Sol. of Non-linear Systems

Numerical Solutions of Nonlinear

Systems of Equations

NTNU

Tsung-Min Hwang
November 30, 2003

Sol. of Non-linear Systems

1 - Fixed Point method 3
2 - Newton's Method 4
3 - Quasi-Newton's Method 8

1 - Fixed Point method

Definition 1 A function G from $D \subset \mathbb{R}^{n}$ into \mathbb{R}^{n} has a fixed point at $p \in D$ if $G(p)=p$.

1 - Fixed Point method

Definition 1 A function G from $D \subset \mathbb{R}^{n}$ into \mathbb{R}^{n} has a fixed point at $p \in D$ if $G(p)=p$. Theorem 1 (Contraction Mapping Theorem) Let
$D=\left\{\left(x_{1}, \cdots, x_{n}\right)^{T} ; a_{i} \leq x_{i} \leq b_{i}, \forall i=1, \ldots, n\right\} \subset \mathbb{R}^{n}$. Suppose $G: D \rightarrow \mathbb{R}^{n}$ is a continuous function with $G(x) \in D$ whenever $x \in D$. Then G has a fixed point in D. Suppose, in addition, G has continuous partial derivatives and a constant $\alpha<1$ exists with

$$
\begin{array}{r}
\left|\frac{\partial g_{i}(x)}{\partial x_{j}}\right| \leq \frac{\alpha}{n}, \text { whenever } x \in D \\
\text { for } j=1, \ldots, n \text { and } i=1, \ldots, n \text {. Then, for any } x^{(0)} \in D
\end{array}
$$

$$
x^{(k)}=G\left(x^{(k-1)}\right), \quad \text { for each } k \geq 1
$$

converges to the unique fixed point $p \in D$ and

$$
\left\|x^{(k)}-p\right\|_{\infty} \leq \frac{\alpha^{k}}{1-\alpha}\left\|x^{(1)}-x^{(0)}\right\|_{\infty}
$$

2 - Newton's Method

First consider solving the following system of nonlinear equations:

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, x_{2}\right)=0 \\
f_{2}\left(x_{1}, x_{2}\right)=0
\end{array}\right.
$$

Sol. of Non-linear Systems

2 - Newton's Method

First consider solving the following system of nonlinear equations:

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, x_{2}\right)=0 \\
f_{2}\left(x_{1}, x_{2}\right)=0
\end{array}\right.
$$

Suppose $\left(x_{1}^{(k)}, x_{2}^{(k)}\right)$ is an approximation to the solution of the system above, and we try to compute $h_{1}^{(k)}$ and $h_{2}^{(k)}$ such that $\left(x_{1}^{(k)}+h_{1}^{(k)}, x_{2}^{(k)}+h_{2}^{(k)}\right)$ satisfies the system.

2 - Newton's Method

First consider solving the following system of nonlinear equations:

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, x_{2}\right)=0 \\
f_{2}\left(x_{1}, x_{2}\right)=0
\end{array}\right.
$$

Suppose $\left(x_{1}^{(k)}, x_{2}^{(k)}\right)$ is an approximation to the solution of the system above, and we try to compute $h_{1}^{(k)}$ and $h_{2}^{(k)}$ such that $\left(x_{1}^{(k)}+h_{1}^{(k)}, x_{2}^{(k)}+h_{2}^{(k)}\right)$ satisfies the system. By the Taylor's theorem for two variables,

$$
\begin{aligned}
0 & =f_{1}\left(x_{1}^{(k)}+h_{1}^{(k)}, x_{2}^{(k)}+h_{2}^{(k)}\right) \\
& \approx f_{1}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)+h_{1}^{(k)} \frac{\partial f_{1}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)+h_{2}^{(k)} \frac{\partial f_{1}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \\
0 & =f_{2}\left(x_{1}^{(k)}+h_{1}^{(k)}, x_{2}^{(k)}+h_{2}^{(k)}\right) \\
& \approx f_{2}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)+h_{1}^{(k)} \frac{\partial f_{2}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)+h_{2}^{(k)} \frac{\partial f_{2}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)
\end{aligned}
$$

Put this in matrix form

$$
\left[\begin{array}{cc}
\frac{\partial f_{1}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) & \frac{\partial f_{1}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \\
\frac{\partial f_{2}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) & \frac{\partial f_{2}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)
\end{array}\right]\left[\begin{array}{c}
h_{1}^{(k)} \\
h_{2}^{(k)}
\end{array}\right]+\left[\begin{array}{c}
f_{1}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \\
f_{2}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)
\end{array}\right] \approx\left[\begin{array}{c}
0 \\
0
\end{array}\right]
$$

Put this in matrix form

$$
\left[\begin{array}{cc}
\frac{\partial f_{1}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) & \frac{\partial f_{1}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \\
\frac{\partial f_{2}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) & \frac{\partial f_{2}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)
\end{array}\right]\left[\begin{array}{l}
h_{1}^{(k)} \\
h_{2}^{(k)}
\end{array}\right]+\left[\begin{array}{l}
f_{1}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \\
f_{2}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)
\end{array}\right] \approx\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The matrix

$$
J\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \equiv\left[\begin{array}{cl}
\frac{\partial f_{1}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) & \frac{\partial f_{1}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \\
\frac{\partial f_{2}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) & \frac{\partial f_{2}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)
\end{array}\right]
$$

is called the Jacobian matrix.

Put this in matrix form

$$
\left[\begin{array}{cc}
\frac{\partial f_{1}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) & \frac{\partial f_{1}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \\
\frac{\partial f_{2}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) & \frac{\partial f_{2}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)
\end{array}\right]\left[\begin{array}{c}
h_{1}^{(k)} \\
h_{2}^{(k)}
\end{array}\right]+\left[\begin{array}{c}
f_{1}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \\
f_{2}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)
\end{array}\right] \approx\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The matrix

$$
J\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \equiv\left[\begin{array}{cc}
\frac{\partial f_{1}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) & \frac{\partial f_{1}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \\
\frac{\partial f_{2}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) & \frac{\partial f_{2}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)
\end{array}\right]
$$

is called the Jacobian matrix. Set $h_{1}^{(k)}$ and $h_{2}^{(k)}$ be the solution of the linear system

$$
J\left(x_{1}^{(k)}, x_{2}^{(k)}\right)\left[\begin{array}{l}
h_{1}^{(k)} \\
h_{2}^{(k)}
\end{array}\right]=-\left[\begin{array}{c}
f_{1}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \\
f_{2}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)
\end{array}\right]
$$

Put this in matrix form

$$
\left[\begin{array}{cc}
\frac{\partial f_{1}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) & \frac{\partial f_{1}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \\
\frac{\partial f_{2}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) & \frac{\partial f_{2}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)
\end{array}\right]\left[\begin{array}{c}
h_{1}^{(k)} \\
h_{2}^{(k)}
\end{array}\right]+\left[\begin{array}{c}
f_{1}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \\
f_{2}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)
\end{array}\right] \approx\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The matrix

$$
J\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \equiv\left[\begin{array}{cc}
\frac{\partial f_{1}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) & \frac{\partial f_{1}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \\
\frac{\partial f_{2}}{\partial x_{1}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) & \frac{\partial f_{2}}{\partial x_{2}}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)
\end{array}\right]
$$

is called the Jacobian matrix. Set $h_{1}^{(k)}$ and $h_{2}^{(k)}$ be the solution of the linear system

$$
J\left(x_{1}^{(k)}, x_{2}^{(k)}\right)\left[\begin{array}{c}
h_{1}^{(k)} \\
h_{2}^{(k)}
\end{array}\right]=-\left[\begin{array}{c}
f_{1}\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \\
f_{2}\left(x_{1}^{(k)}, x_{2}^{(k)}\right)
\end{array}\right]
$$

then

$$
\left[\begin{array}{l}
x_{1}^{(k+1)} \\
x_{2}^{(k+1)}
\end{array}\right]=\left[\begin{array}{l}
x_{1}^{(k)} \\
x_{2}^{(k)}
\end{array}\right]+\left[\begin{array}{l}
h_{1}^{(k)} \\
h_{2}^{(k)}
\end{array}\right]
$$

is expected to be a better approximation.

Sol. of Non-linear Systems

In general, we solve the system of n nonlinear equations $f_{i}\left(x_{1}, \cdots, x_{n}\right)=0$, $i=1, \ldots, n$.

Sol. of Non-linear Systems

In general, we solve the system of n nonlinear equations $f_{i}\left(x_{1}, \cdots, x_{n}\right)=0$, $i=1, \ldots, n$. Let

$$
x=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]^{T}
$$

and

$$
F(x)=\left[\begin{array}{llll}
f_{1}(x) & f_{2}(x) & \cdots & f_{n}(x)
\end{array}\right]^{T}
$$

Sol. of Non-linear Systems

In general, we solve the system of n nonlinear equations $f_{i}\left(x_{1}, \cdots, x_{n}\right)=0$, $i=1, \ldots, n$. Let

$$
x=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]^{T}
$$

and

$$
F(x)=\left[\begin{array}{llll}
f_{1}(x) & f_{2}(x) & \cdots & f_{n}(x)
\end{array}\right]^{T}
$$

The problem can be formulated as solving

$$
F(x)=0, \quad F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

Sol. of Non-linear Systems

In general, we solve the system of n nonlinear equations $f_{i}\left(x_{1}, \cdots, x_{n}\right)=0$, $i=1, \ldots, n$. Let

$$
x=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]^{T}
$$

and

$$
F(x)=\left[\begin{array}{llll}
f_{1}(x) & f_{2}(x) & \cdots & f_{n}(x)
\end{array}\right]^{T}
$$

The problem can be formulated as solving

$$
F(x)=0, \quad F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

Let $J(x)$, where the (i, j) entry is $\frac{\partial f_{i}}{\partial x_{j}}(x)$, be the $n \times n$ Jacobian matrix.

Sol. of Non-linear Systems

In general, we solve the system of n nonlinear equations $f_{i}\left(x_{1}, \cdots, x_{n}\right)=0$, $i=1, \ldots, n$. Let

$$
x=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]^{T}
$$

and

$$
F(x)=\left[\begin{array}{llll}
f_{1}(x) & f_{2}(x) & \cdots & f_{n}(x)
\end{array}\right]^{T}
$$

The problem can be formulated as solving

$$
F(x)=0, \quad F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

Let $J(x)$, where the (i, j) entry is $\frac{\partial f_{i}}{\partial x_{j}}(x)$, be the $n \times n$ Jacobian matrix. Then the Newton's iteration is defined as

$$
x^{(k+1)}=x^{(k)}+h^{(k)},
$$

where $h^{(k)} \in \mathbb{R}^{n}$ is the solution of the linear system

$$
J\left(x^{(k)}\right) h^{(k)}=-F\left(x^{(k)}\right)
$$

Algorithm 1 (Newton's Method for Systems) Given a function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, an initial guess $x^{(0)}$ to the zero of F, and stop criteria M, δ, and ε, this algorithm performs the Newton's iteration to approximate one root of F.

Set $k=0$ and $h^{(-1)}=e_{1}$.
while $(k<M)$ and $\left(\left\|h^{(k-1)}\right\| \geq \delta\right)$ and $\left(\left\|F\left(x^{(k)}\right)\right\| \geq \varepsilon\right.$ do
Calculate $J\left(x^{(k)}\right)=\left[\partial F_{i}\left(x^{(k)}\right) / \partial x_{j}\right]$.
Solve the $n \times n$ linear system $J\left(x^{(k)}\right) h^{(k)}=-F\left(x^{(k)}\right)$.
Set $x^{(k+1)}=x^{(k)}+h^{(k)}$ and $k=k+1$.
end while
Output ("Convergent $x^{(k) ")}$ or ("Maximum number of iterations exceeded")

Algorithm 1 (Newton's Method for Systems) Given a function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, an initial guess $x^{(0)}$ to the zero of F, and stop criteria M, δ, and ε, this algorithm performs the Newton's iteration to approximate one root of F.
Set $k=0$ and $h^{(-1)}=e_{1}$.

$$
\text { while }(k<M) \text { and }\left(\left\|h^{(k-1)}\right\| \geq \delta\right) \text { and }\left(\left\|F\left(x^{(k)}\right)\right\| \geq \varepsilon\right. \text { do }
$$

Calculate $J\left(x^{(k)}\right)=\left[\partial F_{i}\left(x^{(k)}\right) / \partial x_{j}\right]$.
Solve the $n \times n$ linear system $J\left(x^{(k)}\right) h^{(k)}=-F\left(x^{(k)}\right)$.
Set $x^{(k+1)}=x^{(k)}+h^{(k)}$ and $k=k+1$.
end while
Output ("Convergent $x^{(k) ")}$ or ("Maximum number of iterations exceeded")

Remark 1

(i) quadratic convergence if the starting point is near the exact solution point in terms of vector norm.
(ii) At each iteration, a Jacobian matrix has to be evaluated and an $n \times n$ linear system involving this matrix must be solved.

Sol. of Non-linear Systems

3 - Quasi-Newton's Method

Next we will extend secant method to solving system of nonlinear equations.

Sol. of Non-linear Systems

3 - Quasi-Newton's Method

Next we will extend secant method to solving system of nonlinear equations. Recall that in one dimensional case, one uses the linear model

$$
\ell_{k}(x)=f\left(x_{k}\right)+a_{k}\left(x-x_{k}\right)
$$

to approximate the function $f(x)$ at x_{k}.

Sol. of Non-linear Systems

3 - Quasi-Newton's Method

Next we will extend secant method to solving system of nonlinear equations. Recall that in one dimensional case, one uses the linear model

$$
\ell_{k}(x)=f\left(x_{k}\right)+a_{k}\left(x-x_{k}\right)
$$

to approximate the function $f(x)$ at x_{k}. That is, $\ell_{k}\left(x_{k}\right)=f\left(x_{k}\right)$ for any $a_{k} \in \mathbb{R}$.

Sol. of Non-linear Systems

3 - Quasi-Newton's Method

Next we will extend secant method to solving system of nonlinear equations. Recall that in one dimensional case, one uses the linear model

$$
\ell_{k}(x)=f\left(x_{k}\right)+a_{k}\left(x-x_{k}\right)
$$

to approximate the function $f(x)$ at x_{k}. That is, $\ell_{k}\left(x_{k}\right)=f\left(x_{k}\right)$ for any $a_{k} \in \mathbb{R}$. If we further require that $\ell^{\prime}\left(x_{k}\right)=f^{\prime}\left(x_{k}\right)$, then $a_{k}=f^{\prime}\left(x_{k}\right)$.

Sol. of Non-linear Systems

3 - Quasi-Newton's Method

Next we will extend secant method to solving system of nonlinear equations. Recall that in one dimensional case, one uses the linear model

$$
\ell_{k}(x)=f\left(x_{k}\right)+a_{k}\left(x-x_{k}\right)
$$

to approximate the function $f(x)$ at x_{k}. That is, $\ell_{k}\left(x_{k}\right)=f\left(x_{k}\right)$ for any $a_{k} \in \mathbb{R}$. If we further require that $\ell^{\prime}\left(x_{k}\right)=f^{\prime}\left(x_{k}\right)$, then $a_{k}=f^{\prime}\left(x_{k}\right)$. The zero of $\ell_{k}(x)$ is used to give a new approximate for the zero of $f(x)$, that is,

$$
x_{k+1}=x_{k}-\frac{1}{f^{\prime}\left(x_{k}\right)} f\left(x_{k}\right)
$$

which yields Newton's method.

Sol. of Non-linear Systems

If $f^{\prime}\left(x_{k}\right)$ is not available, one instead asks the linear model to satisfy

$$
\ell_{k}\left(x_{k}\right)=f\left(x_{k}\right) \quad \text { and } \quad \ell_{k}\left(x_{k-1}\right)=f\left(x_{k-1}\right)
$$

Sol. of Non-linear Systems

If $f^{\prime}\left(x_{k}\right)$ is not available, one instead asks the linear model to satisfy

$$
\ell_{k}\left(x_{k}\right)=f\left(x_{k}\right) \quad \text { and } \quad \ell_{k}\left(x_{k-1}\right)=f\left(x_{k-1}\right)
$$

In doing this, the identity

$$
f\left(x_{k-1}\right)=\ell_{k}\left(x_{k-1}\right)=f\left(x_{k}\right)+a_{k}\left(x_{k-1}-x_{k}\right)
$$

gives

$$
a_{k}=\frac{f\left(x_{k}\right)-f\left(x_{k-1}\right)}{x_{k}-x_{k-1}}
$$

Sol. of Non-linear Systems

If $f^{\prime}\left(x_{k}\right)$ is not available, one instead asks the linear model to satisfy

$$
\ell_{k}\left(x_{k}\right)=f\left(x_{k}\right) \quad \text { and } \quad \ell_{k}\left(x_{k-1}\right)=f\left(x_{k-1}\right)
$$

In doing this, the identity

$$
f\left(x_{k-1}\right)=\ell_{k}\left(x_{k-1}\right)=f\left(x_{k}\right)+a_{k}\left(x_{k-1}-x_{k}\right)
$$

gives

$$
a_{k}=\frac{f\left(x_{k}\right)-f\left(x_{k-1}\right)}{x_{k}-x_{k-1}} .
$$

Solving $\ell_{k}(x)=0$ yields the secant iteration

$$
x_{k+1}=x_{k}-\frac{x_{k}-x_{k-1}}{f\left(x_{k}\right)-f\left(x_{k-1}\right)} f\left(x_{k}\right) .
$$

Sol. of Non-linear Systems

In multiple dimension, the analogue affine model becomes

$$
M_{k}(x)=F\left(x_{k}\right)+A_{k}\left(x-x_{k}\right)
$$

where $x, x_{k} \in \mathbb{R}^{n}$ and $A_{k} \in \mathbb{R}^{n \times n}$, and satisfies

$$
M_{k}\left(x_{k}\right)=F\left(x_{k}\right),
$$

for any A_{k}.

Sol. of Non-linear Systems

In multiple dimension, the analogue affine model becomes

$$
M_{k}(x)=F\left(x_{k}\right)+A_{k}\left(x-x_{k}\right)
$$

where $x, x_{k} \in \mathbb{R}^{n}$ and $A_{k} \in \mathbb{R}^{n \times n}$, and satisfies

$$
M_{k}\left(x_{k}\right)=F\left(x_{k}\right),
$$

for any A_{k}. The zero of $M_{k}(x)$ is then used to give a new approximate for the zero of $F(x)$, that is,

$$
x_{k+1}=x_{k}-A_{k}^{-1} F\left(x_{k}\right) .
$$

Sol. of Non-linear Systems

In multiple dimension, the analogue affine model becomes

$$
M_{k}(x)=F\left(x_{k}\right)+A_{k}\left(x-x_{k}\right)
$$

where $x, x_{k} \in \mathbb{R}^{n}$ and $A_{k} \in \mathbb{R}^{n \times n}$, and satisfies

$$
M_{k}\left(x_{k}\right)=F\left(x_{k}\right),
$$

for any A_{k}. The zero of $M_{k}(x)$ is then used to give a new approximate for the zero of $F(x)$, that is,

$$
x_{k+1}=x_{k}-A_{k}^{-1} F\left(x_{k}\right) .
$$

The Newton's method chooses

$$
A_{k}=F^{\prime}\left(x_{k}\right) \equiv J\left(x_{k}\right)=\text { the Jacobian matrix. }
$$

and yields the iteration

$$
x_{k+1}=x_{k}-\left(F^{\prime}\left(x_{k}\right)\right)^{-1} F\left(x_{k}\right)
$$

Sol. of Non-linear Systems

When the Jacobian matrix $J\left(x_{k}\right) \equiv F^{\prime}\left(x_{k}\right)$ is not available, one can require

$$
M_{k}\left(x_{k-1}\right)=F\left(x_{k-1}\right) .
$$

Sol. of Non-linear Systems

When the Jacobian matrix $J\left(x_{k}\right) \equiv F^{\prime}\left(x_{k}\right)$ is not available, one can require

$$
M_{k}\left(x_{k-1}\right)=F\left(x_{k-1}\right) .
$$

Then

$$
F\left(x_{k-1}\right)=M_{k}\left(x_{k-1}\right)=F\left(x_{k}\right)+A_{k}\left(x_{k-1}-x_{k}\right),
$$

which gives

$$
A_{k}\left(x_{k}-x_{k-1}\right)=F\left(x_{k}\right)-F\left(x_{k-1}\right)
$$

and this is the so-called secant equation.

Sol. of Non-linear Systems

When the Jacobian matrix $J\left(x_{k}\right) \equiv F^{\prime}\left(x_{k}\right)$ is not available, one can require

$$
M_{k}\left(x_{k-1}\right)=F\left(x_{k-1}\right) .
$$

Then

$$
F\left(x_{k-1}\right)=M_{k}\left(x_{k-1}\right)=F\left(x_{k}\right)+A_{k}\left(x_{k-1}-x_{k}\right),
$$

which gives

$$
A_{k}\left(x_{k}-x_{k-1}\right)=F\left(x_{k}\right)-F\left(x_{k-1}\right)
$$

and this is the so-called secant equation. Let

$$
h_{k}=x_{k}-x_{k-1} \quad \text { and } \quad y_{k}=F\left(x_{k}\right)-F\left(x_{k-1}\right) .
$$

Sol. of Non-linear Systems

When the Jacobian matrix $J\left(x_{k}\right) \equiv F^{\prime}\left(x_{k}\right)$ is not available, one can require

$$
M_{k}\left(x_{k-1}\right)=F\left(x_{k-1}\right) .
$$

Then

$$
F\left(x_{k-1}\right)=M_{k}\left(x_{k-1}\right)=F\left(x_{k}\right)+A_{k}\left(x_{k-1}-x_{k}\right),
$$

which gives

$$
A_{k}\left(x_{k}-x_{k-1}\right)=F\left(x_{k}\right)-F\left(x_{k-1}\right)
$$

and this is the so-called secant equation. Let

$$
h_{k}=x_{k}-x_{k-1} \quad \text { and } \quad y_{k}=F\left(x_{k}\right)-F\left(x_{k-1}\right) .
$$

The secant equation becomes

$$
A_{k} h_{k}=y_{k} .
$$

Sol. of Non-linear Systems

However, this secant equation can not uniquely determine A_{k}.

Sol. of Non-linear Systems

However, this secant equation can not uniquely determine A_{k}. One way of choosing A_{k} is to minimize $M_{k}-M_{k-1}$ subject to the secant equation.

Sol. of Non-linear Systems

However, this secant equation can not uniquely determine A_{k}. One way of choosing A_{k} is to minimize $M_{k}-M_{k-1}$ subject to the secant equation. Note

$$
M_{k}(x)-M_{k-1}(x)=F\left(x_{k}\right)+A_{k}\left(x-x_{k}\right)-F\left(x_{k-1}\right)-A_{k-1}\left(x-x_{k-1}\right)
$$

Sol. of Non-linear Systems

However, this secant equation can not uniquely determine A_{k}. One way of choosing A_{k} is to minimize $M_{k}-M_{k-1}$ subject to the secant equation. Note

$$
\begin{aligned}
M_{k}(x)-M_{k-1}(x) & =F\left(x_{k}\right)+A_{k}\left(x-x_{k}\right)-F\left(x_{k-1}\right)-A_{k-1}\left(x-x_{k-1}\right) \\
& =\left(F\left(x_{k}\right)-F\left(x_{k-1}\right)\right)+A_{k}\left(x-x_{k}\right)-A_{k-1}\left(x-x_{k-1}\right)
\end{aligned}
$$

Sol. of Non-linear Systems

However, this secant equation can not uniquely determine A_{k}. One way of choosing A_{k} is to minimize $M_{k}-M_{k-1}$ subject to the secant equation. Note

$$
\begin{aligned}
M_{k}(x)-M_{k-1}(x) & =F\left(x_{k}\right)+A_{k}\left(x-x_{k}\right)-F\left(x_{k-1}\right)-A_{k-1}\left(x-x_{k-1}\right) \\
& =\left(F\left(x_{k}\right)-F\left(x_{k-1}\right)\right)+A_{k}\left(x-x_{k}\right)-A_{k-1}\left(x-x_{k-1}\right) \\
& =A_{k}\left(x_{k}-x_{k-1}\right)+A_{k}\left(x-x_{k}\right)-A_{k-1}\left(x-x_{k-1}\right)
\end{aligned}
$$

Sol. of Non-linear Systems

However, this secant equation can not uniquely determine A_{k}. One way of choosing A_{k} is to minimize $M_{k}-M_{k-1}$ subject to the secant equation. Note

$$
\begin{aligned}
M_{k}(x)-M_{k-1}(x) & =F\left(x_{k}\right)+A_{k}\left(x-x_{k}\right)-F\left(x_{k-1}\right)-A_{k-1}\left(x-x_{k-1}\right) \\
& =\left(F\left(x_{k}\right)-F\left(x_{k-1}\right)\right)+A_{k}\left(x-x_{k}\right)-A_{k-1}\left(x-x_{k-1}\right) \\
& =A_{k}\left(x_{k}-x_{k-1}\right)+A_{k}\left(x-x_{k}\right)-A_{k-1}\left(x-x_{k-1}\right) \\
& =A_{k}\left(x-x_{k-1}\right)-A_{k-1}\left(x-x_{k-1}\right)
\end{aligned}
$$

Sol. of Non-linear Systems

However, this secant equation can not uniquely determine A_{k}. One way of choosing A_{k} is to minimize $M_{k}-M_{k-1}$ subject to the secant equation. Note

$$
\begin{aligned}
M_{k}(x)-M_{k-1}(x) & =F\left(x_{k}\right)+A_{k}\left(x-x_{k}\right)-F\left(x_{k-1}\right)-A_{k-1}\left(x-x_{k-1}\right) \\
& =\left(F\left(x_{k}\right)-F\left(x_{k-1}\right)\right)+A_{k}\left(x-x_{k}\right)-A_{k-1}\left(x-x_{k-1}\right) \\
& =A_{k}\left(x_{k}-x_{k-1}\right)+A_{k}\left(x-x_{k}\right)-A_{k-1}\left(x-x_{k-1}\right) \\
& =A_{k}\left(x-x_{k-1}\right)-A_{k-1}\left(x-x_{k-1}\right) \\
& =\left(A_{k}-A_{k-1}\right)\left(x-x_{k-1}\right) .
\end{aligned}
$$

Sol. of Non-linear Systems

However, this secant equation can not uniquely determine A_{k}. One way of choosing A_{k} is to minimize $M_{k}-M_{k-1}$ subject to the secant equation. Note

$$
\begin{aligned}
M_{k}(x)-M_{k-1}(x) & =F\left(x_{k}\right)+A_{k}\left(x-x_{k}\right)-F\left(x_{k-1}\right)-A_{k-1}\left(x-x_{k-1}\right) \\
& =\left(F\left(x_{k}\right)-F\left(x_{k-1}\right)\right)+A_{k}\left(x-x_{k}\right)-A_{k-1}\left(x-x_{k-1}\right) \\
& =A_{k}\left(x_{k}-x_{k-1}\right)+A_{k}\left(x-x_{k}\right)-A_{k-1}\left(x-x_{k-1}\right) \\
& =A_{k}\left(x-x_{k-1}\right)-A_{k-1}\left(x-x_{k-1}\right) \\
& =\left(A_{k}-A_{k-1}\right)\left(x-x_{k-1}\right) .
\end{aligned}
$$

For any $x \in \mathbb{R}^{n}$, we express

$$
x-x_{k-1}=\alpha h_{k}+t_{k},
$$

for some $\alpha \in \mathbb{R}, t_{k} \in \mathbb{R}^{n}$, and $h_{k}^{T} t_{k}=0$.

Sol. of Non-linear Systems

However, this secant equation can not uniquely determine A_{k}. One way of choosing A_{k} is to minimize $M_{k}-M_{k-1}$ subject to the secant equation. Note

$$
\begin{aligned}
M_{k}(x)-M_{k-1}(x) & =F\left(x_{k}\right)+A_{k}\left(x-x_{k}\right)-F\left(x_{k-1}\right)-A_{k-1}\left(x-x_{k-1}\right) \\
& =\left(F\left(x_{k}\right)-F\left(x_{k-1}\right)\right)+A_{k}\left(x-x_{k}\right)-A_{k-1}\left(x-x_{k-1}\right) \\
& =A_{k}\left(x_{k}-x_{k-1}\right)+A_{k}\left(x-x_{k}\right)-A_{k-1}\left(x-x_{k-1}\right) \\
& =A_{k}\left(x-x_{k-1}\right)-A_{k-1}\left(x-x_{k-1}\right) \\
& =\left(A_{k}-A_{k-1}\right)\left(x-x_{k-1}\right) .
\end{aligned}
$$

For any $x \in \mathbb{R}^{n}$, we express

$$
x-x_{k-1}=\alpha h_{k}+t_{k},
$$

for some $\alpha \in \mathbb{R}, t_{k} \in \mathbb{R}^{n}$, and $h_{k}^{T} t_{k}=0$. Then

$$
M_{k}-M_{k-1}=\left(A_{k}-A_{k-1}\right)\left(\alpha h_{k}+t_{k}\right)=\alpha\left(A_{k}-A_{k-1}\right) h_{k}+\left(A_{k}-A_{k-1}\right) t_{k}
$$

Since

$$
\left(A_{k}-A_{k-1}\right) h_{k}=A_{k} h_{k}-A_{k-1} h_{k}=y_{k}-A_{k-1} h_{k}
$$

both y_{k} and $A_{k-1} h_{k}$ are old values, we have no control over the first part $\left(A_{k}-A_{k-1}\right) h_{k}$.

Sol. of Non-linear Systems

Since

$$
\left(A_{k}-A_{k-1}\right) h_{k}=A_{k} h_{k}-A_{k-1} h_{k}=y_{k}-A_{k-1} h_{k},
$$

both y_{k} and $A_{k-1} h_{k}$ are old values, we have no control over the first part
$\left(A_{k}-A_{k-1}\right) h_{k}$. In order to minimize $M_{k}(x)-M_{k-1}(x)$, we try to choose A_{k} so that

$$
\left(A_{k}-A_{k-1}\right) t_{k}=0
$$

for all $t_{k} \in \mathbb{R}^{n}, h_{k}^{T} t_{k}=0$.

Sol. of Non-linear Systems

Since

$$
\left(A_{k}-A_{k-1}\right) h_{k}=A_{k} h_{k}-A_{k-1} h_{k}=y_{k}-A_{k-1} h_{k},
$$

both y_{k} and $A_{k-1} h_{k}$ are old values, we have no control over the first part $\left(A_{k}-A_{k-1}\right) h_{k}$. In order to minimize $M_{k}(x)-M_{k-1}(x)$, we try to choose A_{k} so that

$$
\left(A_{k}-A_{k-1}\right) t_{k}=0
$$

for all $t_{k} \in \mathbb{R}^{n}, h_{k}^{T} t_{k}=0$. This requires that $A_{k}-A_{k-1}$ to be a rank-one matrix of the form

$$
A_{k}-A_{k-1}=u_{k} h_{k}^{T}
$$

for some $u_{k} \in \mathbb{R}^{n}$.

Sol. of Non-linear Systems

Since

$$
\left(A_{k}-A_{k-1}\right) h_{k}=A_{k} h_{k}-A_{k-1} h_{k}=y_{k}-A_{k-1} h_{k},
$$

both y_{k} and $A_{k-1} h_{k}$ are old values, we have no control over the first part $\left(A_{k}-A_{k-1}\right) h_{k}$. In order to minimize $M_{k}(x)-M_{k-1}(x)$, we try to choose A_{k} so that

$$
\left(A_{k}-A_{k-1}\right) t_{k}=0
$$

for all $t_{k} \in \mathbb{R}^{n}, h_{k}^{T} t_{k}=0$. This requires that $A_{k}-A_{k-1}$ to be a rank-one matrix of the form

$$
A_{k}-A_{k-1}=u_{k} h_{k}^{T}
$$

for some $u_{k} \in \mathbb{R}^{n}$. Then

$$
u_{k} h_{k}^{T} h_{k}=\left(A_{k}-A_{k-1}\right) h_{k}=y_{k}-A_{k-1} h_{k}
$$

Sol. of Non-linear Systems

which gives

$$
u_{k}=\frac{y_{k}-A_{k-1} h_{k}}{h_{k}^{T} h_{k}}
$$

Sol. of Non-linear Systems

which gives

$$
u_{k}=\frac{y_{k}-A_{k-1} h_{k}}{h_{k}^{T} h_{k}}
$$

Therefore,

$$
\begin{equation*}
A_{k}=A_{k-1}+\frac{\left(y_{k}-A_{k-1} h_{k}\right) h_{k}^{T}}{h_{k}^{T} h_{k}} \tag{1}
\end{equation*}
$$

Sol. of Non-linear Systems

which gives

$$
u_{k}=\frac{y_{k}-A_{k-1} h_{k}}{h_{k}^{T} h_{k}} .
$$

Therefore,

$$
\begin{equation*}
A_{k}=A_{k-1}+\frac{\left(y_{k}-A_{k-1} h_{k}\right) h_{k}^{T}}{h_{k}^{T} h_{k}} \tag{1}
\end{equation*}
$$

After A_{k} is determined, the new iterate x_{k+1} is derived from solving $M_{k}(x)=0$.

Sol. of Non-linear Systems

which gives

$$
u_{k}=\frac{y_{k}-A_{k-1} h_{k}}{h_{k}^{T} h_{k}} .
$$

Therefore,

$$
\begin{equation*}
A_{k}=A_{k-1}+\frac{\left(y_{k}-A_{k-1} h_{k}\right) h_{k}^{T}}{h_{k}^{T} h_{k}} \tag{1}
\end{equation*}
$$

After A_{k} is determined, the new iterate x_{k+1} is derived from solving $M_{k}(x)=0$. It can be done by first noting that

$$
h_{k+1}=x_{k+1}-x_{k} \quad \Longrightarrow \quad x_{k+1}=x_{k}+h_{k+1}
$$

and

$$
M_{k}\left(x_{k+1}\right)=0 \Rightarrow F\left(x_{k}\right)+A_{k}\left(x_{k+1}-x_{k}\right)=0 \quad \Rightarrow \quad A_{k} h_{k+1}=-F\left(x_{k}\right)
$$

These formulations give the Broyden's method.

Sol. of Non-linear Systems

Algorithm 2 (Broyden's Method) Given a n-variable nonlinear function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, an initial iterate x_{0} and initial Jacobian matrix $A_{0} \in \mathbb{R}^{n \times n}$ (e.g., $A_{0}=I$), this algorithm finds the solution for $F(x)=0$.

$$
\begin{aligned}
& \text { for } k=0,1, \cdots \text {, do } \\
& \text { Solve } A_{k} h_{k+1}=-F\left(x_{k}\right) \text { for } h_{k+1} \\
& \text { Update } x_{k+1}=x_{k}+h_{k+1} \\
& \text { Compute } y_{k+1}=F\left(x_{k+1}\right)-F\left(x_{k}\right) \\
& \text { Update } \\
& \qquad A_{k+1}=A_{k}+\frac{\left(y_{k+1}-A_{k} h_{k+1}\right) h_{k+1}^{T}}{h_{k+1}^{T} h_{k+1}}=A_{k}+\frac{\left(y_{k+1}+F\left(x_{k}\right)\right) h_{k+1}^{T}}{h_{k+1}^{T} h_{k+1}} \\
& \text { end for }
\end{aligned}
$$

Sol. of Non-linear Systems

Solve the linear system $A_{k} h_{k+1}=-F\left(x_{k}\right)$ for h_{k+1} :

Sol. of Non-linear Systems

Solve the linear system $A_{k} h_{k+1}=-F\left(x_{k}\right)$ for h_{k+1} :
$L U$-factorization: cost $\frac{2}{3} n^{3}+O\left(n^{2}\right)$ floating-point operations.

Sol. of Non-linear Systems

Solve the linear system $A_{k} h_{k+1}=-F\left(x_{k}\right)$ for h_{k+1} :
$L U$-factorization: cost $\frac{2}{3} n^{3}+O\left(n^{2}\right)$ floating-point operations.
Applying the Shermann-Morrison-Woodbury formula

$$
\left(B+U V^{T}\right)^{-1}=B^{-1}-B^{-1} U\left(I+V^{T} B^{-1} U\right)^{-1} V^{T} B^{-1}
$$

to (1),

Sol. of Non-linear Systems

Solve the linear system $A_{k} h_{k+1}=-F\left(x_{k}\right)$ for h_{k+1} :
$L U$-factorization: cost $\frac{2}{3} n^{3}+O\left(n^{2}\right)$ floating-point operations.
Applying the Shermann-Morrison-Woodbury formula

$$
\left(B+U V^{T}\right)^{-1}=B^{-1}-B^{-1} U\left(I+V^{T} B^{-1} U\right)^{-1} V^{T} B^{-1}
$$

to (1), we have

$$
A_{k}^{-1}=A_{k-1}^{-1}+\frac{\left(h_{k}-A_{k-1}^{-1} y_{k}\right) h_{k}^{T} A_{k-1}^{-1}}{h_{k}^{T} A_{k-1}^{-1} y_{k}}
$$

