Sol. of Non-linear Systems 1

Numerical Solutions of Nonlinear

Systems of Equations

4 )

Tsung-Min Hwang

November 30, 2003
\_ _J

Department of Mathematics — NTNU Tsung-Min Hwang November 30, 2003




Sol. of Non-linear Systems 2

1 - Fixed Point method . . . . . . . . . . . . ., 3
2 — Newton’s Method . . . . . . . . . . s 4
3 — Quasi-Newton’s Method . . . . . . . . . . . . . ... oL 8

Department of Mathematics — NTNU Tsung-Min Hwang November 30, 2003



Sol. of Non-linear Systems 3

1 — Fixed Point method

Definition 1 A function G from D C R"™ into R™ has a fixed pointatp € D if G(p) = p.

Department of Mathematics — NTNU Tsung-Min Hwang November 30, 2003



Sol. of Non-linear Systems 3

1 — Fixed Point method

Definition 1 A function G from D C R"™ into R™ has a fixed pointatp € D if G(p) = p.

Theorem 1 (Contraction Mapping Theorem) Let

D={(x1,- ,2,) a; <x; <b;,Vi=1,...,n} CR" Suppose G : D — R"

is a continuous function with GG() € D whenever = € D. Then G has a fixed point in D.
Suppose, in addition, G has continuous partial derivatives and a constant o < 1 exists with

891@3)
8:133-

84

< —, whenever x € D,

n

fory=1,...,nand2=1,...,n. Then, for any z(?) € D,
t®) = G(z*~Y), foreach k> 1

converges to the unique fixed point p € D and

&k

| 5® —p o< 2= |20 — 2 ||
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2 — Newton’s Method

First consider solving the following system of nonlinear equations:

fi(z1,22) =0,
f2($1,5132) = O
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2 — Newton’s Method

First consider solving the following system of nonlinear equations:

fi(z1,22) =0,
f2($1,5132) = O
(k) (k)

Suppose (:1:1 y Lo ) IS an approximation to the solution of the system above, and we try to
compute hgk) and hgk) such that (:ng) + hgk), :vgk) + hgk)) satisfies the system.
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2 — Newton’s Method

First consider solving the following system of nonlinear equations:

fi(z1,22) =0,
f2($1,CIZ2) = O

(k) (k)

Suppose (51:1 y Lo ) IS an approximation to the solution of the system above, and we try to
compute h( ) and h( ) such that (x5 (k) 4 hgk), a:gk) + hgk)) satisfies the system. By the

Taylor’s theorem for two variables,

0 = fi@® LA 2 a0
k) (k B Of1, () (K B Of1, (k) (K
~ f1(:vg), ())—i_h()@x ( () ())—i_hg)@x ( ()7 g))
0 = fole® 1 p® B b
k) (k BOf2, (k) (k KOf2, (k) (k
~ f(xg)7())+h§)@x(() ())—i_hg)@x(() ())
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Put this in matrix form

 of (K k L (K k [ (k) | k k

oo o) e o) | [0 ] [ ae® ] [ o
. k k . k k k k k ~

22600 2L6®u) || 40 || a6l | T o
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Put this in matrix form

o, (k) (K L (k) (K ) k) (k
8o 2,0 | [0 ] [ na®a ] [
2 k k » k k k k k ~
e e ) [ [ K ]| aePa) ] o
The matrix
o, (k) (k Lo (R (k)Y ]
Tz, 20y = 0@V, 25") S (e, x5”)
L2 /= 5 (K k . o (k k
| 2V, 2h) S2(at”ay”)

Is called the Jacobian matrix.
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Put this in matrix form

 of (k) (K k) (K T (k) ] B (k
8o 2,0 | [0 ] [ na®a ] [
2 k k » k k k k k ~

e e ) [ [ K ]| aePa) ] o
The matrix

o, (k) (k Lo (R (k)Y ]

Tz, 20y = 0@V, 25") S (e, x5”)
L2 /= 5 (K k . o (k k
| 2V, 2h) S2(at”ay”)

is called the Jacobian matrix. Set hﬁ’“ and hgk) be the solution of the linear system

[ (k) | k k
(@™ 59 i - fi(z®, 2t

1 2 k o k k
10 | 77| e
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Put this in matrix form

 of (k) (K k) (k T (k) ] B (k
8o 2,0 | [0 ] [ na®a ] [
2 k k » k k k k k ~
e e ) [ [ K ]| aePa) ] o
The matrix
o, (k) (k Lo (R (k)Y ]
Tz, 20y = 0@V, 25") S (e, x5”)
L2 /= 5 (K k . o (k k
| 2V, 2h) S2(at”ay”)

is called the Jacobian matrix. Set h§k> and hgk) be the solution of the linear system

Iz, 2l hé: = — fl(aé:’ x%:)
i hs ] I fo(z17,25") ]
then ) . ) _ ) )
ajgkz—{—l) B :Cgk:) . hgk)
xgk—}—l) xék) hék)

IS expected to be a better approximation.
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In general, we solve the system of . nonlinear equations fi(xl, o0 < ,xn) = 0,

1=1,...,n.
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In general, we solve the system of . nonlinear equations fi(xl, o0 < ,xn) = 0,
1=1,...,n. Let

T
and

F(x) = { filz)  falz) - fulo) }T'
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In general, we solve the system of . nonlinear equations fi(xl, o0 < ,xn) = 0,
1=1,...,n. Let

T
and

F(x) = { filz)  falz) - fulo) }T'

The problem can be formulated as solving

F(zx)=0, F:R"—R".
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Sol. of Non-linear Systems 6

In general, we solve the system of . nonlinear equations fi(xl, o0 < ,xn) = 0,
1=1,...,n. Let
T
L = [ r1 I9 Ln }
and

F(x) = { filz)  falz) - fulo) }T'

The problem can be formulated as solving
F(zx)=0, F:R"—R".

Let J(x), where the (7, j) entry is g%(:z:) be the n X n Jacobian matrix.
J
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In general, we solve the system of . nonlinear equations fi(xl, o0 < ,xn) = 0,

1=1,...,n. Let

and

T
F@)=| file) fale) - fal@) | -
The problem can be formulated as solving
F(zx)=0, F:R"—R".
Let J (), where the (7, j) entry is g%(:z:) be the n X n Jacobian matrix. Then the
J

Newton'’s iteration is defined as

2D = (k) | (k).

where h(¥) € R" is the solution of the linear system

J(x(k))h(k‘) _ —F(a:(k”)).
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Algorithm 1 (Newton’s Method for Systems) Given a function F' : R™ — R", an initial
guess (9 to the zero of F', and stop criteria M, 0, and ¢, this algorithm performs the

Newton’s iteration to approximate one root of F'.
Setk = 0and h(~1) = ¢;.
while (k < M) and (|| R0 ||> §) and (|| F(z*)) ||> ¢ do
Calculate J (z*)) = [0F;(z*)) /0x;).

Solve the n. x n linear system J(z(*))h(*) = — F(2(%)),
Set £(F+1) = (k) L p(K) and k = k + 1.
end while

Output ( “Convergent :U<k)") or (“Maximum number of iterations exceeded”)
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Sol. of Non-linear Systems 7

Algorithm 1 (Newton’s Method for Systems) Given a function F' : R™ — R", an initial
guess (9 to the zero of F', and stop criteria M, 0, and ¢, this algorithm performs the

Newton’s iteration to approximate one root of F'.
Setk = 0and h(~1) = ¢;.
while (k < M) and (|| R0 ||> §) and (|| F(z*)) ||> ¢ do
Calculate J (z*)) = [0F;(z*)) /0x;).

Solve the n. x n linear system J(z(*))h(*) = — F(2(%)),
Set £(F+1) = (k) L p(K) and k = k + 1.
end while

Output ( “Convergent :U<k)") or (“Maximum number of iterations exceeded”)

Remark 1

(i) quadratic convergence if the starting point is near the exact solution point in terms of

vector norm.

(i) At each iteration, a Jacobian matrix has to be evaluated and an n X n linear system

involving this matrix must be solved.
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3 — Quasi-Newton’s Method

Next we will extend secant method to solving system of nonlinear equations.

- I
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3 — Quasi-Newton’s Method

Next we will extend secant method to solving system of nonlinear equations. Recall that in

one dimensional case, one uses the linear model

Ui(x) = f(xr) + ar(x — x)

to approximate the function f(x) at xy.
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3 — Quasi-Newton’s Method

Next we will extend secant method to solving system of nonlinear equations. Recall that in

one dimensional case, one uses the linear model

Ui(x) = f(xr) + ar(x — x)

to approximate the function f(x) at xg. Thatis, /. (x) = f(xy) forany ar € R.
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3 — Quasi-Newton’s Method

Next we will extend secant method to solving system of nonlinear equations. Recall that in

one dimensional case, one uses the linear model

le(z) = f(zk) + ag(z — )

to approximate the function f () at xg. Thatis, /. (x;) = f(x}) forany ar € R. If we
further require that /' () = f'(xy), then ap = ().
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3 — Quasi-Newton’s Method

Next we will extend secant method to solving system of nonlinear equations. Recall that in

one dimensional case, one uses the linear model
lr(x) = f(zk) + ar(z — 2k)

to approximate the function f(x) at x. Thatis, /1. (zy) = f(xy) for any ar, € R. If we
further require that /' () = f'(xk ), then ar = f'(x ). The zero of i () is used to

give a new approximate for the zero of f(x), that is,

Thpt1l = Tp — f,(zk)f(xk)

which yields Newton’s method.
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If f'(2}) is not available, one instead asks the linear model to satisfy

Ui(zk) = f(zk) and Lg(zg—1) = f(Tr-1).

B
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If f'(2}) is not available, one instead asks the linear model to satisfy

U (zx) = f(zk) and Ly(zk—1) = f(@k—1).

In doing this, the identity

IlGe il = {Gnlannat = il S G =
gives

flak) = f(zr—1)

Lk — LTk-—1

ap —
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If f' () is not available, one instead asks the linear model to satisfy

Ui(zk) = f(zk) and Lg(zg—1) = f(Tr-1).

In doing this, the identity

IlGe il = {Gnlannat = il S G =
gives

flak) = f(zr—1)

Lk — LTk-—1

ap —

Solving /i () = 0 yields the secant iteration

Thil = Th — Lk — Tk—1
f(xr) — f(Tr-1)

f(zk).

T
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In multiple dimension, the analogue affine model becomes
My (x) = F(xk) + Ap(x — x),
where x, z, € R" and A, € R™*"™, and satisfies
My (k) = F(ag),

for any Ay,.
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In multiple dimension, the analogue affine model becomes
My (x) = F(xk) + Ap(x — x),
where x, z, € R" and A, € R™*"™, and satisfies
My (k) = F(ag),

for any Ay. The zero of M} (x) is then used to give a new approximate for the zero of
F(x), thatis,

T+l = Tk — A,;lF(ZEk)
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Sol. of Non-linear Systems 10

In multiple dimension, the analogue affine model becomes
My (x) = F(xk) + Ap(x — x),
where x, z, € R" and A, € R™*"™, and satisfies
My (k) = F(ag),

for any Ay. The zero of M} (x) is then used to give a new approximate for the zero of
F(x), thatis,

Tii1 = Tk — A,;lF(:Uk).
The Newton’s method chooses
Ay = F'(xy) = J(x)) = the Jacobian matrix.
and yields the iteration

Lk+1 = Tk — (F’(wk))_l F(.rk)

- T
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When the Jacobian matrix J(xy) = F’(xy ) is not available, one can require

Mk(a;k,_l) = F(:Uk_l).

-
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When the Jacobian matrix J(xy) = F’(xy ) is not available, one can require
My(zrp—1) = F(xr-1).
Then
F(zg—1) = Mg(xr-1) = F(zr) + Ap(Tr-1 — k),
which gives

Ak(xk — $k_1) = F(ﬂjk) — F(:Ek_l)

and this is the so-called secant equation.

T
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Sol. of Non-linear Systems 11

When the Jacobian matrix J(xy) = F’(xy ) is not available, one can require
Mk(a;k_l) = F(Sljk;_l).
Then
F(zg—1) = Mg(xr-1) = F(zr) + Ap(Tr-1 — k),
which gives
Ak(l’k — $k_1) = F(ZUk) — F(ajk—l)

and this is the so-called secant equation. Let

hy =xp —rp—1 and Yy = F(xk) — F(iUk—1)-

T
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When the Jacobian matrix J(xy) = F’(xy ) is not available, one can require
My(zrp—1) = F(xr-1).

Then
F(xg—1) = Mp(xk—1) = F(og) + Ap(xr—1 — x1),

which gives
Ap(xg —xp—1) = F(xg) — F(xr_1)
and this is the so-called secant equation. Let
hiy =ap —xp—1 and yg = F(zg) — F(zK-1).
The secant equation becomes
Axhg = Y.

T
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However, this secant equation can not uniquely determine Aj.

T
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However, this secant equation can not uniquely determine A;. One way of choosing Ay, is

to minimize M;. — M;._1 subject to the secant equation.

T
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However, this secant equation can not uniquely determine A;. One way of choosing Ay, is

to minimize M. — M;._1 subject to the secant equation. Note

Mk(aj) — Mk_l(:v) = F(:Uk) =7 Ak(ZC — :Ifk) — F(aj‘k_l) — Ak_l(x — xk—l)
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However, this secant equation can not uniquely determine A;. One way of choosing Ay, is

to minimize M. — M;._1 subject to the secant equation. Note

Mk(aj) — Mk_l(:v) = F(:Uk) =7 Ak(ZC — :Ifk) — F(aj‘k_l) — Ak_l(x — xk—l)
= (F(ak) — F(rg_1)) + Ap(x —xx) — Ap—1(x — x1—1)
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However, this secant equation can not uniquely determine A;. One way of choosing Ay, is

to minimize M. — M;._1 subject to the secant equation. Note
Mk(aj) — Mk_l(:v) = F(:Uk) + Ak(ZC — :Ifk) — F(:Uk_l) — Ak_l(x — xk—l)

(F(xk) — F(rg_1)) + Ax(x — ) — Agp_1(x — 2 1)
= Ap(zp —xp-1) + Ap(z —xg) — Ap—1(z — xp—1)
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However, this secant equation can not uniquely determine A;. One way of choosing Ay, is

to minimize M. — M;._1 subject to the secant equation. Note

Mk(aj) —Mk_l(:v) = F(:Uk) —I—Ak(ZC—ka) —F(:Ij‘k_l) —Ak_l(zv—xk_l)
= (F(ak) — F(rg_1)) + Ap(x —xx) — Ap—1(x — x1—1)
= Ap(zp —xp-1) + Ap(z —xg) — Ap—1(z — xp—1)

= Ap(x —xr-1) — Ap—1(x — 25_1)
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However, this secant equation can not uniquely determine A;. One way of choosing Ay, is

to minimize M. — M;._1 subject to the secant equation. Note

My(x) — Mp_1(x) = F(zg)+ Ax(x — o) — F(op_1) — Ap_1(x — x1_1)
= (F(ak) — F(rg_1)) + Ap(x —xx) — Ap—1(x — x1—1)
= Ap(wp —xp_1) + Ap(x —xp) — Ap_1(x — 2_1)
= Ap(r—wp-1) — Ap—1(x — 2x1)
= (Ag — Ag—1)(T — 2p-1).
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However, this secant equation can not uniquely determine A;. One way of choosing Ay, is

to minimize M. — M;._1 subject to the secant equation. Note

My(x) — Mp_1(x) = F(zg)+ Ax(x — o) — F(op_1) — Ap_1(x — x1_1)
= (F(ak) — F(rg_1)) + Ap(x —xx) — Ap—1(x — x1—1)
= Ap(wp —xp_1) + Ap(x —xp) — Ap_1(x — 2_1)
= Ap(r —2p-1) — Ap—1(z — T—1)
= (Ax — Ap_1)(x —xp_1).

For any x € R"™, we express

T — Tp—1 = ahy + ty,

forsome o € R, t,, € R", and h}ftk = 0.

T
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However, this secant equation can not uniquely determine A;. One way of choosing Ay, is

to minimize M. — M;._1 subject to the secant equation. Note

My(x) — Mp_1(x) = F(zg)+ Ax(x — o) — F(op_1) — Ap_1(x — x1_1)
= (F(ak) — F(rg_1)) + Ap(x —xx) — Ap—1(x — x1—1)
= Ap(wp —xp_1) + Ap(x —xp) — Ap_1(x — 2_1)
= Ap(r—wp-1) — Ap—1(x — 2x1)
= (Ag — Ag—1)(T — 2p-1).
For any x € R"™, we express
T — Tp—1 = ahy + ty,

forsome o« € R, t, € R", and h}ftk = (. Then

My, — My_1 = (A — Ag—1)(ahy +t) = a(Ar — Ag—1)hi + (A — Ak—1)tk.

T
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Since

(A — Ag—1)hi = Axhy, — Ax—1hg = yr — Ag—1hg,

both 4z and Ay _1h; are old values, we have no control over the first part

(Ak — Ak—l)hkz-

T
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Since

(A — Ag—1)hi = Axhy, — Ax—1hg = yr — Ag—1hg,

both 4z and Ay _1h; are old values, we have no control over the first part
(A — Ag_1)hg. Inorder to minimize My (x) — Mjy_1(x), we try to choose Ay, so that

(Ap — A1)t =0

forall t, € R", h;‘ftk = 0.
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Since

(A — Ag—1)hi = Axhy, — Ax—1hg = yr — Ag—1hg,

both 4z and Ay _1h; are old values, we have no control over the first part

(A — Ag_1)hg. Inorder to minimize My (x) — Mjy_1(x), we try to choose Ay, so that
(A — A1)ty =0

for all t;, € R™, h;‘ftk — (. This requires that A, — Ay _1 to be a rank-one matrix of the

form
Ak; — Ak—l — ukhg

for some u; € R™.
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Since

(A — Ag—1)hi = Axhy, — Ax—1hg = yr — Ag—1hg,

both 4z and Ay _1h; are old values, we have no control over the first part

(A — Ag_1)hg. Inorder to minimize My (x) — Mjy_1(x), we try to choose Ay, so that
(A — A1)ty =0

for all t;, € R™, h;‘ftk — (. This requires that A, — Ay _1 to be a rank-one matrix of the

form
T
Ak; — Ak—l — ukhk
for some u;, € R™. Then

uphi by = (Ap — Ap_1)hy = yp — Ap_1ha

T
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which gives

_ Yk — Ap_1hg
WThy

Uk

B
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EE
which gives
Uy — Y — Ar—1hg
hlhy,
Therefore,
— A, _1hi.)hT
A = Ap_1 + (W k1) i (1)

hT hy,

- I
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which gives
oy — Yk Ap_1hg
- hlhy
Therefore,
ik
Y — Ax—1hi)hy
A = A1 + ( 1
k k—1 T Tor (1)
After Ay, is determined, the new iterate x 1 is derived from solving My (z) = 0.
C —
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which gives

_ Yk — Ap_1hg
WThy

Uk

Therefore,

(yk — Ak_lhk)hf
1T hy,

Ap = A1+ (1)

After Ay, is determined, the new iterate x. 1 is derived from solving Mk(a;) = 0. It can be

done by first noting that
k41 = Tl — Tk —> Thy1 = Tk + hg41
and
Mi(zpi1) =0 = F(xg)+ Ap(xpsr —2) =0 =  Aphp, = —F(xy)
These formulations give the Broyden’s method.

I
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Algorithm 2 (Broyden’s Method) Given a n-variable nonlinear function ' : R™ — R",
an initial iterate xg and initial Jacobian matrix Ag € R"*" (e.g., Ag = I), this algorithm
finds the solution for F'(x) = 0.

fork=0,1,---,do
Solve Axhgi1 = —F(xk) for hgaq
Update Tx+1 = Tg + hga1
Compute Yx11 = F(xk11) — F(zg)

Update
Aper = A+ (Ykt1 — Axhrr1)hi,, A+ (Y1 + F(zr)
+ — p—
» hf+1hk+1 h%ﬂhkﬂ
end for

T
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Solve the linear system Axhg.1 = —F(xy) for hga1:

B
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Solve the linear system Axhg.1 = —F(xy) for hga1:

[1 LU -factorization: cost %n?’ + O(nz) floating-point operations.
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Solve the linear system Axhg.1 = —F(xy) for hga1:
[1 LU -factorization: cost %n?’ + O(nz) floating-point operations.
[1 Applying the Shermann-Morrison-Woodbury formula
(B+UVT) =B '-B'W({I+VTB'U) vTB!

to (1),
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Solve the linear system Axhg.1 = —F(xy) for hga1:
[1 LU -factorization: cost %ng + O(nz) floating-point operations.
[1 Applying the Shermann-Morrison-Woodbury formula
(B+UVT) =B '-B'W({I+VTB'U) vTB!
to (1), we have

(P — Aﬁlyk)hfz‘lﬁl
hZAE_llyk

A=A+

T
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