagonal dominant, then both the Jacobi and Gauss-Seidel methods converges for any initial vector $x^{(0)}$.

Proof: By assumption, A is strictly diagonal dominant, hence $a_{ii} \neq 0$ (otherwise A is singular) and

$$a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|, \quad i = 1, 2, \dots, n.$$

For Jacobi method, the iteration matrix $T_J = -D^{-1}(L+U)$ has entries

$$[T_J]_{ij} = \begin{cases} -\frac{a_{ij}}{a_{ii}} & i \neq j \\ 0 & i = j \end{cases}$$

Hence

$$||T_J||_{\infty} = \max_{1 \le i \le n} \sum_{j=1, j \ne i}^n \left| \frac{a_{ij}}{a_{ii}} \right| = \max_{1 \le i \le n} \frac{1}{|a_{ii}|} \sum_{j=1, j \ne i}^n |a_{ij}| < 1,$$

and this implies that the Jacobi method converges.

Department of Mathematics – NTNU

For Gauss-Seidel method, the iteration matrix $T_{GS} = -(D+L)^{-1}U$.

For Gauss-Seidel method, the iteration matrix $T_{GS} = -(D+L)^{-1}U$. Let λ be any eigenvalue of T_{GS} and y, $\|y\|_{\infty} = 1$, is a corresponding eigenvector.

For Gauss-Seidel method, the iteration matrix $T_{GS} = -(D+L)^{-1}U$. Let λ be any eigenvalue of T_{GS} and y, $\|y\|_{\infty} = 1$, is a corresponding eigenvector. Thus

$$T_{GS}y = \lambda y \implies -Uy = \lambda (D+L)y.$$

For Gauss-Seidel method, the iteration matrix $T_{GS} = -(D+L)^{-1}U$. Let λ be any eigenvalue of T_{GS} and y, $\|y\|_{\infty} = 1$, is a corresponding eigenvector. Thus

$$T_{GS}y = \lambda y \implies -Uy = \lambda (D+L)y.$$

Hence for $i = 1, \ldots, n$,

$$-\sum_{j=i+1}^{n} a_{ij} y_j = \lambda a_{ii} y_i + \lambda \sum_{j=1}^{i-1} a_{ij} y_j.$$

For Gauss-Seidel method, the iteration matrix $T_{GS} = -(D+L)^{-1}U$. Let λ be any eigenvalue of T_{GS} and y, $\|y\|_{\infty} = 1$, is a corresponding eigenvector. Thus

$$T_{GS}y = \lambda y \implies -Uy = \lambda (D+L)y.$$

Hence for $i = 1, \ldots, n$,

$$-\sum_{j=i+1}^{n} a_{ij} y_j = \lambda a_{ii} y_i + \lambda \sum_{j=1}^{i-1} a_{ij} y_j.$$

This gives

$$\lambda a_{ii}y_i = -\lambda \sum_{j=1}^{i-1} a_{ij}y_j + \sum_{j=i+1}^n a_{ij}y_j$$

Department of Mathematics – NTNU

27

For Gauss-Seidel method, the iteration matrix $T_{GS} = -(D+L)^{-1}U$. Let λ be any eigenvalue of T_{GS} and y, $\|y\|_{\infty} = 1$, is a corresponding eigenvector. Thus

$$T_{GS}y = \lambda y \implies -Uy = \lambda (D+L)y.$$

Hence for $i = 1, \ldots, n$,

$$-\sum_{j=i+1}^{n} a_{ij} y_j = \lambda a_{ii} y_i + \lambda \sum_{j=1}^{i-1} a_{ij} y_j.$$

This gives

$$\lambda a_{ii} y_i = -\lambda \sum_{j=1}^{i-1} a_{ij} y_j + \sum_{j=i+1}^n a_{ij} y_j$$

and

$$\lambda ||a_{ii}||y_i| \le |\lambda| \sum_{j=1}^{i-1} |a_{ij}||y_j| + \sum_{j=i+1}^n |a_{ij}||y_j|$$

Department of Mathematics – NTNU

Choose the index k such that $|y_k|=1\geq |y_j|$ (this index can always be found since $\|y\|_\infty=1$).

Choose the index k such that $|y_k|=1\geq |y_j|$ (this index can always be found since $\|y\|_\infty=1$). Then

$$|\lambda||a_{kk}| \le |\lambda| \sum_{j=1}^{k-1} |a_{kj}| + \sum_{j=k+1}^{n} |a_{kj}|$$

Choose the index k such that $|y_k|=1\geq |y_j|$ (this index can always be found since $\|y\|_\infty=1$). Then

$$|\lambda||a_{kk}| \le |\lambda| \sum_{j=1}^{k-1} |a_{kj}| + \sum_{j=k+1}^{n} |a_{kj}|$$

which gives

$$|\lambda| \le \frac{\sum_{j=k+1}^{n} |a_{kj}|}{|a_{kk}| - \sum_{j=1}^{k-1} |a_{kj}|} < \frac{\sum_{j=k+1}^{n} |a_{kj}|}{\sum_{j=k+1}^{n} |a_{kj}|} = 1$$

Department of Mathematics – NTNU

Choose the index k such that $|y_k|=1\geq |y_j|$ (this index can always be found since $\|y\|_\infty=1$). Then

$$|\lambda||a_{kk}| \le |\lambda| \sum_{j=1}^{k-1} |a_{kj}| + \sum_{j=k+1}^{n} |a_{kj}|$$

which gives

$$|\lambda| \le \frac{\sum_{j=k+1}^{n} |a_{kj}|}{|a_{kk}| - \sum_{j=1}^{k-1} |a_{kj}|} < \frac{\sum_{j=k+1}^{n} |a_{kj}|}{\sum_{j=k+1}^{n} |a_{kj}|} = 1$$

Since λ is arbitrary, $\rho(T_{GS}) < 1$.

Department of Mathematics – NTNU

Choose the index k such that $|y_k|=1\geq |y_j|$ (this index can always be found since $\|y\|_\infty=1$). Then

$$|\lambda||a_{kk}| \le |\lambda| \sum_{j=1}^{k-1} |a_{kj}| + \sum_{j=k+1}^{n} |a_{kj}|$$

which gives

$$|\lambda| \le \frac{\sum_{j=k+1}^{n} |a_{kj}|}{|a_{kk}| - \sum_{j=1}^{k-1} |a_{kj}|} < \frac{\sum_{j=k+1}^{n} |a_{kj}|}{\sum_{j=k+1}^{n} |a_{kj}|} = 1$$

Since λ is arbitrary, $\rho(T_{GS}) < 1.$ This means the Gauss-Seidel method converges.

Department of Mathematics – NTNU

Theorem 7 If *A* is positive definite and the relaxation parameter ω satisfying $0 < \omega < 2$, then the SOR iteration converges for any initial vector $x^{(0)}$.

Theorem 7 If *A* is positive definite and the relaxation parameter ω satisfying $0 < \omega < 2$, then the SOR iteration converges for any initial vector $x^{(0)}$.

Theorem 8 If *A* is positive definite and tridiagonal, then $\rho(T_{GS}) = [\rho(T_J)]^2 < 1$ and the optimal choice of ω for the SOR iteration is

$$\omega = \frac{2}{1 + \sqrt{1 - \left[\rho(T_J)\right]^2}}$$

With this choice of ω , $\rho(T_{SOR}) = \omega - 1$.

Department of Mathematics – NTNU