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1 — Preliminaries

Definition 1 Let {x,,} — 2. We say that the rate of convergence is
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1 — Preliminaries

Definition 1 Let {x,,} — 2. We say that the rate of convergence is

1. linear if 4 a constant 0 < ¢ < 1 and an integer /N > 0 such that

|zpy1 — 2| < clz, — 2|, Vn>N;
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1 — Preliminaries

Definition 1 Let {x,,} — 2. We say that the rate of convergence is

1. linear if 4 a constant 0 < ¢ < 1 and an integer /N > 0 such that

|zpy1 — 2| < clz, — 2|, Vn>N;
2. superlinear if 3 {c, }, ¢,, — 0 asn — oo, and an integer NV > 0 such that
|, ¥n2=N,

T — 2| < cplr, —

or, equivalently,
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1 — Preliminaries

Definition 1 Let {z,, } — 2. We say that the rate of convergence is

1. linear if 4 a constant 0 < ¢ < 1 and an integer /N > 0 such that

|zpy1 — 2| < clz, — 2|, Vn>N;
2. superlinear if 3 {c, }, ¢,, — 0 asn — oo, and an integer NV > 0 such that
|, ¥n2=N,

T — 2| < cplr, —

or, equivalently,

3. quadratic if 9 a constant ¢ > 0 (not necessarily less than 1) and an integer /N > 0

such that

|Zpi1 — 2*| < c|zn, —2*°, Vn > N.
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I
In general, if there are positive constants ¢ and « and an integer /N > 0 such that
zpy1 — 2| < clz, —2F|%, Vn>N,

then we say the rate of convergence is of order .
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In general, if there are positive constants ¢ and « and an integer /N > 0 such that
zpy1 — 2| < clz, —2F|%, Vn>N,
then we say the rate of convergence is of order (.

Definition 2 Suppose {(3,,} — Oand {x,,} — ™. If 3 ¢ > 0 and an integer N > 0

such that
|z, — 2| < c|Bn|, Yn>N,

then we say {x,, } converges to x* with rate of convergence O(/3,,), and write

T, =z + O(06,).
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In general, if there are positive constants ¢ and « and an integer /N > 0 such that
zpy1 — 2| < clz, —2F|%, Vn>N,
then we say the rate of convergence is of order (.

Definition 2 Suppose {(3,,} — Oand {x,,} — ™. If 3 ¢ > 0 and an integer N > 0
such that

|z, — 2| < c|Bn|, Yn>N,

then we say {x,, } converges to x* with rate of convergence O(/3,,), and write

T, =z + O(06,).

Example 1 Compare the convergence behavior of {x,, } and {y,, }, where
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Solution: Note that both

lim z, =0 and Ilim gy, =0.
n—0oo n—oo
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Solution: Note that both

lim z, =0 and Ilim gy, =0.
n—0oo n—oo

Let oy, = % and (3, = #
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Solution: Note that both

lim z, =0 and Ilim gy, =0.
n—0oo n—oo

Let oy, = % and 3,, = # Then

n-+1 n-+n 2
n n n
n+3 n + 3n 4
Yo =0l = —5- < —5— =5 =40
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Solution: Note that both

lim z, =0 and Ilim gy, =0.
n—0oo n—oo

Let oy, = % and 3,, = # Then

1 2
2, —0] = - <29,
T n n
3 3 4
o —0] = ZEZ2 DTS yg)

ns n?

Hence

1 1
:I:n:()—I—O(—) and yn:O+O<—2).
n n
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Solution: Note that both

lim z, =0 and Ilim gy, =0.
n—0oo n—oo

Let oy, = % and 3,, = # Then

n+1l n+n 2
n n n

n+3 _n-+3n 4
Hence

1 1

T, =04+0( — and y, =0+0| = |.

n n

This shows that {y,, } converges to 0 much faster than {x,, }. N

S
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2 — Bisection Method

Idea: if f(x) € C'la,bland f(a)f(b) < 0,thendc € (a,b) suchthat f(c) = 0.

Algorithm 1 (Bisection Method) Given f(x) defined on (a, b), the maximal number of

iterations M, and stop criteria  and &, this algorithm tries to locate one root of f ().

compute v = f(a), v = f(b),ande = b — a.
if sign(u) = sign(v), then stop
fork=1,2,..., M do
e=e/2,c=a+e w= f(c).
if |e| < d or |w| < €, then stop
if sign(w) # sign(u) then
b=c v=mw.
else
a=cu=uw
end if

end for
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Let {cn} be the sequence of numbers produced. The algorithm should stop if one of the

following conditions is satisfied.
1. the iteration number £ > M,
2. lex —cp—1| < 4, or

3. |f(Ck)| < €.
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Let {cn} be the sequence of numbers produced. The algorithm should stop if one of the

following conditions is satisfied.
1. the iteration number k& > M,

2. |cp — cp—1] < 9, 0r

3. |f(Ck)| < E.
Let [ag, bo], [a1, b1], . . . denote the successive intervals produced by the bisection
algorithm.
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Let {cn} be the sequence of numbers produced. The algorithm should stop if one of the

following conditions is satisfied.
1. the iteration number £ > M,
2. lex —cp—1| < 4, or

3. |f(Ck)| < E.

Let [ag, bo], [a1, b1], . . . denote the successive intervals produced by the bisection

algorithm. Then

a=ag< a1 <ay <---<byg=0
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Let {cn} be the sequence of numbers produced. The algorithm should stop if one of the

following conditions is satisfied.
1. the iteration number £ > M,
2. lex —cp—1| < 4, or

3. |f(Ck)| < €.

Let [ag, bo], [a1, b1], . . . denote the successive intervals produced by the bisection

algorithm. Then

a=ag< a1 <ay <---<byg=0

= {a, } and {b, } are bounded.
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Let {cn} be the sequence of numbers produced. The algorithm should stop if one of the

following conditions is satisfied.
1. the iteration number £ > M,
2. lex —cp—1| < 4, or

3. |f(Ck)| < E.

Let [ag, bo], [a1, b1], . . . denote the successive intervals produced by the bisection

algorithm. Then

a=ag< a1 <ay <---<byg=0

= {a, } and {b, } are bounded.

= lim a,, and lim b,, exist.
n—=o n—oo
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Since
1
bl —ay = 5(()0 — CL())
1 1
bQ—CLQ = i(bl_CLl): Z(bo-&o)
1
bn —an = 2—n(bo — CL())
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Since
1
by —a1 = 5(50—%)
1 1
bo —ax = 5(51—a1)21(bo—a0)
b L (b — ao)
n—a, = —(by—a
o (00 0
hence
: . : ) 1
lim b, — lim a, = lim (b, —a,) = lim —n(bo—ao) — 0.
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Since
1
b —a1 = 5(50 — ap)
1 1
bQ—CLQ = i(bl_CLl): Z(bo-&o)
b ~ (bo — av)
n—Qa, = — —a
on 0 0
hence
. . . . 1
lim b, — lim a, = lim (b, —a,) = lim —n(bo —ag) = 0.
Therefore

lim a,, = lim b, = z.
n—oo n—oo
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Since
1
b —a1 = 5(50 — ap)
1 1
bQ—CLQ = i(bl_CLl): Z(bo-&o)
b ~ (bo — av)
n—Qa, = — —a
on 0 0
hence
. . . . 1
lim b, — lim a, = lim (b, —a,) = lim —n(bo —ag) = 0.
Therefore

lim a,, = lim b, = z.
n—oo n—oo

Since f is a continuous function

lim f(a,) = f(lim a,) = f(z) and lim f(by) = f(lim b,) = f(2).

n—oo n—oo n—oo n—aoo
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since f(az) f(bn) < 0.
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since f(an) f(bn) < 0.
= lim_ f(an)f(bn) = f2(2) < 0.

n—oo
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since f(an) f(bn) < 0.
= lim_ f(an)f(bn) = f2(2) < 0.

n—oo

= f(z) = 0.
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Since f (an) f (ba) < 0.
= nh—{%o flan)f(bn) = f2(2) < 0.

= f(z) = 0.
=> The limit of the sequences {a,, } and {b,, } is a zero of f in [a, b].
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Since f (an) f (ba) < 0.
= nh—{%o flan)f(bn) = f2(2) < 0.

= f(z) = 0.
=> The limit of the sequences {a,, } and {b,, } is a zero of f in [a, b].

Let c,, = %(an + byp).
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Since f (an) f (ba) < 0.
= nh—{%o flan)f(bn) = f2(2) < 0.

= f(z) = 0.
=> The limit of the sequences {a,, } and {b,, } is a zero of f in [a, b].

Let c,, = %(an + by,). Then

1
lim a, — §(an + bn)‘

|z —c,| =
n—oo
1r.. L.,
— 5 [nlgrgo Ay — bn} + 5 [nll—{%o Ay, — an} ‘
< max{| lm a, —by|.| lim a, —a,|}
1 1
< §\bn—an|:2n+1|bo—a0|-
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Since f(ay)f(by) < 0.
= nh—{%o flan)f(bn) = f2(2) < 0.

= f(z) = 0.
=> The limit of the sequences {a,, } and {b,, } is a zero of f in [a, b].

Let c,, = %(an + by,). Then

1
lim a,, — §(an + bn)‘

|z —c,| =
n—oo
1r.. L.,
— 5 [nlgrgo Ay — bn} + 5 [nll—{%o Ay, — an} ‘
< max{| lm a, —by|.| lim a, —a,|}
1 1
< §\bn—an|:2n+1|bo—a0|-

This proves the following theorem.
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Theorem 1 Let {|a,,, b,,|} denote the intervals produced by the bisection algorithm. Then

lim a, and lim b, exist, are equal, and represent a zero of f(x). If
n—=o n—aoo

z= lim a, = lim b, and ¢, = §(an+bn)7

then
1
2= al < 5o (bo — o).
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Theorem 1 Let {|a,,, b,,|} denote the intervals produced by the bisection algorithm. Then

lim a, and lim b, exist, are equal, and represent a zero of f(x). If
n—=o n—aoo

z= lim a, = lim b, and ¢, = §(an+bn)7

then

1
1z —cp| < YRS (bg — ag) -

Remarks 1 {c,, } converges to z with the rate of O(27").
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Theorem 1 Let {|a,,, b,,|} denote the intervals produced by the bisection algorithm. Then

lim a, and lim b, exist, are equal, and represent a zero of f(x). If
n—=o n—aoo

z= lim a, = lim b, and ¢, = i(an—i_bn)?

then

1
1z —cp| < YRS (bg — ag) -

Remarks 1 {c,, } converges to z with the rate of O(27").

Example 2 If bisection method starts with interval [50, 75], then how many steps should be

taken to compute a root with relative error that is less than 10-122
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Solution: Seek an n such that

‘Z o Cnl S 10—12.
|
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Solution: Seek an n such that

‘Z o Cnl S 10—12.
|

Since the bisection method starts with the interval [50, 75], this implies that z > 50,
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Solution: Seek an n such that

‘Z o Cnl S 10—12.
|

Since the bisection method starts with the interval [50, 75], this implies that z > 50, hence

it is sufficient to show
1z — ¢n < |z — ¢y

TS 50 < 10712
2z
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Solution: Seek an n such that
2 — ¢
‘ n| S 10—12.
2/
Since the bisection method starts with the interval [50, 75], this implies that z > 50, hence

it is sufficient to show
1z — ¢n < |z — ¢y

TS 50 < 10712
2z

That is, we solve
2~ (HD (75 — 50) < 50 x 10712

for n, which gives n > 38. ||
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3 — Newton’s Method
| 3.1 — Derivation of Newton’s Method I

Suppose that f : R — Rand f € C?[a,b], i.e., f" exists and is continuous.
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3 — Newton’s Method
| 3.1 — Derivation of Newton’s Method I

Suppose that f : R — R and f € C?[a, b],i.e., f” exists and is continuous. If
f(x*) = 0and x* = x + h where h is small,
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3 — Newton’s Method

| 3.1 — Derivation of Newton’s Method I

Suppose that f : R — Rand f € C?[a,b], i.e., f" exists and is continuous. If

f(x*) = 0and x* = x + h where h is small, then by Taylor’s theorem

0= fz*) = f(z+h) = f@)+f(@)h+ %f”(x)hQ n %f”’(q;)h?) L
= f(z) + f'(x)h+ O(h?).
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3 — Newton’s Method

| 3.1 — Derivation of Newton’s Method I

Suppose that f : R — Rand f € C?[a,b], i.e., f" exists and is continuous. If

f(x*) = 0and x* = x + h where h is small, then by Taylor’s theorem
0=fa*) = flath) = f@)+ f@h+ o @h + o 7 @h +-
= f(z)+ f'(x)h + O(h?).

Since / is small, O(h?) is negligible.
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3 — Newton’s Method

| 3.1 — Derivation of Newton’s Method I

Suppose that f : R — Rand f € C?[a,b], i.e., f" exists and is continuous. If

f(x*) = 0and x* = x + h where h is small, then by Taylor’s theorem
0=fa*) = flath) = f@)+ f@h+ o @h + o 7 @h +-
= f(z)+ f'(x)h + O(h?).

Since / is small, O(h?) is negligible. It is reasonable to drop O(h?) terms.
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3 — Newton’s Method

| 3.1 — Derivation of Newton’s Method I

Suppose that f : R — Rand f € C?[a,b], i.e., f" exists and is continuous. If

f(x*) = 0and x* = x + h where h is small, then by Taylor’s theorem
0=fa*) = flath) = f@)+ f@h+ o @h + o 7 @h +-
= f(z)+ f'(x)h + O(h?).

Since /v is small, O(h?) is negligible. It is reasonable to drop O(h?) terms. This implies

f(z)+ f'(x)h~0 and h =~ —]{/((Z)), it f'(z)#0.
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Hence
f(z)

TR )

is a better approximation to x*.
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Hence
f(z)
/()

is a better approximation to x*. This sets the stage for the Newton-Rapbson’s method,

r+h=x—
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Hence
f(z)
/()

is a better approximation to x*. This sets the stage for the Newton-Rapbson’s method,

r+h=x—

which starts with an initial approximation xy and generates the sequence {:ck}zozo defined
by
S (@)

T )
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Hence
f(z)
/()

is a better approximation to x*. This sets the stage for the Newton-Rapbson’s method,

r+h=x—

which starts with an initial approximation xy and generates the sequence {xk}zozo defined
by
S (@)

T T )

Figure 1: Newton-Rapbson method
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Figure 3 gives a graphic interpretation of the Newton’s method.
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Figure 3 gives a graphic interpretation of the Newton’s method. Since the Taylor’'s expansion

of f(x) at xy is given by

F(@) = Fow) + F/(e) (@ — a5) + 5 @) (@ — o) + -
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Figure 3 gives a graphic interpretation of the Newton’s method. Since the Taylor’'s expansion

of f(x) at xy is given by

Fl2) = Flan) + I @ —2i) + 3 " (wn) (@ — ) + -
At 21, one uses the tangent line
y =L4(z) = f(zx) + f(z) (@ — zx)

to approximate the curve of f(a:) and uses the zero of the tangent line to approximate the
zero of f(x).
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Algorithm 2 (Newton’s Method) Given a function f : R — R, an initial guess x to the
zero of f, and stop criteria M, 0, and ¢, this algorithm performs the Newton’s iteration to

approximate one root of f.

u = f(zo)

v=f"(z0)

Tl =Tp—

k=1

u= f(zx)

while (k < M) and (|zg — z_1| > d) and (|f(xx)| > € do
v=f'(zx)
Tkt1 = Tp — 5
k=k+1
u= f(xx)

end while
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‘ 3.2 — Convergence Analysis I

Suppose that f”" is continuous and z* is a simple zero of f,i.e., f(z") = 0 but

fi(x*) # 0.
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‘ 3.2 — Convergence Analysis I

Suppose that f”" is continuous and z* is a simple zero of f,i.e., f(z") = 0 but
f(x*) # 0. Choose § > 0 and let

D =A{x;|x —2™| < 6}

and
1 maxsep |f"(2)]

T2 mingep | f/()| .

Y
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‘ 3.2 — Convergence Analysis I

Suppose that f”" is continuous and z* is a simple zero of f,i.e., f(z") = 0 but
f(x*) # 0. Choose § > 0 and let

D =A{x;|x —2™| < 6}

and

1 maxen (@)
772 mingep |f ()]

Choose ¢ such that p = v < 1.

Department of Mathematics — NTNU Tsung-Min Hwang November 16, 2003



Sol. Non-linear Fun. 16

‘ 3.2 — Convergence Analysis I

Suppose that f”" is continuous and z* is a simple zero of f,i.e., f(z") = 0 but
f(x*) # 0. Choose § > 0 and let

D =A{x;|x —2™| < 6}

and

1 maxen (@)
772 mingep |f ()]

Choose 9 such that p = v < 1. Suppose |eg| = |ro — z*| < 6.
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‘ 3.2 — Convergence Analysis I

Suppose that f”" is continuous and z* is a simple zero of f,i.e., f(z") = 0 but
f(x*) # 0. Choose § > 0 and let

D = {&; |z — 27| < 6}

and
1 maxzep |f"(z)]
v =

T2 mingep | ()|

Choose 6 such that p = §y < 1. Suppose |eg| = |zg — x*| < §. By Taylor's theorem

0= f(2) = fzo) + f(wo) (@ — o) + 5 " (E)(&" — w0,

where & is between x* and xy.
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‘ 3.2 — Convergence Analysis I

Suppose that f”" is continuous and z* is a simple zero of f,i.e., f(z") = 0 but
f(x*) # 0. Choose § > 0 and let

D = {&; |z — 27| < 6}

and
1 maxzep |f"(z)]
v =

T2 mingep | ()|

Choose 6 such that p = §y < 1. Suppose |eg| = |zg — x*| < §. By Taylor's theorem

0= f(2) = fzo) + f(wo) (@ — o) + 5 " (E)(&" — w0,

where &g is between x* and x(. Consequently |{, — ™| < § and

~f(@o) — f' (o) " —20) = 3 f"(E0)(@” — o)

Department of Mathematics — NTNU Tsung-Min Hwang November 16, 2003



Sol. Non-linear Fun. 17

One iteration of Newton’s algorithm gives

f (o)
f'(wo)

1 — o —
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One iteration of Newton’s algorithm gives

51 = Dy — f(xo)
f(zo)
Hence
S C.1)) R
: : ’ f! (o)
1 / * —
= (z0) (= f(z0) = f'(zo)(® 0))
_ 1 1 1" ¥ 2:f”(§0)62
B I T P A
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One iteration of Newton’s algorithm gives

1 = oy — JF0)
f'(xo)
Hence
epL=x1—x = X _f(xo)_ *
: : ’ f! (o)
1 / * —
— (z0) (—=f(zo) — f'(z0)(z 0))
_ 1 1 1" ¥ 2:f”(§0)62
B I T P A
and

lex] < vleol* < ydleo] = pleol.
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One iteration of Newton’s algorithm gives

. f (o)
1 — o — f’(aj’o) .
Hence
o =32 = mg— f(xo) .
f' (o)
= i (fa) — e~ 20)
. 1 1 /" * L f//(€0)
~ fl(zo) 2 f (o) (@" — 20)" = 2f/(xo)eg7
and
lex] < 7leol* < ¥dleol = pleol-
In general,

er] < plex—1| < - < p¥leol.

Since p < 1, |ex| — 0as k — 0, thatis, x, — z*.
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In summary, Newton’s method will generate {x } ;>0 that converges to the zero, z*, of f if
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In summary, Newton’s method will generate {x } ;>0 that converges to the zero, z*, of f if

1. f""is continuous;
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In summary, Newton’s method will generate {x } ;>0 that converges to the zero, z*, of f if
1. f""is continuous;

2. x™ is a simple zero of f; and
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In summary, Newton’s method will generate {x } ;>0 that converges to the zero, z*, of f if
1. f""is continuous;
2. x™ is a simple zero of f; and

3. x¢ is close enough to ™.
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In summary, Newton’s method will generate {x } ;>0 that converges to the zero, z*, of f if
1. f""is continuous;
2. x™ is a simple zero of f; and
3. x¢ is close enough to ™.

To investigate the convergence rate, we start with

f(xk) . flew)er — f(fl?k).

€rt] = Tpal — L = Tp — —z* =
" " f'(zk) f'(xk)
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In summary, Newton’s method will generate {x } ;>0 that converges to the zero, z*, of f if
1. f""is continuous;
2. x™ is a simple zero of f; and
3. x¢ is close enough to ™.

To investigate the convergence rate, we start with

f(xk) . flew)er — f(ﬁk).

€rt] = Tpal — L = Tp — —z* =
" " f'(zk) f'(xk)

Using Taylor’s theorem

0= f(e*) = flax — ex) = flaw) — Flar)en + 3 (€L

where & is between ;. and x*,
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In summary, Newton’s method will generate {x } ;>0 that converges to the zero, z*, of f if
1. f""is continuous;
2. x™ is a simple zero of f; and
3. x¢ is close enough to ™.

To investigate the convergence rate, we start with

f(xk) . flew)er — f(ﬁk).

€rt] = Tpal — L = Tp — —z* =
" " f'(zk) f'(xk)

Using Taylor’s theorem

0= f(e*) = flax — ex) = flaw) — Flar)en + 3 (€L

where & is between xx and ¥, one has

F'(exex — Fax) = 3 f(En)el-
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Hence

| &L 116
APl T 27 @)

|ek\2 = C]ek|2.
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Hence

‘ek 1| _ ‘f//(fk” ‘€k|2 ~ |f”(CE*)|
T2 ()| 2(f" ()|

This shows that Newton’s method is quadratic convergent.

|ek\2 = C]ek|2.
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Hence

FOER e )] 2
lery1| = lex|” ~ lex|” = Clex|”.
2| f"(xr)] 2| f"(x*)]
This shows that Newton’s method is quadratic convergent.
Theorem 2 Assume f(z*) =0, f'(x*) # 0and f(z), f'(x) and f"(x) are
continuous on [V, (a:*) Then if x is chosen sufficiently close to x*, then

{$n+1 _ 5 _ @) } 5

f,(xn)
Moreover,
hm CC* L xn—l—l o f//(x*)
n—oo (T* — Tp)? 2f'(z*)
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Hence

R e L@ e )
lext1| = 1 ()] lex|” ~ 2 ()] lex|” = Cleg|”.

This shows that Newton’s method is quadratic convergent.

Theorem 2 Assume f(z*) =0, f'(z*) # Oand f(z), f'(x) and f"(x) are

continuous on [V, (a:*) Then if x is chosen sufficiently close to x*, then

{$n+1 _ 5 _ @) } 5

f,(xn)
Moreover,
- ¥ Tt1 . f”(x*)
n—oo (x* — xp,)? 21" (x*)

Definition 3 (Lipschitz Continuous) A function f(a:) is Lipschitz continuous with Lipschitz

constant v in a set X, written f € Lip. (X), if

\f(ﬂf) —f(y)\ < 7\$—y\, forall .,y € X.
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Lemma 1 Suppose f : {2 — R for some open interval 2 C R and f* € Lip. (£2). Then
forall z,y € (),

f(y) = f(@) = f2)y—2)| < Sy —2)"

DN |2
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Lemma 1 Suppose f : {2 — R for some open interval 2 C R and f* € Lip. (£2). Then
forall z,y € (),

@) = f(@) = f @)y — )] < 2y =)

Proof: From Calculus
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Lemma 1 Suppose f : {2 — R for some open interval 2 C R and f* € Lip. (£2). Then
forall z,y € (),

@) = f(@) = f @)y — )] < 2y =)

Proof: From Calculus

By changing variable u = = + t(y — x), du = (y — x)dt and f’ € Lip, (Q2),
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Lemma 1 Suppose f : {2 — R for some open interval 2 C R and f* € Lip. (£2). Then
forall z,y € (),

f(y) = f(@) = f2)y—2)| < Sy —2)"

DO [ 2

Proof: From Calculus

Yy

f@%aﬂ@—f%@@—xrzf(f@)—f@»mL

x

By changing variable u = = +t(y — x), du = (y — x)dt and f’ € Lip, (2), we have

\ﬂ@—i@ﬁ—f@%y—@l==(/[f@+ﬂy—@)—f@ﬂ@—xﬁﬁ

0
1
< ly—al | Aty o)l de
0
T2
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Theorem 3 Let f : {2 — R for some open interval {2 C R. Assume

1. dx* € Qsuch that f(z*) = 0;

2. f" € Lip.,(2);

3. dp > Osuchthat |[f'(x)| > pVz € Q, thatis, f'(x) #0Vx € (.

Then 371 > 0 such that if [zo — 2*| < 7, then

f(zy)

PR TR T i)

k=0,1,2,...,

converges to x™. Furthermore,
Tep1 — 2°| < g — 2]
2p

or, equivalently,

Y 2
< = .
ekl < 5 lend
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Proof. With the result of previous Lemma,

Tht1 — 27| = |ak —

INA

A
|
E)
S
|
8
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Remark 1
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Remark 1

(i) Newton’s method only guarantee the convergence from a good starting point x that is
close enough to ™. In fact, Newton’s iteration may not converge at all if |:r;0 — :1:*| IS

large.
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Remark 1

(i) Newton’s method only guarantee the convergence from a good starting point x that is
close enough to ™. In fact, Newton’s iteration may not converge at all if |:r;0 — :1:*| IS

large.

(i) If f'(z*) =0, i.e., ™ is a multiple root of f, then Newton's method converges only

linearly.
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Remark 1

(i) Newton’s method only guarantee the convergence from a good starting point x that is
close enough to ™. In fact, Newton’s iteration may not converge at all if |:r;0 — :1:*| IS

large.

(i) If f'(z*) =0, i.e., ™ is a multiple root of f, then Newton's method converges only

linearly.

(iii) When f is a linear function, Newton’s method will converge in one step.
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‘ 3.3 — Examples I

Example 3 The following table shows the convergence behavior of Newton’s method

applied to solving f(a:) — 22 — 1 = 0. Observe the guadratic convergence rate.
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‘ 3.3 — Examples I

Example 3 The following table shows the convergence behavior of Newton’s method

applied to solving f(a:) — 22 — 1 = 0. Observe the guadratic convergence rate.

1.0003048780488
1.0000000464611

Gt = W N = O

1.0

X ek |
2.0 1

1.25 0.25
1.025 2.5e-2

3.048780488e-4
4.64611e-8
0
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Example 4 Newton's method will fail (the sequence {:r;k} does not converge) on solving

f(z) = 2° — 42 + 5 = 0 since f does not have any real root.
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Example 4 Newton's method will fail (the sequence {:r;k} does not converge) on solving

f(z) = 2° — 42 + 5 = 0 since f does not have any real root.

Example 5 When Newton’s method applied to f(a;) = cos x with starting point xg = 3,

which is close to the root 7 of f, it produces x1 = —4.01525, x5 = —4.8526, - - -,

which converges to another root — 3777

y = cos(x)

_15 \ |
=5 -4 -3

I
0

I
3

5

Figure 2: one step of Newton method
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3

Example 6 When Newton’s method applied to f(x) = x° — x — 3 with starting point

xo = 0, it produces

1 = —3 To = —1.961538
xy = —1.147176 x4 = —0.00679
x5 = —3.000389 re = —1.961818
x7 = —1.147430
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3

Example 6 When Newton’s method applied to f(x) = x° — x — 3 with starting point

xo = 0, it produces

1 = —3 To = —1.961538
xy = —1.147176 x4 = —0.00679
x5 = —3.000389 re = —1.961818
x7 = —1.147430

The sequence will not converge.
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Example 6 When Newton’s method applied to f(x) — 23 — x — 3 with starting point

xo = 0, it produces

1 = —3 To = —1.961538
xy = —1.147176 x4 = —0.00679
x5 = —3.000389 re = —1.961818
x7 = —1.147430

The sequence will not converge. But if the algorithm starts with x¢g = 2,
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3

Example 6 When Newton’s method applied to f(x) = x° — x — 3 with starting point

xo = 0, it produces

1 = —3 To = —1.961538
xy = —1.147176 x4 = —0.00679
x5 = —3.000389 re = —1.961818
x7 = —1.147430

The sequence will not converge. But if the algorithm starts with g = 2, then it produces

z1 = 1.727272,
7o = 1.67369,
v5 = 1.6717025, . ...
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Example 6 When Newton’s method applied to f(z) = x

xo = 0, it produces

3 — 2 — 3 with starting point

r1 = —3

r3 = —1.147176
x5 = —3.000389
x7 = —1.147430

ro = —1.961538
x4 = —0.00679
re = —1.961818

The sequence will not converge. But if the algorithm starts with g = 2, then it produces

z1 = 1.727272,
7o = 1.67369,
v5 = 1.6717025, . ...

The sequence converges to the root 1.671699881.
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3

Example 6 When Newton’s method applied to f(x) = x° — x — 3 with starting point

xo = 0, it produces

1 = —3 To = —1.961538
xy = —1.147176 x4 = —0.00679
x5 = —3.000389 re = —1.961818
x7 = —1.147430

The sequence will not converge. But if the algorithm starts with g = 2, then it produces

z1 = 1.727272,
7o = 1.67369,
v5 = 1.6717025, . ...

The sequence converges to the root 1.671699881. This example illustrates that the

starting point 5 must be close enough to the zero of f.
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4 — Quasi-Newton’s Method (Secant Method)

| 4.1 — The Secant Method I

Newton’s iteration:

f(zy)

B
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4 — Quasi-Newton’s Method (Secant Method)

| 4.1 — The Secant Method I

Newton’s iteration:

f(zy)

PRt =k [/ (zy)

Disadvantage: In many applications, the derivative f ! (:U) IS very expensive to compute, or

the function f(z) is not given in an algebraic formula so that f’(x) is not available.

B
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4 — Quasi-Newton’s Method (Secant Method)

| 4.1 — The Secant Method I

Newton’s iteration:

f(zy)

PRt =k [/ (zy)

Disadvantage: In many applications, the derivative f” (:U) IS very expensive to compute, or

the function f(z) is not given in an algebraic formula so that f’(x) is not available.

Since

Fa) — fn L@ @)

h—0 h

I

B
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4 — Quasi-Newton’s Method (Secant Method)

| 4.1 — The Secant Method I

Newton’s iteration:

f(zy)

PRt =k [/ (zy)

Disadvantage: In many applications, the derivative f” (:U) IS very expensive to compute, or

the function f(z) is not given in an algebraic formula so that f’(x) is not available.

Since

Fa) — fn L@ @)

h—0 h

I

[z + hg) — f(zk)

flxr) = for some small hy.
hy

B
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[
=> The finite-difference Newton’s iteration

hy
[z + hy) — f(xg)

Tr+1 = Tk — f(Tk)

B
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= The finite-difference Newton’s iteration
i,
f(zr + hi) — fxk)

Tr+1 = Tk — f(ak)

From geometric point of view, we use a secant line through x ;. and a near-by point x;. + h}

instead of the tangent line to approximate the function at the point .

-
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EE
=> The finite-difference Newton’s iteration

hy,
[z + hy) — f(xg)

Tr+1 = Tk — f(ak)

y = f(x)

Figure 3: Secant method

From geometric point of view, we use a secant line through x ;. and a near-by point x;. + h;

instead of the tangent line to approximate the function at the point .

B
Department of Mathematics — NTNU Tsung-Min Hwang November 16, 2003



Sol. Non-linear Fun. 29

N
The slope of the secant line is

[z + hy) — f(ag)
hy

Sk —

B
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The slope of the secant line is

[z + hy) — f(ag)

Sk —

and the equation is

T
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29
The slope of the secant line is
_ flze + hy) = fop)
Sk —
hy
and the equation is
M(z) = f(zk) + sp(z — zk)
The zero of the secant line
f () hy,
T =T — =z — f(Tk
Sk ( )f($k+hk)—f(ilfk)
IS then used as a new approximate Ty 1.
I
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29
The slope of the secant line is
_ S+ he) — flaw)
Sk —
hy
and the equation is
M(z) = f(zk) + sp(z — zk)
The zero of the secant line
f () hy,
T = T — =z — [Tk
Sk ( )f($k+hk)—f(33k)
IS then used as a new approximate Ty 1.
Set
hk = Xk — Lk—-1-
_
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29
The slope of the secant line is
f(xp + hi) — f(zr)
Sk — h
k
and the equation is
M(z) = f(zk) + sp(z — zk)
The zero of the secant line
f () hy,
T =T) — = x), — f(w)
Sk f(zg + he) — f(zg)
IS then used as a new approximate Ty 1.
Set
hk =T — Tk—1-
This leads to the so-called secant method or quasi-Newton method.
L — LTk-1
Lk+1 = Tk — f(:lfk> .
f(zr) — f(rr—1)
e
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Note that the secant method requires two initial guesses xg and x _1.

Example 7 The following table shows the convergence history for the finite-difference

Newton’s method with A, = 10~" X x;, and secant method for solving
f(z)=2*—-1=0.

finite-difference Newton | secant method

To | 2 2

x1 | 1.2500000266453 1.2500000266453
To | 1.0250000179057 1.0769230844910
xs3 | 1.0003048001120 1.0082644643823
T4 | 1.0000000464701 1.0003048781354
Ts | 1 1.0000012544523
L6 1.0000000001912
X7 1

T
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‘ 4.2 — Error Analysis of Secant Method I

Let z* denote the exact solution of f(z) = 0, ey, = x — =™ be the errors at the k-th

step. Then

T
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‘ 4.2 — Error Analysis of Secant Method I

Let z* denote the exact solution of f(z) = 0, ey, = x — =™ be the errors at the k-th

step. Then

*
€k+1 — Tk4y1 — X
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‘ 4.2 — Error Analysis of Secant Method I

Let z* denote the exact solution of f(z) = 0, ey, = x — =™ be the errors at the k-th

step. Then

*
€k+1 — Tk4y1 — X

flzr) — f(zr-1)

I
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‘ 4.2 — Error Analysis of Secant Method I

Let z* denote the exact solution of f(z) = 0, ey, = x — =™ be the errors at the k-th

step. Then

*
€k+1 — Lk+1 — X
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‘ 4.2 — Error Analysis of Secant Method I

Let z* denote the exact solution of f(z) = 0, ey, = x — =™ be the errors at the k-th

step. Then
ekyl = Thyl — T
_ . Lk — Tk—1 o
= I T e
— o e — ) @) - (o= 2 )
1

T
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‘ 4.2 — Error Analysis of Secant Method I

Let z* denote the exact solution of f(z) = 0, ey, = x — =™ be the errors at the k-th

step. Then

*
€k+1 — Lk+1 — X
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é;f(xk)_' L— f(zk)

€k —1
T —TLk—1

To estimate the numerator

B
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RS R )

€k—1

To estimate the numerator , we apply the Taylor’s theorem

Flan) = fa* + e) = F&) + 1 @)ex + 5 /()6 + O(ed),

T
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to get

T
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To estimate the numerator , we apply the Taylor’s theorem

Flan) = fa* +ex) = F&) + F @ e + 5 f(2)ek + Oe}).

to get
L e = F@®) + - f"(5%)ex + O(D).
€k 2
Similarly,
L flone1) = F1@™) + S " (@ )enon + O(E_y).
€L—1 2

T
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To estimate the numerator , we apply the Taylor’s theorem

Flan) = fa* +ex) = F&) + F @ e + 5 f(2)ek + Oe}).

to get
L e = F@®) + - f"(5%)ex + O(D).
€k 2
Similarly,
L flone1) = F1@™) + S " (@ )enon + O(E_y).
€L—1 2
Hence ] 1 |
af(xk) T e flxr—1) ~ 5(% —er_1)f"(x").
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To estimate the numerator

, we apply the Taylor’s theorem

Flan) = fa* +ex) = F&) + F @ e + 5 f(2)ek + Oe}).

to get
L e = F@®) + - f"(5%)ex + O(D).
€k 2
Similarly,
L flone1) = F1@™) + S " (@ )enon + O(E_y).
€L—1 2
Hence ] 1 |
af(xk) T e flxr—1) ~ 5(% —er_1)f"(x").

Sincex, — Xp_1 =€ —€r_1 and

L — Thk—1 1

f(zr) — fl@1)  fl(@)

T
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we have

@) 1)L,
€L — CL_1 f'(x*) 2 f'(x*) k=1
Cekek_l (1)

€k+1 = €k€k—1(

-
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we have

" (%wk e 1Y L)
ek — €k—1 f/(x*)
= Cerei—1 (1)

To estimate the convergence rate, we assume

|ek-|-1‘ A7 77|€k\aa

where 17 > 0 and o > 0 are constants,

T
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we have

el _ek—l)f”(m*) | 1 ) _ lf//(x*)
er — €x—1 f'(z*) 2
= Ceger—_1 (1)

To estimate the convergence rate, we assume

al
~ 2
€k+1 ~  €kep—1 (

|ek-|-1‘ & 77|€k\aa
where 7 > 0 and «« > 0 are constants, i.e.,

|€k+1’

AL »1 as k — oo.
n€k

T
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we have

€htl A ELeh_1 (%(ek — ek—l)f’/(gj*) | 1 ) _ lf//(gj*) ceer
ek — €k—1 S (z*) 2 f'(z*)
= Cerei—1 (1)
To estimate the convergence rate, we assume

|ek-|-1‘ A7 77|€k\aa

where 7 > 0 and «« > 0 are constants, i.e.,

el »1 as k — oo.
|ex|®
Then |ex| = nlex—1|® which implies |ex—1| ~ n~ Y *|ex|'/*.

T
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we have

. ~ ene %(ek _ek—l)f”(x*) | 1 B lf”(x*)e )
k41 k€k—1 er — er1 (™) > (z) k€k—1
= Cerei—1 (1)
To estimate the convergence rate, we assume
|ek-|-1‘ & 77|6k‘a7
where 7 > 0 and «« > 0 are constants, i.e.,

|€k+1’
nlex|®

»1 as k — oo.

-1/

Then |ex| = n|ex—1|* which implies |ex—1| = 7 lex|1/®. Hence (1) gives

_ _ 1 _ 1
nlerl® = Clexln™"%ex|* = C7lp'ta & e 70F=.
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we have

. ~ ene %(ek _ek—l)f”(x*) | 1 B lf”(x*)e )
k41 k€k—1 er — er1 (™) > (z) k€k—1
= Cerei—1 (1)
To estimate the convergence rate, we assume
|ek-|-1‘ & 77|6k‘a7
where 7 > 0 and «« > 0 are constants, i.e.,

|€k+1’
nlex|®

»1 as k — oo.

—1/@leL|1/®. Hence (1) gives

Then |ex| = n|ex—_1|* which implies |ex_1| &= 7
nlex|® = Clexln™/*lex]/® = C7ln'*e & ey e

: _ 1
Since |ex| — 0 as k — oo, and C~1n!T% is a nonzero constant,
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we have

. ~ ene %(ek _ek—l)f”(x*) | 1 B lf”(x*)e )
k41 k€k—1 er — er1 (™) > (z) k€k—1
= Cerei—1 (1)
To estimate the convergence rate, we assume
|ek-|-1‘ & 77|6k‘a7
where 7 > 0 and «« > 0 are constants, i.e.,

ek 1]
nlex|®

»1 as k — oo.

—1/@leL|1/®. Hence (1) gives

Then |ex| = n|ex—_1|* which implies |ex_1| &= 7
nlex|® & Clexln™/*ex|/* = O 'n'te ~ lep'oFo.
Since |ex| — 0 as k — 0o, and C~1n*+% is a nonzero constant,

1 1 3
l-a+—-—=0 — a= +v5
o 2

~ 1.62.

T
Department of Mathematics — NTNU Tsung-Min Hwang November 16, 2003



Sol. Non-linear Fun. 34

This result implies that C ~'n**ta — 1 and
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This result implies that C ~'n**ta — 1 and

In summary, we have shown that

lery1] = nlex|”, a=1.62,
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This result implies that C ~'n**ta — 1 and

In summary, we have shown that
k1] = nlex|”, a~1.62,

that is, the rate of convergence is superlinear.
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This result implies that C ~'n**ta — 1 and

In summary, we have shown that
k1] = nlex|”, a~1.62,

that is, the rate of convergence is superlinear.

Rate of convergence:
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This result implies that C ~'n**ta — 1 and

In summary, we have shown that
k1] = nlex|”, a~1.62,

that is, the rate of convergence is superlinear.

Rate of convergence:

[1 secant method:
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This result implies that C ~'n**ta — 1 and

In summary, we have shown that

k1] = nlex|”, a~1.62,
that is, the rate of convergence is superlinear.
Rate of convergence:

[1 secant method:

[] Newton’s method:
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This result implies that C ~'n**ta — 1 and

In summary, we have shown that
lexa1] = nlex|®, o=~ 1.62,
that is, the rate of convergence is superlinear.
Rate of convergence:
[1 secant method:
[] Newton’s method:

[] bisection method:
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Each iteration of method requires
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Each iteration of method requires

[] secant method: one function evaluation
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Each iteration of method requires
[] secant method: one function evaluation

[ Newton’s method: two function evaluation, namely, f(xx) and f" (xx).
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Each iteration of method requires
[] secant method: one function evaluation

[ Newton’s method: two function evaluation, namely, f(xx) and f" (xx).

—> two steps of secant method are comparable to one step of Newton’s method. Thus

3+5
lento| & nlept1|® ' T ek T2 &'t e
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Each iteration of method requires
[] secant method: one function evaluation

[ Newton’s method: two function evaluation, namely, f(xx) and f" (xx).

—> two steps of secant method are comparable to one step of Newton’s method. Thus

3+5
lento| & nlept1|® ' T ek T2 &'t e

—> secant method is more efficient than Newton’s method.
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Each iteration of method requires
[] secant method: one function evaluation

[ Newton’s method: two function evaluation, namely, f(xx) and f" (xx).

—> two steps of secant method are comparable to one step of Newton’s method. Thus

3+5
lento| & nlept1|® ' T ek T2 &'t e

—> secant method is more efficient than Newton’s method.

Remark 2 Two steps of secant method would require a little more work than one step of

Newton’s method.
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5 — Fixed Point and Functional Iteration

Definition 4 1 is called a fixed point of a given function f if f(x) = x.
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5 — Fixed Point and Functional Iteration

Definition 4 1 is called a fixed point of a given function f if f(x) = x.

The problem of finding a fixed point for a given function is equivalent to the

problem of finding a zero for a nonlinear function.
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5 — Fixed Point and Functional Iteration

Definition 4 1 is called a fixed point of a given function f if f(x) = x.

The problem of finding a fixed point for a given function is equivalent to the

problem of finding a zero for a nonlinear function.

[J Find =* such that f(z*) = 0.
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5 — Fixed Point and Functional Iteration

Definition 4 1 is called a fixed point of a given function f if f(x) = x.

The problem of finding a fixed point for a given function is equivalent to the

problem of finding a zero for a nonlinear function.

[J Find =* such that f(z*) = 0.
Letg(x) =z — f(x). Then g(x*) = z* — f(a*) = z*.
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5 — Fixed Point and Functional Iteration

Definition 4 1 is called a fixed point of a given function f if f(x) = x.

The problem of finding a fixed point for a given function is equivalent to the

problem of finding a zero for a nonlinear function.

[J Find =* such that f(z*) = 0.
Letg(x) = x — f(x). Then g(z*) = 2* — f(x*) = x*.
= x* is a fixed point for g(x).
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5 — Fixed Point and Functional Iteration

Definition 4 1 is called a fixed point of a given function f if f(x) = x.

The problem of finding a fixed point for a given function is equivalent to the

problem of finding a zero for a nonlinear function.

[J Find =* such that f(z*) = 0.
Letg(x) =z — f(x). Then g(x*) = z* — f(a*) = z*.
= x* is a fixed point for g(x).

[ Find =* such that g(z*) = x*.
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5 — Fixed Point and Functional Iteration

Definition 4 1 is called a fixed point of a given function f if f(x) = x.

The problem of finding a fixed point for a given function is equivalent to the

problem of finding a zero for a nonlinear function.

[J Find =* such that f(z*) = 0.
Letg(x) =z — f(x). Then g(x*) = z* — f(a*) = z*.
= x* is a fixed point for g(x).

[ Find =* such that g(z*) = x*.

Define f(x) = x — g(x) so that
fla*) =a* —g(z*) =2* —2" =0
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5 — Fixed Point and Functional Iteration

Definition 4 1 is called a fixed point of a given function f if f(x) = x.

The problem of finding a fixed point for a given function is equivalent to the

problem of finding a zero for a nonlinear function.

[J Find =* such that f(z*) = 0.
Letg(x) =z — f(x). Then g(x*) = z* — f(a*) = z*.
= x* is a fixed point for g(x).

[ Find =* such that g(z*) = x*.
Define f(x) = x — g(x) so that
fla*) =a* —g(z*) =2* —2" =0
= x* is a zero of f(x).
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5 — Fixed Point and Functional Iteration

Definition 4 1 is called a fixed point of a given function f if f(x) = x.

The problem of finding a fixed point for a given function is equivalent to the

problem of finding a zero for a nonlinear function.

[J Find =* such that f(z*) = 0.
Letg(x) =z — f(x). Then g(x*) = z* — f(a*) = z*.
= x* is a fixed point for g(x).

[ Find =* such that g(z*) = x*.
Define f(x) = x — g(x) so that
fla*) =a* —g(z*) =2* —2" =0
= x* is a zero of f(x).

Two questions arise: “When does a function have a fixed point?” and “How to

find a fixed point?”.
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| 5.1 — Functional Iteration I

Fixed-point iteration or functional iteration: Given a continuous function f,

choose an initial point £ and generate {x } x>0 by

Lk+1 = f(;vk), ]C Z O.

Department of Mathematics — NTNU Tsung-Min Hwang November 16, 2003



Sol. Non-linear Fun. 37

| 5.1 — Functional Iteration I

Fixed-point iteration or functional iteration: Given a continuous function f,

choose an initial point £ and generate {x } x>0 by

Lk+1 = f(;vk), ]C Z O.

{x } may not converge, e.g., f(x) = 3.
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| 5.1 — Functional Iteration I

Fixed-point iteration or functional iteration: Given a continuous function f,

choose an initial point £ and generate {x } x>0 by

Lk+1 = f(;vk), ]C Z O.

{x } may not converge, e.g., f(x) = 3x. However, when the sequence

converges, say,

lim x, = 2™,
k— o0
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| 5.1 — Functional Iteration I

Fixed-point iteration or functional iteration: Given a continuous function f,

choose an initial point £ and generate {x } x>0 by

Lk+1 = f(;vk), ]C Z O.

{x } may not converge, e.g., f(x) = 3x. However, when the sequence

converges, say,

lim x, = 2™,
k— o0

then, since f is continuous,

f(x®) = f(klim TR) = klim fxr) = klim Tpt1 = X
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| 5.1 — Functional Iteration I

Fixed-point iteration or functional iteration: Given a continuous function f,

choose an initial point £ and generate {x } x>0 by

Lk+1 = f(;vk), ]C Z O.

{x } may not converge, e.g., f(x) = 3x. However, when the sequence

converges, say,

lim x, = 2™,
k— o0

then, since f is continuous,

f(x®) = f(klim TR) = klim fxr) = klim Tpt1 = X

That is, ™ is a fixed point of f.
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| 5.1 — Functional Iteration I

Fixed-point iteration or functional iteration: Given a continuous function f,

choose an initial point £ and generate {x } x>0 by

Lk+1 = f(;vk), ]C Z O.

{x } may not converge, e.g., f(x) = 3x. However, when the sequence
converges, say,

lim x, = 2™,
k— o0

then, since f is continuous,

f(xz®™) = f(lim zx) = lim f(xg) = lim x5 =27,

k— oo k— oo k— oo

That is, ™ is a fixed point of f.

Note that Newton's method for solving g(x) = 0

g(zy)
g’ ()

Lk4+1 — Tk —
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IS just a special case of functional iteration in which
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IS just a special case of functional iteration in which

Definition 5 A function (mapping) f is said to be contractive if there exists a

constant 0 < A\ < 1 such that

[f(z) = F(y)] < Az -y

for all z, i in the domain of f.
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IS just a special case of functional iteration in which

Definition 5 A function (mapping) f is said to be contractive if there exists a
constant 0 < A\ < 1 such that

[f(z) = fy)] < Az —yl
for all z, i in the domain of f.

Theorem 4 (Contractive Mapping Theorem) Suppose f : D — D, where
D C R is a closed set, is a contractive mapping. Then [ has a unique fixed

point in [D. Moreover, this fixed point is the limit of every sequence obtained
by
Tr+1 = f(@k)

with any initial point 2.
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Proof: We first show that klim T} exists.
— OO
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Proof: We first show that klim I} exists. Since
— OO

k
rr = o+ (x1—x0)+(r2o—2x1)+ -+ (Tp—x_1) = ZCO—FZ(%—%—ﬁ,
i=1
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Proof: We first show that klim I} exists. Since
— OO

k

rr = o+ (x1—x0)+(r2o—2x1)+ -+ (Tp—x_1) = ZCO—FZ(%—%—ﬁ,
i=1

{x} k>0 converges if and only if > °  (x; — x;_1) converges and it is

1o ©. @)
sufficient to show » ., |x; — x;_1]| converges.
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Proof: We first show that klim I} exists. Since
— OO

k
rr = o+ (x1—x0)+(r2o—2x1)+ -+ (Tp—x_1) = ZCO—FZ(%—%—ﬁ,
i=1

{x} k>0 converges if and only if > °  (x; — x;_1) converges and it is

1o ©. @)
sufficient to show » ., |x; — x;_1]| converges.

Since f is contractive, we have

T — 513z'—1| — |f(33z'—1) — f(xi—2)|
< Ario1 — 2|
< A|zi_o — z4_3
< )\i_1|x1 — Xo|.

Department of Mathematics — NTNU Tsung-Min Hwang November 16, 2003



Sol. Non-linear Fun. 40

Then we have

Z |z; — xi—1]

1=1

IA

o0
E )\1_1‘5131 — X0
=1
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Then we have

Z |z; — xi—1]

1=1

IA

o0
Z )\1_1‘5131 — .’JSQ‘
1=1

o0
= |£Cl —ZC()‘Z)\Z_l
1=1
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Then we have

Z |z; — xi—1]

1=1

IA

o0
Z )\1_1‘5131 — .’JSQ‘
1=1

o0
= |£Cl —ZC()‘Z)\Z_l
1=1

since 0 < \ < 1.
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Then we have

O
Z |$z — xi—1|
i=1

since 0 < A\ < 1.

<

oo

Z )\i_l‘iﬁl — .”]30‘

=

o0
|£Cl — ZCO‘ Z )\z—l
1=1

1
I —A

|1 — o
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Then we have

©.@)
Z|$z‘—$z’—1| < Zkz_l\ﬂil—xo\
i=1

1=1
o0
— |£Cl —ZC()‘Z)\Z_l
n=1

1
= |1 — o

I —A

since 0 < A < 1. This show that > .~ | |#; — x;_1| is bounded,
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Then we have

©.@)
Z|$z‘—$z’—1| < Zkz_l\ﬂil—xo\
i=1

1=1
o0
— |£Cl —ZC()‘Z)\Z_l
n=1

1
= |1 — o

I —A

since 0 < A < 1. This show that .~ , |¢; — 2;_1| is bounded, hence it

converges.
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Then we have

IA

e e
Z|$Z —xi_1| Z)\Z_l‘il?l —370‘
1=1 =1

o0
— |£Cl —ZC()‘Z)\Z_l
1=1

1
= |1 — o

I —A

since 0 < A < 1. This show that .~ , |¢; — 2;_1| is bounded, hence it

converges. Let lim z, = x*.
k— o0
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Then we have

IA

e e
Z|$Z —xi_1| Z)\Z_l‘il?l —370‘
1=1 =1

o0
— |£Cl —ZC()‘Z)\Z_l
1=1

1
= |1 — o

I —A

since 0 < A < 1. This show that .~ , |¢; — 2;_1| is bounded, hence it

converges. Let lim z, = x*.
k— o0

f is a contractive mapping
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Then we have

©.@) ©.@)
Z|$z —xz;q| = ZAZ_l\xl — To|
i=1 i=1
)
= |£Cl —ZC()‘Z)\Z_l
i=1
1
= AT %

since 0 < A < 1. This show that .~ , |¢; — 2;_1| is bounded, hence it

converges. Let lim z, = x*.
k— o0

f is a contractive mapping

= f is continuous
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Then we have

©.@) ©.@)
Z|$z —xz;q| = ZAZ_l\xl — To|
i=1 i=1
)
= |£Cl —ZC()‘Z)\Z_l
i=1
1
= AT %

since 0 < A < 1. This show that .~ , |¢; — 2;_1| is bounded, hence it

converges. Let lim z, = x*.
k— o0

f is a contractive mapping

= f is continuous
=" = lim zp = lim f(xx_1) = f(lim 1) = f(z*)

k— o0 k— o0 k— oo
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Then we have

©.@) ©.@)
Z|$z —xz;q| = ZAZ_l\xl — To|
i=1 i=1
)
= |£Cl —ZC()‘Z)\Z_l
i=1
1
= AT %

since 0 < A < 1. This show that .~ , |¢; — 2;_1| is bounded, hence it

converges. Let lim z, = x*.
k— o0

f is a contractive mapping

= f is continuous
=" = lim zp = lim f(xx_1) = f(lim 1) = f(z*)

k— o0 k— o0 k— oo

= x™* is a fixed point of f.
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To prove the unigueness, let x and y both be fixed points of f.
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To prove the uniqueness, let  and y both be fixed points of f. Then

lz —yl =[f(z) = fy)] < Az -yl

Department of Mathematics — NTNU Tsung-Min Hwang November 16, 2003



Sol. Non-linear Fun. 41

To prove the uniqueness, let  and y both be fixed points of f. Then

lz —yl =[f(z) = fy)] < Az -yl

Since \ < 1, this forces |z — y| = 0. Thatis, z = . |
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To prove the uniqueness, let  and y both be fixed points of f. Then

v =yl =[f(@) = fy)| < Alz =yl
Since \ < 1, this forces |z — y| = 0. Thatis, z = . |

Theorem 5 If f € Cla,b] suchthata < f(z) < bforallz € |a, b], then

f has a fixed point in [a, b]. Suppose, in addition, that f’(x) exists in (a, b)
and there exists a positive constant A/ < 1 such that | f'(z)| < M < 1 for
all x € (a,b). Then the fixed point is unique.
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To prove the uniqueness, let  and y both be fixed points of f. Then

v =yl =[f(@) = fy)| < Alz =yl
Since \ < 1, this forces |z — y| = 0. Thatis, z = . |

Theorem 5 If f € Cla, b] suchthata < f(x) < bforallx € |a,b|, then

f has a fixed point in [a, b]. Suppose, in addition, that f’(x) exists in (a, b)
and there exists a positive constant A/ < 1 such that | f'(z)| < M < 1 for
all x € (a,b). Then the fixed point is unique.

Proof: If f(a) = aor f(b) = b, then a or b is a fixed point of f and we are

done.
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To prove the uniqueness, let  and y both be fixed points of f. Then

v =yl =[f(@) = fy)| < Alz =yl
Since \ < 1, this forces |z — y| = 0. Thatis, z = . |

Theorem 5 If f € Cla, b] suchthata < f(x) < bforallx € |a,b|, then

f has a fixed point in [a, b]. Suppose, in addition, that f’(x) exists in (a, b)
and there exists a positive constant A/ < 1 such that | f'(z)| < M < 1 for
all x € (a,b). Then the fixed point is unique.

Proof: If f(a) = aor f(b) = b, then a or b is a fixed point of f and we are
done. Otherwise, it must be g(a) > a and g(b) < b.
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To prove the uniqueness, let  and y both be fixed points of f. Then

v =yl =[f(@) = fy)| < Alz =yl
Since \ < 1, this forces |z — y| = 0. Thatis, z = . |

Theorem 5 If f € Cla, b] suchthata < f(x) < bforallx € |a,b|, then

f has a fixed point in [a, b]. Suppose, in addition, that f’(x) exists in (a, b)
and there exists a positive constant A/ < 1 such that | f'(z)| < M < 1 for
all x € (a,b). Then the fixed point is unique.

Proof: If f(a) = aor f(b) = b, then a or b is a fixed point of f and we are
done. Otherwise, it must be g(a) > a and g(b) < b.

Let h(x) = f(x) — x.
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To prove the uniqueness, let  and y both be fixed points of f. Then

v =yl =[f(@) = fy)| < Alz =yl
Since \ < 1, this forces |z — y| = 0. Thatis, z = . |

Theorem 5 If f € Cla, b] suchthata < f(x) < bforallx € |a,b|, then

f has a fixed point in [a, b]. Suppose, in addition, that f’(x) exists in (a, b)
and there exists a positive constant A/ < 1 such that | f'(z)| < M < 1 for
all x € (a,b). Then the fixed point is unique.

Proof: If f(a) = aor f(b) = b, then a or b is a fixed point of f and we are
done. Otherwise, it must be g(a) > a and g(b) < b.

Let h(x) = f(x) — x.

= h € Cla,b] since f € Cla,b],and h(a) = f(a) —a > 0,

h(b) = f(b) — b < 0.
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By the intermediate value theorem, 3 x* € [a, b] such that h(z*) = 0.
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= f(z*) —x* =0and f(a*) = z*.
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By the intermediate value theorem, 3 x* € [a, b] such that h(z*) = 0.
= f(z*) —2* =0and f(z*) = x*.
= f has a fixed point * in [a, b].
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By the intermediate value theorem, 3 x* € [a, b] such that h(z*) = 0.
= f(z*) —2* =0and f(z*) = x*.
= f has a fixed point * in [a, b].

Suppose that p = ¢ are both fixed points of f in |a, b].
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By the intermediate value theorem, 3 x* € [a, b] such that h(z*) = 0.
= f(z*) —x* =0and f(a*) = z*.

= f has a fixed point * in [a, b].

Suppose that p = ¢ are both fixed points of f in |a, b]. By the Mean-Value

theorem, there exists £ between p and g such that

fp)=flg) _p—a_,
p—q p—q

f'(&) =
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By the intermediate value theorem, 3 x* € [a, b] such that h(z*) = 0.
= f(z*) —2* =0and f(z*) = x*.
= f has a fixed point * in [a, b].

Suppose that p = ¢ are both fixed points of f in |a, b]. By the Mean-Value

theorem, there exists £ between p and g such that

fp)=flg _p—a_,

pP—q P—q

f'(&) =

However, this contradicts to the assumption that f/(x) < M < 1 forall x in

a, b].
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By the intermediate value theorem, 3 x* € [a, b] such that h(z*) = 0.
= f(z*) —2* =0and f(z*) = x*.
= f has a fixed point * in [a, b].

Suppose that p = ¢ are both fixed points of f in |a, b]. By the Mean-Value

theorem, there exists £ between p and g such that

fp)=flg _p—a_,

pP—q P—q

f'(&) =

However, this contradicts to the assumption that f/(x) < M < 1 forall x in

la, b]. Therefore the fixed point of f is unique. N
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‘ 5.2 — Convergence Analysis I

Assumptions:
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‘ 5.2 — Convergence Analysis I

Assumptions:

1. f has a fixed point £, and the sequence {Zlfk}kzo Is generated by the

iteration
Lhk+1 = f(:lfk), k= 0,1,...,

with an arbitrary initial point x;
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Assumptions:

1. f has a fixed point £, and the sequence {Zlfk}kzo Is generated by the

iteration
Lhk+1 = f(:lfk), k= 0,1,...,

with an arbitrary initial point x;

2. f' exists, is continuous, and | f/(x)| < 1 for all x in the domain of f;
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‘ 5.2 — Convergence Analysis I

Assumptions:

1. f has a fixed point £, and the sequence {Zlfk}kzo Is generated by the

iteration
Lhk+1 = f(:lfk), k= 0,1,...,

with an arbitrary initial point x;
2. f' exists, is continuous, and | f/(x)| < 1 for all x in the domain of f;

3. mis a positive integer such that (V) (x*) = 0fori =1,...,m — 1,

but (™) (2*) #£ 0.
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‘ 5.2 — Convergence Analysis I

Assumptions:

1. f has a fixed point £, and the sequence {Zlfk}kzo Is generated by the

iteration
Lhk+1 = f(:lfk), k= 0,1,...,

with an arbitrary initial point x;
2. f' exists, is continuous, and | f/(x)| < 1 for all x in the domain of f;

3. mis a positive integer such that (V) (x*) = 0fori =1,...,m — 1,

but (™) (2*) #£ 0.

Lete, = xp — ™.
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‘ 5.2 — Convergence Analysis I

Assumptions:

1. f has a fixed point £, and the sequence {Zlfk}kzo Is generated by the

iteration
Lhk+1 = f(:lfk), k= 0,1,...,

with an arbitrary initial point x;
2. f' exists, is continuous, and | f/(x)| < 1 for all x in the domain of f;

3. mis a positive integer such that (V) (x*) = 0fori =1,...,m — 1,

but (™) (2*) #£ 0.

Let e, = x, — x*. Then by the Mean-Value theorem

exr1 = Tpy1 — &° = fzx) — f(2") = [ (&) (2r — %) = f'(§p)er,

where &, is between 3 and x*.
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‘ 5.2 — Convergence Analysis I

Assumptions:

1. f has a fixed point £, and the sequence {Zlfk}kzo Is generated by the

iteration
Lhk+1 = f(:lfk), k= 0,1,...,

with an arbitrary initial point x;
2. f' exists, is continuous, and | f/(x)| < 1 for all x in the domain of f;

3. mis a positive integer such that (V) (x*) = 0fori =1,...,m — 1,

but (™) (z*) # 0.
Let e, = x, — x*. Then by the Mean-Value theorem
ert1 = Tpy1 — 2" = f(wg) — f(z¥) = f(&)(zr — 27) = f'(E)er, ()

where &, is between x, and x*. Since | f/(£x)| < 1 by assumption, {|ex|}

decreases.
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When xi, is close to ™, i.e., ey, is small
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When xi, is close to ™, i.e., ey, is small
= &} will be close to x*
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When xi, is close to ™, i.e., ey, is small
= &1, will be close to x*
= f'(&x) will be close to f'(x*) since f’is continuous.
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When xi, is close to ™, i.e., ey, is small

= &} will be close to x*

= f'(&k) will be close to f'(x*) since f’ is continuous.
— (2) can be written as

eri1 ~ f(z%)eg,
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When xi, is close to ™, i.e., ey, is small
= &} will be close to x*

= f'(&x) will be close to f'(z*) since f’ is continuous.
— (2) can be written as

eri1 ~ f(z%)eg,

Using Taylor’s theorem, we have
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44

When xi, is close to ™, i.e., ey, is small

= &1, will be close to x*

= f'(&x) will be close to f'(z*) since f’ is continuous.
— (2) can be written as

eri1 ~ f(z%)eg,

Using Taylor’s theorem, we have

k
€k+1 = Tk+1 — L
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44

When xi, is close to ™, i.e., ey, is small

= &1, will be close to x*

= f'(&x) will be close to f'(z*) since f’ is continuous.
— (2) can be written as

eri1 ~ f(z%)eg,

Using Taylor’s theorem, we have

k
€k+1 = Tk+1 — L

= f(zk) — f(z7)
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44

When xi, is close to ™, i.e., ey, is small
= &} will be close to x*

= f'(&x) will be close to f'(x*) since f’is continuous.

— (2) can be written as

eri1 ~ f(z%)eg,

Using Taylor’s theorem, we have

ekyl = Thyl — T
= flar) — f(27)
= f(z" +ex)— f(z¥)
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44

When xi, is close to ™, i.e., ey, is small
= &1, will be close to x*
= f'(&x) will be close to f'(x*) since f’is continuous.

— (2) can be written as

eri1 ~ f(z%)eg,

Using Taylor’s theorem, we have

ekyl = Thyl — T
= flar) — f(27)
= f(z" +ex)— f(z¥)

= fa)ent 5 f @)+

1 m m
—+ mf( )(Uk:)ek
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When xi, is close to ™, i.e., ey, is small
= &1, will be close to x*
= f'(&x) will be close to f'(x*) since f’is continuous.

— (2) can be written as

eri1 ~ f(z%)eg,

Using Taylor’s theorem, we have

ekyl = Thyl — T
= flar) — f(27)
= f(z" +ex)— f(z¥)

1
= fl@er + 5 @")ek - +
+mf (1k ) ey,

1 m m
= ﬁf( )(nk)ekv
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where 7. is between x™ and x.
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where 1 is between x* and z. Since lim xp = x™,
k— o0

e — & = [ () — FU™ ().
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where 1 is between x* and z. Since lim xp = x™,
k— o0

me — x* = [ () — f)(z%).
Therefore we have

: ek 11 1 (m)
lim —— = — f\"(z").
b lex|™ m!f (@)
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where 1 is between x* and z. Since lim xp = x™,
k— o0

me — x* = [ () — f)(z%).
Therefore we have

. ’€k+1| 1
lim 2l = = (M) (),
L — @)

This shows that the convergence rate of the functional iteration is m.
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