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1 – Preliminaries

Definition 1 Let {xn} → x∗. We say that the rate of convergence is

1. linear if ∃ a constant 0 < c < 1 and an integer N > 0 such that

|xn+1 − x∗| ≤ c|xn − x∗|, ∀ n ≥ N ;

2. superlinear if ∃ {cn}, cn → 0 as n → ∞, and an integer N > 0 such that

|xn+1 − x∗| ≤ cn|xn − x∗|, ∀ n ≥ N,

or, equivalently,

lim
n→∞

|xn+1 − x∗|
|xn − x∗| = 0;

3. quadratic if ∃ a constant c > 0 (not necessarily less than 1) and an integer N > 0

such that

|xn+1 − x∗| ≤ c|xn − x∗|2, ∀ n ≥ N.
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In general, if there are positive constants c and α and an integer N > 0 such that

|xn+1 − x∗| ≤ c|xn − x∗|α, ∀ n ≥ N,

then we say the rate of convergence is of order α.

Definition 2 Suppose {βn} → 0 and {xn} → x∗. If ∃ c > 0 and an integer N > 0

such that

|xn − x∗| ≤ c|βn|, ∀ n ≥ N,

then we say {xn} converges to x∗ with rate of convergence O(βn), and write

xn = x∗ + O(βn).

Example 1 Compare the convergence behavior of {xn} and {yn}, where

xn =
n + 1

n2
, and yn =

n + 3

n3
.
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Solution: Note that both

lim
n→∞

xn = 0 and lim
n→∞

yn = 0.

Let αn = 1
n and βn = 1

n2 . Then

|xn − 0| =
n + 1

n2
≤ n + n

n2
=

2

n
= 2αn,

|yn − 0| =
n + 3

n3
≤ n + 3n

n3
=

4

n2
= 4βn.

Hence

xn = 0 + O

(

1

n

)

and yn = 0 + O

(

1

n2

)

.

This shows that {yn} converges to 0 much faster than {xn}.
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2 – Bisection Method

Idea: if f(x) ∈ C[a, b] and f(a)f(b) < 0, then ∃ c ∈ (a, b) such that f(c) = 0.

Algorithm 1 (Bisection Method) Given f(x) defined on (a, b), the maximal number of

iterations M , and stop criteria δ and ε, this algorithm tries to locate one root of f(x).

compute u = f(a), v = f(b), and e = b − a.

if sign(u) = sign(v), then stop

for k = 1, 2, . . . , M do

e = e/2, c = a + e, w = f(c).

if |e| < δ or |w| < ε, then stop

if sign(w) 6= sign(u) then

b = c, v = w.

else

a = c, u = w

end if

end for
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Let {cn} be the sequence of numbers produced. The algorithm should stop if one of the

following conditions is satisfied.

1. the iteration number k > M ,

2. |ck − ck−1| < δ, or

3. |f(ck)| < ε.

Let [a0, b0], [a1, b1], . . . denote the successive intervals produced by the bisection

algorithm. Then

a = a0 ≤ a1 ≤ a2 ≤ · · · ≤ b0 = b

⇒ {an} and {bn} are bounded.

⇒ lim
n→∞

an and lim
n→∞

bn exist.
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Since

b1 − a1 =
1

2
(b0 − a0)

b2 − a2 =
1

2
(b1 − a1) =

1

4
(b0 − a0)

...

bn − an =
1

2n
(b0 − a0)

hence

lim
n→∞

bn − lim
n→∞

an = lim
n→∞

(bn − an) = lim
n→∞

1

2n
(b0 − a0) = 0.

Therefore

lim
n→∞

an = lim
n→∞

bn ≡ z.

Since f is a continuous function

lim
n→∞

f(an) = f( lim
n→∞

an) = f(z) and lim
n→∞

f(bn) = f( lim
n→∞

bn) = f(z).
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Since f(an)f(bn) ≤ 0.

⇒ lim
n→∞

f(an)f(bn) = f2(z) ≤ 0.

⇒ f(z) = 0.

⇒ The limit of the sequences {an} and {bn} is a zero of f in [a, b].

Let cn = 1
2 (an + bn). Then

|z − cn| =
∣

∣ lim
n→∞

an − 1

2
(an + bn)

∣

∣

=
∣

∣

1

2

[

lim
n→∞

an − bn

]

+
1

2

[

lim
n→∞

an − an

]

∣

∣

≤ 1

2
max

{
∣

∣ lim
n→∞

an − bn

∣

∣,
∣

∣ lim
n→∞

an − an

∣

∣

}

≤ 1

2
|bn − an| =

1

2n+1
|b0 − a0|.

This proves the following theorem.
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2

[

lim
n→∞

an − bn

]

+
1

2

[

lim
n→∞

an − an

]

∣

∣

≤ 1

2
max

{
∣

∣ lim
n→∞

an − bn

∣

∣,
∣

∣ lim
n→∞

an − an

∣

∣

}

≤ 1

2
|bn − an| =

1

2n+1
|b0 − a0|.

This proves the following theorem.
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Theorem 1 Let {[an, bn]} denote the intervals produced by the bisection algorithm. Then

lim
n→∞

an and lim
n→∞

bn exist, are equal, and represent a zero of f(x). If

z = lim
n→∞

an = lim
n→∞

bn and cn =
1

2
(an + bn),

then

|z − cn| ≤
1

2n+1
(b0 − a0) .

Remarks 1 {cn} converges to z with the rate of O(2−n).

Example 2 If bisection method starts with interval [50, 75], then how many steps should be

taken to compute a root with relative error that is less than 10−12?
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Solution: Seek an n such that
|z − cn|

|z| ≤ 10−12.

Since the bisection method starts with the interval [50, 75], this implies that z ≥ 50, hence

it is sufficient to show
|z − cn|

|z| ≤ |z − cn|
50

≤ 10−12.

That is, we solve

2−(n+1)(75 − 50) ≤ 50 × 10−12

for n, which gives n ≥ 38.
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3 – Newton’s Method

3.1 – Derivation of Newton’s Method

Suppose that f : R → R and f ∈ C2[a, b], i.e., f ′′ exists and is continuous.

If

f(x∗) = 0 and x∗ = x + h where h is small, then by Taylor’s theorem

0 = f(x∗) = f(x + h) = f(x) + f ′(x)h +
1

2
f ′′(x)h2 +

1

3!
f ′′′(x)h3 + · · ·

= f(x) + f ′(x)h + O(h2).

Since h is small, O(h2) is negligible. It is reasonable to drop O(h2) terms. This implies

f(x) + f ′(x)h ≈ 0 and h ≈ − f(x)

f ′(x)
, if f ′(x) 6= 0.
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Hence

x + h = x − f(x)

f ′(x)

is a better approximation to x∗.

This sets the stage for the Newton-Rapbson’s method,

which starts with an initial approximation x0 and generates the sequence {xk}∞k=0 defined

by

xk+1 = xk − f(xk)

f ′(xk)
.

1 2 3 4 5
−1

0

1

2

x
0
 

y = f(x) 

tangent line 

Figure 1: Newton-Rapbson method
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Figure 3 gives a graphic interpretation of the Newton’s method.

Since the Taylor’s expansion

of f(x) at xk is given by

f(x) = f(xk) + f ′(xk)(x − xk) +
1

2
f ′′(xk)(x − xk)2 + · · · .

At xk, one uses the tangent line

y = `(x) = f(xk) + f ′(xk)(x − xk)

to approximate the curve of f(x) and uses the zero of the tangent line to approximate the

zero of f(x).
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Algorithm 2 (Newton’s Method) Given a function f : R → R, an initial guess x0 to the

zero of f , and stop criteria M , δ, and ε, this algorithm performs the Newton’s iteration to

approximate one root of f .

u = f(x0)

v = f ′(x0)

x1 = x0 − u
v

k = 1

u = f(xk)

while (k < M) and (|xk − xk−1| ≥ δ) and (|f(xk)| ≥ ε do

v = f ′(xk)

xk+1 = xk − u
v

k = k + 1

u = f(xk)

end while
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3.2 – Convergence Analysis

Suppose that f ′′ is continuous and x∗ is a simple zero of f , i.e., f(x∗) = 0 but

f ′(x∗) 6= 0.

Choose δ > 0 and let

D = {x; |x − x∗| ≤ δ}

and

γ =
1

2
· maxx∈D |f ′′(x)|

minx∈D |f ′(x)| .

Choose δ such that ρ = δγ < 1. Suppose |e0| = |x0 − x∗| ≤ δ. By Taylor’s theorem

0 = f(x∗) = f(x0) + f ′(x0)(x
∗ − x0) +

1

2
f ′′(ξ0)(x

∗ − x0)
2,

where ξ0 is between x∗ and x0. Consequently |ξ0 − x∗| ≤ δ and

−f(x0) − f ′(x0)(x
∗ − x0) =

1

2
f ′′(ξ0)(x

∗ − x0)
2.
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One iteration of Newton’s algorithm gives

x1 = x0 −
f(x0)

f ′(x0)
.

Hence

e1 = x1 − x∗ = x0 −
f(x0)

f ′(x0)
− x∗

=
1

f ′(x0)
(−f(x0) − f ′(x0)(x

∗ − x0))

=
1

f ′(x0)
· 1

2
· f ′′(ξ0)(x

∗ − x0)
2 =

f ′′(ξ0)

2f ′(x0)
e2
0,

and

|e1| ≤ γ|e0|2 ≤ γδ|e0| = ρ|e0|.
In general,

|ek| ≤ ρ|ek−1| ≤ · · · ≤ ρk|e0|.
Since ρ < 1, |ek| → 0 as k → 0, that is, xk → x∗.
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In summary, Newton’s method will generate {xk}k≥0 that converges to the zero, x∗, of f if

1. f ′′ is continuous;

2. x∗ is a simple zero of f ; and

3. x0 is close enough to x∗.

To investigate the convergence rate, we start with

ek+1 = xk+1 − x∗ = xk − f(xk)

f ′(xk)
− x∗ =

f ′(xk)ek − f(xk)

f ′(xk)
.

Using Taylor’s theorem

0 = f(x∗) = f(xk − ek) = f(xk) − f ′(xk)ek +
1

2
f ′′(ξk)e2

k,

where ξk is between xk and x∗, one has

f ′(xk)ek − f(xk) =
1

2
f ′′(ξk)e2

k.
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Hence

|ek+1| =
|f ′′(ξk)|
2|f ′(xk)| |ek|2 ≈ |f ′′(x∗)|

2|f ′(x∗)| |ek|2 ≡ C|ek|2.

This shows that Newton’s method is quadratic convergent.

Theorem 2 Assume f(x∗) = 0, f ′(x∗) 6= 0 and f(x), f ′(x) and f ′′(x) are

continuous on Nε(x
∗). Then if x0 is chosen sufficiently close to x∗, then

{

xn+1 = xn − f(xn)

f ′(xn)

}

→ x∗.

Moreover,

lim
n→∞

x∗ − xn+1

(x∗ − xn)2
= − f ′′(x∗)

2f ′(x∗)
.

Definition 3 (Lipschitz Continuous) A function f(x) is Lipschitz continuous with Lipschitz

constant γ in a set X , written f ∈ Lipγ(X), if

|f(x) − f(y)| ≤ γ|x − y|, for all x, y ∈ X.
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Lemma 1 Suppose f : Ω → R for some open interval Ω ⊆ R and f ′ ∈ Lipγ(Ω). Then

for all x, y ∈ Ω,

|f(y) − f(x) − f ′(x)(y − x)| ≤ γ

2
(y − x)2.

Proof: From Calculus

f(y) − f(x) − f ′(x)(y − x) =

∫ y

x

(f ′(u) − f ′(x)) du.

By changing variable u = x + t(y − x), du = (y − x) dt and f ′ ∈ Lipγ(Ω), we have

|f(y) − f(x) − f ′(x)(y − x)| =

∣

∣

∣

∣

∫ 1

0

[f ′(x + t(y − x)) − f ′(x)] (y − x) dt

∣

∣

∣

∣

≤ |y − x|
∫ 1

0

γ|t(y − x)| dt

=
γ

2
|y − x|2.
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Theorem 3 Let f : Ω → R for some open interval Ω ⊆ R. Assume

1. ∃x∗ ∈ Ω such that f(x∗) = 0;

2. f ′ ∈ Lipγ(Ω);

3. ∃ ρ > 0 such that |f ′(x)| ≥ ρ ∀ x ∈ Ω, that is, f ′(x) 6= 0 ∀ x ∈ Ω.

Then ∃ η > 0 such that if |x0 − x∗| < η, then

xk+1 = xk − f(xk)

f ′(xk)
, k = 0, 1, 2, . . . ,

converges to x∗. Furthermore,

|xk+1 − x∗| ≤ γ

2ρ
|xk − x∗|2

or, equivalently,

|ek+1| ≤
γ

2ρ
|ek|2.
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Proof: With the result of previous Lemma,

|xk+1 − x∗| =

∣

∣

∣

∣

xk − f(xk)

f ′(xk)
− x∗

∣

∣

∣

∣

=

∣

∣

∣

∣

xk − x∗ − f(xk) − f(x∗)

f ′(xk)

∣

∣

∣

∣

=
1

|f ′(xk)| |f(x∗) − f(xk) − f ′(xk)(xk − x∗)|

≤ γ

2|f ′(xk)| |xk − x∗|2

≤ γ

2ρ
|xk − x∗|2.
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Remark 1

(i) Newton’s method only guarantee the convergence from a good starting point x0 that is

close enough to x∗. In fact, Newton’s iteration may not converge at all if |x0 − x∗| is

large.

(ii) If f ′(x∗) = 0, i.e., x∗ is a multiple root of f , then Newton’s method converges only

linearly.

(iii) When f is a linear function, Newton’s method will converge in one step.
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3.3 – Examples

Example 3 The following table shows the convergence behavior of Newton’s method

applied to solving f(x) = x2 − 1 = 0. Observe the quadratic convergence rate.

k xk |ek|
0 2.0 1

1 1.25 0.25

2 1.025 2.5e-2

3 1.0003048780488 3.048780488e-4

4 1.0000000464611 4.64611e-8

5 1.0 0
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Example 4 Newton’s method will fail (the sequence {xk} does not converge) on solving

f(x) = x2 − 4x + 5 = 0 since f does not have any real root.

Example 5 When Newton’s method applied to f(x) = cosx with starting point x0 = 3,

which is close to the root π
2 of f , it produces x1 = −4.01525, x2 = −4.8526, · · · ,

which converges to another root − 3π
2 .

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1.5

0

1.5

x
0
 

y = cos(x) 

x* 

Figure 2: one step of Newton method
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Example 6 When Newton’s method applied to f(x) = x3 − x − 3 with starting point

x0 = 0, it produces

x1 = −3 x2 = −1.961538

x3 = −1.147176 x4 = −0.00679

x5 = −3.000389 x6 = −1.961818

x7 = −1.147430 · · ·

The sequence will not converge. But if the algorithm starts with x0 = 2, then it produces

x1 = 1.727272,

x2 = 1.67369,

x3 = 1.6717025, . . . .

The sequence converges to the root 1.671699881. This example illustrates that the

starting point x0 must be close enough to the zero of f .
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4 – Quasi-Newton’s Method (Secant Method)

4.1 – The Secant Method

Newton’s iteration:

xk+1 = xk − f(xk)

f ′(xk)

Disadvantage: In many applications, the derivative f ′(x) is very expensive to compute, or

the function f(x) is not given in an algebraic formula so that f ′(x) is not available.

Since

f ′(x) = lim
h→0

f(x + h) − f(x)

h
,

⇒
f ′(xk) ≈ f(xk + hk) − f(xk)

hk
for some small hk.
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⇒ The finite-difference Newton’s iteration

xk+1 = xk − f(xk)
hk

f(xk + hk) − f(xk)
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y = f(x) 

Figure 3: Secant method

From geometric point of view, we use a secant line through xk and a near-by point xk + hk

instead of the tangent line to approximate the function at the point xk.
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The slope of the secant line is

sk =
f(xk + hk) − f(xk)

hk

and the equation is

M(x) = f(xk) + sk(x − xk).

The zero of the secant line

x = xk − f(xk)

sk
= xk − f(xk)

hk

f(xk + hk) − f(xk)

is then used as a new approximate xk+1.

Set

hk = xk − xk−1.

This leads to the so-called secant method or quasi-Newton method.

xk+1 = xk − f(xk)
xk − xk−1

f(xk) − f(xk−1)
.
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Note that the secant method requires two initial guesses x0 and x−1.

Example 7 The following table shows the convergence history for the finite-difference

Newton’s method with hk = 10−7 × xk and secant method for solving

f(x) = x2 − 1 = 0.

finite-difference Newton secant method

x0 2 2

x1 1.2500000266453 1.2500000266453

x2 1.0250000179057 1.0769230844910

x3 1.0003048001120 1.0082644643823

x4 1.0000000464701 1.0003048781354

x5 1 1.0000012544523

x6 1.0000000001912

x7 1
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4.2 – Error Analysis of Secant Method

Let x∗ denote the exact solution of f(x) = 0, ek = xk − x∗ be the errors at the k-th

step. Then

ek+1 = xk+1 − x∗

= xk − f(xk)
xk − xk−1

f(xk) − f(xk−1)
− x∗

=
1

f(xk) − f(xk−1)
[(xk+1 − x∗)f(xk) − (xk − x∗)f(xk−1)]

=
1

f(xk) − f(xk−1)
(ek−1f(xk) − ekf(xk−1))

= ekek−1

(

1
ek

f(xk) − 1
ek−1

f(xk)

xk − xk−1
· xk − xk−1

f(xk) − f(xk−1)

)
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To estimate the numerator
1

ek
f(xk)− 1

ek−1
f(xk)

xk−xk−1
,

we apply the Taylor’s theorem

f(xk) = f(x∗ + ek) = f(x∗) + f ′(x∗)ek +
1

2
f ′′(x∗)e2

k + O(e3
k),

to get
1

ek
f(xk) = f ′(x∗) +

1

2
f ′′(x∗)ek + O(e2

k).

Similarly,
1

ek−1
f(xk−1) = f ′(x∗) +

1

2
f ′′(x∗)ek−1 + O(e2

k−1).

Hence
1

ek
f(xk) − 1

ek−1
f(xk−1) ≈

1

2
(ek − ek−1)f

′′(x∗).

Since xk − xk−1 = ek − ek−1 and

xk − xk−1

f(xk) − f(xk−1)
→ 1

f ′(x∗)
,
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we have

ek+1 ≈ ekek−1

( 1
2 (ek − ek−1)f

′′(x∗)

ek − ek−1
· 1

f ′(x∗)

)

=
1

2

f ′′(x∗)

f ′(x∗)
ekek−1

≡ Cekek−1 (1)

To estimate the convergence rate, we assume

|ek+1| ≈ η|ek|α,

where η > 0 and α > 0 are constants, i.e.,

|ek+1|
η|ek|α

→ 1 as k → ∞.

Then |ek| ≈ η|ek−1|α which implies |ek−1| ≈ η−1/α|ek|1/α. Hence (1) gives

η|ek|α ≈ C|ek|η−1/α|ek|1/α =⇒ C−1η1+ 1
α ≈ |ek|1−α+ 1

α .

Since |ek| → 0 as k → ∞, and C−1η1+ 1
α is a nonzero constant,

1 − α +
1

α
= 0 =⇒ α =

1 +
√

5

2
≈ 1.62.
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This result implies that C−1η1+ 1
α → 1 and

η → C
α

1+α =

(

f ′′(x∗)

2f ′(x∗)

)0.62

.

In summary, we have shown that

|ek+1| = η|ek|α, α ≈ 1.62,

that is, the rate of convergence is superlinear.

Rate of convergence:

☞ secant method: superlinear

☞ Newton’s method: quadratic

☞ bisection method: linear
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Each iteration of method requires

☞ secant method: one function evaluation

☞ Newton’s method: two function evaluation, namely, f(xk) and f ′′(xk).

⇒ two steps of secant method are comparable to one step of Newton’s method. Thus

|ek+2| ≈ η|ek+1|α ≈ η1+α|ek|
3+

√

5

2 ≈ η1+α|ek|2.62.

⇒ secant method is more efficient than Newton’s method.

Remark 2 Two steps of secant method would require a little more work than one step of

Newton’s method.
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5 – Fixed Point and Functional Iteration

Definition 4 x is called a fixed point of a given function f if f(x) = x.

The problem of finding a fixed point for a given function is equivalent to the

problem of finding a zero for a nonlinear function.

☞ Find x∗ such that f(x∗) = 0.

Let g(x) = x − f(x). Then g(x∗) = x∗ − f(x∗) = x∗.

⇒ x∗ is a fixed point for g(x).

☞ Find x∗ such that g(x∗) = x∗.

Define f(x) = x − g(x) so that

f(x∗) = x∗ − g(x∗) = x∗ − x∗ = 0

⇒ x∗ is a zero of f(x).

Two questions arise: “When does a function have a fixed point?” and “How to

find a fixed point?”.
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5.1 – Functional Iteration

Fixed-point iteration or functional iteration: Given a continuous function f ,

choose an initial point x0 and generate {xk}k≥0 by

xk+1 = f(xk), k ≥ 0.

{xk} may not converge, e.g., f(x) = 3x. However, when the sequence

converges, say,

lim
k→∞

xk = x∗,

then, since f is continuous,

f(x∗) = f( lim
k→∞

xk) = lim
k→∞

f(xk) = lim
k→∞

xk+1 = x∗.

That is, x∗ is a fixed point of f .

Note that Newton’s method for solving g(x) = 0

xk+1 = xk − g(xk)

g′(xk)
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is just a special case of functional iteration in which

f(x) = x − g(x)

g′(x)
.

Definition 5 A function (mapping) f is said to be contractive if there exists a

constant 0 ≤ λ < 1 such that

|f(x) − f(y)| ≤ λ|x − y|

for all x, y in the domain of f .

Theorem 4 (Contractive Mapping Theorem) Suppose f : D → D, where

D ⊆ R is a closed set, is a contractive mapping. Then f has a unique fixed

point in D. Moreover, this fixed point is the limit of every sequence obtained

by

xk+1 = f(xk)

with any initial point x0.

Department of Mathematics – NTNU Tsung-Min Hwang November 16, 2003



Sol. Non-linear Fun. 38

is just a special case of functional iteration in which

f(x) = x − g(x)

g′(x)
.

Definition 5 A function (mapping) f is said to be contractive if there exists a

constant 0 ≤ λ < 1 such that

|f(x) − f(y)| ≤ λ|x − y|

for all x, y in the domain of f .

Theorem 4 (Contractive Mapping Theorem) Suppose f : D → D, where

D ⊆ R is a closed set, is a contractive mapping. Then f has a unique fixed

point in D. Moreover, this fixed point is the limit of every sequence obtained

by

xk+1 = f(xk)

with any initial point x0.

Department of Mathematics – NTNU Tsung-Min Hwang November 16, 2003



Sol. Non-linear Fun. 38

is just a special case of functional iteration in which

f(x) = x − g(x)

g′(x)
.

Definition 5 A function (mapping) f is said to be contractive if there exists a

constant 0 ≤ λ < 1 such that

|f(x) − f(y)| ≤ λ|x − y|

for all x, y in the domain of f .

Theorem 4 (Contractive Mapping Theorem) Suppose f : D → D, where

D ⊆ R is a closed set, is a contractive mapping. Then f has a unique fixed

point in D. Moreover, this fixed point is the limit of every sequence obtained

by

xk+1 = f(xk)

with any initial point x0.

Department of Mathematics – NTNU Tsung-Min Hwang November 16, 2003



Sol. Non-linear Fun. 39

Proof: We first show that lim
k→∞

xk exists.

Since

xk = x0+(x1−x0)+(x2−x1)+· · ·+(xk−xk−1) = x0+

k
∑

i=1

(xi−xi−1),

{xk}k≥0 converges if and only if
∑∞

i=1(xi − xi−1) converges and it is

sufficient to show
∑∞

i=1 |xi − xi−1| converges.

Since f is contractive, we have

|xi − xi−1| = |f(xi−1) − f(xi−2)|
≤ λ|xi−1 − xi−2|
≤ λ2|xi−2 − xi−3|
...

≤ λi−1|x1 − x0|.
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Then we have

∞
∑

i=1

|xi − xi−1| ≤
∞
∑

i=1

λi−1|x1 − x0|

= |x1 − x0|
∞
∑

i=1

λi−1

=
1

1 − λ
|x1 − x0|

since 0 ≤ λ < 1. This show that
∑∞

i=1 |xi − xi−1| is bounded, hence it

converges. Let lim
k→∞

xk = x∗.

f is a contractive mapping

⇒ f is continuous

⇒ x∗ = lim
k→∞

xk = lim
k→∞

f(xk−1) = f( lim
k→∞

xk−1) = f(x∗)

⇒ x∗ is a fixed point of f .
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To prove the uniqueness, let x and y both be fixed points of f .

Then

|x − y| = |f(x) − f(y)| ≤ λ|x − y|.

Since λ < 1, this forces |x − y| = 0. That is, x = y.

Theorem 5 If f ∈ C[a, b] such that a ≤ f(x) ≤ b for all x ∈ [a, b], then

f has a fixed point in [a, b]. Suppose, in addition, that f ′(x) exists in (a, b)

and there exists a positive constant M < 1 such that |f ′(x)| ≤ M < 1 for

all x ∈ (a, b). Then the fixed point is unique.

Proof: If f(a) = a or f(b) = b, then a or b is a fixed point of f and we are

done. Otherwise, it must be g(a) > a and g(b) < b.

Let h(x) = f(x) − x.

⇒ h ∈ C[a, b] since f ∈ C[a, b], and h(a) = f(a) − a > 0,

h(b) = f(b) − b < 0.
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By the intermediate value theorem, ∃ x∗ ∈ [a, b] such that h(x∗) = 0.

⇒ f(x∗) − x∗ = 0 and f(x∗) = x∗.

⇒ f has a fixed point x∗ in [a, b].

Suppose that p 6= q are both fixed points of f in [a, b]. By the Mean-Value

theorem, there exists ξ between p and q such that

f ′(ξ) =
f(p) − f(q)

p − q
=

p − q

p − q
= 1.

However, this contradicts to the assumption that f ′(x) ≤ M < 1 for all x in

[a, b]. Therefore the fixed point of f is unique.
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5.2 – Convergence Analysis

Assumptions:

1. f has a fixed point x∗, and the sequence {xk}k≥0 is generated by the

iteration

xk+1 = f(xk), k = 0, 1, . . . ,

with an arbitrary initial point x0;

2. f ′ exists, is continuous, and |f ′(x)| < 1 for all x in the domain of f ;

3. m is a positive integer such that f (i)(x∗) = 0 for i = 1, . . . , m − 1,

but f (m)(x∗) 6= 0.

Let ek = xk − x∗. Then by the Mean-Value theorem

ek+1 = xk+1 − x∗ = f(xk) − f(x∗) = f ′(ξk)(xk − x∗) = f ′(ξk)ek, (2)

where ξk is between xk and x∗. Since |f ′(ξk)| < 1 by assumption, {|ek|}
decreases.
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When xk is close to x∗, i.e., ek is small

⇒ ξk will be close to x∗

⇒ f ′(ξk) will be close to f ′(x∗) since f ′ is continuous.

⇒ (2) can be written as

ek+1 ≈ f ′(x∗)ek,

Using Taylor’s theorem, we have

ek+1 = xk+1 − x∗

= f(xk) − f(x∗)

= f(x∗ + ek) − f(x∗)

= f ′(x∗)ek +
1

2
f ′′(x∗)e2

k + · · · + 1

(m − 1)!
f (m−1)(x∗)em−1

k

+
1

m!
f (m)(ηk)em

k

=
1

m!
f (m)(ηk)em

k ,
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where ηk is between x∗ and xk.

Since lim
k→∞

xk = x∗,

ηk → x∗ =⇒ f (m)(ηk) → f (m)(x∗).

Therefore we have

lim
k→∞

|ek+1|
|ek|m

=
1

m!
f (m)(x∗).

This shows that the convergence rate of the functional iteration is m.

Department of Mathematics – NTNU Tsung-Min Hwang November 16, 2003



Sol. Non-linear Fun. 45

where ηk is between x∗ and xk. Since lim
k→∞

xk = x∗,

ηk → x∗ =⇒ f (m)(ηk) → f (m)(x∗).

Therefore we have

lim
k→∞

|ek+1|
|ek|m

=
1

m!
f (m)(x∗).

This shows that the convergence rate of the functional iteration is m.

Department of Mathematics – NTNU Tsung-Min Hwang November 16, 2003



Sol. Non-linear Fun. 45

where ηk is between x∗ and xk. Since lim
k→∞

xk = x∗,

ηk → x∗ =⇒ f (m)(ηk) → f (m)(x∗).

Therefore we have

lim
k→∞

|ek+1|
|ek|m

=
1

m!
f (m)(x∗).

This shows that the convergence rate of the functional iteration is m.

Department of Mathematics – NTNU Tsung-Min Hwang November 16, 2003



Sol. Non-linear Fun. 45

where ηk is between x∗ and xk. Since lim
k→∞

xk = x∗,

ηk → x∗ =⇒ f (m)(ηk) → f (m)(x∗).

Therefore we have

lim
k→∞

|ek+1|
|ek|m

=
1

m!
f (m)(x∗).

This shows that the convergence rate of the functional iteration is m.

Department of Mathematics – NTNU Tsung-Min Hwang November 16, 2003


	Preliminaries
	Bisection Method
	Newton's Method
	Derivation of Newton's Method
	Convergence Analysis
	Examples

	Quasi-Newton's Method (Secant Method)
	The Secant Method
	Error Analysis of Secant Method

	Fixed Point and Functional Iteration
	Functional Iteration
	Convergence Analysis


