Numerical Analysis

NTNU

Tsung-Min Hwang
 September 11, 2003

1 Norms

1.1 Vector Norm Definition and Properties

Definition 1.1 A vector norm is a function $\|\cdot\|: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfying the following conditions for all $x, y \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R}$.

1. $\|x\| \geq 0 \quad(\|x\|=0 \Leftrightarrow x=0)$;
2. $\|x+y\| \leq\|x\|+\|y\|$;
3. $\|\alpha x\|=|\alpha|\|x\|$.

Some of the most frequently used vector norms for $x \in \mathbb{R}^{n}$:

1-norm:

$$
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right|
$$

1-norm:

$$
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right|
$$

2-norm:

$$
\|x\|_{2}=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}=\left(\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\ldots+\left|x_{n}\right|^{2}\right)^{1 / 2}=\sqrt{x^{T} x}
$$

1-norm:

$$
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right|
$$

2-norm:

$$
\|x\|_{2}=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}=\left(\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\ldots+\left|x_{n}\right|^{2}\right)^{1 / 2}=\sqrt{x^{T} x}
$$

$1 \geqslant \infty$-norm:

$$
\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|
$$

1-norm:

$$
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right|
$$

2-norm:

$$
\|x\|_{2}=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}=\left(\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\ldots+\left|x_{n}\right|^{2}\right)^{1 / 2}=\sqrt{x^{T} x}
$$

$1 \geqslant \infty$-norm:

$$
\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|
$$

108) p-norm:

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}=\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\ldots+\left|x_{n}\right|^{p}\right)^{1 / p}
$$

Definition 1.2 (unit vector) $x \in \mathbb{R}^{n}$ is called a unit vector if $\|x\|=1$ with respect to some vector norm.

Mathematical Preliminaries

Definition 1.2 (unit vector) $x \in \mathbb{R}^{n}$ is called a unit vector if $\|x\|=1$ with respect to some vector norm.

Property 1.1 For any $x, y \in \mathbb{R}^{n}$, the following two inequalities hold.

- Hölder inequality:

$$
\left|x^{T} y\right| \leq\|x\|_{p}\|y\|_{q}, \quad \text { where } \quad \frac{1}{p}+\frac{1}{q}=1
$$

- Cauchy-Schwartz inequality:

$$
\left|x^{T} y\right| \leq\|x\|_{2}\|y\|_{2} .
$$

Mathematical Preliminaries

Definition 1.2 (unit vector) $x \in \mathbb{R}^{n}$ is called a unit vector if $\|x\|=1$ with respect to some vector norm.

Property 1.1 For any $x, y \in \mathbb{R}^{n}$, the following two inequalities hold.

- Hölder inequality:

$$
\left|x^{T} y\right| \leq\|x\|_{p}\|y\|_{q}, \quad \text { where } \quad \frac{1}{p}+\frac{1}{q}=1
$$

- Cauchy-Schwartz inequality:

$$
\left|x^{T} y\right| \leq\|x\|_{2}\|y\|_{2}
$$

Definition 1.3 Two vector norms $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\beta}$ are equivalent if there exist constants $c_{1}, c_{2} \in \mathbb{R}$ such that

$$
c_{1}\|x\|_{\alpha} \leq\|x\|_{\beta} \leq c_{2}\|x\|_{\alpha}
$$

for any $x \in \mathbb{R}^{n}$.

Property 1.2 For all $x \in \mathbb{R}^{n}$,

$$
\begin{align*}
\|x\|_{2} & \leq\|x\|_{1} \leq \sqrt{n}\|x\|_{2} \tag{1}\\
\|x\|_{\infty} & \leq\|x\|_{2} \leq \sqrt{n}\|x\|_{\infty} \tag{2}\\
\|x\|_{\infty} & \leq\|x\|_{1} \leq n\|x\|_{\infty} \tag{3}
\end{align*}
$$

Property 1.2 For all $x \in \mathbb{R}^{n}$,

$$
\begin{align*}
\|x\|_{2} & \leq\|x\|_{1} \leq \sqrt{n}\|x\|_{2} \tag{1}\\
\|x\|_{\infty} & \leq\|x\|_{2} \leq \sqrt{n}\|x\|_{\infty} \tag{2}\\
\|x\|_{\infty} & \leq\|x\|_{1} \leq n\|x\|_{\infty} \tag{3}
\end{align*}
$$

Definition 1.4 (absolute error and relative error) Suppose $x \in \mathbb{R}^{n}$ is the exact solution of some problem and \tilde{x} is an approximation to x. We define

$$
\begin{equation*}
\text { absolute error }=\|x-\tilde{x}\| \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { relative error }=\frac{\|x-\tilde{x}\|}{\|x\|}, \quad \text { if } x \neq 0 \tag{5}
\end{equation*}
$$

1.2 Matrix Norm Definition and Properties

Definition 1.5 A matrix norm is a function $\|\cdot\|: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ satisfying the following conditions for all $A, B \in \mathbb{R}^{m \times n}$ and $\alpha \in \mathbb{R}$.

1. $\|A\| \geq 0 \quad(\|A\|=0 \Leftrightarrow A=0)$;
2. $\|A+B\| \leq\|A\|+\|B\|$;
3. $\|\alpha A\|=|\alpha|\|A\|$.

Definition 1.6 Some of the most frequently used matrix norms are

1.2 Matrix Norm Definition and Properties

Definition 1.5 A matrix norm is a function $\|\cdot\|: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ satisfying the following conditions for all $A, B \in \mathbb{R}^{m \times n}$ and $\alpha \in \mathbb{R}$.

1. $\|A\| \geq 0 \quad(\|A\|=0 \Leftrightarrow A=0)$;
2. $\|A+B\| \leq\|A\|+\|B\|$;
3. $\|\alpha A\|=|\alpha|\|A\|$.

Definition 1.6 Some of the most frequently used matrix norms are
Frobenius norm:

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}}
$$

2-norm:

$$
\|A\|_{2}=\max _{\substack{x \in \mathbb{R}^{n} \\ x \neq 0}} \frac{\|A x\|_{2}}{\|x\|_{2}}=\max _{\|x\|_{2}=1}\|A x\|_{2}
$$

2-norm:

$$
\|A\|_{2}=\max _{\substack{x \in \mathbb{R}^{n} \\ x \neq 0}} \frac{\|A x\|_{2}}{\|x\|_{2}}=\max _{\|x\|_{2}=1}\|A x\|_{2}
$$

1-norm:

$$
\|A\|_{1}=\max _{1 \leq j \leq n} \sum_{i=1}^{m}\left|a_{i j}\right|
$$

2-norm:

$$
\|A\|_{2}=\max _{\substack{x \in \mathbb{R}^{n} \\ x \neq 0}} \frac{\|A x\|_{2}}{\|x\|_{2}}=\max _{\|x\|_{2}=1}\|A x\|_{2}
$$

1-norm:

$$
\|A\|_{1}=\max _{1 \leq j \leq n} \sum_{i=1}^{m}\left|a_{i j}\right|
$$

18∞-norm:

$$
\|A\|_{\infty}=\max _{1 \leq i \leq m} \sum_{j=1}^{n}\left|a_{i j}\right|
$$

2-norm:

$$
\|A\|_{2}=\max _{\substack{x \in \mathbb{R}^{n} \\ x \neq 0}} \frac{\|A x\|_{2}}{\|x\|_{2}}=\max _{\|x\|_{2}=1}\|A x\|_{2}
$$

1-norm:

$$
\|A\|_{1}=\max _{1 \leq j \leq n} \sum_{i=1}^{m}\left|a_{i j}\right|
$$

18∞-norm:

$$
\|A\|_{\infty}=\max _{1 \leq i \leq m} \sum_{j=1}^{n}\left|a_{i j}\right|
$$

(1) p-norm:

$$
\|A\|_{p}=\max _{\substack{x \in \mathbb{R}^{n} \\ x \neq 0}} \frac{\|A x\|_{p}}{\|x\|_{p}}=\max _{\|x\|_{p}=1}\|A x\|_{p}
$$

Mathematical Preliminaries

Theorem 1.1 Suppose $A \in \mathbb{R}^{m \times n}$. Then there exists $z \in \mathbb{R}^{n},\|z\|_{2}=1$, such that $A^{T} A z=\mu^{2} z$, where $\mu=\|A\|_{2}$.

Proof: Let $z \in \mathbb{R}^{n},\|z\|_{2}=1$, be a unit vector that satisfies

$$
\|A\|_{2}=\|A z\|_{2}=\max _{\|x\|_{2}=1}\|A x\|_{2} \text {. Define }
$$

$$
g(x)=\frac{1}{2} \frac{x^{T} A^{T} A x}{x^{T} x}=\frac{1}{2} \frac{\|A x\|_{2}^{2}}{\|x\|_{2}^{2}}=\frac{1}{2}\left(\frac{\|A x\|_{2}}{\|x\|_{2}}\right)^{2}
$$

for $x \in \mathbb{R}^{n}$. Then z is a maximizer of $g(x)$ which implies $\nabla g(z)=0$. Since

$$
\nabla g(x)=\frac{\left(x^{T} x\right)\left(A^{T} A x\right)-\left(x^{T} A^{T} A x\right)(x)}{\left(x^{T} x\right)^{2}}
$$

Hence

$$
\begin{aligned}
\nabla g(z)=0 & \Rightarrow\left(z^{T} z\right)\left(A^{T} A z\right)-\left(z^{T} A^{T} A z\right) z=0 \\
& \Rightarrow\|z\|_{2}^{2}\left(A^{T} A z\right)-\|A z\|_{2}^{2} z=0 \\
& \Rightarrow A^{T} A z=\|A\|_{2}^{2} z=\mu^{2} z
\end{aligned}
$$

Remarks $1.1\|A\|_{2}$ is the square root of the largest eigenvalue of $A^{T} A$. When A is symmetric, $\|A\|_{2}$ is the absolute value of the largest eigenvalue in magnitude.

Remarks $1.1\|A\|_{2}$ is the square root of the largest eigenvalue of $A^{T} A$. When A is symmetric, $\|A\|_{2}$ is the absolute value of the largest eigenvalue in magnitude.

Property 1.3

$$
\begin{align*}
\|A\|_{2} & \leq\|A\|_{F} \leq \sqrt{n}\|A\|_{2} \tag{6}\\
\frac{1}{\sqrt{n}}\|A\|_{\infty} & \leq\|A\|_{2} \leq \sqrt{m}\|A\|_{\infty} \tag{7}\\
\frac{1}{\sqrt{m}}\|A\|_{1} & \leq\|A\|_{2} \leq \sqrt{n}\|A\|_{1} . \tag{8}\\
\max _{i, j}\left|a_{i j}\right| & \leq\|A\|_{2} \leq \sqrt{m n} \max _{i, j}\left|a_{i j}\right| . \tag{9}
\end{align*}
$$

SVD: The Singular Value Decomposition

Mathematical Preliminaries

SVD: The Singular Value Decomposition
Theorem 1.2 (Existence of SVD) If $A \in \mathbb{R}^{m \times n}$, then there exists orthogonal matrices
$U=\left[u_{1}, u_{2}, \ldots, u_{m}\right] \in \mathbb{R}^{m \times m}$ and $V=\left[v_{1} . v_{2}, \ldots, v_{n}\right] \in \mathbb{R}^{n \times n}$ such that

$$
\begin{equation*}
A=U \Sigma V^{T} \tag{10}
\end{equation*}
$$

where

$$
\Sigma=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{p}\right), \quad p=\min (m, n)
$$

with

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{p} \geq 0
$$

SVD: The Singular Value Decomposition
Theorem 1.2 (Existence of SVD) If $A \in \mathbb{R}^{m \times n}$, then there exists orthogonal matrices
$U=\left[u_{1}, u_{2}, \ldots, u_{m}\right] \in \mathbb{R}^{m \times m}$ and $V=\left[v_{1} \cdot v_{2}, \ldots, v_{n}\right] \in \mathbb{R}^{n \times n}$ such that

$$
\begin{equation*}
A=U \Sigma V^{T} \tag{10}
\end{equation*}
$$

where

$$
\Sigma=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{p}\right), \quad p=\min (m, n)
$$

with

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{p} \geq 0
$$

The σ_{i} are called the singular values of A and the vectors u_{i} and v_{i} the i-th left singular vector and the i-th right singular vector, respectively.

SVD: The Singular Value Decomposition
Theorem 1.2 (Existence of SVD) If $A \in \mathbb{R}^{m \times n}$, then there exists orthogonal matrices
$U=\left[u_{1}, u_{2}, \ldots, u_{m}\right] \in \mathbb{R}^{m \times m}$ and $V=\left[v_{1} \cdot v_{2}, \ldots, v_{n}\right] \in \mathbb{R}^{n \times n}$ such that

$$
\begin{equation*}
A=U \Sigma V^{T} \tag{10}
\end{equation*}
$$

where

$$
\Sigma=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{p}\right), \quad p=\min (m, n)
$$

with

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{p} \geq 0
$$

The σ_{i} are called the singular values of A and the vectors u_{i} and v_{i} the i-th left singular vector and the i-th right singular vector, respectively.

We usually use $\sigma_{\max }(A)$ to denote the largest singular value of A and $\sigma_{\min }(A)$ the smallest singular value of A.

