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1 Norms

1.1 Vector Norm Definition and Properties

Definition 1.1 A vector norm is a function ‖ · ‖ : R
n → R satisfying the following

conditions for all x, y ∈ R
n and α ∈ R.

1. ‖x‖ ≥ 0 (‖x‖ = 0 ⇔ x = 0);

2. ‖x + y‖ ≤ ‖x‖ + ‖y‖;

3. ‖αx‖ = |α|‖x‖.

Some of the most frequently used vector norms for x ∈ R
n:
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☞ 1-norm:

‖x‖1 =

n
∑

i=1

|xi| = |x1| + |x2| + · · · + |xn|.

☞ 2-norm:

‖x‖2 =

√

√

√

√

n
∑

i=1

|xi|2 =
(

|x1|2 + |x2|2 + . . . + |xn|2
)1/2

=
√

xT x.

☞ ∞-norm:

‖x‖∞ = max
1≤i≤n

|xi|.

☞ p-norm:

‖x‖p =

(

n
∑

i=1

|xi|p
)1/p

= (|x1|p + |x2|p + . . . + |xn|p)1/p
.
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Definition 1.2 (unit vector) x ∈ R
n is called a unit vector if ‖x‖ = 1 with respect to

some vector norm.

Property 1.1 For any x, y ∈ R
n, the following two inequalities hold.

• Hölder inequality:

|xT y| ≤ ‖x‖p‖y‖q, where
1

p
+

1

q
= 1.

• Cauchy-Schwartz inequality:

|xT y| ≤ ‖x‖2‖y‖2.

Definition 1.3 Two vector norms ‖ · ‖α and ‖ · ‖β are equivalent if there exist constants

c1, c2 ∈ R such that

c1‖x‖α ≤ ‖x‖β ≤ c2‖x‖α

for any x ∈ R
n.
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Property 1.2 For all x ∈ R
n,

‖x‖2 ≤ ‖x‖1 ≤
√

n‖x‖2. (1)

‖x‖∞ ≤ ‖x‖2 ≤
√

n‖x‖∞. (2)

‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞. (3)

Definition 1.4 (absolute error and relative error) Suppose x ∈ R
n is the exact solution

of some problem and x̃ is an approximation to x. We define

absolute error = ‖x − x̃‖ (4)

and

relative error =
‖x − x̃‖
‖x‖ , if x 6= 0. (5)
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1.2 Matrix Norm Definition and Properties

Definition 1.5 A matrix norm is a function ‖ · ‖ : R
m×n → R satisfying the following

conditions for all A, B ∈ R
m×n and α ∈ R.

1. ‖A‖ ≥ 0 (‖A‖ = 0 ⇔ A = 0);

2. ‖A + B‖ ≤ ‖A‖ + ‖B‖;

3. ‖αA‖ = |α|‖A‖.

Definition 1.6 Some of the most frequently used matrix norms are

☞ Frobenius norm:

‖A‖F =

√

√

√

√

m
∑

i=1

n
∑

j=1

|aij |2.
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☞ 2-norm:

‖A‖2 = max
x∈R

n

x6=0

‖Ax‖2

‖x‖2

= max
‖x‖2=1

‖Ax‖2.

☞ 1-norm:

‖A‖1 = max
1≤j≤n

m
∑

i=1

|aij |.

☞ ∞-norm:

‖A‖∞ = max
1≤i≤m

n
∑

j=1

|aij |.

☞ p-norm:

‖A‖p = max
x∈R

n

x 6=0

‖Ax‖p

‖x‖p
= max

‖x‖p=1

‖Ax‖p.
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Theorem 1.1 Suppose A ∈ R
m×n. Then there exists z ∈ R

n, ‖z‖2 = 1, such that

AT Az = µ2z, where µ = ‖A‖2.

Proof: Let z ∈ R
n, ‖z‖2 = 1, be a unit vector that satisfies

‖A‖2 = ‖Az‖2 = max
‖x‖2=1

‖Ax‖2. Define

g(x) =
1

2

xT AT Ax

xT x
=

1

2

‖Ax‖2

2

‖x‖2

2

=
1

2

(‖Ax‖2

‖x‖2

)2

,

for x ∈ R
n. Then z is a maximizer of g(x) which implies 5g(z) = 0. Since

5g(x) =
(xT x)(AT Ax) − (xT AT Ax)(x)

(xT x)2
.

Hence

5g(z) = 0 ⇒ (zT z)(AT Az) − (zT AT Az)z = 0

⇒ ‖z‖2

2
(AT Az) − ‖Az‖2

2
z = 0

⇒ AT Az = ‖A‖2

2
z = µ2z.
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Remarks 1.1 ‖A‖2 is the square root of the largest eigenvalue of AT A. When A is

symmetric, ‖A‖2 is the absolute value of the largest eigenvalue in magnitude.

Property 1.3

‖A‖2 ≤ ‖A‖F≤
√

n‖A‖2. (6)

1√
n
‖A‖∞ ≤ ‖A‖2 ≤

√
m‖A‖∞. (7)

1√
m
‖A‖1 ≤ ‖A‖2 ≤

√
n‖A‖1. (8)

max
i,j

|aij | ≤ ‖A‖2 ≤
√

mnmax
i,j

|aij |. (9)
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☞ SVD: The Singular Value Decomposition

Theorem 1.2 (Existence of SVD) If A ∈ R
m×n, then there exists orthogonal matrices

U = [u1, u2, . . . , um] ∈ R
m×m and V = [v1.v2, . . . , vn] ∈ R

n×n such that

A = UΣV T , (10)

where

Σ = diag(σ1, σ2, · · · , σp), p = min(m, n),

with

σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

☞ The σi are called the singular values of A and the vectors ui and vi the i-th left

singular vector and the i-th right singular vector, respectively.

☞ We usually use σmax(A) to denote the largest singular value of A and σmin(A) the

smallest singular value of A.

Department of Mathematics – NTNU Tsung-Min Hwang September 11, 2003



Mathematical Preliminaries 10

☞ SVD: The Singular Value Decomposition

Theorem 1.2 (Existence of SVD) If A ∈ R
m×n, then there exists orthogonal matrices

U = [u1, u2, . . . , um] ∈ R
m×m and V = [v1.v2, . . . , vn] ∈ R

n×n such that

A = UΣV T , (10)

where

Σ = diag(σ1, σ2, · · · , σp), p = min(m, n),

with

σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

☞ The σi are called the singular values of A and the vectors ui and vi the i-th left

singular vector and the i-th right singular vector, respectively.

☞ We usually use σmax(A) to denote the largest singular value of A and σmin(A) the

smallest singular value of A.

Department of Mathematics – NTNU Tsung-Min Hwang September 11, 2003



Mathematical Preliminaries 10

☞ SVD: The Singular Value Decomposition

Theorem 1.2 (Existence of SVD) If A ∈ R
m×n, then there exists orthogonal matrices

U = [u1, u2, . . . , um] ∈ R
m×m and V = [v1.v2, . . . , vn] ∈ R

n×n such that

A = UΣV T , (10)

where

Σ = diag(σ1, σ2, · · · , σp), p = min(m, n),

with

σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

☞ The σi are called the singular values of A and the vectors ui and vi the i-th left

singular vector and the i-th right singular vector, respectively.

☞ We usually use σmax(A) to denote the largest singular value of A and σmin(A) the

smallest singular value of A.

Department of Mathematics – NTNU Tsung-Min Hwang September 11, 2003



Mathematical Preliminaries 10

☞ SVD: The Singular Value Decomposition

Theorem 1.2 (Existence of SVD) If A ∈ R
m×n, then there exists orthogonal matrices

U = [u1, u2, . . . , um] ∈ R
m×m and V = [v1.v2, . . . , vn] ∈ R

n×n such that

A = UΣV T , (10)

where

Σ = diag(σ1, σ2, · · · , σp), p = min(m, n),

with

σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

☞ The σi are called the singular values of A and the vectors ui and vi the i-th left

singular vector and the i-th right singular vector, respectively.

☞ We usually use σmax(A) to denote the largest singular value of A and σmin(A) the

smallest singular value of A.

Department of Mathematics – NTNU Tsung-Min Hwang September 11, 2003


	blueNorms
	Vector Norm Definition and Properties
	blueMatrix Norm Definition and Properties


