Solutions of Non-linear Equations in One Variable

NTNU

Tsung-Min Hwang
November 16, 2003
1 - Preliminaries 3
2 - Bisection Method 6
3 - Newton's Method 12
3.1 - Derivation of Newton's Method 12
3.2 - Convergence Analysis 16
3.3 - Examples 24
4 - Quasi-Newton's Method (Secant Method) 27
4.1 - The Secant Method 27
4.2 - Error Analysis of Secant Method 31
5 - Fixed Point and Functional Iteration 36
5.1 - Functional Iteration 37
5.2 - Convergence Analysis 43

Sol. Non-linear Fun.

1 - Preliminaries

Definition 1 Let $\left\{x_{n}\right\} \rightarrow x^{*}$. We say that the rate of convergence is

Sol. Non-linear Fun.

1 - Preliminaries

Definition 1 Let $\left\{x_{n}\right\} \rightarrow x^{*}$. We say that the rate of convergence is

1. linear if \exists a constant $0<c<1$ and an integer $N>0$ such that

$$
\left|x_{n+1}-x^{*}\right| \leq c\left|x_{n}-x^{*}\right|, \quad \forall n \geq N
$$

1 - Preliminaries

Definition 1 Let $\left\{x_{n}\right\} \rightarrow x^{*}$. We say that the rate of convergence is

1. linear if \exists a constant $0<c<1$ and an integer $N>0$ such that

$$
\left|x_{n+1}-x^{*}\right| \leq c\left|x_{n}-x^{*}\right|, \quad \forall n \geq N
$$

2. superlinear if $\exists\left\{c_{n}\right\}, c_{n} \rightarrow 0$ as $n \rightarrow \infty$, and an integer $N>0$ such that

$$
\left|x_{n+1}-x^{*}\right| \leq c_{n}\left|x_{n}-x^{*}\right|, \quad \forall n \geq N
$$

or, equivalently,

$$
\lim _{n \rightarrow \infty} \frac{\left|x_{n+1}-x^{*}\right|}{\left|x_{n}-x^{*}\right|}=0
$$

1 - Preliminaries

Definition 1 Let $\left\{x_{n}\right\} \rightarrow x^{*}$. We say that the rate of convergence is

1. linear if \exists a constant $0<c<1$ and an integer $N>0$ such that

$$
\left|x_{n+1}-x^{*}\right| \leq c\left|x_{n}-x^{*}\right|, \quad \forall n \geq N
$$

2. superlinear if $\exists\left\{c_{n}\right\}, c_{n} \rightarrow 0$ as $n \rightarrow \infty$, and an integer $N>0$ such that

$$
\left|x_{n+1}-x^{*}\right| \leq c_{n}\left|x_{n}-x^{*}\right|, \quad \forall n \geq N
$$

or, equivalently,

$$
\lim _{n \rightarrow \infty} \frac{\left|x_{n+1}-x^{*}\right|}{\left|x_{n}-x^{*}\right|}=0
$$

3. quadratic if \exists a constant $c>0$ (not necessarily less than 1) and an integer $N>0$ such that

$$
\left|x_{n+1}-x^{*}\right| \leq c\left|x_{n}-x^{*}\right|^{2}, \quad \forall n \geq N
$$

Sol. Non-linear Fun.

In general, if there are positive constants c and α and an integer $N>0$ such that

$$
\left|x_{n+1}-x^{*}\right| \leq c\left|x_{n}-x^{*}\right|^{\alpha}, \quad \forall n \geq N
$$

then we say the rate of convergence is of order α.

Sol. Non-linear Fun.

In general, if there are positive constants c and α and an integer $N>0$ such that

$$
\left|x_{n+1}-x^{*}\right| \leq c\left|x_{n}-x^{*}\right|^{\alpha}, \quad \forall n \geq N
$$

then we say the rate of convergence is of order α.
Definition 2 Suppose $\left\{\beta_{n}\right\} \rightarrow 0$ and $\left\{x_{n}\right\} \rightarrow x^{*}$. If $\exists c>0$ and an integer $N>0$ such that

$$
\left|x_{n}-x^{*}\right| \leq c\left|\beta_{n}\right|, \quad \forall n \geq N
$$

then we say $\left\{x_{n}\right\}$ converges to x^{*} with rate of convergence $O\left(\beta_{n}\right)$, and write $x_{n}=x^{*}+O\left(\beta_{n}\right)$.

Sol. Non-linear Fun.

In general, if there are positive constants c and α and an integer $N>0$ such that

$$
\left|x_{n+1}-x^{*}\right| \leq c\left|x_{n}-x^{*}\right|^{\alpha}, \quad \forall n \geq N
$$

then we say the rate of convergence is of order α.
Definition 2 Suppose $\left\{\beta_{n}\right\} \rightarrow 0$ and $\left\{x_{n}\right\} \rightarrow x^{*}$. If $\exists c>0$ and an integer $N>0$ such that

$$
\left|x_{n}-x^{*}\right| \leq c\left|\beta_{n}\right|, \quad \forall n \geq N
$$

then we say $\left\{x_{n}\right\}$ converges to x^{*} with rate of convergence $O\left(\beta_{n}\right)$, and write $x_{n}=x^{*}+O\left(\beta_{n}\right)$.

Example 1 Compare the convergence behavior of $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$, where

$$
x_{n}=\frac{n+1}{n^{2}}, \quad \text { and } \quad y_{n}=\frac{n+3}{n^{3}}
$$

Sol. Non-linear Fun.

Solution: Note that both

$$
\lim _{n \rightarrow \infty} x_{n}=0 \text { and } \lim _{n \rightarrow \infty} y_{n}=0
$$

Sol. Non-linear Fun.

Solution: Note that both

$$
\lim _{n \rightarrow \infty} x_{n}=0 \text { and } \lim _{n \rightarrow \infty} y_{n}=0
$$

Let $\alpha_{n}=\frac{1}{n}$ and $\beta_{n}=\frac{1}{n^{2}}$.

Sol. Non-linear Fun.

Solution: Note that both

$$
\lim _{n \rightarrow \infty} x_{n}=0 \text { and } \lim _{n \rightarrow \infty} y_{n}=0
$$

Let $\alpha_{n}=\frac{1}{n}$ and $\beta_{n}=\frac{1}{n^{2}}$. Then

$$
\begin{aligned}
\left|x_{n}-0\right| & =\frac{n+1}{n^{2}} \leq \frac{n+n}{n^{2}}=\frac{2}{n}=2 \alpha_{n} \\
\left|y_{n}-0\right| & =\frac{n+3}{n^{3}} \leq \frac{n+3 n}{n^{3}}=\frac{4}{n^{2}}=4 \beta_{n}
\end{aligned}
$$

Sol. Non-linear Fun.

Solution: Note that both

$$
\lim _{n \rightarrow \infty} x_{n}=0 \text { and } \lim _{n \rightarrow \infty} y_{n}=0
$$

Let $\alpha_{n}=\frac{1}{n}$ and $\beta_{n}=\frac{1}{n^{2}}$. Then

$$
\begin{aligned}
\left|x_{n}-0\right| & =\frac{n+1}{n^{2}} \leq \frac{n+n}{n^{2}}=\frac{2}{n}=2 \alpha_{n} \\
\left|y_{n}-0\right| & =\frac{n+3}{n^{3}} \leq \frac{n+3 n}{n^{3}}=\frac{4}{n^{2}}=4 \beta_{n}
\end{aligned}
$$

Hence

$$
x_{n}=0+O\left(\frac{1}{n}\right) \quad \text { and } \quad y_{n}=0+O\left(\frac{1}{n^{2}}\right)
$$

Solution: Note that both

$$
\lim _{n \rightarrow \infty} x_{n}=0 \text { and } \lim _{n \rightarrow \infty} y_{n}=0
$$

Let $\alpha_{n}=\frac{1}{n}$ and $\beta_{n}=\frac{1}{n^{2}}$. Then

$$
\begin{aligned}
\left|x_{n}-0\right| & =\frac{n+1}{n^{2}} \leq \frac{n+n}{n^{2}}=\frac{2}{n}=2 \alpha_{n} \\
\left|y_{n}-0\right| & =\frac{n+3}{n^{3}} \leq \frac{n+3 n}{n^{3}}=\frac{4}{n^{2}}=4 \beta_{n}
\end{aligned}
$$

Hence

$$
x_{n}=0+O\left(\frac{1}{n}\right) \quad \text { and } \quad y_{n}=0+O\left(\frac{1}{n^{2}}\right)
$$

This shows that $\left\{y_{n}\right\}$ converges to 0 much faster than $\left\{x_{n}\right\}$.

2 - Bisection Method

Idea: if $f(x) \in C[a, b]$ and $f(a) f(b)<0$, then $\exists c \in(a, b)$ such that $f(c)=0$.
Algorithm 1 (Bisection Method) Given $f(x)$ defined on (a, b), the maximal number of iterations M, and stop criteria δ and ε, this algorithm tries to locate one root of $f(x)$.

```
compute \(u=f(a), v=f(b)\), and \(e=b-a\).
if \(\operatorname{sign}(u)=\operatorname{sign}(v)\), then stop
for \(k=1,2, \ldots, M\) do
    \(e=e / 2, c=a+e, w=f(c)\).
    if \(|e|<\delta\) or \(|w|<\varepsilon\), then stop
    if \(\operatorname{sign}(w) \neq \operatorname{sign}(u)\) then
        \(b=c, v=w\).
    else
        \(a=c, u=w\)
    end if
end for
```

Let $\left\{c_{n}\right\}$ be the sequence of numbers produced. The algorithm should stop if one of the following conditions is satisfied.

1. the iteration number $k>M$,
2. $\left|c_{k}-c_{k-1}\right|<\delta$, or
3. $\left|f\left(c_{k}\right)\right|<\varepsilon$.

Let $\left\{c_{n}\right\}$ be the sequence of numbers produced. The algorithm should stop if one of the following conditions is satisfied.

1. the iteration number $k>M$,
2. $\left|c_{k}-c_{k-1}\right|<\delta$, or
3. $\left|f\left(c_{k}\right)\right|<\varepsilon$.

Let $\left[a_{0}, b_{0}\right],\left[a_{1}, b_{1}\right], \ldots$ denote the successive intervals produced by the bisection algorithm.

Let $\left\{c_{n}\right\}$ be the sequence of numbers produced. The algorithm should stop if one of the following conditions is satisfied.

1. the iteration number $k>M$,
2. $\left|c_{k}-c_{k-1}\right|<\delta$, or
3. $\left|f\left(c_{k}\right)\right|<\varepsilon$.

Let $\left[a_{0}, b_{0}\right],\left[a_{1}, b_{1}\right], \ldots$ denote the successive intervals produced by the bisection algorithm. Then

$$
a=a_{0} \leq a_{1} \leq a_{2} \leq \cdots \leq b_{0}=b
$$

Let $\left\{c_{n}\right\}$ be the sequence of numbers produced. The algorithm should stop if one of the following conditions is satisfied.

1. the iteration number $k>M$,
2. $\left|c_{k}-c_{k-1}\right|<\delta$, or
3. $\left|f\left(c_{k}\right)\right|<\varepsilon$.

Let $\left[a_{0}, b_{0}\right],\left[a_{1}, b_{1}\right], \ldots$ denote the successive intervals produced by the bisection algorithm. Then

$$
a=a_{0} \leq a_{1} \leq a_{2} \leq \cdots \leq b_{0}=b
$$

$\Rightarrow\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are bounded.

Let $\left\{c_{n}\right\}$ be the sequence of numbers produced. The algorithm should stop if one of the following conditions is satisfied.

1. the iteration number $k>M$,
2. $\left|c_{k}-c_{k-1}\right|<\delta$, or
3. $\left|f\left(c_{k}\right)\right|<\varepsilon$.

Let $\left[a_{0}, b_{0}\right],\left[a_{1}, b_{1}\right], \ldots$ denote the successive intervals produced by the bisection algorithm. Then

$$
a=a_{0} \leq a_{1} \leq a_{2} \leq \cdots \leq b_{0}=b
$$

$\Rightarrow\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are bounded.
$\Rightarrow \lim _{n \rightarrow \infty} a_{n}$ and $\lim _{n \rightarrow \infty} b_{n}$ exist.

Since

$$
\begin{aligned}
b_{1}-a_{1} & =\frac{1}{2}\left(b_{0}-a_{0}\right) \\
b_{2}-a_{2} & =\frac{1}{2}\left(b_{1}-a_{1}\right)=\frac{1}{4}\left(b_{0}-a_{0}\right) \\
& \vdots \\
b_{n}-a_{n} & =\frac{1}{2^{n}}\left(b_{0}-a_{0}\right)
\end{aligned}
$$

Since

$$
\begin{aligned}
b_{1}-a_{1} & =\frac{1}{2}\left(b_{0}-a_{0}\right) \\
b_{2}-a_{2} & =\frac{1}{2}\left(b_{1}-a_{1}\right)=\frac{1}{4}\left(b_{0}-a_{0}\right) \\
& \vdots \\
b_{n}-a_{n} & =\frac{1}{2^{n}}\left(b_{0}-a_{0}\right)
\end{aligned}
$$

hence

$$
\lim _{n \rightarrow \infty} b_{n}-\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(b_{n}-a_{n}\right)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left(b_{0}-a_{0}\right)=0
$$

Since

$$
\begin{aligned}
b_{1}-a_{1} & =\frac{1}{2}\left(b_{0}-a_{0}\right) \\
b_{2}-a_{2} & =\frac{1}{2}\left(b_{1}-a_{1}\right)=\frac{1}{4}\left(b_{0}-a_{0}\right) \\
& \vdots \\
b_{n}-a_{n} & =\frac{1}{2^{n}}\left(b_{0}-a_{0}\right)
\end{aligned}
$$

hence

$$
\lim _{n \rightarrow \infty} b_{n}-\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(b_{n}-a_{n}\right)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left(b_{0}-a_{0}\right)=0
$$

Therefore

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n} \equiv z
$$

Since

$$
\begin{aligned}
b_{1}-a_{1} & =\frac{1}{2}\left(b_{0}-a_{0}\right) \\
b_{2}-a_{2} & =\frac{1}{2}\left(b_{1}-a_{1}\right)=\frac{1}{4}\left(b_{0}-a_{0}\right) \\
& \vdots \\
b_{n}-a_{n} & =\frac{1}{2^{n}}\left(b_{0}-a_{0}\right)
\end{aligned}
$$

hence

$$
\lim _{n \rightarrow \infty} b_{n}-\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(b_{n}-a_{n}\right)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}}\left(b_{0}-a_{0}\right)=0
$$

Therefore

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n} \equiv z
$$

Since f is a continuous function

$$
\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f\left(\lim _{n \rightarrow \infty} a_{n}\right)=f(z) \text { and } \lim _{n \rightarrow \infty} f\left(b_{n}\right)=f\left(\lim _{n \rightarrow \infty} b_{n}\right)=f(z)
$$

Since $f\left(a_{n}\right) f\left(b_{n}\right) \leq 0$.

Since $f\left(a_{n}\right) f\left(b_{n}\right) \leq 0$.
$\Rightarrow \lim _{n \rightarrow \infty} f\left(a_{n}\right) f\left(b_{n}\right)=f^{2}(z) \leq 0$.

```
Since \(f\left(a_{n}\right) f\left(b_{n}\right) \leq 0\).
\(\Rightarrow \lim _{n \rightarrow \infty} f\left(a_{n}\right) f\left(b_{n}\right)=f^{2}(z) \leq 0\).
\(\Rightarrow f(z)=0\).
```

```
Since \(f\left(a_{n}\right) f\left(b_{n}\right) \leq 0\).
\(\Rightarrow \lim _{n \rightarrow \infty} f\left(a_{n}\right) f\left(b_{n}\right)=f^{2}(z) \leq 0\).
\(\Rightarrow f(z)=0\).
\(\Rightarrow\) The limit of the sequences \(\left\{a_{n}\right\}\) and \(\left\{b_{n}\right\}\) is a zero of \(f\) in \([a, b]\).
```

Since $f\left(a_{n}\right) f\left(b_{n}\right) \leq 0$.
$\Rightarrow \lim _{n \rightarrow \infty} f\left(a_{n}\right) f\left(b_{n}\right)=f^{2}(z) \leq 0$.
$\Rightarrow f(z)=0$.
\Rightarrow The limit of the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ is a zero of f in $[a, b]$.
Let $c_{n}=\frac{1}{2}\left(a_{n}+b_{n}\right)$.

Since $f\left(a_{n}\right) f\left(b_{n}\right) \leq 0$.
$\Rightarrow \lim _{n \rightarrow \infty} f\left(a_{n}\right) f\left(b_{n}\right)=f^{2}(z) \leq 0$.
$\Rightarrow f(z)=0$.
\Rightarrow The limit of the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ is a zero of f in $[a, b]$.
Let $c_{n}=\frac{1}{2}\left(a_{n}+b_{n}\right)$. Then

$$
\begin{aligned}
\left|z-c_{n}\right| & =\left|\lim _{n \rightarrow \infty} a_{n}-\frac{1}{2}\left(a_{n}+b_{n}\right)\right| \\
& =\left|\frac{1}{2}\left[\lim _{n \rightarrow \infty} a_{n}-b_{n}\right]+\frac{1}{2}\left[\lim _{n \rightarrow \infty} a_{n}-a_{n}\right]\right| \\
& \leq \frac{1}{2} \max \left\{\left|\lim _{n \rightarrow \infty} a_{n}-b_{n}\right|,\left|\lim _{n \rightarrow \infty} a_{n}-a_{n}\right|\right\} \\
& \leq \frac{1}{2}\left|b_{n}-a_{n}\right|=\frac{1}{2^{n+1}}\left|b_{0}-a_{0}\right|
\end{aligned}
$$

Since $f\left(a_{n}\right) f\left(b_{n}\right) \leq 0$.
$\Rightarrow \lim _{n \rightarrow \infty} f\left(a_{n}\right) f\left(b_{n}\right)=f^{2}(z) \leq 0$.
$\Rightarrow f(z)=0$.
\Rightarrow The limit of the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ is a zero of f in $[a, b]$.
Let $c_{n}=\frac{1}{2}\left(a_{n}+b_{n}\right)$. Then

$$
\begin{aligned}
\left|z-c_{n}\right| & =\left|\lim _{n \rightarrow \infty} a_{n}-\frac{1}{2}\left(a_{n}+b_{n}\right)\right| \\
& =\left|\frac{1}{2}\left[\lim _{n \rightarrow \infty} a_{n}-b_{n}\right]+\frac{1}{2}\left[\lim _{n \rightarrow \infty} a_{n}-a_{n}\right]\right| \\
& \leq \frac{1}{2} \max \left\{\left|\lim _{n \rightarrow \infty} a_{n}-b_{n}\right|,\left|\lim _{n \rightarrow \infty} a_{n}-a_{n}\right|\right\} \\
& \leq \frac{1}{2}\left|b_{n}-a_{n}\right|=\frac{1}{2^{n+1}}\left|b_{0}-a_{0}\right|
\end{aligned}
$$

This proves the following theorem.

Theorem 1 Let $\left\{\left[a_{n}, b_{n}\right]\right\}$ denote the intervals produced by the bisection algorithm. Then $\lim _{n \rightarrow \infty} a_{n}$ and $\lim _{n \rightarrow \infty} b_{n}$ exist, are equal, and represent a zero of $f(x)$. If

$$
z=\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n} \quad \text { and } \quad c_{n}=\frac{1}{2}\left(a_{n}+b_{n}\right)
$$

then

$$
\left|z-c_{n}\right| \leq \frac{1}{2^{n+1}}\left(b_{0}-a_{0}\right)
$$

Theorem 1 Let $\left\{\left[a_{n}, b_{n}\right]\right\}$ denote the intervals produced by the bisection algorithm. Then $\lim _{n \rightarrow \infty} a_{n}$ and $\lim _{n \rightarrow \infty} b_{n}$ exist, are equal, and represent a zero of $f(x)$. If

$$
z=\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n} \quad \text { and } \quad c_{n}=\frac{1}{2}\left(a_{n}+b_{n}\right)
$$

then

$$
\left|z-c_{n}\right| \leq \frac{1}{2^{n+1}}\left(b_{0}-a_{0}\right)
$$

Remarks $1\left\{c_{n}\right\}$ converges to z with the rate of $O\left(2^{-n}\right)$.

Theorem 1 Let $\left\{\left[a_{n}, b_{n}\right]\right\}$ denote the intervals produced by the bisection algorithm. Then $\lim _{n \rightarrow \infty} a_{n}$ and $\lim _{n \rightarrow \infty} b_{n}$ exist, are equal, and represent a zero of $f(x)$. If

$$
z=\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n} \quad \text { and } \quad c_{n}=\frac{1}{2}\left(a_{n}+b_{n}\right)
$$

then

$$
\left|z-c_{n}\right| \leq \frac{1}{2^{n+1}}\left(b_{0}-a_{0}\right)
$$

Remarks $1\left\{c_{n}\right\}$ converges to z with the rate of $O\left(2^{-n}\right)$.
Example 2 If bisection method starts with interval [50, 75], then how many steps should be taken to compute a root with relative error that is less than 10^{-12} ?

Solution: Seek an n such that

$$
\frac{\left|z-c_{n}\right|}{|z|} \leq 10^{-12}
$$

Solution: Seek an n such that

$$
\frac{\left|z-c_{n}\right|}{|z|} \leq 10^{-12}
$$

Since the bisection method starts with the interval [50, 75], this implies that $z \geq 50$,

Solution: Seek an n such that

$$
\frac{\left|z-c_{n}\right|}{|z|} \leq 10^{-12}
$$

Since the bisection method starts with the interval [50, 75] , this implies that $z \geq 50$, hence
it is sufficient to show

$$
\frac{\left|z-c_{n}\right|}{|z|} \leq \frac{\left|z-c_{n}\right|}{50} \leq 10^{-12}
$$

Solution: Seek an n such that

$$
\frac{\left|z-c_{n}\right|}{|z|} \leq 10^{-12}
$$

Since the bisection method starts with the interval [50, 75] , this implies that $z \geq 50$, hence
it is sufficient to show

$$
\frac{\left|z-c_{n}\right|}{|z|} \leq \frac{\left|z-c_{n}\right|}{50} \leq 10^{-12}
$$

That is, we solve

$$
2^{-(n+1)}(75-50) \leq 50 \times 10^{-12}
$$

for n, which gives $n \geq 38$.

3 - Newton's Method

3.1 - Derivation of Newton's Method

Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ and $f \in C^{2}[a, b]$, i.e., $f^{\prime \prime}$ exists and is continuous.

3 - Newton's Method

3.1 - Derivation of Newton's Method

Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ and $f \in C^{2}[a, b]$, i.e., $f^{\prime \prime}$ exists and is continuous. If $f\left(x^{*}\right)=0$ and $x^{*}=x+h$ where h is small,

3 - Newton's Method

3.1 - Derivation of Newton's Method

Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ and $f \in C^{2}[a, b]$, i.e., $f^{\prime \prime}$ exists and is continuous. If $f\left(x^{*}\right)=0$ and $x^{*}=x+h$ where h is small, then by Taylor's theorem

$$
\begin{aligned}
0=f\left(x^{*}\right)=f(x+h) & =f(x)+f^{\prime}(x) h+\frac{1}{2} f^{\prime \prime}(x) h^{2}+\frac{1}{3!} f^{\prime \prime \prime}(x) h^{3}+\cdots \\
& =f(x)+f^{\prime}(x) h+O\left(h^{2}\right)
\end{aligned}
$$

3 - Newton's Method

3.1 - Derivation of Newton's Method

Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ and $f \in C^{2}[a, b]$, i.e., $f^{\prime \prime}$ exists and is continuous. If $f\left(x^{*}\right)=0$ and $x^{*}=x+h$ where h is small, then by Taylor's theorem

$$
\begin{aligned}
0=f\left(x^{*}\right)=f(x+h) & =f(x)+f^{\prime}(x) h+\frac{1}{2} f^{\prime \prime}(x) h^{2}+\frac{1}{3!} f^{\prime \prime \prime}(x) h^{3}+\cdots \\
& =f(x)+f^{\prime}(x) h+O\left(h^{2}\right)
\end{aligned}
$$

Since h is small, $O\left(h^{2}\right)$ is negligible.

3 - Newton's Method

3.1 - Derivation of Newton's Method

Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ and $f \in C^{2}[a, b]$, i.e., $f^{\prime \prime}$ exists and is continuous. If $f\left(x^{*}\right)=0$ and $x^{*}=x+h$ where h is small, then by Taylor's theorem

$$
\begin{aligned}
0=f\left(x^{*}\right)=f(x+h) & =f(x)+f^{\prime}(x) h+\frac{1}{2} f^{\prime \prime}(x) h^{2}+\frac{1}{3!} f^{\prime \prime \prime}(x) h^{3}+\cdots \\
& =f(x)+f^{\prime}(x) h+O\left(h^{2}\right)
\end{aligned}
$$

Since h is small, $O\left(h^{2}\right)$ is negligible. It is reasonable to drop $O\left(h^{2}\right)$ terms.

3 - Newton's Method

3.1 - Derivation of Newton's Method

Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ and $f \in C^{2}[a, b]$, i.e., $f^{\prime \prime}$ exists and is continuous. If $f\left(x^{*}\right)=0$ and $x^{*}=x+h$ where h is small, then by Taylor's theorem

$$
\begin{aligned}
0=f\left(x^{*}\right)=f(x+h) & =f(x)+f^{\prime}(x) h+\frac{1}{2} f^{\prime \prime}(x) h^{2}+\frac{1}{3!} f^{\prime \prime \prime}(x) h^{3}+\cdots \\
& =f(x)+f^{\prime}(x) h+O\left(h^{2}\right)
\end{aligned}
$$

Since h is small, $O\left(h^{2}\right)$ is negligible. It is reasonable to drop $O\left(h^{2}\right)$ terms. This implies

$$
f(x)+f^{\prime}(x) h \approx 0 \quad \text { and } \quad h \approx-\frac{f(x)}{f^{\prime}(x)}, \text { if } f^{\prime}(x) \neq 0
$$

Hence

$$
x+h=x-\frac{f(x)}{f^{\prime}(x)}
$$

is a better approximation to x^{*}.

Hence

$$
x+h=x-\frac{f(x)}{f^{\prime}(x)}
$$

is a better approximation to x^{*}. This sets the stage for the Newton-Rapbson's method,

Hence

$$
x+h=x-\frac{f(x)}{f^{\prime}(x)}
$$

is a better approximation to x^{*}. This sets the stage for the Newton-Rapbson's method, which starts with an initial approximation x_{0} and generates the sequence $\left\{x_{k}\right\}_{k=0}^{\infty}$ defined by

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

Hence

$$
x+h=x-\frac{f(x)}{f^{\prime}(x)}
$$

is a better approximation to x^{*}. This sets the stage for the Newton-Rapbson's method, which starts with an initial approximation x_{0} and generates the sequence $\left\{x_{k}\right\}_{k=0}^{\infty}$ defined by

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

Figure 1: Newton-Rapbson method

Figure 3 gives a graphic interpretation of the Newton's method.

Figure 3 gives a graphic interpretation of the Newton's method. Since the Taylor's expansion of $f(x)$ at x_{k} is given by

$$
f(x)=f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{k}\right)\left(x-x_{k}\right)^{2}+\cdots
$$

Figure 3 gives a graphic interpretation of the Newton's method. Since the Taylor's expansion of $f(x)$ at x_{k} is given by

$$
f(x)=f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{k}\right)\left(x-x_{k}\right)^{2}+\cdots
$$

At x_{k}, one uses the tangent line

$$
y=\ell(x)=f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)
$$

to approximate the curve of $f(x)$ and uses the zero of the tangent line to approximate the zero of $f(x)$.

Algorithm 2 (Newton's Method) Given a function $f: \mathbb{R} \rightarrow \mathbb{R}$, an initial guess x_{0} to the zero of f, and stop criteria M, δ, and ε, this algorithm performs the Newton's iteration to approximate one root of f.

$$
\begin{aligned}
& u=f\left(x_{0}\right) \\
& v=f^{\prime}\left(x_{0}\right) \\
& x_{1}=x_{0}-\frac{u}{v} \\
& k=1 \\
& u=f\left(x_{k}\right) \\
& \text { while }(k<M) \text { and }\left(\left|x_{k}-x_{k-1}\right| \geq \delta\right) \text { and }\left(\left|f\left(x_{k}\right)\right| \geq \varepsilon\right. \text { do } \\
& \quad v=f^{\prime}\left(x_{k}\right) \\
& \quad x_{k+1}=x_{k}-\frac{u}{v} \\
& \quad k=k+1 \\
& \quad u=f\left(x_{k}\right)
\end{aligned}
$$

end while

3.2 - Convergence Analysis

Suppose that $f^{\prime \prime}$ is continuous and x^{*} is a simple zero of f, i.e., $f\left(x^{*}\right)=0$ but $f^{\prime}\left(x^{*}\right) \neq 0$.

3.2 - Convergence Analysis

Suppose that $f^{\prime \prime}$ is continuous and x^{*} is a simple zero of f, i.e., $f\left(x^{*}\right)=0$ but $f^{\prime}\left(x^{*}\right) \neq 0$. Choose $\delta>0$ and let

$$
D=\left\{x ;\left|x-x^{*}\right| \leq \delta\right\}
$$

and

$$
\gamma=\frac{1}{2} \cdot \frac{\max _{x \in D}\left|f^{\prime \prime}(x)\right|}{\min _{x \in D}\left|f^{\prime}(x)\right|}
$$

3.2 - Convergence Analysis

Suppose that $f^{\prime \prime}$ is continuous and x^{*} is a simple zero of f, i.e., $f\left(x^{*}\right)=0$ but $f^{\prime}\left(x^{*}\right) \neq 0$. Choose $\delta>0$ and let

$$
D=\left\{x ;\left|x-x^{*}\right| \leq \delta\right\}
$$

and

$$
\gamma=\frac{1}{2} \cdot \frac{\max _{x \in D}\left|f^{\prime \prime}(x)\right|}{\min _{x \in D}\left|f^{\prime}(x)\right|}
$$

Choose δ such that $\rho=\delta \gamma<1$.

3.2 - Convergence Analysis

Suppose that $f^{\prime \prime}$ is continuous and x^{*} is a simple zero of f, i.e., $f\left(x^{*}\right)=0$ but $f^{\prime}\left(x^{*}\right) \neq 0$. Choose $\delta>0$ and let

$$
D=\left\{x ;\left|x-x^{*}\right| \leq \delta\right\}
$$

and

$$
\gamma=\frac{1}{2} \cdot \frac{\max _{x \in D}\left|f^{\prime \prime}(x)\right|}{\min _{x \in D}\left|f^{\prime}(x)\right|}
$$

Choose δ such that $\rho=\delta \gamma<1$. Suppose $\left|e_{0}\right|=\left|x_{0}-x^{*}\right| \leq \delta$.

3.2 - Convergence Analysis

Suppose that $f^{\prime \prime}$ is continuous and x^{*} is a simple zero of f, i.e., $f\left(x^{*}\right)=0$ but $f^{\prime}\left(x^{*}\right) \neq 0$. Choose $\delta>0$ and let

$$
D=\left\{x ;\left|x-x^{*}\right| \leq \delta\right\}
$$

and

$$
\gamma=\frac{1}{2} \cdot \frac{\max _{x \in D}\left|f^{\prime \prime}(x)\right|}{\min _{x \in D}\left|f^{\prime}(x)\right|}
$$

Choose δ such that $\rho=\delta \gamma<1$. Suppose $\left|e_{0}\right|=\left|x_{0}-x^{*}\right| \leq \delta$. By Taylor's theorem

$$
0=f\left(x^{*}\right)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x^{*}-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(\xi_{0}\right)\left(x^{*}-x_{0}\right)^{2}
$$

where ξ_{0} is between x^{*} and x_{0}.

3.2 - Convergence Analysis

Suppose that $f^{\prime \prime}$ is continuous and x^{*} is a simple zero of f, i.e., $f\left(x^{*}\right)=0$ but $f^{\prime}\left(x^{*}\right) \neq 0$. Choose $\delta>0$ and let

$$
D=\left\{x ;\left|x-x^{*}\right| \leq \delta\right\}
$$

and

$$
\gamma=\frac{1}{2} \cdot \frac{\max _{x \in D}\left|f^{\prime \prime}(x)\right|}{\min _{x \in D}\left|f^{\prime}(x)\right|}
$$

Choose δ such that $\rho=\delta \gamma<1$. Suppose $\left|e_{0}\right|=\left|x_{0}-x^{*}\right| \leq \delta$. By Taylor's theorem

$$
0=f\left(x^{*}\right)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x^{*}-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(\xi_{0}\right)\left(x^{*}-x_{0}\right)^{2}
$$

where ξ_{0} is between x^{*} and x_{0}. Consequently $\left|\xi_{0}-x^{*}\right| \leq \delta$ and

$$
-f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right)\left(x^{*}-x_{0}\right)=\frac{1}{2} f^{\prime \prime}\left(\xi_{0}\right)\left(x^{*}-x_{0}\right)^{2}
$$

One iteration of Newton's algorithm gives

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

One iteration of Newton's algorithm gives

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

Hence

$$
\begin{aligned}
e_{1}=x_{1}-x^{*} & =x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}-x^{*} \\
& =\frac{1}{f^{\prime}\left(x_{0}\right)}\left(-f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right)\left(x^{*}-x_{0}\right)\right) \\
& =\frac{1}{f^{\prime}\left(x_{0}\right)} \cdot \frac{1}{2} \cdot f^{\prime \prime}\left(\xi_{0}\right)\left(x^{*}-x_{0}\right)^{2}=\frac{f^{\prime \prime}\left(\xi_{0}\right)}{2 f^{\prime}\left(x_{0}\right)} e_{0}^{2}
\end{aligned}
$$

One iteration of Newton's algorithm gives

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

Hence

$$
\begin{aligned}
e_{1}=x_{1}-x^{*} & =x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}-x^{*} \\
& =\frac{1}{f^{\prime}\left(x_{0}\right)}\left(-f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right)\left(x^{*}-x_{0}\right)\right) \\
& =\frac{1}{f^{\prime}\left(x_{0}\right)} \cdot \frac{1}{2} \cdot f^{\prime \prime}\left(\xi_{0}\right)\left(x^{*}-x_{0}\right)^{2}=\frac{f^{\prime \prime}\left(\xi_{0}\right)}{2 f^{\prime}\left(x_{0}\right)} e_{0}^{2}
\end{aligned}
$$

and

$$
\left|e_{1}\right| \leq \gamma\left|e_{0}\right|^{2} \leq \gamma \delta\left|e_{0}\right|=\rho\left|e_{0}\right| .
$$

One iteration of Newton's algorithm gives

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

Hence

$$
\begin{aligned}
e_{1}=x_{1}-x^{*} & =x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}-x^{*} \\
& =\frac{1}{f^{\prime}\left(x_{0}\right)}\left(-f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right)\left(x^{*}-x_{0}\right)\right) \\
& =\frac{1}{f^{\prime}\left(x_{0}\right)} \cdot \frac{1}{2} \cdot f^{\prime \prime}\left(\xi_{0}\right)\left(x^{*}-x_{0}\right)^{2}=\frac{f^{\prime \prime}\left(\xi_{0}\right)}{2 f^{\prime}\left(x_{0}\right)} e_{0}^{2}
\end{aligned}
$$

and

$$
\left|e_{1}\right| \leq \gamma\left|e_{0}\right|^{2} \leq \gamma \delta\left|e_{0}\right|=\rho\left|e_{0}\right| .
$$

In general,

$$
\left|e_{k}\right| \leq \rho\left|e_{k-1}\right| \leq \cdots \leq \rho^{k}\left|e_{0}\right|
$$

Since $\rho<1$, $\left|e_{k}\right| \rightarrow 0$ as $k \rightarrow 0$, that is, $x_{k} \rightarrow x^{*}$.

In summary, Newton's method will generate $\left\{x_{k}\right\}_{k \geq 0}$ that converges to the zero, x^{*}, of f if

In summary, Newton's method will generate $\left\{x_{k}\right\}_{k \geq 0}$ that converges to the zero, x^{*}, of f if

1. $f^{\prime \prime}$ is continuous;

In summary, Newton's method will generate $\left\{x_{k}\right\}_{k \geq 0}$ that converges to the zero, x^{*}, of f if

1. $f^{\prime \prime}$ is continuous;
2. x^{*} is a simple zero of f; and

In summary, Newton's method will generate $\left\{x_{k}\right\}_{k \geq 0}$ that converges to the zero, x^{*}, of f if

1. $f^{\prime \prime}$ is continuous;
2. x^{*} is a simple zero of f; and
3. x_{0} is close enough to x^{*}.

In summary, Newton's method will generate $\left\{x_{k}\right\}_{k \geq 0}$ that converges to the zero, x^{*}, of f if

1. $f^{\prime \prime}$ is continuous;
2. x^{*} is a simple zero of f; and
3. x_{0} is close enough to x^{*}.

To investigate the convergence rate, we start with

$$
e_{k+1}=x_{k+1}-x^{*}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}-x^{*}=\frac{f^{\prime}\left(x_{k}\right) e_{k}-f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

In summary, Newton's method will generate $\left\{x_{k}\right\}_{k \geq 0}$ that converges to the zero, x^{*}, of f if

1. $f^{\prime \prime}$ is continuous;
2. x^{*} is a simple zero of f; and
3. x_{0} is close enough to x^{*}.

To investigate the convergence rate, we start with

$$
e_{k+1}=x_{k+1}-x^{*}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}-x^{*}=\frac{f^{\prime}\left(x_{k}\right) e_{k}-f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

Using Taylor's theorem

$$
0=f\left(x^{*}\right)=f\left(x_{k}-e_{k}\right)=f\left(x_{k}\right)-f^{\prime}\left(x_{k}\right) e_{k}+\frac{1}{2} f^{\prime \prime}\left(\xi_{k}\right) e_{k}^{2}
$$

where ξ_{k} is between x_{k} and x^{*},

In summary, Newton's method will generate $\left\{x_{k}\right\}_{k \geq 0}$ that converges to the zero, x^{*}, of f if

1. $f^{\prime \prime}$ is continuous;
2. x^{*} is a simple zero of f; and
3. x_{0} is close enough to x^{*}.

To investigate the convergence rate, we start with

$$
e_{k+1}=x_{k+1}-x^{*}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}-x^{*}=\frac{f^{\prime}\left(x_{k}\right) e_{k}-f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

Using Taylor's theorem

$$
0=f\left(x^{*}\right)=f\left(x_{k}-e_{k}\right)=f\left(x_{k}\right)-f^{\prime}\left(x_{k}\right) e_{k}+\frac{1}{2} f^{\prime \prime}\left(\xi_{k}\right) e_{k}^{2}
$$

where ξ_{k} is between x_{k} and x^{*}, one has

$$
f^{\prime}\left(x_{k}\right) e_{k}-f\left(x_{k}\right)=\frac{1}{2} f^{\prime \prime}\left(\xi_{k}\right) e_{k}^{2}
$$

Hence

$$
\left|e_{k+1}\right|=\frac{\left|f^{\prime \prime}\left(\xi_{k}\right)\right|}{2\left|f^{\prime}\left(x_{k}\right)\right|}\left|e_{k}\right|^{2} \approx \frac{\left|f^{\prime \prime}\left(x^{*}\right)\right|}{2\left|f^{\prime}\left(x^{*}\right)\right|}\left|e_{k}\right|^{2} \equiv C\left|e_{k}\right|^{2}
$$

Hence

$$
\left|e_{k+1}\right|=\frac{\left|f^{\prime \prime}\left(\xi_{k}\right)\right|}{2\left|f^{\prime}\left(x_{k}\right)\right|}\left|e_{k}\right|^{2} \approx \frac{\left|f^{\prime \prime}\left(x^{*}\right)\right|}{2\left|f^{\prime}\left(x^{*}\right)\right|}\left|e_{k}\right|^{2} \equiv C\left|e_{k}\right|^{2}
$$

This shows that Newton's method is quadratic convergent.

Hence

$$
\left|e_{k+1}\right|=\frac{\left|f^{\prime \prime}\left(\xi_{k}\right)\right|}{2\left|f^{\prime}\left(x_{k}\right)\right|}\left|e_{k}\right|^{2} \approx \frac{\left|f^{\prime \prime}\left(x^{*}\right)\right|}{2\left|f^{\prime}\left(x^{*}\right)\right|}\left|e_{k}\right|^{2} \equiv C\left|e_{k}\right|^{2}
$$

This shows that Newton's method is quadratic convergent.
Theorem 2 Assume $f\left(x^{*}\right)=0, f^{\prime}\left(x^{*}\right) \neq 0$ and $f(x), f^{\prime}(x)$ and $f^{\prime \prime}(x)$ are continuous on $N_{\varepsilon}\left(x^{*}\right)$. Then if x_{0} is chosen sufficiently close to x^{*}, then

$$
\left\{x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}\right\} \rightarrow x^{*}
$$

Moreover,

$$
\lim _{n \rightarrow \infty} \frac{x^{*}-x_{n+1}}{\left(x^{*}-x_{n}\right)^{2}}=-\frac{f^{\prime \prime}\left(x^{*}\right)}{2 f^{\prime}\left(x^{*}\right)}
$$

Hence

$$
\left|e_{k+1}\right|=\frac{\left|f^{\prime \prime}\left(\xi_{k}\right)\right|}{2\left|f^{\prime}\left(x_{k}\right)\right|}\left|e_{k}\right|^{2} \approx \frac{\left|f^{\prime \prime}\left(x^{*}\right)\right|}{2\left|f^{\prime}\left(x^{*}\right)\right|}\left|e_{k}\right|^{2} \equiv C\left|e_{k}\right|^{2}
$$

This shows that Newton's method is quadratic convergent.
Theorem 2 Assume $f\left(x^{*}\right)=0, f^{\prime}\left(x^{*}\right) \neq 0$ and $f(x), f^{\prime}(x)$ and $f^{\prime \prime}(x)$ are continuous on $N_{\varepsilon}\left(x^{*}\right)$. Then if x_{0} is chosen sufficiently close to x^{*}, then

$$
\left\{x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}\right\} \rightarrow x^{*}
$$

Moreover,

$$
\lim _{n \rightarrow \infty} \frac{x^{*}-x_{n+1}}{\left(x^{*}-x_{n}\right)^{2}}=-\frac{f^{\prime \prime}\left(x^{*}\right)}{2 f^{\prime}\left(x^{*}\right)}
$$

Definition 3 (Lipschitz Continuous) A function $f(x)$ is Lipschitz continuous with Lipschitz constant γ in a set X, written $f \in \mathcal{L} \operatorname{Lip}_{\gamma}(X)$, if

$$
|f(x)-f(y)| \leq \gamma|x-y|, \text { for all } x, y \in X
$$

Lemma 1 Suppose $f: \Omega \rightarrow \mathbb{R}$ for some open interval $\Omega \subseteq \mathbb{R}$ and $f^{\prime} \in \mathcal{L i p}_{\gamma}(\Omega)$. Then for all $x, y \in \Omega$,

$$
\left|f(y)-f(x)-f^{\prime}(x)(y-x)\right| \leq \frac{\gamma}{2}(y-x)^{2} .
$$

Lemma 1 Suppose $f: \Omega \rightarrow \mathbb{R}$ for some open interval $\Omega \subseteq \mathbb{R}$ and $f^{\prime} \in \mathcal{L i p}_{\gamma}(\Omega)$. Then for all $x, y \in \Omega$,

$$
\left|f(y)-f(x)-f^{\prime}(x)(y-x)\right| \leq \frac{\gamma}{2}(y-x)^{2} .
$$

Proof: From Calculus

$$
f(y)-f(x)-f^{\prime}(x)(y-x)=\int_{x}^{y}\left(f^{\prime}(u)-f^{\prime}(x)\right) d u
$$

Lemma 1 Suppose $f: \Omega \rightarrow \mathbb{R}$ for some open interval $\Omega \subseteq \mathbb{R}$ and $f^{\prime} \in \mathcal{L i p}_{\gamma}(\Omega)$. Then for all $x, y \in \Omega$,

$$
\left|f(y)-f(x)-f^{\prime}(x)(y-x)\right| \leq \frac{\gamma}{2}(y-x)^{2}
$$

Proof: From Calculus

$$
f(y)-f(x)-f^{\prime}(x)(y-x)=\int_{x}^{y}\left(f^{\prime}(u)-f^{\prime}(x)\right) d u
$$

By changing variable $u=x+t(y-x), d u=(y-x) d t$ and $f^{\prime} \in \mathcal{L i p}_{\gamma}(\Omega)$,

Lemma 1 Suppose $f: \Omega \rightarrow \mathbb{R}$ for some open interval $\Omega \subseteq \mathbb{R}$ and $f^{\prime} \in \mathcal{L i p}_{\gamma}(\Omega)$. Then for all $x, y \in \Omega$,

$$
\left|f(y)-f(x)-f^{\prime}(x)(y-x)\right| \leq \frac{\gamma}{2}(y-x)^{2}
$$

Proof: From Calculus

$$
f(y)-f(x)-f^{\prime}(x)(y-x)=\int_{x}^{y}\left(f^{\prime}(u)-f^{\prime}(x)\right) d u
$$

By changing variable $u=x+t(y-x), d u=(y-x) d t$ and $f^{\prime} \in \mathcal{L} i p_{\gamma}(\Omega)$, we have

$$
\begin{aligned}
\left|f(y)-f(x)-f^{\prime}(x)(y-x)\right| & =\left|\int_{0}^{1}\left[f^{\prime}(x+t(y-x))-f^{\prime}(x)\right](y-x) d t\right| \\
& \leq|y-x| \int_{0}^{1} \gamma|t(y-x)| d t \\
& =\frac{\gamma}{2}|y-x|^{2}
\end{aligned}
$$

Theorem 3 Let $f: \Omega \rightarrow \mathbb{R}$ for some open interval $\Omega \subseteq \mathbb{R}$. Assume

1. $\exists x^{*} \in \Omega$ such that $f\left(x^{*}\right)=0$;
2. $f^{\prime} \in \mathcal{L i p}_{\gamma}(\Omega)$;
3. $\exists \rho>0$ such that $\left|f^{\prime}(x)\right| \geq \rho \forall x \in \Omega$, that is, $f^{\prime}(x) \neq 0 \forall x \in \Omega$.

Then $\exists \eta>0$ such that if $\left|x_{0}-x^{*}\right|<\eta$, then

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}, \quad k=0,1,2, \ldots
$$

converges to x^{*}. Furthermore,

$$
\left|x_{k+1}-x^{*}\right| \leq \frac{\gamma}{2 \rho}\left|x_{k}-x^{*}\right|^{2}
$$

or, equivalently,

$$
\left|e_{k+1}\right| \leq \frac{\gamma}{2 \rho}\left|e_{k}\right|^{2}
$$

Proof: With the result of previous Lemma,

$$
\begin{aligned}
\left|x_{k+1}-x^{*}\right| & =\left|x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}-x^{*}\right| \\
& =\left|x_{k}-x^{*}-\frac{f\left(x_{k}\right)-f\left(x^{*}\right)}{f^{\prime}\left(x_{k}\right)}\right| \\
& =\frac{1}{\left|f^{\prime}\left(x_{k}\right)\right|}\left|f\left(x^{*}\right)-f\left(x_{k}\right)-f^{\prime}\left(x_{k}\right)\left(x_{k}-x^{*}\right)\right| \\
& \leq \frac{\gamma}{2\left|f^{\prime}\left(x_{k}\right)\right|}\left|x_{k}-x^{*}\right|^{2} \\
& \leq \frac{\gamma}{2 \rho}\left|x_{k}-x^{*}\right|^{2}
\end{aligned}
$$

Remark 1

Remark 1

(i) Newton's method only guarantee the convergence from a good starting point x_{0} that is close enough to x^{*}. In fact, Newton's iteration may not converge at all if $\left|x_{0}-x^{*}\right|$ is large.

Remark 1

(i) Newton's method only guarantee the convergence from a good starting point x_{0} that is close enough to x^{*}. In fact, Newton's iteration may not converge at all if $\left|x_{0}-x^{*}\right|$ is large.
(ii) If $f^{\prime}\left(x^{*}\right)=0$, i.e., x^{*} is a multiple root of f, then Newton's method converges only linearly.

Remark 1

(i) Newton's method only guarantee the convergence from a good starting point x_{0} that is close enough to x^{*}. In fact, Newton's iteration may not converge at all if $\left|x_{0}-x^{*}\right|$ is large.
(ii) If $f^{\prime}\left(x^{*}\right)=0$, i.e., x^{*} is a multiple root of f, then Newton's method converges only linearly.
(iii) When f is a linear function, Newton's method will converge in one step.

3.3 - Examples

Example 3 The following table shows the convergence behavior of Newton's method applied to solving $f(x)=x^{2}-1=0$. Observe the quadratic convergence rate.

3.3 - Examples

Example 3 The following table shows the convergence behavior of Newton's method applied to solving $f(x)=x^{2}-1=0$. Observe the quadratic convergence rate.

k	x_{k}	$\left\|e_{k}\right\|$
0	2.0	1
1	1.25	0.25
2	1.025	$2.5 \mathrm{e}-2$
3	1.0003048780488	$3.048780488 \mathrm{e}-4$
4	1.0000000464611	$4.64611 \mathrm{e}-8$
5	1.0	0

Example 4 Newton's method will fail (the sequence $\left\{x_{k}\right\}$ does not converge) on solving $f(x)=x^{2}-4 x+5=0$ since f does not have any real root.

Example 4 Newton's method will fail (the sequence $\left\{x_{k}\right\}$ does not converge) on solving $f(x)=x^{2}-4 x+5=0$ since f does not have any real root.

Example 5 When Newton's method applied to $f(x)=\cos x$ with starting point $x_{0}=3$, which is close to the root $\frac{\pi}{2}$ of f, it produces $x_{1}=-4.01525, x_{2}=-4.8526, \cdots$, which converges to another root $-\frac{3 \pi}{2}$.

Figure 2: one step of Newton method

Example 6 When Newton's method applied to $f(x)=x^{3}-x-3$ with starting point $x_{0}=0$, it produces

$x_{1}=-3$	$x_{2}=-1.961538$
$x_{3}=-1.147176$	$x_{4}=-0.00679$
$x_{5}=-3.000389$	$x_{6}=-1.961818$
$x_{7}=-1.147430$	\ldots

Example 6 When Newton's method applied to $f(x)=x^{3}-x-3$ with starting point $x_{0}=0$, it produces

$x_{1}=-3$	$x_{2}=-1.961538$
$x_{3}=-1.147176$	$x_{4}=-0.00679$
$x_{5}=-3.000389$	$x_{6}=-1.961818$
$x_{7}=-1.147430$	\ldots

The sequence will not converge.

Example 6 When Newton's method applied to $f(x)=x^{3}-x-3$ with starting point $x_{0}=0$, it produces

$x_{1}=-3$	$x_{2}=-1.961538$
$x_{3}=-1.147176$	$x_{4}=-0.00679$
$x_{5}=-3.000389$	$x_{6}=-1.961818$
$x_{7}=-1.147430$	\ldots

The sequence will not converge. But if the algorithm starts with $x_{0}=2$,

Example 6 When Newton's method applied to $f(x)=x^{3}-x-3$ with starting point $x_{0}=0$, it produces

$x_{1}=-3$	$x_{2}=-1.961538$
$x_{3}=-1.147176$	$x_{4}=-0.00679$
$x_{5}=-3.000389$	$x_{6}=-1.961818$
$x_{7}=-1.147430$	\ldots

The sequence will not converge. But if the algorithm starts with $x_{0}=2$, then it produces

$$
\begin{aligned}
& x_{1}=1.727272, \\
& x_{2}=1.67369, \\
& x_{3}=1.6717025, \ldots
\end{aligned}
$$

Example 6 When Newton's method applied to $f(x)=x^{3}-x-3$ with starting point $x_{0}=0$, it produces

$x_{1}=-3$	$x_{2}=-1.961538$
$x_{3}=-1.147176$	$x_{4}=-0.00679$
$x_{5}=-3.000389$	$x_{6}=-1.961818$
$x_{7}=-1.147430$	\ldots

The sequence will not converge. But if the algorithm starts with $x_{0}=2$, then it produces

$$
\begin{aligned}
& x_{1}=1.727272, \\
& x_{2}=1.67369 \\
& x_{3}=1.6717025, \ldots
\end{aligned}
$$

The sequence converges to the root 1.671699881 .

Example 6 When Newton's method applied to $f(x)=x^{3}-x-3$ with starting point $x_{0}=0$, it produces

$x_{1}=-3$	$x_{2}=-1.961538$
$x_{3}=-1.147176$	$x_{4}=-0.00679$
$x_{5}=-3.000389$	$x_{6}=-1.961818$
$x_{7}=-1.147430$	\ldots

The sequence will not converge. But if the algorithm starts with $x_{0}=2$, then it produces

$$
\begin{aligned}
& x_{1}=1.727272, \\
& x_{2}=1.67369 \\
& x_{3}=1.6717025, \ldots
\end{aligned}
$$

The sequence converges to the root 1.671699881 . This example illustrates that the starting point x_{0} must be close enough to the zero of f.

Sol. Non-linear Fun.

```
4-Quasi-Newton's Method (Secant Method)
```


4.1 - The Secant Method

Newton's iteration:

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

Sol. Non-linear Fun.

4 - Quasi-Newton's Method (Secant Method)

4.1 - The Secant Method

Newton's iteration:

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

Disadvantage: In many applications, the derivative $f^{\prime}(x)$ is very expensive to compute, or the function $f(x)$ is not given in an algebraic formula so that $f^{\prime}(x)$ is not available.

Sol. Non-linear Fun.

4 - Quasi-Newton's Method (Secant Method)

4.1 - The Secant Method

Newton's iteration:

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

Disadvantage: In many applications, the derivative $f^{\prime}(x)$ is very expensive to compute, or the function $f(x)$ is not given in an algebraic formula so that $f^{\prime}(x)$ is not available.

Since

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Sol. Non-linear Fun.

4 - Quasi-Newton's Method (Secant Method)

4.1 - The Secant Method

Newton's iteration:

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

Disadvantage: In many applications, the derivative $f^{\prime}(x)$ is very expensive to compute, or the function $f(x)$ is not given in an algebraic formula so that $f^{\prime}(x)$ is not available.

Since

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

\Rightarrow

$$
f^{\prime}\left(x_{k}\right) \approx \frac{f\left(x_{k}+h_{k}\right)-f\left(x_{k}\right)}{h_{k}} \text { for some small } h_{k}
$$

Sol. Non-linear Fun.

\Rightarrow The finite-difference Newton's iteration

$$
x_{k+1}=x_{k}-f\left(x_{k}\right) \frac{h_{k}}{f\left(x_{k}+h_{k}\right)-f\left(x_{k}\right)}
$$

Sol. Non-linear Fun.

\Rightarrow The finite-difference Newton's iteration

$$
x_{k+1}=x_{k}-f\left(x_{k}\right) \frac{h_{k}}{f\left(x_{k}+h_{k}\right)-f\left(x_{k}\right)}
$$

From geometric point of view, we use a secant line through x_{k} and a near-by point $x_{k}+h_{k}$ instead of the tangent line to approximate the function at the point x_{k}.

Sol. Non-linear Fun.

\Rightarrow The finite-difference Newton's iteration

$$
x_{k+1}=x_{k}-f\left(x_{k}\right) \frac{h_{k}}{f\left(x_{k}+h_{k}\right)-f\left(x_{k}\right)}
$$

Figure 3: Secant method

From geometric point of view, we use a secant line through x_{k} and a near-by point $x_{k}+h_{k}$ instead of the tangent line to approximate the function at the point x_{k}.

Sol. Non-linear Fun.

The slope of the secant line is

$$
s_{k}=\frac{f\left(x_{k}+h_{k}\right)-f\left(x_{k}\right)}{h_{k}}
$$

Sol. Non-linear Fun.

The slope of the secant line is

$$
s_{k}=\frac{f\left(x_{k}+h_{k}\right)-f\left(x_{k}\right)}{h_{k}}
$$

and the equation is

$$
M(x)=f\left(x_{k}\right)+s_{k}\left(x-x_{k}\right)
$$

Sol. Non-linear Fun.

The slope of the secant line is

$$
s_{k}=\frac{f\left(x_{k}+h_{k}\right)-f\left(x_{k}\right)}{h_{k}}
$$

and the equation is

$$
M(x)=f\left(x_{k}\right)+s_{k}\left(x-x_{k}\right)
$$

The zero of the secant line

$$
x=x_{k}-\frac{f\left(x_{k}\right)}{s_{k}}=x_{k}-f\left(x_{k}\right) \frac{h_{k}}{f\left(x_{k}+h_{k}\right)-f\left(x_{k}\right)}
$$

is then used as a new approximate x_{k+1}.

Sol. Non-linear Fun.

The slope of the secant line is

$$
s_{k}=\frac{f\left(x_{k}+h_{k}\right)-f\left(x_{k}\right)}{h_{k}}
$$

and the equation is

$$
M(x)=f\left(x_{k}\right)+s_{k}\left(x-x_{k}\right)
$$

The zero of the secant line

$$
x=x_{k}-\frac{f\left(x_{k}\right)}{s_{k}}=x_{k}-f\left(x_{k}\right) \frac{h_{k}}{f\left(x_{k}+h_{k}\right)-f\left(x_{k}\right)}
$$

is then used as a new approximate x_{k+1}.
Set

$$
h_{k}=x_{k}-x_{k-1}
$$

Sol. Non-linear Fun.

The slope of the secant line is

$$
s_{k}=\frac{f\left(x_{k}+h_{k}\right)-f\left(x_{k}\right)}{h_{k}}
$$

and the equation is

$$
M(x)=f\left(x_{k}\right)+s_{k}\left(x-x_{k}\right)
$$

The zero of the secant line

$$
x=x_{k}-\frac{f\left(x_{k}\right)}{s_{k}}=x_{k}-f\left(x_{k}\right) \frac{h_{k}}{f\left(x_{k}+h_{k}\right)-f\left(x_{k}\right)}
$$

is then used as a new approximate x_{k+1}.
Set

$$
h_{k}=x_{k}-x_{k-1}
$$

This leads to the so-called secant method or quasi-Newton method.

$$
x_{k+1}=x_{k}-f\left(x_{k}\right) \frac{x_{k}-x_{k-1}}{f\left(x_{k}\right)-f\left(x_{k-1}\right)} .
$$

Sol. Non-linear Fun.

Note that the secant method requires two initial guesses x_{0} and x_{-1}.
Example 7 The following table shows the convergence history for the finite-difference Newton's method with $h_{k}=10^{-7} \times x_{k}$ and secant method for solving $f(x)=x^{2}-1=0$.

	finite-difference Newton	secant method
x_{0}	2	2
x_{1}	1.2500000266453	1.2500000266453
x_{2}	1.0250000179057	1.0769230844910
x_{3}	1.0003048001120	1.0082644643823
x_{4}	1.0000000464701	1.0003048781354
x_{5}	1	1.0000012544523
x_{6}		1.0000000001912
x_{7}		1

Sol. Non-linear Fun.

4.2 - Error Analysis of Secant Method

Let x^{*} denote the exact solution of $f(x)=0, e_{k}=x_{k}-x^{*}$ be the errors at the k-th step. Then

Sol. Non-linear Fun.

4.2 - Error Analysis of Secant Method

Let x^{*} denote the exact solution of $f(x)=0, e_{k}=x_{k}-x^{*}$ be the errors at the k-th step. Then

$$
e_{k+1}=x_{k+1}-x^{*}
$$

Sol. Non-linear Fun.

4.2 - Error Analysis of Secant Method

Let x^{*} denote the exact solution of $f(x)=0, e_{k}=x_{k}-x^{*}$ be the errors at the k-th step. Then

$$
\begin{aligned}
e_{k+1} & =x_{k+1}-x^{*} \\
& =x_{k}-f\left(x_{k}\right) \frac{x_{k}-x_{k-1}}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}-x^{*}
\end{aligned}
$$

Sol. Non-linear Fun.

4.2 - Error Analysis of Secant Method

Let x^{*} denote the exact solution of $f(x)=0, e_{k}=x_{k}-x^{*}$ be the errors at the k-th step. Then

$$
\begin{aligned}
e_{k+1} & =x_{k+1}-x^{*} \\
& =x_{k}-f\left(x_{k}\right) \frac{x_{k}-x_{k-1}}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}-x^{*} \\
& =\frac{1}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}\left[\left(x_{k+1}-x^{*}\right) f\left(x_{k}\right)-\left(x_{k}-x^{*}\right) f\left(x_{k-1}\right)\right]
\end{aligned}
$$

Sol. Non-linear Fun.

4.2 - Error Analysis of Secant Method

Let x^{*} denote the exact solution of $f(x)=0, e_{k}=x_{k}-x^{*}$ be the errors at the k-th step. Then

$$
\begin{aligned}
e_{k+1} & =x_{k+1}-x^{*} \\
& =x_{k}-f\left(x_{k}\right) \frac{x_{k}-x_{k-1}}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}-x^{*} \\
& =\frac{1}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}\left[\left(x_{k+1}-x^{*}\right) f\left(x_{k}\right)-\left(x_{k}-x^{*}\right) f\left(x_{k-1}\right)\right] \\
& =\frac{1}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}\left(e_{k-1} f\left(x_{k}\right)-e_{k} f\left(x_{k-1}\right)\right)
\end{aligned}
$$

Sol. Non-linear Fun.

4.2 - Error Analysis of Secant Method

Let x^{*} denote the exact solution of $f(x)=0, e_{k}=x_{k}-x^{*}$ be the errors at the k-th step. Then

$$
\begin{aligned}
e_{k+1} & =x_{k+1}-x^{*} \\
& =x_{k}-f\left(x_{k}\right) \frac{x_{k}-x_{k-1}}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}-x^{*} \\
& =\frac{1}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}\left[\left(x_{k+1}-x^{*}\right) f\left(x_{k}\right)-\left(x_{k}-x^{*}\right) f\left(x_{k-1}\right)\right] \\
& =\frac{1}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}\left(e_{k-1} f\left(x_{k}\right)-e_{k} f\left(x_{k-1}\right)\right) \\
& =e_{k} e_{k-1}\left(\frac{\frac{1}{e_{k}} f\left(x_{k}\right)-\frac{1}{e_{k-1}} f\left(x_{k}\right)}{x_{k}-x_{k-1}} \cdot \frac{x_{k}-x_{k-1}}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}\right)
\end{aligned}
$$

Sol. Non-linear Fun.

To estimate the numerator $\frac{\frac{1}{e_{k}} f\left(x_{k}\right)-\frac{1}{e_{k-1}} f\left(x_{k}\right)}{x_{k}-x_{k-1}}$,

Sol. Non-linear Fun.

To estimate the numerator $\frac{\frac{1}{e_{k}} f\left(x_{k}\right)-\frac{1}{e_{k-1}} f\left(x_{k}\right)}{x_{k}-x_{k-1}}$, we apply the Taylor's theorem

$$
f\left(x_{k}\right)=f\left(x^{*}+e_{k}\right)=f\left(x^{*}\right)+f^{\prime}\left(x^{*}\right) e_{k}+\frac{1}{2} f^{\prime \prime}\left(x^{*}\right) e_{k}^{2}+O\left(e_{k}^{3}\right)
$$

Sol. Non-linear Fun.

To estimate the numerator $\frac{\frac{1}{e_{k}} f\left(x_{k}\right)-\frac{1}{e_{k-1}} f\left(x_{k}\right)}{x_{k}-x_{k-1}}$, we apply the Taylor's theorem

$$
f\left(x_{k}\right)=f\left(x^{*}+e_{k}\right)=f\left(x^{*}\right)+f^{\prime}\left(x^{*}\right) e_{k}+\frac{1}{2} f^{\prime \prime}\left(x^{*}\right) e_{k}^{2}+O\left(e_{k}^{3}\right)
$$

to get

$$
\frac{1}{e_{k}} f\left(x_{k}\right)=f^{\prime}\left(x^{*}\right)+\frac{1}{2} f^{\prime \prime}\left(x^{*}\right) e_{k}+O\left(e_{k}^{2}\right)
$$

Sol. Non-linear Fun.

To estimate the numerator $\frac{\frac{1}{e_{k}} f\left(x_{k}\right)-\frac{1}{e_{k-1}} f\left(x_{k}\right)}{x_{k}-x_{k-1}}$, we apply the Taylor's theorem

$$
f\left(x_{k}\right)=f\left(x^{*}+e_{k}\right)=f\left(x^{*}\right)+f^{\prime}\left(x^{*}\right) e_{k}+\frac{1}{2} f^{\prime \prime}\left(x^{*}\right) e_{k}^{2}+O\left(e_{k}^{3}\right)
$$

to get

$$
\frac{1}{e_{k}} f\left(x_{k}\right)=f^{\prime}\left(x^{*}\right)+\frac{1}{2} f^{\prime \prime}\left(x^{*}\right) e_{k}+O\left(e_{k}^{2}\right) .
$$

Similarly,

$$
\frac{1}{e_{k-1}} f\left(x_{k-1}\right)=f^{\prime}\left(x^{*}\right)+\frac{1}{2} f^{\prime \prime}\left(x^{*}\right) e_{k-1}+O\left(e_{k-1}^{2}\right) .
$$

Sol. Non-linear Fun.

To estimate the numerator $\frac{\frac{1}{e_{k}} f\left(x_{k}\right)-\frac{1}{e_{k-1}} f\left(x_{k}\right)}{x_{k}-x_{k-1}}$, we apply the Taylor's theorem

$$
f\left(x_{k}\right)=f\left(x^{*}+e_{k}\right)=f\left(x^{*}\right)+f^{\prime}\left(x^{*}\right) e_{k}+\frac{1}{2} f^{\prime \prime}\left(x^{*}\right) e_{k}^{2}+O\left(e_{k}^{3}\right)
$$

to get

$$
\frac{1}{e_{k}} f\left(x_{k}\right)=f^{\prime}\left(x^{*}\right)+\frac{1}{2} f^{\prime \prime}\left(x^{*}\right) e_{k}+O\left(e_{k}^{2}\right) .
$$

Similarly,

$$
\frac{1}{e_{k-1}} f\left(x_{k-1}\right)=f^{\prime}\left(x^{*}\right)+\frac{1}{2} f^{\prime \prime}\left(x^{*}\right) e_{k-1}+O\left(e_{k-1}^{2}\right) .
$$

Hence

$$
\frac{1}{e_{k}} f\left(x_{k}\right)-\frac{1}{e_{k-1}} f\left(x_{k-1}\right) \approx \frac{1}{2}\left(e_{k}-e_{k-1}\right) f^{\prime \prime}\left(x^{*}\right)
$$

Sol. Non-linear Fun.

To estimate the numerator $\frac{\frac{1}{e_{k}} f\left(x_{k}\right)-\frac{1}{e_{k-1}} f\left(x_{k}\right)}{x_{k}-x_{k-1}}$, we apply the Taylor's theorem

$$
f\left(x_{k}\right)=f\left(x^{*}+e_{k}\right)=f\left(x^{*}\right)+f^{\prime}\left(x^{*}\right) e_{k}+\frac{1}{2} f^{\prime \prime}\left(x^{*}\right) e_{k}^{2}+O\left(e_{k}^{3}\right)
$$

to get

$$
\frac{1}{e_{k}} f\left(x_{k}\right)=f^{\prime}\left(x^{*}\right)+\frac{1}{2} f^{\prime \prime}\left(x^{*}\right) e_{k}+O\left(e_{k}^{2}\right) .
$$

Similarly,

$$
\frac{1}{e_{k-1}} f\left(x_{k-1}\right)=f^{\prime}\left(x^{*}\right)+\frac{1}{2} f^{\prime \prime}\left(x^{*}\right) e_{k-1}+O\left(e_{k-1}^{2}\right) .
$$

Hence

$$
\frac{1}{e_{k}} f\left(x_{k}\right)-\frac{1}{e_{k-1}} f\left(x_{k-1}\right) \approx \frac{1}{2}\left(e_{k}-e_{k-1}\right) f^{\prime \prime}\left(x^{*}\right)
$$

Since $x_{k}-x_{k-1}=e_{k}-e_{k-1}$ and

$$
\frac{x_{k}-x_{k-1}}{f\left(x_{k}\right)-f\left(x_{k-1}\right)} \rightarrow \frac{1}{f^{\prime}\left(x^{*}\right)}
$$

Sol. Non-linear Fun.

we have

$$
\begin{align*}
e_{k+1} & \approx e_{k} e_{k-1}\left(\frac{\frac{1}{2}\left(e_{k}-e_{k-1}\right) f^{\prime \prime}\left(x^{*}\right)}{e_{k}-e_{k-1}} \cdot \frac{1}{f^{\prime}\left(x^{*}\right)}\right)=\frac{1}{2} \frac{f^{\prime \prime}\left(x^{*}\right)}{f^{\prime}\left(x^{*}\right)} e_{k} e_{k-1} \\
& \equiv C e_{k} e_{k-1} \tag{1}
\end{align*}
$$

Sol. Non-linear Fun.

we have

$$
\begin{align*}
e_{k+1} & \approx e_{k} e_{k-1}\left(\frac{\frac{1}{2}\left(e_{k}-e_{k-1}\right) f^{\prime \prime}\left(x^{*}\right)}{e_{k}-e_{k-1}} \cdot \frac{1}{f^{\prime}\left(x^{*}\right)}\right)=\frac{1}{2} \frac{f^{\prime \prime}\left(x^{*}\right)}{f^{\prime}\left(x^{*}\right)} e_{k} e_{k-1} \\
& \equiv C e_{k} e_{k-1} \tag{1}
\end{align*}
$$

To estimate the convergence rate, we assume

$$
\left|e_{k+1}\right| \approx \eta\left|e_{k}\right|^{\alpha}
$$

where $\eta>0$ and $\alpha>0$ are constants,

Sol. Non-linear Fun.

we have

$$
\begin{align*}
e_{k+1} & \approx e_{k} e_{k-1}\left(\frac{\frac{1}{2}\left(e_{k}-e_{k-1}\right) f^{\prime \prime}\left(x^{*}\right)}{e_{k}-e_{k-1}} \cdot \frac{1}{f^{\prime}\left(x^{*}\right)}\right)=\frac{1}{2} \frac{f^{\prime \prime}\left(x^{*}\right)}{f^{\prime}\left(x^{*}\right)} e_{k} e_{k-1} \\
& \equiv C e_{k} e_{k-1} \tag{1}
\end{align*}
$$

To estimate the convergence rate, we assume

$$
\left|e_{k+1}\right| \approx \eta\left|e_{k}\right|^{\alpha}
$$

where $\eta>0$ and $\alpha>0$ are constants, i.e.,

$$
\frac{\left|e_{k+1}\right|}{\eta\left|e_{k}\right|^{\alpha}} \rightarrow 1 \quad \text { as } \quad k \rightarrow \infty
$$

Sol. Non-linear Fun.

we have

$$
\begin{align*}
e_{k+1} & \approx e_{k} e_{k-1}\left(\frac{\frac{1}{2}\left(e_{k}-e_{k-1}\right) f^{\prime \prime}\left(x^{*}\right)}{e_{k}-e_{k-1}} \cdot \frac{1}{f^{\prime}\left(x^{*}\right)}\right)=\frac{1}{2} \frac{f^{\prime \prime}\left(x^{*}\right)}{f^{\prime}\left(x^{*}\right)} e_{k} e_{k-1} \\
& \equiv C e_{k} e_{k-1} \tag{1}
\end{align*}
$$

To estimate the convergence rate, we assume

$$
\left|e_{k+1}\right| \approx \eta\left|e_{k}\right|^{\alpha}
$$

where $\eta>0$ and $\alpha>0$ are constants, i.e.,

$$
\frac{\left|e_{k+1}\right|}{\eta\left|e_{k}\right|^{\alpha}} \rightarrow 1 \quad \text { as } \quad k \rightarrow \infty
$$

Then $\left|e_{k}\right| \approx \eta\left|e_{k-1}\right|^{\alpha}$ which implies $\left|e_{k-1}\right| \approx \eta^{-1 / \alpha}\left|e_{k}\right|^{1 / \alpha}$.

Sol. Non-linear Fun.

we have

$$
\begin{align*}
e_{k+1} & \approx e_{k} e_{k-1}\left(\frac{\frac{1}{2}\left(e_{k}-e_{k-1}\right) f^{\prime \prime}\left(x^{*}\right)}{e_{k}-e_{k-1}} \cdot \frac{1}{f^{\prime}\left(x^{*}\right)}\right)=\frac{1}{2} \frac{f^{\prime \prime}\left(x^{*}\right)}{f^{\prime}\left(x^{*}\right)} e_{k} e_{k-1} \\
& \equiv C e_{k} e_{k-1} \tag{1}
\end{align*}
$$

To estimate the convergence rate, we assume

$$
\left|e_{k+1}\right| \approx \eta\left|e_{k}\right|^{\alpha}
$$

where $\eta>0$ and $\alpha>0$ are constants, i.e.,

$$
\frac{\left|e_{k+1}\right|}{\eta\left|e_{k}\right|^{\alpha}} \rightarrow 1 \quad \text { as } \quad k \rightarrow \infty
$$

Then $\left|e_{k}\right| \approx \eta\left|e_{k-1}\right|^{\alpha}$ which implies $\left|e_{k-1}\right| \approx \eta^{-1 / \alpha}\left|e_{k}\right|^{1 / \alpha}$. Hence (1) gives

$$
\eta\left|e_{k}\right|^{\alpha} \approx C\left|e_{k}\right| \eta^{-1 / \alpha}\left|e_{k}\right|^{1 / \alpha} \Longrightarrow C^{-1} \eta^{1+\frac{1}{\alpha}} \approx\left|e_{k}\right|^{1-\alpha+\frac{1}{\alpha}}
$$

Sol. Non-linear Fun.

we have

$$
\begin{align*}
e_{k+1} & \approx e_{k} e_{k-1}\left(\frac{\frac{1}{2}\left(e_{k}-e_{k-1}\right) f^{\prime \prime}\left(x^{*}\right)}{e_{k}-e_{k-1}} \cdot \frac{1}{f^{\prime}\left(x^{*}\right)}\right)=\frac{1}{2} \frac{f^{\prime \prime}\left(x^{*}\right)}{f^{\prime}\left(x^{*}\right)} e_{k} e_{k-1} \\
& \equiv C e_{k} e_{k-1} \tag{1}
\end{align*}
$$

To estimate the convergence rate, we assume

$$
\left|e_{k+1}\right| \approx \eta\left|e_{k}\right|^{\alpha}
$$

where $\eta>0$ and $\alpha>0$ are constants, i.e.,

$$
\frac{\left|e_{k+1}\right|}{\eta\left|e_{k}\right|^{\alpha}} \rightarrow 1 \quad \text { as } \quad k \rightarrow \infty
$$

Then $\left|e_{k}\right| \approx \eta\left|e_{k-1}\right|^{\alpha}$ which implies $\left|e_{k-1}\right| \approx \eta^{-1 / \alpha}\left|e_{k}\right|^{1 / \alpha}$. Hence (1) gives

$$
\eta\left|e_{k}\right|^{\alpha} \approx C\left|e_{k}\right| \eta^{-1 / \alpha}\left|e_{k}\right|^{1 / \alpha} \Longrightarrow C^{-1} \eta^{1+\frac{1}{\alpha}} \approx\left|e_{k}\right|^{1-\alpha+\frac{1}{\alpha}}
$$

Since $\left|e_{k}\right| \rightarrow 0$ as $k \rightarrow \infty$, and $C^{-1} \eta^{1+\frac{1}{\alpha}}$ is a nonzero constant,

Sol. Non-linear Fun.

we have

$$
\begin{align*}
e_{k+1} & \approx e_{k} e_{k-1}\left(\frac{\frac{1}{2}\left(e_{k}-e_{k-1}\right) f^{\prime \prime}\left(x^{*}\right)}{e_{k}-e_{k-1}} \cdot \frac{1}{f^{\prime}\left(x^{*}\right)}\right)=\frac{1}{2} \frac{f^{\prime \prime}\left(x^{*}\right)}{f^{\prime}\left(x^{*}\right)} e_{k} e_{k-1} \\
& \equiv C e_{k} e_{k-1} \tag{1}
\end{align*}
$$

To estimate the convergence rate, we assume

$$
\left|e_{k+1}\right| \approx \eta\left|e_{k}\right|^{\alpha}
$$

where $\eta>0$ and $\alpha>0$ are constants, i.e.,

$$
\frac{\left|e_{k+1}\right|}{\eta\left|e_{k}\right|^{\alpha}} \rightarrow 1 \quad \text { as } \quad k \rightarrow \infty
$$

Then $\left|e_{k}\right| \approx \eta\left|e_{k-1}\right|^{\alpha}$ which implies $\left|e_{k-1}\right| \approx \eta^{-1 / \alpha}\left|e_{k}\right|^{1 / \alpha}$. Hence (1) gives

$$
\eta\left|e_{k}\right|^{\alpha} \approx C\left|e_{k}\right| \eta^{-1 / \alpha}\left|e_{k}\right|^{1 / \alpha} \Longrightarrow C^{-1} \eta^{1+\frac{1}{\alpha}} \approx\left|e_{k}\right|^{1-\alpha+\frac{1}{\alpha}}
$$

Since $\left|e_{k}\right| \rightarrow 0$ as $k \rightarrow \infty$, and $C^{-1} \eta^{1+\frac{1}{\alpha}}$ is a nonzero constant,

$$
1-\alpha+\frac{1}{\alpha}=0 \quad \Longrightarrow \quad \alpha=\frac{1+\sqrt{5}}{2} \approx 1.62
$$

Sol. Non-linear Fun.

This result implies that $C^{-1} \eta^{1+\frac{1}{\alpha}} \rightarrow 1$ and

Sol. Non-linear Fun.

This result implies that $C^{-1} \eta^{1+\frac{1}{\alpha}} \rightarrow 1$ and

$$
\eta \rightarrow C^{\frac{\alpha}{1+\alpha}}=\left(\frac{f^{\prime \prime}\left(x^{*}\right)}{2 f^{\prime}\left(x^{*}\right)}\right)^{0.62}
$$

This result implies that $C^{-1} \eta^{1+\frac{1}{\alpha}} \rightarrow 1$ and

$$
\eta \rightarrow C^{\frac{\alpha}{1+\alpha}}=\left(\frac{f^{\prime \prime}\left(x^{*}\right)}{2 f^{\prime}\left(x^{*}\right)}\right)^{0.62}
$$

In summary, we have shown that

$$
\left|e_{k+1}\right|=\eta\left|e_{k}\right|^{\alpha}, \quad \alpha \approx 1.62
$$

This result implies that $C^{-1} \eta^{1+\frac{1}{\alpha}} \rightarrow 1$ and

$$
\eta \rightarrow C^{\frac{\alpha}{1+\alpha}}=\left(\frac{f^{\prime \prime}\left(x^{*}\right)}{2 f^{\prime}\left(x^{*}\right)}\right)^{0.62}
$$

In summary, we have shown that

$$
\left|e_{k+1}\right|=\eta\left|e_{k}\right|^{\alpha}, \quad \alpha \approx 1.62
$$

that is, the rate of convergence is superlinear.

This result implies that $C^{-1} \eta^{1+\frac{1}{\alpha}} \rightarrow 1$ and

$$
\eta \rightarrow C^{\frac{\alpha}{1+\alpha}}=\left(\frac{f^{\prime \prime}\left(x^{*}\right)}{2 f^{\prime}\left(x^{*}\right)}\right)^{0.62}
$$

In summary, we have shown that

$$
\left|e_{k+1}\right|=\eta\left|e_{k}\right|^{\alpha}, \quad \alpha \approx 1.62
$$

that is, the rate of convergence is superlinear.
Rate of convergence:

This result implies that $C^{-1} \eta^{1+\frac{1}{\alpha}} \rightarrow 1$ and

$$
\eta \rightarrow C^{\frac{\alpha}{1+\alpha}}=\left(\frac{f^{\prime \prime}\left(x^{*}\right)}{2 f^{\prime}\left(x^{*}\right)}\right)^{0.62}
$$

In summary, we have shown that

$$
\left|e_{k+1}\right|=\eta\left|e_{k}\right|^{\alpha}, \quad \alpha \approx 1.62
$$

that is, the rate of convergence is superlinear.
Rate of convergence:
secant method: superlinear

This result implies that $C^{-1} \eta^{1+\frac{1}{\alpha}} \rightarrow 1$ and

$$
\eta \rightarrow C^{\frac{\alpha}{1+\alpha}}=\left(\frac{f^{\prime \prime}\left(x^{*}\right)}{2 f^{\prime}\left(x^{*}\right)}\right)^{0.62}
$$

In summary, we have shown that

$$
\left|e_{k+1}\right|=\eta\left|e_{k}\right|^{\alpha}, \quad \alpha \approx 1.62
$$

that is, the rate of convergence is superlinear.
Rate of convergence:
secant method: superlinear
$\$ \geqslant$ Newton's method: quadratic

This result implies that $C^{-1} \eta^{1+\frac{1}{\alpha}} \rightarrow 1$ and

$$
\eta \rightarrow C^{\frac{\alpha}{1+\alpha}}=\left(\frac{f^{\prime \prime}\left(x^{*}\right)}{2 f^{\prime}\left(x^{*}\right)}\right)^{0.62}
$$

In summary, we have shown that

$$
\left|e_{k+1}\right|=\eta\left|e_{k}\right|^{\alpha}, \quad \alpha \approx 1.62
$$

that is, the rate of convergence is superlinear.
Rate of convergence:
18 secant method: superlinear
18 Newton's method: quadratic
n $\$$

Sol. Non-linear Fun.

Each iteration of method requires

Sol. Non-linear Fun.

Each iteration of method requires

secant method: one function evaluation

Sol. Non-linear Fun.

Each iteration of method requires
IEs secant method: one function evaluation
Newton's method: two function evaluation, namely, $f\left(x_{k}\right)$ and $f^{\prime \prime}\left(x_{k}\right)$.

Sol. Non-linear Fun.

Each iteration of method requires

secant method: one function evaluation
4 Newton's method: two function evaluation, namely, $f\left(x_{k}\right)$ and $f^{\prime \prime}\left(x_{k}\right)$.
\Rightarrow two steps of secant method are comparable to one step of Newton's method. Thus

$$
\left|e_{k+2}\right| \approx \eta\left|e_{k+1}\right|^{\alpha} \approx \eta^{1+\alpha}\left|e_{k}\right|^{\frac{3+\sqrt{5}}{2}} \approx \eta^{1+\alpha}\left|e_{k}\right|^{2.62}
$$

Sol. Non-linear Fun.

Each iteration of method requires
secant method: one function evaluation
Newton's method: two function evaluation, namely, $f\left(x_{k}\right)$ and $f^{\prime \prime}\left(x_{k}\right)$.
\Rightarrow two steps of secant method are comparable to one step of Newton's method. Thus

$$
\left|e_{k+2}\right| \approx \eta\left|e_{k+1}\right|^{\alpha} \approx \eta^{1+\alpha}\left|e_{k}\right|^{\frac{3+\sqrt{5}}{2}} \approx \eta^{1+\alpha}\left|e_{k}\right|^{2.62}
$$

\Rightarrow secant method is more efficient than Newton's method.

Sol. Non-linear Fun.

Each iteration of method requires
secant method: one function evaluation
4 Newton's method: two function evaluation, namely, $f\left(x_{k}\right)$ and $f^{\prime \prime}\left(x_{k}\right)$.
\Rightarrow two steps of secant method are comparable to one step of Newton's method. Thus

$$
\left|e_{k+2}\right| \approx \eta\left|e_{k+1}\right|^{\alpha} \approx \eta^{1+\alpha}\left|e_{k}\right|^{\frac{3+\sqrt{5}}{2}} \approx \eta^{1+\alpha}\left|e_{k}\right|^{2.62}
$$

\Rightarrow secant method is more efficient than Newton's method.

Remark 2 Two steps of secant method would require a little more work than one step of Newton's method.

5 - Fixed Point and Functional Iteration

Definition $4 x$ is called a fixed point of a given function f if $f(x)=x$.

5 - Fixed Point and Functional Iteration

Definition $4 x$ is called a fixed point of a given function f if $f(x)=x$.
The problem of finding a fixed point for a given function is equivalent to the problem of finding a zero for a nonlinear function.

5 - Fixed Point and Functional Iteration

Definition $4 x$ is called a fixed point of a given function f if $f(x)=x$.
The problem of finding a fixed point for a given function is equivalent to the problem of finding a zero for a nonlinear function.

Find x^{*} such that $f\left(x^{*}\right)=0$.

5 - Fixed Point and Functional Iteration

Definition $4 x$ is called a fixed point of a given function f if $f(x)=x$.
The problem of finding a fixed point for a given function is equivalent to the problem of finding a zero for a nonlinear function.

Find x^{*} such that $f\left(x^{*}\right)=0$.

$$
\text { Let } g(x)=x-f(x) \text {. Then } g\left(x^{*}\right)=x^{*}-f\left(x^{*}\right)=x^{*} \text {. }
$$

5 - Fixed Point and Functional Iteration

Definition $4 x$ is called a fixed point of a given function f if $f(x)=x$.
The problem of finding a fixed point for a given function is equivalent to the problem of finding a zero for a nonlinear function.

Find x^{*} such that $f\left(x^{*}\right)=0$.
Let $g(x)=x-f(x)$. Then $g\left(x^{*}\right)=x^{*}-f\left(x^{*}\right)=x^{*}$.
$\Rightarrow x^{*}$ is a fixed point for $g(x)$.

5 - Fixed Point and Functional Iteration

Definition $4 x$ is called a fixed point of a given function f if $f(x)=x$.
The problem of finding a fixed point for a given function is equivalent to the problem of finding a zero for a nonlinear function.

Find x^{*} such that $f\left(x^{*}\right)=0$.
Let $g(x)=x-f(x)$. Then $g\left(x^{*}\right)=x^{*}-f\left(x^{*}\right)=x^{*}$.
$\Rightarrow x^{*}$ is a fixed point for $g(x)$.
Find x^{*} such that $g\left(x^{*}\right)=x^{*}$.

5 - Fixed Point and Functional Iteration

Definition $4 x$ is called a fixed point of a given function f if $f(x)=x$.
The problem of finding a fixed point for a given function is equivalent to the problem of finding a zero for a nonlinear function.

Find x^{*} such that $f\left(x^{*}\right)=0$.
Let $g(x)=x-f(x)$. Then $g\left(x^{*}\right)=x^{*}-f\left(x^{*}\right)=x^{*}$.
$\Rightarrow x^{*}$ is a fixed point for $g(x)$.
Find x^{*} such that $g\left(x^{*}\right)=x^{*}$.
Define $f(x)=x-g(x)$ so that

$$
f\left(x^{*}\right)=x^{*}-g\left(x^{*}\right)=x^{*}-x^{*}=0
$$

5 - Fixed Point and Functional Iteration

Definition $4 x$ is called a fixed point of a given function f if $f(x)=x$.
The problem of finding a fixed point for a given function is equivalent to the problem of finding a zero for a nonlinear function.

Find x^{*} such that $f\left(x^{*}\right)=0$.
Let $g(x)=x-f(x)$. Then $g\left(x^{*}\right)=x^{*}-f\left(x^{*}\right)=x^{*}$.
$\Rightarrow x^{*}$ is a fixed point for $g(x)$.
Find x^{*} such that $g\left(x^{*}\right)=x^{*}$.
Define $f(x)=x-g(x)$ so that
$f\left(x^{*}\right)=x^{*}-g\left(x^{*}\right)=x^{*}-x^{*}=0$
$\Rightarrow x^{*}$ is a zero of $f(x)$.

5 - Fixed Point and Functional Iteration

Definition $4 x$ is called a fixed point of a given function f if $f(x)=x$.
The problem of finding a fixed point for a given function is equivalent to the problem of finding a zero for a nonlinear function.

Find x^{*} such that $f\left(x^{*}\right)=0$.
Let $g(x)=x-f(x)$. Then $g\left(x^{*}\right)=x^{*}-f\left(x^{*}\right)=x^{*}$.
$\Rightarrow x^{*}$ is a fixed point for $g(x)$.
Find x^{*} such that $g\left(x^{*}\right)=x^{*}$.
Define $f(x)=x-g(x)$ so that
$f\left(x^{*}\right)=x^{*}-g\left(x^{*}\right)=x^{*}-x^{*}=0$
$\Rightarrow x^{*}$ is a zero of $f(x)$.
Two questions arise: "When does a function have a fixed point?" and "How to find a fixed point?".

5.1 - Functional Iteration

Fixed-point iteration or functional iteration: Given a continuous function f, choose an initial point x_{0} and generate $\left\{x_{k}\right\}_{k \geq 0}$ by

$$
x_{k+1}=f\left(x_{k}\right), \quad k \geq 0 .
$$

5.1 - Functional Iteration

Fixed-point iteration or functional iteration: Given a continuous function f, choose an initial point x_{0} and generate $\left\{x_{k}\right\}_{k \geq 0}$ by

$$
x_{k+1}=f\left(x_{k}\right), \quad k \geq 0
$$

$\left\{x_{k}\right\}$ may not converge, e.g., $f(x)=3 x$.

5.1 - Functional Iteration

Fixed-point iteration or functional iteration: Given a continuous function f, choose an initial point x_{0} and generate $\left\{x_{k}\right\}_{k \geq 0}$ by

$$
x_{k+1}=f\left(x_{k}\right), \quad k \geq 0
$$

$\left\{x_{k}\right\}$ may not converge, e.g., $f(x)=3 x$. However, when the sequence converges, say,

$$
\lim _{k \rightarrow \infty} x_{k}=x^{*}
$$

5.1 - Functional Iteration

Fixed-point iteration or functional iteration: Given a continuous function f, choose an initial point x_{0} and generate $\left\{x_{k}\right\}_{k \geq 0}$ by

$$
x_{k+1}=f\left(x_{k}\right), \quad k \geq 0
$$

$\left\{x_{k}\right\}$ may not converge, e.g., $f(x)=3 x$. However, when the sequence converges, say,

$$
\lim _{k \rightarrow \infty} x_{k}=x^{*}
$$

then, since f is continuous,

$$
f\left(x^{*}\right)=f\left(\lim _{k \rightarrow \infty} x_{k}\right)=\lim _{k \rightarrow \infty} f\left(x_{k}\right)=\lim _{k \rightarrow \infty} x_{k+1}=x^{*}
$$

5.1 - Functional Iteration

Fixed-point iteration or functional iteration: Given a continuous function f, choose an initial point x_{0} and generate $\left\{x_{k}\right\}_{k \geq 0}$ by

$$
x_{k+1}=f\left(x_{k}\right), \quad k \geq 0
$$

$\left\{x_{k}\right\}$ may not converge, e.g., $f(x)=3 x$. However, when the sequence converges, say,

$$
\lim _{k \rightarrow \infty} x_{k}=x^{*}
$$

then, since f is continuous,

$$
f\left(x^{*}\right)=f\left(\lim _{k \rightarrow \infty} x_{k}\right)=\lim _{k \rightarrow \infty} f\left(x_{k}\right)=\lim _{k \rightarrow \infty} x_{k+1}=x^{*}
$$

That is, x^{*} is a fixed point of f.

5.1 - Functional Iteration

Fixed-point iteration or functional iteration: Given a continuous function f, choose an initial point x_{0} and generate $\left\{x_{k}\right\}_{k \geq 0}$ by

$$
x_{k+1}=f\left(x_{k}\right), \quad k \geq 0
$$

$\left\{x_{k}\right\}$ may not converge, e.g., $f(x)=3 x$. However, when the sequence converges, say,

$$
\lim _{k \rightarrow \infty} x_{k}=x^{*}
$$

then, since f is continuous,

$$
f\left(x^{*}\right)=f\left(\lim _{k \rightarrow \infty} x_{k}\right)=\lim _{k \rightarrow \infty} f\left(x_{k}\right)=\lim _{k \rightarrow \infty} x_{k+1}=x^{*}
$$

That is, x^{*} is a fixed point of f.
Note that Newton's method for solving $g(x)=0$

$$
x_{k+1}=x_{k}-\frac{g\left(x_{k}\right)}{g^{\prime}\left(x_{k}\right)}
$$

is just a special case of functional iteration in which

$$
f(x)=x-\frac{g(x)}{g^{\prime}(x)}
$$

is just a special case of functional iteration in which

$$
f(x)=x-\frac{g(x)}{g^{\prime}(x)}
$$

Definition 5 A function (mapping) f is said to be contractive if there exists a constant $0 \leq \lambda<1$ such that

$$
|f(x)-f(y)| \leq \lambda|x-y|
$$

for all x, y in the domain of f.
is just a special case of functional iteration in which

$$
f(x)=x-\frac{g(x)}{g^{\prime}(x)}
$$

Definition 5 A function (mapping) f is said to be contractive if there exists a constant $0 \leq \lambda<1$ such that

$$
|f(x)-f(y)| \leq \lambda|x-y|
$$

for all x, y in the domain of f.
Theorem 4 (Contractive Mapping Theorem) Suppose $f: D \rightarrow D$, where $D \subseteq \mathbb{R}$ is a closed set, is a contractive mapping. Then f has a unique fixed point in D. Moreover, this fixed point is the limit of every sequence obtained by

$$
x_{k+1}=f\left(x_{k}\right)
$$

with any initial point x_{0}.

Proof: We first show that $\lim _{k \rightarrow \infty} x_{k}$ exists.

Proof: We first show that $\lim _{k \rightarrow \infty} x_{k}$ exists. Since

$$
x_{k}=x_{0}+\left(x_{1}-x_{0}\right)+\left(x_{2}-x_{1}\right)+\cdots+\left(x_{k}-x_{k-1}\right)=x_{0}+\sum_{i=1}^{k}\left(x_{i}-x_{i-1}\right)
$$

Proof: We first show that $\lim _{k \rightarrow \infty} x_{k}$ exists. Since
$x_{k}=x_{0}+\left(x_{1}-x_{0}\right)+\left(x_{2}-x_{1}\right)+\cdots+\left(x_{k}-x_{k-1}\right)=x_{0}+\sum_{i=1}^{k}\left(x_{i}-x_{i-1}\right)$,
$\left\{x_{k}\right\}_{k \geq 0}$ converges if and only if $\sum_{i=1}^{\infty}\left(x_{i}-x_{i-1}\right)$ converges and it is sufficient to show $\sum_{i=1}^{\infty}\left|x_{i}-x_{i-1}\right|$ converges.

Proof: We first show that $\lim _{k \rightarrow \infty} x_{k}$ exists. Since
$x_{k}=x_{0}+\left(x_{1}-x_{0}\right)+\left(x_{2}-x_{1}\right)+\cdots+\left(x_{k}-x_{k-1}\right)=x_{0}+\sum_{i=1}^{k}\left(x_{i}-x_{i-1}\right)$,
$\left\{x_{k}\right\}_{k \geq 0}$ converges if and only if $\sum_{i=1}^{\infty}\left(x_{i}-x_{i-1}\right)$ converges and it is sufficient to show $\sum_{i=1}^{\infty}\left|x_{i}-x_{i-1}\right|$ converges.

Since f is contractive, we have

$$
\begin{aligned}
\left|x_{i}-x_{i-1}\right| & =\left|f\left(x_{i-1}\right)-f\left(x_{i-2}\right)\right| \\
& \leq \lambda\left|x_{i-1}-x_{i-2}\right| \\
& \leq \lambda^{2}\left|x_{i-2}-x_{i-3}\right| \\
& \vdots \\
& \leq \lambda^{i-1}\left|x_{1}-x_{0}\right|
\end{aligned}
$$

Then we have

$$
\sum_{i=1}^{\infty}\left|x_{i}-x_{i-1}\right| \leq \sum_{i=1}^{\infty} \lambda^{i-1}\left|x_{1}-x_{0}\right|
$$

Then we have

$$
\begin{aligned}
\sum_{i=1}^{\infty}\left|x_{i}-x_{i-1}\right| & \leq \sum_{i=1}^{\infty} \lambda^{i-1}\left|x_{1}-x_{0}\right| \\
& =\left|x_{1}-x_{0}\right| \sum_{i=1}^{\infty} \lambda^{i-1}
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& \qquad \begin{array}{ll}
\sum_{i=1}^{\infty}\left|x_{i}-x_{i-1}\right| & \leq \sum_{i=1}^{\infty} \lambda^{i-1}\left|x_{1}-x_{0}\right| \\
& =\left|x_{1}-x_{0}\right| \sum_{i=1}^{\infty} \lambda^{i-1} \\
\text { since } 0 \leq \lambda<1 .
\end{array}
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\sum_{i=1}^{\infty}\left|x_{i}-x_{i-1}\right| & \leq \sum_{i=1}^{\infty} \lambda^{i-1}\left|x_{1}-x_{0}\right| \\
& =\left|x_{1}-x_{0}\right| \sum_{i=1}^{\infty} \lambda^{i-1} \\
& =\frac{1}{1-\lambda}\left|x_{1}-x_{0}\right|
\end{aligned}
$$

since $0 \leq \lambda<1$.

Then we have

$$
\begin{aligned}
& \qquad \begin{aligned}
\sum_{i=1}^{\infty}\left|x_{i}-x_{i-1}\right| & \leq \sum_{i=1}^{\infty} \lambda^{i-1}\left|x_{1}-x_{0}\right| \\
& =\left|x_{1}-x_{0}\right| \sum_{i=1}^{\infty} \lambda^{i-1} \\
& =\frac{1}{1-\lambda}\left|x_{1}-x_{0}\right|
\end{aligned} \\
& \text { since } 0 \leq \lambda<1 \text {. This show that } \sum_{i=1}^{\infty}\left|x_{i}-x_{i-1}\right| \text { is bounded, }
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\sum_{i=1}^{\infty}\left|x_{i}-x_{i-1}\right| & \leq \sum_{i=1}^{\infty} \lambda^{i-1}\left|x_{1}-x_{0}\right| \\
& =\left|x_{1}-x_{0}\right| \sum_{i=1}^{\infty} \lambda^{i-1} \\
& =\frac{1}{1-\lambda}\left|x_{1}-x_{0}\right|
\end{aligned}
$$

since $0 \leq \lambda<1$. This show that $\sum_{i=1}^{\infty}\left|x_{i}-x_{i-1}\right|$ is bounded, hence it converges.

Then we have

$$
\begin{aligned}
\sum_{i=1}^{\infty}\left|x_{i}-x_{i-1}\right| & \leq \sum_{i=1}^{\infty} \lambda^{i-1}\left|x_{1}-x_{0}\right| \\
& =\left|x_{1}-x_{0}\right| \sum_{i=1}^{\infty} \lambda^{i-1} \\
& =\frac{1}{1-\lambda}\left|x_{1}-x_{0}\right|
\end{aligned}
$$

since $0 \leq \lambda<1$. This show that $\sum_{i=1}^{\infty}\left|x_{i}-x_{i-1}\right|$ is bounded, hence it converges. Let $\lim _{k \rightarrow \infty} x_{k}=x^{*}$.

Then we have

$$
\begin{aligned}
\sum_{i=1}^{\infty}\left|x_{i}-x_{i-1}\right| & \leq \sum_{i=1}^{\infty} \lambda^{i-1}\left|x_{1}-x_{0}\right| \\
& =\left|x_{1}-x_{0}\right| \sum_{i=1}^{\infty} \lambda^{i-1} \\
& =\frac{1}{1-\lambda}\left|x_{1}-x_{0}\right|
\end{aligned}
$$

since $0 \leq \lambda<1$. This show that $\sum_{i=1}^{\infty}\left|x_{i}-x_{i-1}\right|$ is bounded, hence it converges. Let $\lim _{k \rightarrow \infty} x_{k}=x^{*}$.
f is a contractive mapping

Then we have

$$
\begin{aligned}
\sum_{i=1}^{\infty}\left|x_{i}-x_{i-1}\right| & \leq \sum_{i=1}^{\infty} \lambda^{i-1}\left|x_{1}-x_{0}\right| \\
& =\left|x_{1}-x_{0}\right| \sum_{i=1}^{\infty} \lambda^{i-1} \\
& =\frac{1}{1-\lambda}\left|x_{1}-x_{0}\right|
\end{aligned}
$$

since $0 \leq \lambda<1$. This show that $\sum_{i=1}^{\infty}\left|x_{i}-x_{i-1}\right|$ is bounded, hence it converges. Let $\lim _{k \rightarrow \infty} x_{k}=x^{*}$.
f is a contractive mapping
$\Rightarrow f$ is continuous

Then we have

$$
\begin{aligned}
\sum_{i=1}^{\infty}\left|x_{i}-x_{i-1}\right| & \leq \sum_{i=1}^{\infty} \lambda^{i-1}\left|x_{1}-x_{0}\right| \\
& =\left|x_{1}-x_{0}\right| \sum_{i=1}^{\infty} \lambda^{i-1} \\
& =\frac{1}{1-\lambda}\left|x_{1}-x_{0}\right|
\end{aligned}
$$

since $0 \leq \lambda<1$. This show that $\sum_{i=1}^{\infty}\left|x_{i}-x_{i-1}\right|$ is bounded, hence it converges. Let $\lim _{k \rightarrow \infty} x_{k}=x^{*}$.
f is a contractive mapping
$\Rightarrow f$ is continuous
$\Rightarrow x^{*}=\lim _{k \rightarrow \infty} x_{k}=\lim _{k \rightarrow \infty} f\left(x_{k-1}\right)=f\left(\lim _{k \rightarrow \infty} x_{k-1}\right)=f\left(x^{*}\right)$

Then we have

$$
\begin{aligned}
\sum_{i=1}^{\infty}\left|x_{i}-x_{i-1}\right| & \leq \sum_{i=1}^{\infty} \lambda^{i-1}\left|x_{1}-x_{0}\right| \\
& =\left|x_{1}-x_{0}\right| \sum_{i=1}^{\infty} \lambda^{i-1} \\
& =\frac{1}{1-\lambda}\left|x_{1}-x_{0}\right|
\end{aligned}
$$

since $0 \leq \lambda<1$. This show that $\sum_{i=1}^{\infty}\left|x_{i}-x_{i-1}\right|$ is bounded, hence it converges. Let $\lim _{k \rightarrow \infty} x_{k}=x^{*}$.
f is a contractive mapping
$\Rightarrow f$ is continuous
$\Rightarrow x^{*}=\lim _{k \rightarrow \infty} x_{k}=\lim _{k \rightarrow \infty} f\left(x_{k-1}\right)=f\left(\lim _{k \rightarrow \infty} x_{k-1}\right)=f\left(x^{*}\right)$
$\Rightarrow x^{*}$ is a fixed point of f.

To prove the uniqueness, let x and y both be fixed points of f.

To prove the uniqueness, let x and y both be fixed points of f. Then

$$
|x-y|=|f(x)-f(y)| \leq \lambda|x-y| .
$$

To prove the uniqueness, let x and y both be fixed points of f. Then

$$
|x-y|=|f(x)-f(y)| \leq \lambda|x-y| .
$$

Since $\lambda<1$, this forces $|x-y|=0$. That is, $x=y$.

To prove the uniqueness, let x and y both be fixed points of f. Then

$$
|x-y|=|f(x)-f(y)| \leq \lambda|x-y| .
$$

Since $\lambda<1$, this forces $|x-y|=0$. That is, $x=y$.
Theorem 5 If $f \in C[a, b]$ such that $a \leq f(x) \leq b$ for all $x \in[a, b]$, then f has a fixed point in $[a, b]$. Suppose, in addition, that $f^{\prime}(x)$ exists in (a, b) and there exists a positive constant $M<1$ such that $\left|f^{\prime}(x)\right| \leq M<1$ for all $x \in(a, b)$. Then the fixed point is unique.

To prove the uniqueness, let x and y both be fixed points of f. Then

$$
|x-y|=|f(x)-f(y)| \leq \lambda|x-y| .
$$

Since $\lambda<1$, this forces $|x-y|=0$. That is, $x=y$.
Theorem 5 If $f \in C[a, b]$ such that $a \leq f(x) \leq b$ for all $x \in[a, b]$, then f has a fixed point in $[a, b]$. Suppose, in addition, that $f^{\prime}(x)$ exists in (a, b) and there exists a positive constant $M<1$ such that $\left|f^{\prime}(x)\right| \leq M<1$ for all $x \in(a, b)$. Then the fixed point is unique.

Proof: If $f(a)=a$ or $f(b)=b$, then a or b is a fixed point of f and we are done.

To prove the uniqueness, let x and y both be fixed points of f. Then

$$
|x-y|=|f(x)-f(y)| \leq \lambda|x-y| .
$$

Since $\lambda<1$, this forces $|x-y|=0$. That is, $x=y$.
Theorem 5 If $f \in C[a, b]$ such that $a \leq f(x) \leq b$ for all $x \in[a, b]$, then f has a fixed point in $[a, b]$. Suppose, in addition, that $f^{\prime}(x)$ exists in (a, b) and there exists a positive constant $M<1$ such that $\left|f^{\prime}(x)\right| \leq M<1$ for all $x \in(a, b)$. Then the fixed point is unique.

Proof: If $f(a)=a$ or $f(b)=b$, then a or b is a fixed point of f and we are done. Otherwise, it must be $g(a)>a$ and $g(b)<b$.

To prove the uniqueness, let x and y both be fixed points of f. Then

$$
|x-y|=|f(x)-f(y)| \leq \lambda|x-y| .
$$

Since $\lambda<1$, this forces $|x-y|=0$. That is, $x=y$.
Theorem 5 If $f \in C[a, b]$ such that $a \leq f(x) \leq b$ for all $x \in[a, b]$, then f has a fixed point in $[a, b]$. Suppose, in addition, that $f^{\prime}(x)$ exists in (a, b) and there exists a positive constant $M<1$ such that $\left|f^{\prime}(x)\right| \leq M<1$ for all $x \in(a, b)$. Then the fixed point is unique.

Proof: If $f(a)=a$ or $f(b)=b$, then a or b is a fixed point of f and we are done. Otherwise, it must be $g(a)>a$ and $g(b)<b$.
Let $h(x)=f(x)-x$.

To prove the uniqueness, let x and y both be fixed points of f. Then

$$
|x-y|=|f(x)-f(y)| \leq \lambda|x-y| .
$$

Since $\lambda<1$, this forces $|x-y|=0$. That is, $x=y$.
Theorem 5 If $f \in C[a, b]$ such that $a \leq f(x) \leq b$ for all $x \in[a, b]$, then f has a fixed point in $[a, b]$. Suppose, in addition, that $f^{\prime}(x)$ exists in (a, b) and there exists a positive constant $M<1$ such that $\left|f^{\prime}(x)\right| \leq M<1$ for all $x \in(a, b)$. Then the fixed point is unique.

Proof: If $f(a)=a$ or $f(b)=b$, then a or b is a fixed point of f and we are done. Otherwise, it must be $g(a)>a$ and $g(b)<b$.
Let $h(x)=f(x)-x$.
$\Rightarrow h \in C[a, b]$ since $f \in C[a, b]$, and $h(a)=f(a)-a>0$,
$h(b)=f(b)-b<0$.

By the intermediate value theorem, $\exists x^{*} \in[a, b]$ such that $h\left(x^{*}\right)=0$.

By the intermediate value theorem, $\exists x^{*} \in[a, b]$ such that $h\left(x^{*}\right)=0$. $\Rightarrow f\left(x^{*}\right)-x^{*}=0$ and $f\left(x^{*}\right)=x^{*}$.

By the intermediate value theorem, $\exists x^{*} \in[a, b]$ such that $h\left(x^{*}\right)=0$. $\Rightarrow f\left(x^{*}\right)-x^{*}=0$ and $f\left(x^{*}\right)=x^{*}$.
$\Rightarrow f$ has a fixed point x^{*} in $[a, b]$.

By the intermediate value theorem, $\exists x^{*} \in[a, b]$ such that $h\left(x^{*}\right)=0$. $\Rightarrow f\left(x^{*}\right)-x^{*}=0$ and $f\left(x^{*}\right)=x^{*}$.
$\Rightarrow f$ has a fixed point x^{*} in $[a, b]$.
Suppose that $p \neq q$ are both fixed points of f in $[a, b]$.

By the intermediate value theorem, $\exists x^{*} \in[a, b]$ such that $h\left(x^{*}\right)=0$. $\Rightarrow f\left(x^{*}\right)-x^{*}=0$ and $f\left(x^{*}\right)=x^{*}$.
$\Rightarrow f$ has a fixed point x^{*} in $[a, b]$.
Suppose that $p \neq q$ are both fixed points of f in $[a, b]$. By the Mean-Value theorem, there exists ξ between p and q such that

$$
f^{\prime}(\xi)=\frac{f(p)-f(q)}{p-q}=\frac{p-q}{p-q}=1
$$

By the intermediate value theorem, $\exists x^{*} \in[a, b]$ such that $h\left(x^{*}\right)=0$. $\Rightarrow f\left(x^{*}\right)-x^{*}=0$ and $f\left(x^{*}\right)=x^{*}$.
$\Rightarrow f$ has a fixed point x^{*} in $[a, b]$.
Suppose that $p \neq q$ are both fixed points of f in $[a, b]$. By the Mean-Value theorem, there exists ξ between p and q such that

$$
f^{\prime}(\xi)=\frac{f(p)-f(q)}{p-q}=\frac{p-q}{p-q}=1
$$

However, this contradicts to the assumption that $f^{\prime}(x) \leq M<1$ for all x in $[a, b]$.

By the intermediate value theorem, $\exists x^{*} \in[a, b]$ such that $h\left(x^{*}\right)=0$. $\Rightarrow f\left(x^{*}\right)-x^{*}=0$ and $f\left(x^{*}\right)=x^{*}$.
$\Rightarrow f$ has a fixed point x^{*} in $[a, b]$.
Suppose that $p \neq q$ are both fixed points of f in $[a, b]$. By the Mean-Value theorem, there exists ξ between p and q such that

$$
f^{\prime}(\xi)=\frac{f(p)-f(q)}{p-q}=\frac{p-q}{p-q}=1
$$

However, this contradicts to the assumption that $f^{\prime}(x) \leq M<1$ for all x in $[a, b]$. Therefore the fixed point of f is unique.

Assumptions:

5.2 - Convergence Analysis

Assumptions:

1. f has a fixed point x^{*}, and the sequence $\left\{x_{k}\right\}_{k \geq 0}$ is generated by the iteration

$$
x_{k+1}=f\left(x_{k}\right), \quad k=0,1, \ldots,
$$

with an arbitrary initial point x_{0};

5.2 - Convergence Analysis

Assumptions:

1. f has a fixed point x^{*}, and the sequence $\left\{x_{k}\right\}_{k \geq 0}$ is generated by the iteration

$$
x_{k+1}=f\left(x_{k}\right), \quad k=0,1, \ldots,
$$

with an arbitrary initial point x_{0};
2. f^{\prime} exists, is continuous, and $\left|f^{\prime}(x)\right|<1$ for all x in the domain of f;

5.2 - Convergence Analysis

Assumptions:

1. f has a fixed point x^{*}, and the sequence $\left\{x_{k}\right\}_{k \geq 0}$ is generated by the iteration

$$
x_{k+1}=f\left(x_{k}\right), \quad k=0,1, \ldots,
$$

with an arbitrary initial point x_{0};
2. f^{\prime} exists, is continuous, and $\left|f^{\prime}(x)\right|<1$ for all x in the domain of f;
3. m is a positive integer such that $f^{(i)}\left(x^{*}\right)=0$ for $i=1, \ldots, m-1$, but $f^{(m)}\left(x^{*}\right) \neq 0$.

5.2 - Convergence Analysis

Assumptions:

1. f has a fixed point x^{*}, and the sequence $\left\{x_{k}\right\}_{k \geq 0}$ is generated by the iteration

$$
x_{k+1}=f\left(x_{k}\right), \quad k=0,1, \ldots,
$$

with an arbitrary initial point x_{0};
2. f^{\prime} exists, is continuous, and $\left|f^{\prime}(x)\right|<1$ for all x in the domain of f;
3. m is a positive integer such that $f^{(i)}\left(x^{*}\right)=0$ for $i=1, \ldots, m-1$, but $f^{(m)}\left(x^{*}\right) \neq 0$.

Let $e_{k}=x_{k}-x^{*}$.

5.2 - Convergence Analysis

Assumptions:

1. f has a fixed point x^{*}, and the sequence $\left\{x_{k}\right\}_{k \geq 0}$ is generated by the iteration

$$
x_{k+1}=f\left(x_{k}\right), \quad k=0,1, \ldots,
$$

with an arbitrary initial point x_{0};
2. f^{\prime} exists, is continuous, and $\left|f^{\prime}(x)\right|<1$ for all x in the domain of f;
3. m is a positive integer such that $f^{(i)}\left(x^{*}\right)=0$ for $i=1, \ldots, m-1$, but $f^{(m)}\left(x^{*}\right) \neq 0$.

Let $e_{k}=x_{k}-x^{*}$. Then by the Mean-Value theorem
$e_{k+1}=x_{k+1}-x^{*}=f\left(x_{k}\right)-f\left(x^{*}\right)=f^{\prime}\left(\xi_{k}\right)\left(x_{k}-x^{*}\right)=f^{\prime}\left(\xi_{k}\right) e_{k}$,
where ξ_{k} is between x_{k} and x^{*}.

5.2 - Convergence Analysis

Assumptions:

1. f has a fixed point x^{*}, and the sequence $\left\{x_{k}\right\}_{k \geq 0}$ is generated by the iteration

$$
x_{k+1}=f\left(x_{k}\right), \quad k=0,1, \ldots,
$$

with an arbitrary initial point x_{0};
2. f^{\prime} exists, is continuous, and $\left|f^{\prime}(x)\right|<1$ for all x in the domain of f;
3. m is a positive integer such that $f^{(i)}\left(x^{*}\right)=0$ for $i=1, \ldots, m-1$, but $f^{(m)}\left(x^{*}\right) \neq 0$.

Let $e_{k}=x_{k}-x^{*}$. Then by the Mean-Value theorem
$e_{k+1}=x_{k+1}-x^{*}=f\left(x_{k}\right)-f\left(x^{*}\right)=f^{\prime}\left(\xi_{k}\right)\left(x_{k}-x^{*}\right)=f^{\prime}\left(\xi_{k}\right) e_{k}$,
where ξ_{k} is between x_{k} and x^{*}. Since $\left|f^{\prime}\left(\xi_{k}\right)\right|<1$ by assumption, $\left\{\left|e_{k}\right|\right\}$ decreases.

When x_{k} is close to x^{*}, i.e., e_{k} is small

When x_{k} is close to x^{*}, i.e., e_{k} is small
$\Rightarrow \xi_{k}$ will be close to x^{*}

When x_{k} is close to x^{*}, i.e., e_{k} is small
$\Rightarrow \xi_{k}$ will be close to x^{*}
$\Rightarrow f^{\prime}\left(\xi_{k}\right)$ will be close to $f^{\prime}\left(x^{*}\right)$ since f^{\prime} is continuous.

When x_{k} is close to x^{*}, i.e., e_{k} is small
$\Rightarrow \xi_{k}$ will be close to x^{*}
$\Rightarrow f^{\prime}\left(\xi_{k}\right)$ will be close to $f^{\prime}\left(x^{*}\right)$ since f^{\prime} is continuous.
\Rightarrow (2) can be written as

$$
e_{k+1} \approx f^{\prime}\left(x^{*}\right) e_{k}
$$

When x_{k} is close to x^{*}, i.e., e_{k} is small
$\Rightarrow \xi_{k}$ will be close to x^{*}
$\Rightarrow f^{\prime}\left(\xi_{k}\right)$ will be close to $f^{\prime}\left(x^{*}\right)$ since f^{\prime} is continuous.
\Rightarrow (2) can be written as

$$
e_{k+1} \approx f^{\prime}\left(x^{*}\right) e_{k}
$$

Using Taylor's theorem, we have

When x_{k} is close to x^{*}, i.e., e_{k} is small
$\Rightarrow \xi_{k}$ will be close to x^{*}
$\Rightarrow f^{\prime}\left(\xi_{k}\right)$ will be close to $f^{\prime}\left(x^{*}\right)$ since f^{\prime} is continuous.
\Rightarrow (2) can be written as

$$
e_{k+1} \approx f^{\prime}\left(x^{*}\right) e_{k}
$$

Using Taylor's theorem, we have
$e_{k+1}=x_{k+1}-x^{*}$

When x_{k} is close to x^{*}, i.e., e_{k} is small
$\Rightarrow \xi_{k}$ will be close to x^{*}
$\Rightarrow f^{\prime}\left(\xi_{k}\right)$ will be close to $f^{\prime}\left(x^{*}\right)$ since f^{\prime} is continuous.
\Rightarrow (2) can be written as

$$
e_{k+1} \approx f^{\prime}\left(x^{*}\right) e_{k}
$$

Using Taylor's theorem, we have

$$
\begin{aligned}
e_{k+1} & =x_{k+1}-x^{*} \\
& =f\left(x_{k}\right)-f\left(x^{*}\right)
\end{aligned}
$$

When x_{k} is close to x^{*}, i.e., e_{k} is small
$\Rightarrow \xi_{k}$ will be close to x^{*}
$\Rightarrow f^{\prime}\left(\xi_{k}\right)$ will be close to $f^{\prime}\left(x^{*}\right)$ since f^{\prime} is continuous.
\Rightarrow (2) can be written as

$$
e_{k+1} \approx f^{\prime}\left(x^{*}\right) e_{k}
$$

Using Taylor's theorem, we have

$$
\begin{aligned}
e_{k+1} & =x_{k+1}-x^{*} \\
& =f\left(x_{k}\right)-f\left(x^{*}\right) \\
& =f\left(x^{*}+e_{k}\right)-f\left(x^{*}\right)
\end{aligned}
$$

When x_{k} is close to x^{*}, i.e., e_{k} is small
$\Rightarrow \xi_{k}$ will be close to x^{*}
$\Rightarrow f^{\prime}\left(\xi_{k}\right)$ will be close to $f^{\prime}\left(x^{*}\right)$ since f^{\prime} is continuous.
$\Rightarrow(2)$ can be written as

$$
e_{k+1} \approx f^{\prime}\left(x^{*}\right) e_{k}
$$

Using Taylor's theorem, we have

$$
\begin{aligned}
e_{k+1}= & x_{k+1}-x^{*} \\
= & f\left(x_{k}\right)-f\left(x^{*}\right) \\
= & f\left(x^{*}+e_{k}\right)-f\left(x^{*}\right) \\
= & f^{\prime}\left(x^{*}\right) e_{k}+\frac{1}{2} f^{\prime \prime}\left(x^{*}\right) e_{k}^{2}+\cdots+\frac{1}{(m-1)!} f^{(m-1)}\left(x^{*}\right) e_{k}^{m-1} \\
& \quad+\frac{1}{m!} f^{(m)}\left(\eta_{k}\right) e_{k}^{m}
\end{aligned}
$$

When x_{k} is close to x^{*}, i.e., e_{k} is small
$\Rightarrow \xi_{k}$ will be close to x^{*}
$\Rightarrow f^{\prime}\left(\xi_{k}\right)$ will be close to $f^{\prime}\left(x^{*}\right)$ since f^{\prime} is continuous.
\Rightarrow (2) can be written as

$$
e_{k+1} \approx f^{\prime}\left(x^{*}\right) e_{k}
$$

Using Taylor's theorem, we have

$$
\begin{aligned}
e_{k+1}= & x_{k+1}-x^{*} \\
= & f\left(x_{k}\right)-f\left(x^{*}\right) \\
= & f\left(x^{*}+e_{k}\right)-f\left(x^{*}\right) \\
= & f^{\prime}\left(x^{*}\right) e_{k}+\frac{1}{2} f^{\prime \prime}\left(x^{*}\right) e_{k}^{2}+\cdots+\frac{1}{(m-1)!} f^{(m-1)}\left(x^{*}\right) e_{k}^{m-1} \\
& +\frac{1}{m!} f^{(m)}\left(\eta_{k}\right) e_{k}^{m} \\
= & \frac{1}{m!} f^{(m)}\left(\eta_{k}\right) e_{k}^{m}
\end{aligned}
$$

where η_{k} is between x^{*} and x_{k}.
where η_{k} is between x^{*} and x_{k}. Since $\lim _{k \rightarrow \infty} x_{k}=x^{*}$,

$$
\eta_{k} \rightarrow x^{*} \Longrightarrow f^{(m)}\left(\eta_{k}\right) \rightarrow f^{(m)}\left(x^{*}\right)
$$

where η_{k} is between x^{*} and x_{k}. Since $\lim _{k \rightarrow \infty} x_{k}=x^{*}$,

$$
\eta_{k} \rightarrow x^{*} \Longrightarrow f^{(m)}\left(\eta_{k}\right) \rightarrow f^{(m)}\left(x^{*}\right)
$$

Therefore we have

$$
\lim _{k \rightarrow \infty} \frac{\left|e_{k+1}\right|}{\left|e_{k}\right|^{m}}=\frac{1}{m!} f^{(m)}\left(x^{*}\right)
$$

where η_{k} is between x^{*} and x_{k}. Since $\lim _{k \rightarrow \infty} x_{k}=x^{*}$,

$$
\eta_{k} \rightarrow x^{*} \Longrightarrow f^{(m)}\left(\eta_{k}\right) \rightarrow f^{(m)}\left(x^{*}\right)
$$

Therefore we have

$$
\lim _{k \rightarrow \infty} \frac{\left|e_{k+1}\right|}{\left|e_{k}\right|^{m}}=\frac{1}{m!} f^{(m)}\left(x^{*}\right)
$$

This shows that the convergence rate of the functional iteration is m.

