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1 – Fixed Point method

Definition 1 A function G from D ⊂ R
n into R

n has a fixed point at p ∈ D if G(p) = p.

Theorem 1 (Contraction Mapping Theorem) Let

D = {(x1, · · · , xn)T ; ai ≤ xi ≤ bi, ∀ i = 1, . . . , n} ⊂ R
n. Suppose G : D → R

n

is a continuous function with G(x) ∈ D whenever x ∈ D. Then G has a fixed point in D.

Suppose, in addition, G has continuous partial derivatives and a constant α < 1 exists with
∣

∣

∣

∣

∂gi(x)

∂xj

∣

∣

∣

∣

≤
α

n
, whenever x ∈ D,

for j = 1, . . . , n and i = 1, . . . , n. Then, for any x(0) ∈ D,

x(k) = G(x(k−1)), for each k ≥ 1

converges to the unique fixed point p ∈ D and

‖ x(k) − p ‖∞≤
αk

1 − α
‖ x(1) − x(0) ‖∞ .
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2 – Newton’s Method

First consider solving the following system of nonlinear equations:






f1(x1, x2) = 0,

f2(x1, x2) = 0.

Suppose (x
(k)
1 , x

(k)
2 ) is an approximation to the solution of the system above, and we try to

compute h
(k)
1 and h

(k)
2 such that (x

(k)
1 + h

(k)
1 , x

(k)
2 + h

(k)
2 ) satisfies the system. By the

Taylor’s theorem for two variables,

0 = f1(x
(k)
1 + h

(k)
1 , x

(k)
2 + h

(k)
2 )

≈ f1(x
(k)
1 , x

(k)
2 ) + h

(k)
1

∂f1

∂x1
(x

(k)
1 , x

(k)
2 ) + h

(k)
2

∂f1

∂x2
(x

(k)
1 , x

(k)
2 )

0 = f2(x
(k)
1 + h

(k)
1 , x

(k)
2 + h

(k)
2 )

≈ f2(x
(k)
1 , x

(k)
2 ) + h

(k)
1

∂f2

∂x1
(x

(k)
1 , x

(k)
2 ) + h

(k)
2

∂f2

∂x2
(x

(k)
1 , x

(k)
2 )
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Put this in matrix form




∂f1

∂x1

(x
(k)
1 , x

(k)
2 ) ∂f1

∂x2

(x
(k)
1 , x

(k)
2 )

∂f2

∂x1

(x
(k)
1 , x

(k)
2 ) ∂f2

∂x2

(x
(k)
1 , x

(k)
2 )









h
(k)
1

h
(k)
2



+





f1(x
(k)
1 , x

(k)
2 )

f2(x
(k)
1 , x

(k)
2 )



 ≈





0

0



 .

The matrix

J(x
(k)
1 , x

(k)
2 ) ≡





∂f1

∂x1

(x
(k)
1 , x

(k)
2 ) ∂f1

∂x2

(x
(k)
1 , x

(k)
2 )

∂f2

∂x1

(x
(k)
1 , x

(k)
2 ) ∂f2

∂x2

(x
(k)
1 , x

(k)
2 )





is called the Jacobian matrix. Set h
(k)
1 and h

(k)
2 be the solution of the linear system

J(x
(k)
1 , x

(k)
2 )





h
(k)
1

h
(k)
2



 = −





f1(x
(k)
1 , x

(k)
2 )

f2(x
(k)
1 , x

(k)
2 )





then




x
(k+1)
1

x
(k+1)
2



 =





x
(k)
1

x
(k)
2



 +





h
(k)
1

h
(k)
2





is expected to be a better approximation.
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In general, we solve the system of n nonlinear equations fi(x1, · · · , xn) = 0,

i = 1, . . . , n.

Let

x =
[

x1 x2 · · · xn

]T

and

F (x) =
[

f1(x) f2(x) · · · fn(x)
]T

.

The problem can be formulated as solving

F (x) = 0, F : R
n → R

n.

Let J(x), where the (i, j) entry is ∂fi

∂xj
(x), be the n × n Jacobian matrix. Then the

Newton’s iteration is defined as

x(k+1) = x(k) + h(k),

where h(k) ∈ R
n is the solution of the linear system

J(x(k))h(k) = −F (x(k)).
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Algorithm 1 (Newton’s Method for Systems) Given a function F : R
n → R

n, an initial

guess x(0) to the zero of F , and stop criteria M , δ, and ε, this algorithm performs the

Newton’s iteration to approximate one root of F .

Set k = 0 and h(−1) = e1.

while (k < M) and (‖ h(k−1) ‖≥ δ) and (‖ F (x(k)) ‖≥ ε do

Calculate J(x(k)) = [∂Fi(x
(k))/∂xj ].

Solve the n × n linear system J(x(k))h(k) = −F (x(k)).

Set x(k+1) = x(k) + h(k) and k = k + 1.

end while

Output ( “Convergent x(k)”) or (“Maximum number of iterations exceeded”)

Remark 1

(i) quadratic convergence if the starting point is near the exact solution point in terms of

vector norm.

(ii) At each iteration, a Jacobian matrix has to be evaluated and an n × n linear system

involving this matrix must be solved.
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3 – Quasi-Newton’s Method

Next we will extend secant method to solving system of nonlinear equations.

Recall that in

one dimensional case, one uses the linear model

`k(x) = f(xk) + ak(x − xk)

to approximate the function f(x) at xk. That is, `k(xk) = f(xk) for any ak ∈ R. If we

further require that `′(xk) = f ′(xk), then ak = f ′(xk). The zero of `k(x) is used to

give a new approximate for the zero of f(x), that is,

xk+1 = xk −
1

f ′(xk)
f(xk)

which yields Newton’s method.
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If f ′(xk) is not available, one instead asks the linear model to satisfy

`k(xk) = f(xk) and `k(xk−1) = f(xk−1).

In doing this, the identity

f(xk−1) = `k(xk−1) = f(xk) + ak(xk−1 − xk)

gives

ak =
f(xk) − f(xk−1)

xk − xk−1
.

Solving `k(x) = 0 yields the secant iteration

xk+1 = xk −
xk − xk−1

f(xk) − f(xk−1)
f(xk).
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In multiple dimension, the analogue affine model becomes

Mk(x) = F (xk) + Ak(x − xk),

where x, xk ∈ R
n and Ak ∈ R

n×n, and satisfies

Mk(xk) = F (xk),

for any Ak.

The zero of Mk(x) is then used to give a new approximate for the zero of

F (x), that is,

xk+1 = xk − A−1
k F (xk).

The Newton’s method chooses

Ak = F ′(xk) ≡ J(xk) = the Jacobian matrix.

and yields the iteration

xk+1 = xk − (F ′(xk))
−1

F (xk).
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When the Jacobian matrix J(xk) ≡ F ′(xk) is not available, one can require

Mk(xk−1) = F (xk−1).

Then

F (xk−1) = Mk(xk−1) = F (xk) + Ak(xk−1 − xk),

which gives

Ak(xk − xk−1) = F (xk) − F (xk−1)

and this is the so-called secant equation. Let

hk = xk − xk−1 and yk = F (xk) − F (xk−1).

The secant equation becomes

Akhk = yk.
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However, this secant equation can not uniquely determine Ak.

One way of choosing Ak is

to minimize Mk − Mk−1 subject to the secant equation. Note

Mk(x) − Mk−1(x) = F (xk) + Ak(x − xk) − F (xk−1) − Ak−1(x − xk−1)

= (F (xk) − F (xk−1)) + Ak(x − xk) − Ak−1(x − xk−1)

= Ak(xk − xk−1) + Ak(x − xk) − Ak−1(x − xk−1)

= Ak(x − xk−1) − Ak−1(x − xk−1)

= (Ak − Ak−1)(x − xk−1).

For any x ∈ R
n, we express

x − xk−1 = αhk + tk,

for some α ∈ R, tk ∈ R
n, and hT

k tk = 0. Then

Mk − Mk−1 = (Ak − Ak−1)(αhk + tk) = α(Ak − Ak−1)hk + (Ak − Ak−1)tk.
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Since

(Ak − Ak−1)hk = Akhk − Ak−1hk = yk − Ak−1hk,

both yk and Ak−1hk are old values, we have no control over the first part

(Ak − Ak−1)hk.

In order to minimize Mk(x) − Mk−1(x), we try to choose Ak so that

(Ak − Ak−1)tk = 0

for all tk ∈ R
n, hT

k tk = 0. This requires that Ak − Ak−1 to be a rank-one matrix of the

form

Ak − Ak−1 = ukhT
k

for some uk ∈ R
n. Then

ukhT
k hk = (Ak − Ak−1)hk = yk − Ak−1hk

Department of Mathematics – NTNU Tsung-Min Hwang November 30, 2003



Sol. of Non-linear Systems 13

Since

(Ak − Ak−1)hk = Akhk − Ak−1hk = yk − Ak−1hk,

both yk and Ak−1hk are old values, we have no control over the first part

(Ak − Ak−1)hk. In order to minimize Mk(x) − Mk−1(x), we try to choose Ak so that

(Ak − Ak−1)tk = 0

for all tk ∈ R
n, hT

k tk = 0.

This requires that Ak − Ak−1 to be a rank-one matrix of the

form

Ak − Ak−1 = ukhT
k

for some uk ∈ R
n. Then

ukhT
k hk = (Ak − Ak−1)hk = yk − Ak−1hk

Department of Mathematics – NTNU Tsung-Min Hwang November 30, 2003



Sol. of Non-linear Systems 13

Since

(Ak − Ak−1)hk = Akhk − Ak−1hk = yk − Ak−1hk,

both yk and Ak−1hk are old values, we have no control over the first part

(Ak − Ak−1)hk. In order to minimize Mk(x) − Mk−1(x), we try to choose Ak so that

(Ak − Ak−1)tk = 0

for all tk ∈ R
n, hT

k tk = 0. This requires that Ak − Ak−1 to be a rank-one matrix of the

form

Ak − Ak−1 = ukhT
k

for some uk ∈ R
n.

Then

ukhT
k hk = (Ak − Ak−1)hk = yk − Ak−1hk

Department of Mathematics – NTNU Tsung-Min Hwang November 30, 2003



Sol. of Non-linear Systems 13

Since

(Ak − Ak−1)hk = Akhk − Ak−1hk = yk − Ak−1hk,

both yk and Ak−1hk are old values, we have no control over the first part

(Ak − Ak−1)hk. In order to minimize Mk(x) − Mk−1(x), we try to choose Ak so that

(Ak − Ak−1)tk = 0

for all tk ∈ R
n, hT

k tk = 0. This requires that Ak − Ak−1 to be a rank-one matrix of the

form

Ak − Ak−1 = ukhT
k

for some uk ∈ R
n. Then

ukhT
k hk = (Ak − Ak−1)hk = yk − Ak−1hk

Department of Mathematics – NTNU Tsung-Min Hwang November 30, 2003



Sol. of Non-linear Systems 14

which gives

uk =
yk − Ak−1hk

hT
k hk

.

Therefore,

Ak = Ak−1 +
(yk − Ak−1hk)hT

k

hT
k hk

(1)

After Ak is determined, the new iterate xk+1 is derived from solving Mk(x) = 0. It can be

done by first noting that

hk+1 = xk+1 − xk =⇒ xk+1 = xk + hk+1

and

Mk(xk+1) = 0 ⇒ F (xk) + Ak(xk+1 − xk) = 0 ⇒ Akhk+1 = −F (xk)

These formulations give the Broyden’s method.
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Algorithm 2 (Broyden’s Method) Given a n-variable nonlinear function F : R
n → R

n,

an initial iterate x0 and initial Jacobian matrix A0 ∈ R
n×n (e.g., A0 = I), this algorithm

finds the solution for F (x) = 0.

for k = 0, 1, · · · , do

Solve Akhk+1 = −F (xk) for hk+1

Update xk+1 = xk + hk+1

Compute yk+1 = F (xk+1) − F (xk)

Update

Ak+1 = Ak +
(yk+1 − Akhk+1)h

T
k+1

hT
k+1hk+1

= Ak +
(yk+1 + F (xk))hT

k+1

hT
k+1hk+1

end for
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Solve the linear system Akhk+1 = −F (xk) for hk+1:

☞ LU -factorization: cost 2
3n3 + O(n2) floating-point operations.

☞ Applying the Shermann-Morrison-Woodbury formula

(

B + UV T
)−1

= B−1 − B−1U
(

I + V T B−1U
)−1

V T B−1

to (1), we have

A−1
k = A−1

k−1 +
(hk − A−1

k−1yk)hT
k A−1

k−1

hT
k A−1

k−1yk

.

Department of Mathematics – NTNU Tsung-Min Hwang November 30, 2003



Sol. of Non-linear Systems 16

Solve the linear system Akhk+1 = −F (xk) for hk+1:

☞ LU -factorization: cost 2
3n3 + O(n2) floating-point operations.

☞ Applying the Shermann-Morrison-Woodbury formula

(

B + UV T
)−1

= B−1 − B−1U
(

I + V T B−1U
)−1

V T B−1

to (1), we have

A−1
k = A−1

k−1 +
(hk − A−1

k−1yk)hT
k A−1

k−1

hT
k A−1

k−1yk

.

Department of Mathematics – NTNU Tsung-Min Hwang November 30, 2003



Sol. of Non-linear Systems 16
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