Direct Methods for Solving Linear Systems

Tsung-Ming Huang

Department of Mathematics
National Taiwan Normal University, Taiwan
E-mail: min@math.ntnu.edu.tw

November 30, 2014

Outline

Pivoting Strategies

Matrix factorization

Outline

(1) Linear systems of equations
(2) Pivoting Strategies

Special types of matrices

Outline

(1) Linear systems of equations
(2) Pivoting Strategies

3 Matrix factorization

Special types of matrices

Outline

(1) Linear systems of equations
(2) Pivoting Strategies

3 Matrix factorization

4 Special types of matrices

Linear systems of equations

Three operations to simplify the linear system:
(1) $\left(\lambda E_{i}\right) \rightarrow\left(E_{i}\right)$: Equation E_{i} can be multiplied by $\lambda \neq 0$ with the resulting equation used in place of E_{i}.

Equation E_{i} and E_{j} can be transposed in

Linear systems of equations

Three operations to simplify the linear system:
(1) $\left(\lambda E_{i}\right) \rightarrow\left(E_{i}\right)$: Equation E_{i} can be multiplied by $\lambda \neq 0$ with the resulting equation used in place of E_{i}.
(2) $\left(E_{i}+\lambda E_{j}\right) \rightarrow\left(E_{i}\right)$: Equation E_{j} can be multiplied by $\lambda \neq 0$ and added to equation E_{i} with the resulting equation used in place of E_{i}.

Linear systems of equations

Three operations to simplify the linear system:
(1) $\left(\lambda E_{i}\right) \rightarrow\left(E_{i}\right)$: Equation E_{i} can be multiplied by $\lambda \neq 0$ with the resulting equation used in place of E_{i}.
(2) $\left(E_{i}+\lambda E_{j}\right) \rightarrow\left(E_{i}\right)$: Equation E_{j} can be multiplied by $\lambda \neq 0$ and added to equation E_{i} with the resulting equation used in place of E_{i}.
(3) $\left(E_{i}\right) \leftrightarrow\left(E_{j}\right)$: Equation E_{i} and E_{j} can be transposed in order.

Linear systems of equations

Three operations to simplify the linear system:
(1) $\left(\lambda E_{i}\right) \rightarrow\left(E_{i}\right)$: Equation E_{i} can be multiplied by $\lambda \neq 0$ with the resulting equation used in place of E_{i}.
(2) $\left(E_{i}+\lambda E_{j}\right) \rightarrow\left(E_{i}\right)$: Equation E_{j} can be multiplied by $\lambda \neq 0$ and added to equation E_{i} with the resulting equation used in place of E_{i}.
(3) $\left(E_{i}\right) \leftrightarrow\left(E_{j}\right)$: Equation E_{i} and E_{j} can be transposed in order.

Example 1

$$
\begin{array}{rrrrrrrr}
E_{1}: & x_{1}+x_{2} & & +3 x_{4} & =4 \\
E_{2}: & 2 x_{1}+ & x_{2} & - & x_{3} & + & x_{4} & = \\
E_{3}: & 3 x_{1} & - & x_{2} & - & x_{3} & +2 x_{4} & = \\
E_{4}: & -x_{1} & + & 2 x_{2} & +3 x_{3} & -3 \\
4 & = & 4
\end{array}
$$

Solution:

- $\left(E_{2}-2 E_{1}\right) \rightarrow\left(E_{2}\right),\left(E_{3}-3 E_{1}\right) \rightarrow\left(E_{3}\right)$ and $\left(E_{4}+E_{1}\right) \rightarrow\left(E_{4}\right):$

$E_{1}:$	$x_{1}+x_{2}$	$+3 x_{4}=$	4,
$E_{2}:$	$-x_{2}-x_{3}-5 x_{4}=$	-7,	
$E_{3}:$	$-4 x_{2}-x_{3}-7 x_{4}=$	-15,	
$E_{4}:$	$3 x_{2}+3 x_{3}+2 x_{4}=$	8.	

Solution:

- $\left(E_{2}-2 E_{1}\right) \rightarrow\left(E_{2}\right),\left(E_{3}-3 E_{1}\right) \rightarrow\left(E_{3}\right)$ and $\left(E_{4}+E_{1}\right) \rightarrow\left(E_{4}\right):$

| $E_{1}:$ | $x_{1}+x_{2}$ | $+3 x_{4}$ | $=4$, |
| :--- | :--- | :--- | :--- | :--- |
| $E_{2}:$ | $-x_{2}-x_{3}-5 x_{4}$ | $=$ | -7, |
| $E_{3}:$ | $-4 x_{2}-x_{3}-7 x_{4}$ | $=$ | -15, |
| $E_{4}:$ | | $3 x_{2}+3 x_{3}+2 x_{4}$ | $=8$. |

- $\left(E_{3}-4 E_{2}\right) \rightarrow\left(E_{3}\right)$ and $\left(E_{4}+3 E_{2}\right) \rightarrow\left(E_{4}\right)$:

$$
\begin{aligned}
& E_{1}: x_{1}+x_{2}+3 x_{4}=4 \text {, } \\
& E_{2}: \quad-x_{2}-x_{3}-5 x_{4}=-7, \\
& E_{3}: \quad 3 x_{3}+13 x_{4}=13, \\
& E_{4}: \quad-13 x_{4}=-13 .
\end{aligned}
$$

- Backward-substitution process:
- Backward-substitution process:
(1) $E_{4} \Rightarrow x_{4}=1$
- Backward-substitution process:
(1) $E_{4} \Rightarrow x_{4}=1$
(2) Solve E_{3} for x_{3} :

$$
x_{3}=\frac{1}{3}\left(13-13 x_{4}\right)=\frac{1}{3}(13-13)=0 .
$$

- Backward-substitution process:
(1) $E_{4} \Rightarrow x_{4}=1$
(2) Solve E_{3} for x_{3} :

$$
x_{3}=\frac{1}{3}\left(13-13 x_{4}\right)=\frac{1}{3}(13-13)=0 .
$$

(3) E_{2} gives

$$
x_{2}=-\left(-7+5 x_{4}+x_{3}\right)=-(-7+5+0)=2 .
$$

- Backward-substitution process:
(1) $E_{4} \Rightarrow x_{4}=1$
(2) Solve E_{3} for x_{3} :

$$
x_{3}=\frac{1}{3}\left(13-13 x_{4}\right)=\frac{1}{3}(13-13)=0 .
$$

(3) E_{2} gives

$$
x_{2}=-\left(-7+5 x_{4}+x_{3}\right)=-(-7+5+0)=2 .
$$

(4) E_{1} gives

$$
x_{1}=4-3 x_{4}-x_{2}=4-3-2=-1
$$

Solve linear systems of equations

$$
\left\{\begin{array}{cc}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2} \\
\vdots & \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}= & b_{n}
\end{array}\right.
$$

Rewrite in the matrix form

Solve linear systems of equations

$$
\left\{\begin{array}{cc}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2} \\
\vdots & \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n} & =b_{n}
\end{array}\right.
$$

Rewrite in the matrix form

$$
\begin{equation*}
A x=b, \tag{1}
\end{equation*}
$$

where
$A=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right], \quad b=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right], \quad x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$

Solve linear systems of equations

$$
\left\{\begin{array}{cc}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2} \\
\vdots & \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n} & =b_{n}
\end{array}\right.
$$

Rewrite in the matrix form

$$
\begin{equation*}
A x=b, \tag{1}
\end{equation*}
$$

where
$A=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right], \quad b=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right], \quad x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$
and $[A, b]$ is called the augmented matrix.

Gaussian elimination with backward substitution

The augmented matrix in previous example is

$$
\left[\begin{array}{rrrr|r}
1 & 1 & 0 & 3 & 4 \\
2 & 1 & -1 & 1 & 1 \\
3 & -1 & -1 & 2 & -3 \\
-1 & 2 & 3 & -1 & 4
\end{array}\right]
$$

Gaussian elimination with backward substitution

The augmented matrix in previous example is

$$
\begin{aligned}
& {\left[\begin{array}{rrrr|r}
1 & 1 & 0 & 3 & 4 \\
2 & 1 & -1 & 1 & 1 \\
3 & -1 & -1 & 2 & -3 \\
-1 & 2 & 3 & -1 & 4
\end{array}\right] . } \\
&\left(E_{2}-2 E_{1}\right) \rightarrow\left(E_{2}\right),\left(E_{3}-3 E_{1}\right) \rightarrow\left(E_{3}\right) \text { and }\left(E_{4}+E_{1}\right) \rightarrow\left(E_{4}\right): \\
& {\left[\begin{array}{rrrr|r}
1 & 1 & 0 & 3 & 4 \\
0 & -1 & -1 & -5 & -7 \\
0 & -4 & -1 & -7 & -15 \\
0 & 3 & 3 & 2 & 8
\end{array}\right] . }
\end{aligned}
$$

Gaussian elimination with backward substitution

The augmented matrix in previous example is

$$
\left[\begin{array}{rrrr|r}
1 & 1 & 0 & 3 & 4 \\
2 & 1 & -1 & 1 & 1 \\
3 & -1 & -1 & 2 & -3 \\
-1 & 2 & 3 & -1 & 4
\end{array}\right]
$$

- $\left(E_{2}-2 E_{1}\right) \rightarrow\left(E_{2}\right),\left(E_{3}-3 E_{1}\right) \rightarrow\left(E_{3}\right)$ and $\left(E_{4}+E_{1}\right) \rightarrow\left(E_{4}\right)$:

$$
\left[\begin{array}{rrrr|r}
1 & 1 & 0 & 3 & 4 \\
0 & -1 & -1 & -5 & -7 \\
0 & -4 & -1 & -7 & -15 \\
0 & 3 & 3 & 2 & 8
\end{array}\right]
$$

- $\left(E_{3}-4 E_{2}\right) \rightarrow\left(E_{3}\right)$ and $\left(E_{4}+3 E_{2}\right) \rightarrow\left(E_{4}\right)$:

$$
\left[\begin{array}{rrrr|r}
1 & 1 & 0 & 3 & 4 \\
0 & -1 & -1 & -5 & -7 \\
0 & 0 & 3 & 13 & 13 \\
0 & 0 & 0 & -13 & -13
\end{array}\right]
$$

The general Gaussian elimination procedure

- Provided $a_{11} \neq 0$, for each $i=2,3, \ldots, n$,

$$
\left(E_{i}-\frac{a_{i 1}}{a_{11}} E_{1}\right) \rightarrow\left(E_{i}\right)
$$

Transform all the entries in the first col. below the diagonal are zero. Denote the new entry in the i th row and j th col. by a_{i}

The general Gaussian elimination procedure

- Provided $a_{11} \neq 0$, for each $i=2,3, \ldots, n$,

$$
\left(E_{i}-\frac{a_{i 1}}{a_{11}} E_{1}\right) \rightarrow\left(E_{i}\right) .
$$

Transform all the entries in the first col. below the diagonal are zero.

The general Gaussian elimination procedure

- Provided $a_{11} \neq 0$, for each $i=2,3, \ldots, n$,

$$
\left(E_{i}-\frac{a_{i 1}}{a_{11}} E_{1}\right) \rightarrow\left(E_{i}\right)
$$

Transform all the entries in the first col. below the diagonal are zero. Denote the new entry in the i th row and j th col. by $a_{i j}$.
\qquad are zero.

The general Gaussian elimination procedure

- Provided $a_{11} \neq 0$, for each $i=2,3, \ldots, n$,

$$
\left(E_{i}-\frac{a_{i 1}}{a_{11}} E_{1}\right) \rightarrow\left(E_{i}\right) .
$$

Transform all the entries in the first col. below the diagonal are zero. Denote the new entry in the i th row and j th col. by $a_{i j}$.

- For $i=2,3 \ldots, n-1$, provided $a_{i i} \neq 0$,

$$
\left(E_{j}-\frac{a_{j i}}{a_{i i}} E_{i}\right) \rightarrow\left(E_{j}\right), \forall j=i+1, i+2, \ldots, n .
$$

Transform all the entries in the i th column below the diagona

are zero.

- Resuli an upper triangular matrix:

The general Gaussian elimination procedure

- Provided $a_{11} \neq 0$, for each $i=2,3, \ldots, n$,

$$
\left(E_{i}-\frac{a_{i 1}}{a_{11}} E_{1}\right) \rightarrow\left(E_{i}\right) .
$$

Transform all the entries in the first col. below the diagonal are zero. Denote the new entry in the i th row and j th col. by $a_{i j}$.

- For $i=2,3 \ldots, n-1$, provided $a_{i i} \neq 0$,

$$
\left(E_{j}-\frac{a_{j i}}{a_{i i}} E_{i}\right) \rightarrow\left(E_{j}\right), \forall j=i+1, i+2, \ldots, n .
$$

Transform all the entries in the i th column below the diagonal are zero.

Result an upper triangular matrix

The general Gaussian elimination procedure

- Provided $a_{11} \neq 0$, for each $i=2,3, \ldots, n$,

$$
\left(E_{i}-\frac{a_{i 1}}{a_{11}} E_{1}\right) \rightarrow\left(E_{i}\right)
$$

Transform all the entries in the first col. below the diagonal are zero. Denote the new entry in the i th row and j th col. by $a_{i j}$.

- For $i=2,3 \ldots, n-1$, provided $a_{i i} \neq 0$,

$$
\left(E_{j}-\frac{a_{j i}}{a_{i i}} E_{i}\right) \rightarrow\left(E_{j}\right), \forall j=i+1, i+2, \ldots, n
$$

Transform all the entries in the i th column below the diagonal are zero.

- Result an upper triangular matrix:

$$
\left[\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
0 & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \ddots & \ddots & \vdots & \vdots \\
0 & \cdots & 0 & a_{n n} & b_{n}
\end{array}\right]
$$

The process of Gaussian elimination result in a sequence of matrices as follows:
$A=A^{(1)} \rightarrow A^{(2)} \rightarrow \cdots \rightarrow A^{(n)}=$ upper triangular matrix

The process of Gaussian elimination result in a sequence of matrices as follows:

$$
A=A^{(1)} \rightarrow A^{(2)} \rightarrow \cdots \rightarrow A^{(n)}=\text { upper triangular matrix }
$$

The matrix $A^{(k)}$ has the following form:
$A^{(k)}=\left[\begin{array}{lll|l|llll}a_{11}^{(1)} & \cdots & a_{1, k-1}^{(1)} & a_{1 k}^{(1)} & \cdots & a_{1 j}^{(1)} & \cdots & a_{1 n}^{(1)} \\ \vdots & \ddots & \vdots & \vdots & & \vdots & & \vdots \\ 0 & \cdots & a_{k-1, k-1}^{(k-1)} & a_{k-1, k}^{(k-1)} & \cdots & a_{k-1, j}^{(k-1)} & \cdots & a_{k-1, n}^{(k-1)} \\ \hline 0 & \cdots & 0 & a_{k k}^{(k)} & \cdots & a_{k j}^{(k)} & \cdots & a_{k n}^{(k)} \\ \hline \vdots & & \vdots & \vdots & & \vdots & & \vdots \\ 0 & \cdots & 0 & a_{i k}^{(k)} & \cdots & a_{i j}^{(k)} & \cdots & a_{i n}^{(k)} \\ \vdots & & \vdots & \vdots & & \vdots & & \vdots \\ 0 & \cdots & 0 & a_{n k}^{(k)} & \cdots & a_{n j}^{(k)} & \cdots & a_{n n}^{(k)}\end{array}\right]$

The entries of $A^{(k)}$ are produced by the formula

$$
a_{i j}^{(k)}= \begin{cases}a_{i j}^{(k-1)}, & \text { for } i=1, \ldots, k-1, j=1, \ldots, n ; \\ 0, & \text { for } i=k, \ldots, n, j=1, \ldots, k-1 ; \\ a_{i j}^{(k-1)}-\frac{a_{i, k-1}^{(k-1)}}{a_{k-1, k-1}^{(k-1)}} \times a_{k-1, j}^{(k-1)}, & \text { for } i=k, \ldots, n, j=k, \ldots, n .\end{cases}
$$

The entries of $A^{(k)}$ are produced by the formula
$a_{i j}^{(k)}= \begin{cases}a_{i j}^{(k-1)}, & \text { for } i=1, \ldots, k-1, j=1, \ldots, n ; \\ 0, & \text { for } i=k, \ldots, n, j=1, \ldots, k-1 ; \\ a_{i j}^{(k-1)}-\frac{a_{i, k-1}^{(k-1)}}{a_{k-1, k-1}^{(k-1)}} \times a_{k-1, j}^{(k-1)}, & \text { for } i=k, \ldots, n, j=k, \ldots, n .\end{cases}$

- The procedure will fail if one of the elements $a_{11}^{(1)}, a_{22}^{(2)}, \ldots$, $a_{n n}^{(n)}$ is zero.
is called the pivot element

The entries of $A^{(k)}$ are produced by the formula
$a_{i j}^{(k)}= \begin{cases}a_{i j}^{(k-1)}, & \text { for } i=1, \ldots, k-1, j=1, \ldots, n ; \\ 0, & \text { for } i=k, \ldots, n, j=1, \ldots, k-1 ; \\ a_{i j}^{(k-1)}-\frac{a_{i, k-1}^{(k-1)}}{a_{k-1, k-1}^{(k-1)}} \times a_{k-1, j}^{(k-1)}, & \text { for } i=k, \ldots, n, j=k, \ldots, n .\end{cases}$

- The procedure will fail if one of the elements $a_{11}^{(1)}, a_{22}^{(2)}, \ldots$, $a_{n n}^{(n)}$ is zero.
- $a_{i i}^{(i)}$ is called the pivot element.

Backward substitution

The new linear system is triangular:

$$
\begin{aligned}
& \begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1}, \\
a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2},
\end{aligned} \\
& a_{n n} x_{n}=b_{n}
\end{aligned}
$$

- Solving the nth equation for x_{n} gives

Backward substitution

The new linear system is triangular:

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2}
\end{aligned}
$$

- Solving the nth equation for x_{n} gives

$$
x_{n}=\frac{b_{n}}{a_{n n}}
$$

- In general

Backward substitution

The new linear system is triangular:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2}, \\
\vdots \\
a_{n n} x_{n}=b_{n}
\end{gathered}
$$

- Solving the nth equation for x_{n} gives

$$
x_{n}=\frac{b_{n}}{a_{n n}}
$$

- Solving the $(n-1)$ th equation for x_{n-1} and using the value for x_{n} yields

$$
x_{n-1}=\frac{b_{n-1}-a_{n-1, n} x_{n}}{a_{n-1, n-1}} .
$$

- In general

Backward substitution

The new linear system is triangular:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2}, \\
\vdots \\
a_{n n} x_{n}=b_{n}
\end{gathered}
$$

- Solving the nth equation for x_{n} gives

$$
x_{n}=\frac{b_{n}}{a_{n n}}
$$

- Solving the $(n-1)$ th equation for x_{n-1} and using the value for x_{n} yields

$$
x_{n-1}=\frac{b_{n-1}-a_{n-1, n} x_{n}}{a_{n-1, n-1}} .
$$

- In general,

$$
x_{i}=\frac{b_{i}-\sum_{j=i+1}^{n} a_{i j} x_{j}}{a_{i i}}, \forall i=n-1, n-2, \ldots, 1
$$

Algorithm 1 (Backward Substitution)

Suppose that $U \in \mathbb{R}^{n \times n}$ is nonsingular upper triangular and $b \in \mathbb{R}^{n}$. This algorithm computes the solution of $U x=b$.

$$
\begin{aligned}
& \text { For } i=n, \ldots, 1 \\
& \quad \operatorname{tmp}=0 \\
& \quad \text { For } j=i+1, \ldots, n \\
& \quad \operatorname{tmp}=\operatorname{tmp}+U(i, j) * x(j) \\
& \text { End for } \\
& \quad x(i)=(b(i)-\operatorname{tm} p) / U(i, i) \\
& \text { End for }
\end{aligned}
$$

Example 2

Solve system of linear equations.

$$
\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
12 & -8 & 6 & 10 \\
3 & -13 & 9 & 3 \\
-6 & 4 & 1 & -18
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
12 \\
34 \\
27 \\
-38
\end{array}\right]
$$

Solution.

Use 6 as pivot element, the first row as pivot row, and multipliers $2, \frac{1}{2},-1$ are produced to reduce the

 system to
Example 2

Solve system of linear equations.

$$
\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
12 & -8 & 6 & 10 \\
3 & -13 & 9 & 3 \\
-6 & 4 & 1 & -18
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
12 \\
34 \\
27 \\
-38
\end{array}\right]
$$

Solution:
$1^{\text {st }}$ step Use 6 as pivot element, the first row as pivot row, and multipliers $2, \frac{1}{2},-1$ are produced to reduce the system to

$$
\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
0 & -4 & 2 & 2 \\
0 & -12 & 8 & 1 \\
0 & 2 & 3 & -14
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
12 \\
10 \\
21 \\
-26
\end{array}\right]
$$

$2^{\text {nd }}$ step Use -4 as pivot element, the second row as pivot row, and multipliers $3,-\frac{1}{2}$ are computed to reduce the system to

$$
\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
0 & -4 & 2 & 2 \\
0 & 0 & 2 & -5 \\
0 & 0 & 4 & -13
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
12 \\
10 \\
-9 \\
-21
\end{array}\right]
$$

step Use 2 as pivot element, the third row as pivot row,
and multipliers 2 is found to reduce the system to
$2^{\text {nd }}$ step Use -4 as pivot element, the second row as pivot row, and multipliers $3,-\frac{1}{2}$ are computed to reduce the system to

$$
\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
0 & -4 & 2 & 2 \\
0 & 0 & 2 & -5 \\
0 & 0 & 4 & -13
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
12 \\
10 \\
-9 \\
-21
\end{array}\right]
$$

$3^{r d}$ step Use 2 as pivot element, the third row as pivot row, and multipliers 2 is found to reduce the system to

$$
\left[\begin{array}{rrrr}
6 & -2 & 2 & 4 \\
0 & -4 & 2 & 2 \\
0 & 0 & 2 & -5 \\
0 & 0 & 0 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
12 \\
10 \\
-9 \\
-3
\end{array}\right]
$$

$4^{\text {th }}$ step The backward substitution is applied:

$$
\begin{aligned}
& x_{4}=\frac{-3}{-3}=1 \\
& x_{3}=\frac{-9+5 x_{4}}{2}=\frac{-9+5}{2}=-2 \\
& x_{2}=\frac{10-2 x_{4}-2 x_{3}}{-4}=\frac{10-2+4}{-4}=-3 \\
& x_{1}=\frac{12-4 x_{4}-2 x_{3}+2 x_{2}}{6}=\frac{12-4+4-6}{6}=1
\end{aligned}
$$

$4^{\text {th }}$ step The backward substitution is applied:

$$
\begin{aligned}
& x_{4}=\frac{-3}{-3}=1 \\
& x_{3}=\frac{-9+5 x_{4}}{2}=\frac{-9+5}{2}=-2 \\
& x_{2}=\frac{10-2 x_{4}-2 x_{3}}{-4}=\frac{10-2+4}{-4}=-3 \\
& x_{1}=\frac{12-4 x_{4}-2 x_{3}+2 x_{2}}{6}=\frac{12-4+4-6}{6}=1
\end{aligned}
$$

- This example is done since $a_{k k}^{(k)} \neq 0$ for all $k=1,2,3,4$.
$4^{\text {th }}$ step The backward substitution is applied:

$$
\begin{aligned}
& x_{4}=\frac{-3}{-3}=1 \\
& x_{3}=\frac{-9+5 x_{4}}{2}=\frac{-9+5}{2}=-2 \\
& x_{2}=\frac{10-2 x_{4}-2 x_{3}}{-4}=\frac{10-2+4}{-4}=-3 \\
& x_{1}=\frac{12-4 x_{4}-2 x_{3}+2 x_{2}}{6}=\frac{12-4+4-6}{6}=1
\end{aligned}
$$

- This example is done since $a_{k k}^{(k)} \neq 0$ for all $k=1,2,3,4$.
- How to do if $a_{k k}^{(k)}=0$ for some k ?

Example 3

Solve system of linear equations.

$$
\left[\begin{array}{rrrr}
1 & -1 & 2 & -1 \\
2 & -2 & 3 & -3 \\
1 & 1 & 1 & 0 \\
1 & -1 & 4 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
-8 \\
-20 \\
-2 \\
4
\end{array}\right]
$$

Solution.
Use 1 as pivot element, the first row as pivot row, and multipliers $2,1,1$ are produced to reduce the system to

Example 3

Solve system of linear equations.

$$
\left[\begin{array}{rrrr}
1 & -1 & 2 & -1 \\
2 & -2 & 3 & -3 \\
1 & 1 & 1 & 0 \\
1 & -1 & 4 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
-8 \\
-20 \\
-2 \\
4
\end{array}\right]
$$

Solution:
$1^{\text {st }}$ step Use 1 as pivot element, the first row as pivot row, and multipliers $2,1,1$ are produced to reduce the system to

$$
\left[\begin{array}{rrrr}
1 & -1 & 2 & -1 \\
0 & 0 & -1 & -1 \\
0 & 2 & -1 & 1 \\
0 & 0 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
-8 \\
-4 \\
6 \\
12
\end{array}\right]
$$

$2^{\text {nd }}$ step Since $a_{22}^{(2)}=0$ and $a_{32}^{(2)} \neq 0$, the operation $\left(E_{2}\right) \leftrightarrow\left(E_{3}\right)$ is performed to obtain a new system

$$
\left[\begin{array}{rrrr}
1 & -1 & 2 & -1 \\
0 & 2 & -1 & 1 \\
0 & 0 & -1 & -1 \\
0 & 0 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
-8 \\
6 \\
-4 \\
12
\end{array}\right]
$$

step Use -1 as pivot element, the third row as pivot
 row, and multipliers -2 is found to reduce the

system to
$2^{\text {nd }}$ step Since $a_{22}^{(2)}=0$ and $a_{32}^{(2)} \neq 0$, the operation $\left(E_{2}\right) \leftrightarrow\left(E_{3}\right)$ is performed to obtain a new system

$$
\left[\begin{array}{rrrr}
1 & -1 & 2 & -1 \\
0 & 2 & -1 & 1 \\
0 & 0 & -1 & -1 \\
0 & 0 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
-8 \\
6 \\
-4 \\
12
\end{array}\right]
$$

$3^{\text {rd }}$ step Use -1 as pivot element, the third row as pivot row, and multipliers -2 is found to reduce the system to

$$
\left[\begin{array}{rrrr}
1 & -1 & 2 & -1 \\
0 & 2 & -1 & 1 \\
0 & 0 & -1 & -1 \\
0 & 0 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
-8 \\
6 \\
-4 \\
4
\end{array}\right]
$$

$4^{\text {th }}$ step The backward substitution is applied:

$$
\begin{aligned}
& x_{4}=\frac{4}{2}=2 \\
& x_{3}=\frac{-4+x_{4}}{-1}=2 \\
& x_{2}=\frac{6-x_{4}+x_{3}}{2}=3 \\
& x_{1}=\frac{-8+x_{4}-2 x_{3}+x_{2}}{1}=-7
\end{aligned}
$$

$4^{\text {th }}$ step The backward substitution is applied:

$$
\begin{aligned}
& x_{4}=\frac{4}{2}=2 \\
& x_{3}=\frac{-4+x_{4}}{-1}=2, \\
& x_{2}=\frac{6-x_{4}+x_{3}}{2}=3 \\
& x_{1}=\frac{-8+x_{4}-2 x_{3}+x_{2}}{1}=-7 .
\end{aligned}
$$

- This example illustrates what is done if $a_{k k}^{(k)}=0$ for some k.
\square
If $a^{(k)}-\mathrm{n}$ for each n then the linear svetem does not have
a unique solution and the procedure stops
$4^{\text {th }}$ step The backward substitution is applied:

$$
\begin{aligned}
x_{4} & =\frac{4}{2}=2 \\
x_{3} & =\frac{-4+x_{4}}{-1}=2 \\
x_{2} & =\frac{6-x_{4}+x_{3}}{2}=3 \\
x_{1} & =\frac{-8+x_{4}-2 x_{3}+x_{2}}{1}=-7
\end{aligned}
$$

- This example illustrates what is done if $a_{k k}^{(k)}=0$ for some k.
- If $a_{p k}^{(k)} \neq 0$ for some p with $k+1 \leq p \leq n$, then the operation $\left(E_{k}\right) \leftrightarrow\left(E_{p}\right)$ is performed to obtain new matrix.
$4^{\text {th }}$ step The backward substitution is applied:

$$
\begin{aligned}
x_{4} & =\frac{4}{2}=2 \\
x_{3} & =\frac{-4+x_{4}}{-1}=2 \\
x_{2} & =\frac{6-x_{4}+x_{3}}{2}=3 \\
x_{1} & =\frac{-8+x_{4}-2 x_{3}+x_{2}}{1}=-7
\end{aligned}
$$

- This example illustrates what is done if $a_{k k}^{(k)}=0$ for some k.
- If $a_{p k}^{(k)} \neq 0$ for some p with $k+1 \leq p \leq n$, then the operation $\left(E_{k}\right) \leftrightarrow\left(E_{p}\right)$ is performed to obtain new matrix.
- If $a_{p k}^{(k)}=0$ for each p, then the linear system does not have a unique solution and the procedure stops.

Algorithm 2 (Gaussian elimination)

Given $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$, this algorithm implements the Gaussian elimination procedure to reduce A to upper triangular and modify the entries of b accordingly.

For $k=1, \ldots, n-1$
Let p be the smallest integer with $k \leq p \leq n$ and $a_{p k} \neq 0$.
If $\nexists p$, then stop.
If $p \neq k$, then perform $\left(E_{p}\right) \leftrightarrow\left(E_{k}\right)$.
For $i=k+1, \ldots, n$
$t=A(i, k) / A(k, k)$
$A(i, k)=0$
$b(i)=b(i)-t \times b(k)$
For $j=k+1, \ldots, n$

$$
A(i, j)=A(i, j)-t \times A(k, j)
$$

End for
End for
End for

Number of floating-point arithmetic operations

Eliminate k th column

$$
\begin{aligned}
& \text { For } i=k+1, \ldots, n \\
& \qquad \begin{array}{l}
t=A(i, k) / A(k, k) ; b(i)=b(i)-t \times b(k) \\
\text { For } j=k+1, \ldots, n \\
\quad A(i, j)=A(i, j)-t \times A(k, j)
\end{array}
\end{aligned}
$$

End for
End for

Number of floating-point arithmetic operations

Eliminate k th column

$$
\begin{aligned}
& \text { For } i=k+1, \ldots, n \\
& \qquad \begin{array}{l}
t=A(i, k) / A(k, k) ; b(i)=b(i)-t \times b(k) \\
\quad \text { For } j=k+1, \ldots, n \\
\quad A(i, j)=A(i, j)-t \times A(k, j)
\end{array}
\end{aligned}
$$

End for
End for

- Multiplications/divisions

$$
(n-k)+(n-k)+(n-k)(n-k)=(n-k)(n-k+2)
$$

- Additions/subtractions

Number of floating-point arithmetic operations

Eliminate k th column

$$
\begin{aligned}
& \text { For } i=k+1, \ldots, n \\
& \qquad \begin{array}{l}
t=A(i, k) / A(k, k) ; b(i)=b(i)-t \times b(k) \\
\quad \text { For } j=k+1, \ldots, n \\
\quad A(i, j)=A(i, j)-t \times A(k, j)
\end{array}
\end{aligned}
$$

End for
End for

- Multiplications/divisions

$$
(n-k)+(n-k)+(n-k)(n-k)=(n-k)(n-k+2)
$$

- Additions/subtractions

$$
(n-k)+(n-k)(n-k)=(n-k)(n-k+1)
$$

- Total number of operations for multiplications/divisions

$$
\begin{aligned}
& \sum_{k=1}^{n-1}(n-k)(n-k+2)=\sum_{k=1}^{n-1}\left(n^{2}-2 n k+k^{2}+2 n-2 k\right) \\
= & \left(n^{2}+2 n\right) \sum_{k=1}^{n-1} 1-2(n+1) \sum_{k=1}^{n-1} k+\sum_{k=1}^{n-1} k^{2} \\
= & (n 2+2 n)(n-1)-2(n+1) \frac{(n-1) n}{2}+\frac{(n-1) n(2 n-1)}{6} \\
= & \frac{2 n^{3}+3 n^{2}-5 n}{6} .
\end{aligned}
$$

- Total number of operations for multiplications/divisions

$$
\begin{aligned}
& \sum_{k=1}^{n-1}(n-k)(n-k+2)=\sum_{k=1}^{n-1}\left(n^{2}-2 n k+k^{2}+2 n-2 k\right) \\
= & \left(n^{2}+2 n\right) \sum_{k=1}^{n-1} 1-2(n+1) \sum_{k=1}^{n-1} k+\sum_{k=1}^{n-1} k^{2} \\
= & (n 2+2 n)(n-1)-2(n+1) \frac{(n-1) n}{2}+\frac{(n-1) n(2 n-1)}{6} \\
= & \frac{2 n^{3}+3 n^{2}-5 n}{6}
\end{aligned}
$$

- Total number of operations for additions/subtractions

$$
\begin{aligned}
& \sum_{k=1}^{n-1}(n-k)(n-k+1)=\sum_{k=1}^{n-1}\left(n^{2}-2 n k+k^{2}+n-k\right) \\
= & \left(n^{2}+n\right) \sum_{k=1}^{n-1} 1-(2 n+1) \sum_{k=1}^{n-1} k+\sum_{k=1}^{n-1} k^{2}=\frac{n^{3}-n}{3}
\end{aligned}
$$

Backward substitution

$$
\begin{aligned}
& x(n)=b(n) / U(n, n) \\
& \text { For } i=n-1, \ldots, 1 \\
& \quad \operatorname{tmp}=U(i, i+1) \times x(i+1) \\
& \quad \text { For } j=i+2, \ldots, n \\
& \quad \text { tmp }=t m p+U(i, j) \times x(j) \\
& \text { End for } \\
& x(i)=(b(i)-t m p) / U(i, i)
\end{aligned}
$$

End for

- Multiplications/divisions

Backward substitution

$$
\begin{aligned}
& x(n)=b(n) / U(n, n) \\
& \text { For } i=n-1, \ldots, 1 \\
& \quad \operatorname{tmp}=U(i, i+1) \times x(i+1) \\
& \quad \text { For } j=i+2, \ldots, n \\
& \quad \text { tmp }=t m p+U(i, j) \times x(j) \\
& \text { End for } \\
& x(i)=(b(i)-t m p) / U(i, i)
\end{aligned}
$$

End for

- Multiplications/divisions

$$
1+\sum_{i=1}^{n-1}[(n-i)+1]=\frac{n^{2}+n}{2}
$$

- Additions/subtractions

Backward substitution

$$
\begin{aligned}
& x(n)=b(n) / U(n, n) \\
& \text { For } i=n-1, \ldots, 1 \\
& \quad \operatorname{tmp}=U(i, i+1) \times x(i+1) \\
& \text { For } j=i+2, \ldots, n \\
& \quad \text { tmp }=t m p+U(i, j) \times x(j) \\
& \text { End for } \\
& x(i)=(b(i)-t m p) / U(i, i)
\end{aligned}
$$

End for

- Multiplications/divisions

$$
1+\sum_{i=1}^{n-1}[(n-i)+1]=\frac{n^{2}+n}{2}
$$

- Additions/subtractions

$$
\sum_{i=1}^{n-1}[(n-i-1)+1]=\frac{n^{2}-n}{2}
$$

The total number of arithmetic operations in Gaussian elimination with backward substitution is:

The total number of arithmetic operations in Gaussian elimination with backward substitution is:

- Multiplications/divisions

$$
\frac{2 n^{3}+3 n^{2}-5 n}{6}+\frac{n^{2}+n}{2}=\frac{n^{3}}{3}+n^{2}-\frac{n}{3} \approx \frac{n^{3}}{3}
$$

The total number of arithmetic operations in Gaussian elimination with backward substitution is:

- Multiplications/divisions

$$
\frac{2 n^{3}+3 n^{2}-5 n}{6}+\frac{n^{2}+n}{2}=\frac{n^{3}}{3}+n^{2}-\frac{n}{3} \approx \frac{n^{3}}{3}
$$

- Additions/subtractions

$$
\frac{n^{3}-n}{3}+\frac{n^{2}-n}{2}=\frac{n^{3}}{3}+\frac{n^{2}}{2}-\frac{5 n}{6} \approx \frac{n^{3}}{3}
$$

Exercise

Page 368: 5, 10, 12, 15

Pivoting Strategies

- If $a_{k k}^{(k)}$ is small in magnitude compared to $a_{j k}^{(k)}$, then

$$
\left|m_{j k}\right|=\left|\frac{a_{j k}^{(k)}}{a_{k k}^{(k)}}\right|>1 .
$$

Round-off error introduced in the computation of

Error can be increased when performing the backward

substitution for

Pivoting Strategies

- If $a_{k k}^{(k)}$ is small in magnitude compared to $a_{j k}^{(k)}$, then

$$
\left|m_{j k}\right|=\left|\frac{a_{j k}^{(k)}}{a_{k k}^{(k)}}\right|>1 .
$$

Round-off error introduced in the computation of

$$
a_{j \ell}^{(k+1)}=a_{j \ell}^{(k)}-m_{j k} a_{k \ell}^{(k)}, \text { for } \ell=k+1, \ldots, n .
$$

with a small value o

Pivoting Strategies

- If $a_{k k}^{(k)}$ is small in magnitude compared to $a_{j k}^{(k)}$, then

$$
\left|m_{j k}\right|=\left|\frac{a_{j k}^{(k)}}{a_{k k}^{(k)}}\right|>1
$$

Round-off error introduced in the computation of

$$
a_{j \ell}^{(k+1)}=a_{j \ell}^{(k)}-m_{j k} a_{k \ell}^{(k)}, \text { for } \ell=k+1, \ldots, n .
$$

- Error can be increased when performing the backward substitution for

$$
x_{k}=\frac{b_{k}-\sum_{j=k+1}^{n} a_{k j}^{(k)} x_{j}}{a_{k k}^{(k)}}
$$

with a small value of $a_{k k}^{(k)}$.

Example 4

The linear system

$$
\begin{array}{lr}
E_{1}: & 0.003000 x_{1}+59.14 x_{2}=59.17 \\
E_{2}: & 5.291 x_{1}-6.130 x_{2}=46.78
\end{array}
$$

has the exact solution $x_{1}=10.00$ and $x_{2}=1.000$. Suppose Gaussian elimination is performed on this system using four-digit arithmetic with rounding.

[^0]
Example 4

The linear system

$$
\begin{array}{lr}
E_{1}: & 0.003000 x_{1}+59.14 x_{2}=59.17 \\
E_{2}: & 5.291 x_{1}-6.130 x_{2}=46.78
\end{array}
$$

has the exact solution $x_{1}=10.00$ and $x_{2}=1.000$. Suppose Gaussian elimination is performed on this system using four-digit arithmetic with rounding.

- $a_{11}=0.0030$ is small and

$$
m_{21}=\frac{5.291}{0.0030}=1763.6 \overline{6} \approx 1764
$$

- Perform (E

Example 4

The linear system

$$
\begin{array}{lr}
E_{1}: & 0.003000 x_{1}+59.14 x_{2}=59.17 \\
E_{2}: & 5.291 x_{1}-6.130 x_{2}=46.78
\end{array}
$$

has the exact solution $x_{1}=10.00$ and $x_{2}=1.000$. Suppose Gaussian elimination is performed on this system using four-digit arithmetic with rounding.

- $a_{11}=0.0030$ is small and

$$
m_{21}=\frac{5.291}{0.0030}=1763.6 \overline{6} \approx 1764
$$

- Perform $\left(E_{2}-m_{21} E_{1}\right) \rightarrow\left(E_{2}\right)$:

$$
\begin{array}{rlrr}
0.0030 x_{1} & + & 59.14 x_{2} & =
\end{array}
$$

- Rounding with four-digit arithmetic: Coefficient of x_{2} :

$$
\begin{aligned}
& -6.130-1764 \times 59.14=-6.130-104322.96 \\
\approx & -6.130-104300=-104306.13 \\
\approx & -104300 .
\end{aligned}
$$

- Rounding with four-digit arithmetic: Coefficient of x_{2} :

$$
\begin{aligned}
& -6.130-1764 \times 59.14=-6.130-104322.96 \\
\approx & -6.130-104300=-104306.13 \\
\approx & -104300
\end{aligned}
$$

Right hand side:

$$
\begin{aligned}
& 46.78-1764 \times 59.17=46.78-104375.88 \\
\approx & 46.78-104400=-104353.22 \\
\approx & -104400
\end{aligned}
$$

New linear system

- Rounding with four-digit arithmetic:

Coefficient of x_{2} :

$$
\begin{aligned}
& -6.130-1764 \times 59.14=-6.130-104322.96 \\
\approx & -6.130-104300=-104306.13 \\
\approx & -104300
\end{aligned}
$$

Right hand side:

$$
\begin{aligned}
& 46.78-1764 \times 59.17=46.78-104375.88 \\
\approx & 46.78-104400=-104353.22 \\
\approx & -104400
\end{aligned}
$$

New linear system:

$$
\begin{array}{rlrr}
0.0030 x_{1} & +59.14 x_{2} & =59.17 \\
& -104300 x_{2} & \approx-104400 .
\end{array}
$$

- Approximated solution:

$$
\begin{aligned}
x_{2} & =\frac{104400}{104300} \approx 1.001, \\
x_{1} & =\frac{59.17-59.14 \times 1.001}{0.0030}=\frac{59.17-59.19914}{0.0030} \\
& \approx \frac{59.17-59.20}{0.0030}=-10.00 .
\end{aligned}
$$

This ruins the approximation to the actual value $x_{1}=10.00$.

Partial pivoting

- To avoid the pivot element small relative to other entries, pivoting is performed by selecting an element $a_{p q}^{(k)}$ with a larger magnitude as the pivot.
and perform

This row interchance strategy is called oartial pivoting

Partial pivoting

- To avoid the pivot element small relative to other entries, pivoting is performed by selecting an element $a_{p q}^{(k)}$ with a larger magnitude as the pivot.
- Specifically, select pivoting $a_{p k}^{(k)}$ with

$$
\left|a_{p k}^{(k)}\right|=\max _{k \leq i \leq n}\left|a_{i k}^{(k)}\right|
$$

and perform $\left(E_{k}\right) \leftrightarrow\left(E_{p}\right)$.

Partial pivoting

- To avoid the pivot element small relative to other entries, pivoting is performed by selecting an element $a_{p q}^{(k)}$ with a larger magnitude as the pivot.
- Specifically, select pivoting $a_{p k}^{(k)}$ with

$$
\left|a_{p k}^{(k)}\right|=\max _{k \leq i \leq n}\left|a_{i k}^{(k)}\right|
$$

and perform $\left(E_{k}\right) \leftrightarrow\left(E_{p}\right)$.

- This row interchange strategy is called partial pivoting.

Example 5

Reconsider the linear system

$$
\begin{array}{lr}
E_{1}: & 0.003000 x_{1}+59.14 x_{2}=59.17 \\
E_{2}: & 5.291 x_{1}-6.130 x_{2}=46.78
\end{array}
$$

Example 5

Reconsider the linear system

$$
\begin{array}{lr}
E_{1}: & 0.003000 x_{1}+59.14 x_{2}=59.17 \\
E_{2}: & 5.291 x_{1}-6.130 x_{2}=46.78
\end{array}
$$

- Find pivoting with

$$
\max \left\{\left|a_{11}\right|,\left|a_{21}\right|\right\}=5.291=\left|a_{21}\right|
$$

Example 5

Reconsider the linear system

$$
\begin{array}{lr}
E_{1}: & 0.003000 x_{1}+59.14 x_{2}=59.17 \\
E_{2}: & 5.291 x_{1}-6.130 x_{2}=46.78
\end{array}
$$

- Find pivoting with

$$
\max \left\{\left|a_{11}\right|,\left|a_{21}\right|\right\}=5.291=\left|a_{21}\right|
$$

- Perform $\left(E_{2}\right) \leftrightarrow\left(E_{1}\right)$:

$$
\begin{array}{lr}
E_{1}: & 5.291 x_{1}-6.130 x_{2}=46.78 \\
E_{2}: & 0.003000 x_{1}+59.14 x_{2}=59.17
\end{array}
$$

- The multiplier for new system is

Example 5

Reconsider the linear system

$$
\begin{array}{lr}
E_{1}: & 0.003000 x_{1}+59.14 x_{2}=59.17 \\
E_{2}: & 5.291 x_{1}-6.130 x_{2}=46.78
\end{array}
$$

- Find pivoting with

$$
\max \left\{\left|a_{11}\right|,\left|a_{21}\right|\right\}=5.291=\left|a_{21}\right|
$$

- Perform $\left(E_{2}\right) \leftrightarrow\left(E_{1}\right)$:

$$
\begin{array}{lr}
E_{1}: & 5.291 x_{1}-6.130 x_{2}=46.78 \\
E_{2}: & 0.003000 x_{1}+59.14 x_{2}=59.17
\end{array}
$$

- The multiplier for new system is

$$
m_{21}=\frac{a_{21}}{a_{11}}=0.0005670
$$

- The operation $\left(E_{2}-m_{21} E_{1}\right) \rightarrow\left(E_{2}\right)$ reduces the system to

$$
\begin{aligned}
5.291 x_{1}-6.130 x_{2} & =46.78 \\
59.14 x_{2} & \approx 59.14
\end{aligned}
$$

- The operation $\left(E_{2}-m_{21} E_{1}\right) \rightarrow\left(E_{2}\right)$ reduces the system to

$$
\begin{aligned}
5.291 x_{1}-6.130 x_{2} & =46.78 \\
59.14 x_{2} & \approx 59.14
\end{aligned}
$$

- The four-digit answers resulting from the backward substitution are the correct values $x_{1}=10.00$ and $x_{2}=1.000$.

Example 6

The linear system

$$
\begin{aligned}
& E_{1}: 30.00 x_{1}+591400 x_{2}=591700 \\
& E_{2}: 5.291 x_{1}-6.130 x_{2}=46.78
\end{aligned}
$$

is the same as that in previous example except that all the entries in the first equation have been multiplied by 10^{4}.
leads to the system

Example 6

The linear system

$$
\begin{aligned}
& E_{1}: 30.00 x_{1}+591400 x_{2}=591700 \\
& E_{2}: 5.291 x_{1}-6.130 x_{2}=46.78
\end{aligned}
$$

is the same as that in previous example except that all the entries in the first equation have been multiplied by 10^{4}.

The pivoting is $a_{11}=30.00$ and the multiplier

$$
m_{21}=\frac{5.291}{30.00}=0.1764
$$

leads to the system

Example 6

The linear system

$$
\begin{aligned}
& E_{1}: 30.00 x_{1}+591400 x_{2}=591700 \\
& E_{2}: 5.291 x_{1}-6.130 x_{2}=46.78
\end{aligned}
$$

is the same as that in previous example except that all the entries in the first equation have been multiplied by 10^{4}.

The pivoting is $a_{11}=30.00$ and the multiplier

$$
m_{21}=\frac{5.291}{30.00}=0.1764
$$

leads to the system

$$
\begin{array}{rlr}
30.00 x_{1} & +591400 x_{2} & =591700 \\
& -104300 x_{2} & \approx-104400
\end{array}
$$

Example 6

The linear system

$$
\begin{aligned}
& E_{1}: 30.00 x_{1}+591400 x_{2}=591700 \\
& E_{2}: 5.291 x_{1}-6.130 x_{2}=46.78
\end{aligned}
$$

is the same as that in previous example except that all the entries in the first equation have been multiplied by 10^{4}.

The pivoting is $a_{11}=30.00$ and the multiplier

$$
m_{21}=\frac{5.291}{30.00}=0.1764
$$

leads to the system

$$
\begin{array}{rlr}
30.00 x_{1} & +591400 x_{2} & =591700 \\
& -104300 x_{2} & \approx-104400
\end{array}
$$

which has inaccurate solution $x_{2} \approx 1.001$ and $x_{1} \approx-10.00$

Scaled partial pivoting

- Define a scale factor s_{i} as

$$
s_{i}=\max _{1 \leq j \leq n}\left|a_{i j}\right|, \text { for } i=1, \ldots, n
$$

and perform

Scaled partial pivoting

- Define a scale factor s_{i} as

$$
s_{i}=\max _{1 \leq j \leq n}\left|a_{i j}\right|, \text { for } i=1, \ldots, n
$$

- If $s_{i}=0$ for some i, then the system has no unique solution.

must also be interchanged when row interchanges are
Derformed.

Scaled partial pivoting

- Define a scale factor s_{i} as

$$
s_{i}=\max _{1 \leq j \leq n}\left|a_{i j}\right|, \text { for } i=1, \ldots, n
$$

- If $s_{i}=0$ for some i, then the system has no unique solution.
- In the i th column, choose the least integer $p \geq i$ with

$$
\frac{\left|a_{p i}\right|}{s_{p}}=\max _{i \leq k \leq n} \frac{\left|a_{k i}\right|}{s_{k}}
$$

and perform $\left(E_{i}\right) \leftrightarrow\left(E_{p}\right)$ if $p \neq i$.

performed.

Scaled partial pivoting

- Define a scale factor s_{i} as

$$
s_{i}=\max _{1 \leq j \leq n}\left|a_{i j}\right|, \text { for } i=1, \ldots, n
$$

- If $s_{i}=0$ for some i, then the system has no unique solution.
- In the i th column, choose the least integer $p \geq i$ with

$$
\frac{\left|a_{p i}\right|}{s_{p}}=\max _{i \leq k \leq n} \frac{\left|a_{k i}\right|}{s_{k}}
$$

and perform $\left(E_{i}\right) \leftrightarrow\left(E_{p}\right)$ if $p \neq i$.

- The scale factors s_{1}, \ldots, s_{n} are computed only once and must also be interchanged when row interchanges are performed.

Example 7

Apply scaled partial pivoting to the linear system

$$
\begin{array}{ll}
E_{1}: & 30.00 x_{1}+591400 x_{2} \\
E_{2}: & =591700, \\
5.291 x_{1}-6.130 x_{2} & = \\
\hline
\end{array}
$$

Consequently,

Example 7

Apply scaled partial pivoting to the linear system

$$
\begin{aligned}
& E_{1}: 30.00 x_{1}+591400 x_{2}=591700, \\
& E_{2}: 5.291 x_{1}-6.130 x_{2}=46.78 .
\end{aligned}
$$

The scale factors s_{1} and s_{2} are

$$
s_{1}=\max \{|30.00|,|591400|\}=591400
$$

and

$$
s_{2}=\max \{|5.291|,|-6.130|\}=6.130 .
$$

Example 7

Apply scaled partial pivoting to the linear system

$$
\begin{aligned}
E_{1}: 30.00 x_{1}+591400 x_{2} & =591700 \\
E_{2}: 5.291 x_{1}-6.130 x_{2} & =46.78
\end{aligned}
$$

The scale factors s_{1} and s_{2} are

$$
s_{1}=\max \{|30.00|,|591400|\}=591400
$$

and

$$
s_{2}=\max \{|5.291|,|-6.130|\}=6.130
$$

Consequently,

$$
\begin{aligned}
\frac{\left|a_{11}\right|}{s_{1}} & =\frac{30.00}{591400}=0.5073 \times 10^{-4}, \\
\frac{\left|a_{21}\right|}{s_{2}} & =\frac{5.291}{6.130}=0.8631,
\end{aligned}
$$

and the interchange $\left(E_{1}\right) \leftrightarrow\left(E_{2}\right)$ is made.

Applying Gaussian elimination to the new system

$$
\begin{aligned}
& 5.291 x_{1}-6.130 x_{2}=46.78, \\
& 30.00 x_{1}+591400 x_{2}=591700
\end{aligned}
$$

produces the correct results: $x_{1}=10.00$ and $x_{2}=1.000$.

Exercise

Page 379: 2, 4, 6, 31

Matrix factorization

- This equation has a unique solution $x=A^{-1} b$ when the coefficient matrix A is nonsingular.
\qquad
\qquad
\qquad

Matrix factorization

- This equation has a unique solution $x=A^{-1} b$ when the coefficient matrix A is nonsingular.
- Use Gaussian elimination to factor the coefficient matrix into a product of matrices. The factorization is called $L U$-factorization and has the form $A=L U$, where L is unit lower triangular and U is upper triangular.

\square
\square
arithmetic operations.

Matrix factorization

- This equation has a unique solution $x=A^{-1} b$ when the coefficient matrix A is nonsingular.
- Use Gaussian elimination to factor the coefficient matrix into a product of matrices. The factorization is called $L U$-factorization and has the form $A=L U$, where L is unit lower triangular and U is upper triangular.
- The solution to the original problem $A x=L U x=b$ is then found by a two-step triangular solve process:

$$
L y=b, \quad U x=y
$$

Matrix factorization

- This equation has a unique solution $x=A^{-1} b$ when the coefficient matrix A is nonsingular.
- Use Gaussian elimination to factor the coefficient matrix into a product of matrices. The factorization is called $L U$-factorization and has the form $A=L U$, where L is unit lower triangular and U is upper triangular.
- The solution to the original problem $A x=L U x=b$ is then found by a two-step triangular solve process:

$$
L y=b, \quad U x=y
$$

- $L U$ factorization requires $O\left(n^{3}\right)$ arithmetic operations. Forward substitution for solving a lower-triangular system $L y=b$ requires $O\left(n^{2}\right)$. Backward substitution for solving an upper-triangular system $U x=y$ requires $O\left(n^{2}\right)$ arithmetic operations.

$$
\begin{aligned}
A & =\left[\begin{array}{rrrr}
1 & 1 & 0 & 3 \\
2 & 1 & -1 & 1 \\
3 & -1 & -1 & 2 \\
-1 & 2 & 3 & -1
\end{array}\right] \\
\Rightarrow A_{1} & :=L_{1} A \equiv\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
-3 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] A=\left[\begin{array}{rrrr}
1 & 1 & 0 & 3 \\
0 & -1 & -1 & -5 \\
0 & -4 & -1 & -7 \\
0 & 3 & 3 & 2
\end{array}\right] \\
\Rightarrow A_{2} & :=L_{2} A_{1} \equiv\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -4 & 1 & 0 \\
0 & 3 & 0 & 1
\end{array}\right] A_{1}=\left[\begin{array}{rrrr}
1 & 1 & 0 & 3 \\
0 & -1 & -1 & -5 \\
0 & 0 & 3 & 13 \\
0 & 0 & 0 & -13
\end{array}\right] \\
& =L_{2} L_{1} A
\end{aligned}
$$

We have

$$
A=L_{1}^{-1} L_{2}^{-1} A_{2}=L R .
$$

where L and R are lower and upper triangular, respectively.

We have

$$
A=L_{1}^{-1} L_{2}^{-1} A_{2}=L R
$$

where L and R are lower and upper triangular, respectively.

Question

How to compute L_{1}^{-1} and L_{2}^{-1} ?

We have

$$
A=L_{1}^{-1} L_{2}^{-1} A_{2}=L R .
$$

where L and R are lower and upper triangular, respectively.

Question

How to compute L_{1}^{-1} and L_{2}^{-1} ?

$$
\begin{aligned}
L_{1} & =\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
-3 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]=I-\left[\begin{array}{r}
0 \\
2 \\
3 \\
-1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right] \\
L_{2} & =\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -4 & 1 & 0 \\
0 & 3 & 0 & 1
\end{array}\right]=I-\left[\begin{array}{r}
0 \\
0 \\
4 \\
-3
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Since

$$
\left(I-\left[\begin{array}{r}
0 \\
2 \\
3 \\
-1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right]\right)\left(I+\left[\begin{array}{r}
0 \\
2 \\
3 \\
-1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right]\right)=I,
$$

we have

Since

$$
\left(I-\left[\begin{array}{r}
0 \\
2 \\
3 \\
-1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right]\right)\left(I+\left[\begin{array}{r}
0 \\
2 \\
3 \\
-1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right]\right)=I,
$$

we have

$$
L_{1}^{-1}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-2 & 1 & 0 & 0 \\
-3 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
3 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right]
$$

Since

$$
\left(I-\left[\begin{array}{r}
0 \\
0 \\
4 \\
-3
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right]\right)\left(I+\left[\begin{array}{r}
0 \\
0 \\
4 \\
-3
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right]\right)=I
$$

Since

$$
\left(I-\left[\begin{array}{r}
0 \\
0 \\
4 \\
-3
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right]\right)\left(I+\left[\begin{array}{r}
0 \\
0 \\
4 \\
-3
\end{array}\right]\left[\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right]\right)=I
$$

we have

$$
L_{2}^{-1}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -4 & 1 & 0 \\
0 & 3 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 4 & 1 & 0 \\
0 & -3 & 0 & 1
\end{array}\right]
$$

By the fact

$L_{1}^{-1} L_{2}^{-1}=\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 4 & 1 & 0 \\ 0 & -3 & 0 & 1\end{array}\right]=\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 4 & 1 & 0 \\ -1 & -3 & 0 & 1\end{array}\right]$
it holds that
$[$

By the fact
$L_{1}^{-1} L_{2}^{-1}=\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 4 & 1 & 0 \\ 0 & -3 & 0 & 1\end{array}\right]=\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 4 & 1 & 0 \\ -1 & -3 & 0 & 1\end{array}\right]$
it holds that

$$
\left[\begin{array}{rrrr}
1 & 1 & 0 & 3 \\
2 & 1 & -1 & 1 \\
3 & -1 & -1 & 2 \\
-1 & 2 & 3 & -1
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
3 & 4 & 1 & 0 \\
-1 & -3 & 0 & 1
\end{array}\right]\left[\begin{array}{rrrr}
1 & 1 & 0 & 3 \\
0 & -1 & -1 & -5 \\
0 & 0 & 3 & 13 \\
0 & 0 & 0 & -13
\end{array}\right] .
$$

For a given vector $v \in \mathbb{R}^{n}$ with $v_{k} \neq 0$ for some $1 \leq k \leq n$, let

$$
\begin{aligned}
& \ell_{i k}=\frac{v_{i}}{v_{k}}, \quad i=k+1, \ldots, n \\
& \ell_{k}=\left[\begin{array}{llllll}
0 & \cdots & 0 & \ell_{k+1, k} & \cdots & \ell_{n, k}
\end{array}\right]^{T}
\end{aligned}
$$

and

$$
M_{k}=I-\ell_{k} e_{k}^{T}=\left[\begin{array}{cccccc}
1 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & & \vdots \\
0 & \cdots & 1 & 0 & \cdots & 0 \\
0 & \cdots & -\ell_{k+1, k} & 1 & \cdots & 0 \\
\vdots & & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & -\ell_{n, k} & 0 & \cdots & 1
\end{array}\right]
$$

Then one can verify that

$$
M_{k} v=\left[\begin{array}{llllll}
v_{1} & \cdots & v_{k} & 0 & \cdots & 0
\end{array}\right]^{T} .
$$

is called a Gaussian transformation, the vector vector. Furthermore, one can verify that

Then one can verify that

$$
M_{k} v=\left[\begin{array}{llllll}
v_{1} & \cdots & v_{k} & 0 & \cdots & 0
\end{array}\right]^{T} .
$$

M_{k} is called a Gaussian transformation, the vector ℓ_{k} a Gauss vector.

Then one can verify that

$$
M_{k} v=\left[\begin{array}{llllll}
v_{1} & \cdots & v_{k} & 0 & \cdots & 0
\end{array}\right]^{T} .
$$

M_{k} is called a Gaussian transformation, the vector ℓ_{k} a Gauss vector. Furthermore, one can verify that

Given a nonsingular matrix $A \in \mathbb{R}^{n \times n}$, denote $A^{(1)} \equiv\left[a_{i j}^{(1)}\right]=A$.
If $a_{11}^{(1)} \neq 0$, then

$$
M_{1}=I-\ell_{1} e_{1}^{T},
$$

where

$$
\ell_{1}=\left[\begin{array}{llll}
0 & \ell_{21} & \cdots & \ell_{n 1}
\end{array}\right]^{T}, \quad \ell_{i 1}=\frac{a_{i 1}^{(1)}}{a_{11}^{(1)}}, i=2, \ldots, n,
$$

can be formed such that

$$
A^{(2)}=M_{1} A^{(1)}=\left[\begin{array}{cccc}
a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1 n}^{(1)} \\
0 & a_{22}^{(2)} & \cdots & a_{2 n}^{(2)} \\
\vdots & \vdots & \ddots & \vdots \\
0 & a_{n 2}^{(2)} & \cdots & a_{n n}^{(2)}
\end{array}\right]
$$

where

$$
a_{i j}^{(2)}=a_{i j}^{(1)}-\ell_{i 1} \times a_{1 j}^{(1)}, \text { for } i=2, \ldots, n \text { and } j=2, \ldots, n
$$

In general, at the k-th step, we are confronted with a matrix

$$
\begin{aligned}
A^{(k)} & =M_{k-1} \cdots M_{2} M_{1} A^{(1)} \\
& =\left[\begin{array}{cccc|ccc}
a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1, k-1}^{(1)} & a_{1 k}^{(1)} & \cdots & a_{1 n}^{(1)} \\
0 & a_{22}^{(2)} & \cdots & a_{2, k-1}^{(2)} & a_{2 k}^{(2)} & \cdots & a_{2 n}^{(2)} \\
\vdots & \vdots & \ddots & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & a_{k-1, k-1}^{(k-1)} & a_{k-1, k}^{(k-1)} & \cdots & a_{k-1, n}^{(k-1)} \\
\hline 0 & 0 & \cdots & 0 & a_{k k}^{(k)} & \cdots & a_{k n}^{(k)} \\
\vdots & \vdots & & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & a_{k n}^{(k)} & \cdots & a_{n n}^{(k)}
\end{array}\right] .
\end{aligned}
$$

If the pivot $a_{k k} \neq 0$, then the multipliers

In general, at the k-th step, we are confronted with a matrix

$$
\begin{aligned}
A^{(k)} & =M_{k-1} \cdots M_{2} M_{1} A^{(1)} \\
& =\left[\begin{array}{cccc|ccc}
a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1, k-1}^{(1)} & a_{1 k}^{(1)} & \cdots & a_{1 n}^{(1)} \\
0 & a_{22}^{(2)} & \cdots & a_{2, k-1}^{(2)} & a_{2 k}^{(2)} & \cdots & a_{2 n}^{(2)} \\
\vdots & \vdots & \ddots & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & a_{k-1, k-1}^{(k-1)} & a_{k-1, k}^{(k-1)} & \cdots & a_{k-1, n}^{(k-1)} \\
\hline 0 & 0 & \cdots & 0 & a_{k k}^{(k)} & \cdots & a_{k n}^{(k)} \\
\vdots & \vdots & & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & a_{k n}^{(k)} & \cdots & a_{n n}^{(k)}
\end{array}\right]
\end{aligned}
$$

If the pivot $a_{k k}^{(k)} \neq 0$, then the multipliers

$$
\ell_{i k}=\frac{a_{i k}^{(k)}}{a_{k k}^{(k)}}, \quad i=k+1, \ldots, n
$$

can be computed and the Gaussian transformation $M_{k}=I-\ell_{k} e_{k}^{T}$, where $\quad \ell_{k}=\left[\begin{array}{llllll}0 & \cdots & 0 & \ell_{k+1, k} & \cdots & \ell_{n k}\end{array}\right]^{T}$, can be applied to the left of $A^{(k)}$ to obtain

$$
\begin{aligned}
& A^{(k+1)}=M_{k} A^{(k)} \\
& =\left[\begin{array}{cccc|cccc}
a_{11}^{(1)} & a_{12}^{(1)} & \cdots & a_{1, k-1}^{(1)} & a_{1 k}^{(1)} & a_{1, k+1}^{(1)} & \cdots & a_{1 n}^{(1)} \\
0 & a_{22}^{(2)} & \cdots & a_{2, k-1}^{(2)} & a_{2 k}^{(2)} & a_{2, k+1}^{(2)} & \cdots & a_{2 n}^{(2)} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & a_{k-1, k-1}^{(k-1)} & a_{k-1, k}^{(k-1)} & a_{k-1, k+1}^{(k-1)} & \cdots & a_{k-1, n}^{(k-1)} \\
\hline 0 & 0 & \cdots & 0 & a_{k k}^{(k)} & a_{k, k+1}^{(k)} & \cdots & a_{k n}^{(k)} \\
\vdots & \vdots & & \vdots & 0 & a_{k+1, k+1}^{(k+1)} & \cdots & a_{k+1, n}^{(k+1)} \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 0 & 0 & a_{n, k+1}^{(k+1)} & \cdots & a_{n n}^{(k+1)}
\end{array}\right]
\end{aligned}
$$

in which

$$
\begin{equation*}
a_{i j}^{(k+1)}=a_{i j}^{(k)}-\ell_{i k} a_{k j}^{(k)}, \tag{2}
\end{equation*}
$$

for $i=k+1, \ldots, n, j=k+1, \ldots, n$.
in which

$$
\begin{equation*}
a_{i j}^{(k+1)}=a_{i j}^{(k)}-\ell_{i k} a_{k j}^{(k)} \tag{2}
\end{equation*}
$$

for $i=k+1, \ldots, n, j=k+1, \ldots, n$. Upon the completion,

$$
U \equiv A^{(n)}=M_{n-1} \cdots M_{2} M_{1} A
$$

is upper triangular.
in which

$$
\begin{equation*}
a_{i j}^{(k+1)}=a_{i j}^{(k)}-\ell_{i k} a_{k j}^{(k)} \tag{2}
\end{equation*}
$$

for $i=k+1, \ldots, n, j=k+1, \ldots, n$. Upon the completion,

$$
U \equiv A^{(n)}=M_{n-1} \cdots M_{2} M_{1} A
$$

is upper triangular. Hence

$$
A=M_{1}^{-1} M_{2}^{-1} \cdots M_{n-1}^{-1} U \equiv L U
$$

where

$$
\begin{aligned}
L \equiv M_{1}^{-1} \cdots M_{n-1}^{-1} & =\left(I-\ell_{1} e_{1}^{T}\right)^{-1}\left(I-\ell_{2} e_{2}^{T}\right)^{-1} \cdots\left(I-\ell_{n-1} e_{n-1}^{T}\right)^{-1} \\
& =\left(I+\ell_{1} e_{1}^{T}\right)\left(I+\ell_{2} e_{2}^{T}\right) \cdots\left(I+\ell_{n-1} e_{n-1}^{T}\right) \\
& =I+\ell_{1} e_{1}^{T}+\ell_{2} e_{2}^{T}+\cdots+\ell_{n-1} e_{n-1}^{T} \\
& =\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
\ell_{21} & 1 & 0 & \cdots & 0 \\
\ell_{31} & \ell_{32} & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\ell_{n 1} & \ell_{n 2} & \ell_{n 3} & \cdots & 1
\end{array}\right]
\end{aligned}
$$

is unit lower triangular.
where

$$
\begin{aligned}
L \equiv M_{1}^{-1} \cdots M_{n-1}^{-1} & =\left(I-\ell_{1} e_{1}^{T}\right)^{-1}\left(I-\ell_{2} e_{2}^{T}\right)^{-1} \cdots\left(I-\ell_{n-1} e_{n-1}^{T}\right)^{-1} \\
& =\left(I+\ell_{1} e_{1}^{T}\right)\left(I+\ell_{2} e_{2}^{T}\right) \cdots\left(I+\ell_{n-1} e_{n-1}^{T}\right) \\
& =I+\ell_{1} e_{1}^{T}+\ell_{2} e_{2}^{T}+\cdots+\ell_{n-1} e_{n-1}^{T} \\
& =\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
\ell_{21} & 1 & 0 & \cdots & 0 \\
\ell_{31} & \ell_{32} & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\ell_{n 1} & \ell_{n 2} & \ell_{n 3} & \cdots & 1
\end{array}\right]
\end{aligned}
$$

is unit lower triangular. This matrix factorization is called the $L U$-factorization of A.

Algorithm 3 (LU Factorization)

Given a nonsingular square matrix $A \in \mathbb{R}^{n \times n}$, this algorithm computes a unit lower triangular matrix L and an upper triangular matrix U such that $A=L U$. The matrix A is overwritten by L and U.

```
For \(k=1, \ldots, n-1\)
    For \(i=k+1, \ldots, n\)
        \(A(i, k)=A(i, k) / A(k, k)\)
        For \(j=k+1, \ldots, n\)
        \(A(i, j)=A(i, j)-A(i, k) \times A(k, j)\)
        End for
    End for
End for
```


Forward Substitution

When a linear system $L x=b$ is lower triangular of the form

$$
\left[\begin{array}{cccc}
\ell_{11} & 0 & \cdots & 0 \\
\ell_{21} & \ell_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\ell_{n 1} & \ell_{n 2} & \cdots & \ell_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

where all diagonals $\ell_{i i} \neq 0$,

Forward Substitution

When a linear system $L x=b$ is lower triangular of the form

$$
\left[\begin{array}{cccc}
\ell_{11} & 0 & \cdots & 0 \\
\ell_{21} & \ell_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\ell_{n 1} & \ell_{n 2} & \cdots & \ell_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

where all diagonals $\ell_{i i} \neq 0, x_{i}$ can be obtained by the following procedure

$$
\begin{aligned}
x_{1} & =b_{1} / \ell_{11} \\
x_{2} & =\left(b_{2}-\ell_{21} x_{1}\right) / \ell_{22} \\
x_{3} & =\left(b_{3}-\ell_{31} x_{1}-\ell_{32} x_{2}\right) / \ell_{33} \\
& \vdots \\
x_{n} & =\left(b_{n}-\ell_{n 1} x_{1}-\ell_{n 2} x_{2}-\cdots-\ell_{n, n-1} x_{n-1}\right) / \ell_{n n}
\end{aligned}
$$

The general formulation for computing x_{i} is

$$
x_{i}=\left(b_{i}-\sum_{j=1}^{i-1} \ell_{i j} x_{j}\right) / \ell_{i i}, \quad i=1,2, \ldots, n
$$

Algorithm 4 (Forward Substitution)

Suppose that $L \in \mathbb{R}^{n \times n}$ is nonsingular lower triangular and $b \in \mathbb{R}^{n}$. This algorithm computes the solution of $L x=b$.

$$
\begin{aligned}
& \text { For } i=1, \ldots, n \\
& \quad \operatorname{tmp}=0 \\
& \text { For } j=1, \ldots, i-1 \\
& \quad \operatorname{tmp}=t m p+L(i, j) * x(j) \\
& \text { End for } \\
& x(i)=(b(i)-t m p) / L(i, i) \\
& \text { End for }
\end{aligned}
$$

Example 8

$E_{1}:$	$x_{1}+x_{2}$		$+3 x_{4}$	$=$	4,		
$E_{2}:$	$2 x_{1}$	+	x_{2}	-	x_{3}	+	x_{4}
$E_{3}:$	$3 x_{1}$	-	x_{2}	-	x_{3}	$+2 x_{4}$	$=$
$E_{4}:$	$-x_{1}$	+	$2 x_{2}$	$+3 x_{3}$	-3		
E_{4}		4.					

Solution:

- The sequence $\left\{\left(E_{2}-2 E_{1}\right) \rightarrow\left(E_{2}\right),\left(E_{3}-3 E_{1}\right) \rightarrow\left(E_{3}\right)\right.$, $\left(E_{4}-(-1) E_{1}\right) \rightarrow\left(E_{4}\right),\left(E_{3}-4 E_{2}\right) \rightarrow\left(E_{3}\right)$, $\left.\left(E_{4}-(-3) E_{2}\right) \rightarrow\left(E_{4}\right)\right\}$ converts the system to the triangular system

$$
\begin{aligned}
& x_{1}+x_{2}+3 x_{4}=4, \\
& -x_{2}-x_{3}-5 x_{4}=-7 \text {, } \\
& 3 x_{3}+13 x_{4}=13 \text {, } \\
& -13 x_{4}=-13 .
\end{aligned}
$$

- $L U$ factorization of A :

$$
\begin{aligned}
A & =\left[\begin{array}{rrrr}
1 & 1 & 0 & 3 \\
2 & 1 & -1 & 1 \\
3 & -1 & -1 & 2 \\
-1 & 2 & 3 & -1
\end{array}\right] \\
& =\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
3 & 4 & 1 & 0 \\
-1 & -3 & 0 & 1
\end{array}\right]\left[\begin{array}{rrrr}
1 & 1 & 0 & 3 \\
0 & -1 & -1 & -5 \\
0 & 0 & 3 & 13 \\
0 & 0 & 0 & -13
\end{array}\right]=L U .
\end{aligned}
$$

- Solve $L y=b$:

$$
\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
3 & 4 & 1 & 0 \\
-1 & -3 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right]=\left[\begin{array}{r}
8 \\
7 \\
14 \\
-7
\end{array}\right]
$$

which implies that

$$
\begin{aligned}
& y_{1}=8 \\
& y_{2}=7-2 y_{1}=-9 \\
& y_{3}=14-3 y_{1}-4 y_{2}=26 \\
& y_{4}=-7+y_{1}+3 y_{2}=-26
\end{aligned}
$$

- Solve $U x=y$:

$$
\left[\begin{array}{rrrr}
1 & 1 & 0 & 3 \\
0 & -1 & -1 & -5 \\
0 & 0 & 3 & 13 \\
0 & 0 & 0 & -13
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
8 \\
-9 \\
26 \\
-26
\end{array}\right]
$$

which implies that

$$
\begin{aligned}
& x_{4}=2, \\
& x_{3}=\left(26-13 x_{4}\right) / 3=0, \\
& x_{2}=\left(-9+5 x_{4}+x_{3}\right) /(-1)=-1, \\
& x_{1}=8-3 x_{4}-x_{2}=3 .
\end{aligned}
$$

Partial pivoting

At the k-th step, select pivoting $a_{p k}^{(k)}$ with

$$
\left|a_{p k}^{(k)}\right|=\max _{k \leq i \leq n}\left|a_{i k}^{(k)}\right|
$$

and perform $\left(E_{k}\right) \leftrightarrow\left(E_{p}\right)$.

Partial pivoting

At the k-th step, select pivoting $a_{p k}^{(k)}$ with

$$
\left|a_{p k}^{(k)}\right|=\max _{k \leq i \leq n}\left|a_{i k}^{(k)}\right|
$$

and perform $\left(E_{k}\right) \leftrightarrow\left(E_{p}\right)$. That is, choose a permutation matrix

$$
P_{k}=\left[\begin{array}{ccccc}
I_{k-1} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & I_{p-k-1} & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & I_{n-p}
\end{array}\right]
$$

so that

$$
\left|\left(P_{k} A^{(k)}\right)_{k k}\right|=\max _{k \leq i \leq n}\left|\left(A^{(k)}\right)_{i k}\right|
$$

and

$$
A^{(k+1)}=M^{(k)} P_{k} A^{(k)} .
$$

Let P_{1}, \ldots, P_{k-1} be the permutations chosen and $M_{1}, \ldots M_{k-1}$ denote the Gaussian transformations performed in the first $k-1$ steps.

Let P_{1}, \ldots, P_{k-1} be the permutations chosen and $M_{1}, \ldots M_{k-1}$ denote the Gaussian transformations performed in the first $k-1$ steps. At the k-th step, a permutation matrix P_{k} is chosen so that

$$
\left|\left(P_{k} M_{k-1} \cdots M_{1} P_{1} A\right)_{k k}\right|=\max _{k \leq i \leq n}\left|\left(M_{k-1} \cdots M_{1} P_{1} A\right)_{i k}\right|
$$

completion, we obtain an upper triangular matrix

Let P_{1}, \ldots, P_{k-1} be the permutations chosen and $M_{1}, \ldots M_{k-1}$ denote the Gaussian transformations performed in the first $k-1$ steps. At the k-th step, a permutation matrix P_{k} is chosen so that

$$
\left|\left(P_{k} M_{k-1} \cdots M_{1} P_{1} A\right)_{k k}\right|=\max _{k \leq i \leq n}\left|\left(M_{k-1} \cdots M_{1} P_{1} A\right)_{i k}\right|
$$

As a consequence, $\left|\ell_{i j}\right| \leq 1$ for $i=1, \ldots, n, j=1, \ldots, i$.

Let P_{1}, \ldots, P_{k-1} be the permutations chosen and $M_{1}, \ldots M_{k-1}$ denote the Gaussian transformations performed in the first $k-1$ steps. At the k-th step, a permutation matrix P_{k} is chosen so that

$$
\left|\left(P_{k} M_{k-1} \cdots M_{1} P_{1} A\right)_{k k}\right|=\max _{k \leq i \leq n}\left|\left(M_{k-1} \cdots M_{1} P_{1} A\right)_{i k}\right|
$$

As a consequence, $\left|\ell_{i j}\right| \leq 1$ for $i=1, \ldots, n, j=1, \ldots, i$. Upon completion, we obtain an upper triangular matrix

$$
\begin{equation*}
U \equiv M_{n-1} P_{n-1} \cdots M_{1} P_{1} A \tag{3}
\end{equation*}
$$

therefore,

Let P_{1}, \ldots, P_{k-1} be the permutations chosen and $M_{1}, \ldots M_{k-1}$ denote the Gaussian transformations performed in the first $k-1$ steps. At the k-th step, a permutation matrix P_{k} is chosen so that

$$
\left|\left(P_{k} M_{k-1} \cdots M_{1} P_{1} A\right)_{k k}\right|=\max _{k \leq i \leq n}\left|\left(M_{k-1} \cdots M_{1} P_{1} A\right)_{i k}\right|
$$

As a consequence, $\left|\ell_{i j}\right| \leq 1$ for $i=1, \ldots, n, j=1, \ldots, i$. Upon completion, we obtain an upper triangular matrix

$$
\begin{equation*}
U \equiv M_{n-1} P_{n-1} \cdots M_{1} P_{1} A \tag{3}
\end{equation*}
$$

Since any P_{k} is symmetric and $P_{k}^{T} P_{k}=P_{k}^{2}=I$, we have

$$
M_{n-1} P_{n-1} \cdots M_{2} P_{2} M_{1} P_{2} \cdots P_{n-1} P_{n-1} \cdots P_{2} P_{1} A=U
$$

Let P_{1}, \ldots, P_{k-1} be the permutations chosen and $M_{1}, \ldots M_{k-1}$ denote the Gaussian transformations performed in the first $k-1$ steps. At the k-th step, a permutation matrix P_{k} is chosen so that

$$
\left|\left(P_{k} M_{k-1} \cdots M_{1} P_{1} A\right)_{k k}\right|=\max _{k \leq i \leq n}\left|\left(M_{k-1} \cdots M_{1} P_{1} A\right)_{i k}\right|
$$

As a consequence, $\left|\ell_{i j}\right| \leq 1$ for $i=1, \ldots, n, j=1, \ldots, i$. Upon completion, we obtain an upper triangular matrix

$$
\begin{equation*}
U \equiv M_{n-1} P_{n-1} \cdots M_{1} P_{1} A \tag{3}
\end{equation*}
$$

Since any P_{k} is symmetric and $P_{k}^{T} P_{k}=P_{k}^{2}=I$, we have

$$
M_{n-1} P_{n-1} \cdots M_{2} P_{2} M_{1} P_{2} \cdots P_{n-1} P_{n-1} \cdots P_{2} P_{1} A=U
$$

therefore,

$$
P_{n-1} \cdots P_{1} A=\left(M_{n-1} P_{n-1} \cdots M_{2} P_{2} M_{1} P_{2} \cdots P_{n-1}\right)^{-1} U .
$$

In summary, Gaussian elimination with partial pivoting leads to the $L U$ factorization

$$
\begin{equation*}
P A=L U, \tag{4}
\end{equation*}
$$

In summary, Gaussian elimination with partial pivoting leads to the $L U$ factorization

$$
\begin{equation*}
P A=L U, \tag{4}
\end{equation*}
$$

where

$$
P=P_{n-1} \cdots P_{1}
$$

is a permutation matrix, and

$$
\begin{aligned}
L & \equiv\left(M_{n-1} P_{n-1} \cdots M_{2} P_{2} M_{1} P_{2} \cdots P_{n-1}\right)^{-1} \\
& =P_{n-1} \cdots P_{2} M_{1}^{-1} P_{2} M_{2}^{-1} \cdots P_{n-1} M_{n-1}^{-1} .
\end{aligned}
$$

In summary, Gaussian elimination with partial pivoting leads to the $L U$ factorization

$$
\begin{equation*}
P A=L U, \tag{4}
\end{equation*}
$$

where

$$
P=P_{n-1} \cdots P_{1}
$$

is a permutation matrix, and

$$
\begin{aligned}
L & \equiv\left(M_{n-1} P_{n-1} \cdots M_{2} P_{2} M_{1} P_{2} \cdots P_{n-1}\right)^{-1} \\
& =P_{n-1} \cdots P_{2} M_{1}^{-1} P_{2} M_{2}^{-1} \cdots P_{n-1} M_{n-1}^{-1}
\end{aligned}
$$

Since

$$
P_{j}=\left[\begin{array}{ccccc}
I_{j-1} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & I_{p-j-1} & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & I_{n-p}
\end{array}\right], \quad \ell_{j}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
\ell_{j+1, j} \\
\vdots \\
\ell n j
\end{array}\right]
$$

it implies that for $i<j$,

$$
\begin{aligned}
& e_{i}^{T} P_{j}=e_{i}^{T}, \quad e_{i}^{T} \ell_{j}=0 \\
& P_{j} \ell_{i}=\left[\begin{array}{llllll}
0 & \cdots & 0 & \tilde{\ell}_{i+1, i} & \cdots & \tilde{\ell}_{n, i}
\end{array}\right]^{T} \equiv \tilde{\ell}_{i}
\end{aligned}
$$

it implies that for $i<j$,

$$
\begin{aligned}
& e_{i}^{T} P_{j}=e_{i}^{T}, \quad e_{i}^{T} \ell_{j}=0 \\
& P_{j} \ell_{i}=\left[\begin{array}{lllll}
0 & \cdots & 0 & \tilde{\ell}_{i+1, i} & \cdots \\
\ell_{n, i}
\end{array}\right]^{T} \equiv \tilde{\ell}_{i}, \\
& \\
& P_{2} M_{1}^{-1} P_{2}=P_{2}\left(I+\ell_{1} e_{1}^{T}\right) P_{2}=I+\tilde{\ell}_{1} e_{1}^{T}
\end{aligned}
$$

it implies that for $i<j$,

$$
\begin{aligned}
& e_{i}^{T} P_{j}=e_{i}^{T}, \quad e_{i}^{T} \ell_{j}=0, \\
& P_{j} \ell_{i}=\left[\begin{array}{llllll}
0 & \cdots & 0 & \tilde{\ell}_{i+1, i} & \cdots & \tilde{\ell}_{n, i}
\end{array}\right]^{T} \equiv \tilde{\ell}_{i}, \\
& \Rightarrow \\
& P_{2} M_{1}^{-1} P_{2}=P_{2}\left(I+\ell_{1} e_{1}^{T}\right) P_{2}=I+\tilde{\ell}_{1} e_{1}^{T} \\
& \Rightarrow \\
& P_{2} M_{1}^{-1} P_{2} M_{2}^{-1}=\left(I+\tilde{\ell}_{1} e_{1}^{T}\right)\left(I+\ell_{2} e_{2}^{T}\right)=I+\tilde{\ell}_{1} e_{1}^{T}+\ell_{2} e_{2}^{T},
\end{aligned}
$$

it implies that for $i<j$,

$$
\begin{gathered}
e_{i}^{T} P_{j}=e_{i}^{T}, \quad e_{i}^{T} \ell_{j}=0, \\
P_{j} \ell_{i}=\left[\begin{array}{llll}
0 & \cdots & 0 & \tilde{\ell}_{i+1, i}
\end{array} \cdots\right. \\
\Rightarrow \\
\Rightarrow \\
P_{2} M_{1}^{-1} P_{2}=\tilde{\ell}_{n, i}\left(I+\ell_{1} e_{1}^{T}\right) P_{2}=I+\tilde{\ell}_{i} e_{1}^{T} \\
P_{2} M_{1}^{-1} P_{2} M_{2}^{-1}=\left(I+\tilde{\ell}_{1} e_{1}^{T}\right)\left(I+\ell_{2} e_{2}^{T}\right)=I+\tilde{\ell}_{1} e_{1}^{T}+\ell_{2} e_{2}^{T}, \\
\Rightarrow \quad
\end{gathered}
$$

it implies that for $i<j$,

$$
\begin{gathered}
e_{i}^{T} P_{j}=e_{i}^{T}, \quad e_{i}^{T} \ell_{j}=0, \\
P_{j} \ell_{i}=\left[\begin{array}{llll}
0 & \cdots & 0 & \tilde{\ell}_{i+1, i}
\end{array} \cdots\right. \\
\Rightarrow \\
\Rightarrow \\
P_{2} M_{1}^{-1} P_{2}=\tilde{\ell}_{n, i}\left(I+\ell_{1} e_{1}^{T}\right) P_{2}=I+\tilde{\ell}_{i} e_{1}^{T} \\
P_{2} M_{1}^{-1} P_{2} M_{2}^{-1}=\left(I+\tilde{\ell}_{1} e_{1}^{T}\right)\left(I+\ell_{2} e_{2}^{T}\right)=I+\tilde{\ell}_{1} e_{1}^{T}+\ell_{2} e_{2}^{T}, \\
\Rightarrow \quad
\end{gathered}
$$

Therefore, L is unit lower triangular.

Algorithm 5 ($L U$-factorization with Partial Pivoting)

Given a nonsingular $A \in \mathbb{R}^{n \times n}$, this algorithm finds a permutation P, and computes a unit lower triangular L and an upper triangular U such that $P A=L U$. A is overwritten by L and U, and P is not formed. An integer array p is instead used for storing the row/column indices.

$$
\begin{aligned}
& p(1: n)=1: n \\
& \text { For } k=1, \ldots, n-1 \\
& \quad m=k \\
& \quad \text { For } i=k+1, \ldots, n \\
& \quad \text { If }|A(p(m), k)|<|A(p(i), k)| \text {, then } m=i \\
& \text { End For } \\
& \quad \ell=p(k) ; p(k)=p(m) ; p(m)=\ell \\
& \text { For } i=k+1, \ldots, n \\
& \quad A(p(i), k)=A(p(i), k) / A(p(k), k) \\
& \quad \text { For } j=k+1, \ldots, n \\
& \quad A(p(i), j)=A(p(i), j)-A(p(i), k) A(p(k), j) \\
& \quad \text { End For } \\
& \text { End For } \\
& \text { End For }
\end{aligned}
$$

Since the Gaussian elimination with partial pivoting produces the factorization (4), the linear system problem should comply accordingly

$$
A x=b \Longrightarrow P A x=P b \Longrightarrow L U x=P b
$$

Since the Gaussian elimination with partial pivoting produces the factorization (4), the linear system problem should comply accordingly

$$
A x=b \Longrightarrow P A x=P b \Longrightarrow L U x=P b .
$$

Example 9

Find an $L U$ factorization of

$$
A=\left[\begin{array}{rrrr}
0 & 1 & -1 & 1 \\
1 & 1 & -1 & 2 \\
-1 & -1 & 1 & 0 \\
1 & 2 & 0 & 2
\end{array}\right]
$$

Since the Gaussian elimination with partial pivoting produces the factorization (4), the linear system problem should comply accordingly

$$
A x=b \Longrightarrow P A x=P b \Longrightarrow L U x=P b .
$$

Example 9

Find an $L U$ factorization of

$$
A=\left[\begin{array}{rrrr}
0 & 1 & -1 & 1 \\
1 & 1 & -1 & 2 \\
-1 & -1 & 1 & 0 \\
1 & 2 & 0 & 2
\end{array}\right] .
$$

- $\left(E_{1}\right) \leftrightarrow\left(E_{2}\right),\left(E_{3}+E_{1}\right) \rightarrow\left(E_{3}\right)$ and $\left(E_{4}-E_{1}\right) \rightarrow\left(E_{4}\right)$:
$A^{(2)}=\left[\begin{array}{rrrr}1 & 1 & -1 & 2 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 2 \\ 0 & 1 & 1 & 0\end{array}\right], P_{1}=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right], M_{1}=\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1\end{array}\right]$
- $\left(E_{3}\right) \leftrightarrow\left(E_{4}\right)$ and $\left(E_{3}-E_{2}\right) \rightarrow\left(E_{3}\right)$:

$$
A^{(3)}=\left[\begin{array}{rrrr}
1 & 1 & -1 & 2 \\
0 & 1 & -1 & 1 \\
0 & 0 & 2 & -1 \\
0 & 0 & 0 & 2
\end{array}\right], P_{2}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right], M_{2}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- $\left(E_{3}\right) \leftrightarrow\left(E_{4}\right)$ and $\left(E_{3}-E_{2}\right) \rightarrow\left(E_{3}\right)$:

$$
A^{(3)}=\left[\begin{array}{rrrr}
1 & 1 & -1 & 2 \\
0 & 1 & -1 & 1 \\
0 & 0 & 2 & -1 \\
0 & 0 & 0 & 2
\end{array}\right], P_{2}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right], M_{2}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Permutation matrix P :

$$
P=P_{2} P_{1}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

- Unit lower triangular matrix L :
- $\left(E_{3}\right) \leftrightarrow\left(E_{4}\right)$ and $\left(E_{3}-E_{2}\right) \rightarrow\left(E_{3}\right)$:
$A^{(3)}=\left[\begin{array}{rrrr}1 & 1 & -1 & 2 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & 2\end{array}\right], P_{2}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right], M_{2}=\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
- Permutation matrix P :

$$
P=P_{2} P_{1}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

- Unit lower triangular matrix L :

$$
L=P_{2} M_{1}^{-1} P_{2} M_{2}^{-1}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right]
$$

- The $L U$ factorization of $P A$:

$$
P A=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrrr}
1 & 1 & -1 & 2 \\
0 & 1 & -1 & 1 \\
0 & 0 & 2 & -1 \\
0 & 0 & 0 & 2
\end{array}\right]=L U .
$$

- The $L U$ factorization of $P A$:

$$
P A=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrrr}
1 & 1 & -1 & 2 \\
0 & 1 & -1 & 1 \\
0 & 0 & 2 & -1 \\
0 & 0 & 0 & 2
\end{array}\right]=L U .
$$

So
$A=P^{-1} L U=\left(P^{T} L\right) U=\left[\begin{array}{rrrr}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right]\left[\begin{array}{rrrr}1 & 1 & -1 & 2 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & 2\end{array}\right]$

Exercise

Page 409: 3, 9

Special types of matrices

Definition 10

A matrix $A \in \mathbb{R}^{n \times n}$ is said to be strictly diagonally dominant if

$$
\left|a_{i i}\right|>\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|
$$

Proof: Suppose A is singular

Special types of matrices

Definition 10

A matrix $A \in \mathbb{R}^{n \times n}$ is said to be strictly diagonally dominant if

$$
\left|a_{i i}\right|>\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|
$$

Lemma 11

If $A \in \mathbb{R}^{n \times n}$ is strictly diagonally dominant, then A is nonsingular.

such that $A x=0$

Special types of matrices

Definition 10

A matrix $A \in \mathbb{R}^{n \times n}$ is said to be strictly diagonally dominant if

$$
\left|a_{i i}\right|>\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|
$$

Lemma 11

If $A \in \mathbb{R}^{n \times n}$ is strictly diagonally dominant, then A is nonsingular.

Proof: Suppose A is singular.
such that $A x=0$. Let k be the integer index such that

Special types of matrices

Definition 10

A matrix $A \in \mathbb{R}^{n \times n}$ is said to be strictly diagonally dominant if

$$
\left|a_{i i}\right|>\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|
$$

Lemma 11

If $A \in \mathbb{R}^{n \times n}$ is strictly diagonally dominant, then A is nonsingular.

Proof: Suppose A is singular. Then there exists $x \in \mathbb{R}^{n}, x \neq 0$ such that $A x=0$.

oe the integer index such that

Special types of matrices

Definition 10

A matrix $A \in \mathbb{R}^{n \times n}$ is said to be strictly diagonally dominant if

$$
\left|a_{i i}\right|>\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|
$$

Lemma 11

If $A \in \mathbb{R}^{n \times n}$ is strictly diagonally dominant, then A is nonsingular.

Proof: Suppose A is singular. Then there exists $x \in \mathbb{R}^{n}, x \neq 0$ such that $A x=0$. Let k be the integer index such that

$$
\left|x_{k}\right|=\max _{1 \leq i \leq n}\left|x_{i}\right| \quad \Longrightarrow \quad \frac{\left|x_{i}\right|}{\left|x_{k}\right|} \leq 1, \quad \forall\left|x_{i}\right|
$$

Since $A x=0$, for the fixed k, we have

$$
\begin{aligned}
\sum_{j=1}^{n} a_{k j} x_{j}=0 & \Rightarrow a_{k k} x_{k}=-\sum_{j=1, j \neq k}^{n} a_{k j} x_{j} \\
& \Rightarrow\left|a_{k k}\right|\left|x_{k}\right| \leq \sum_{j=1, j \neq k}^{n}\left|a_{k j}\right|\left|x_{j}\right|
\end{aligned}
$$

Since $A x=0$, for the fixed k, we have

$$
\begin{aligned}
\sum_{j=1}^{n} a_{k j} x_{j}=0 & \Rightarrow a_{k k} x_{k}=-\sum_{j=1, j \neq k}^{n} a_{k j} x_{j} \\
& \Rightarrow\left|a_{k k}\right|\left|x_{k}\right| \leq \sum_{j=1, j \neq k}^{n}\left|a_{k j}\right|\left|x_{j}\right|
\end{aligned}
$$

which implies

$$
\left|a_{k k}\right| \leq \sum_{j=1, j \neq k}^{n}\left|a_{k j}\right| \frac{\left|x_{j}\right|}{\left|x_{k}\right|} \leq \sum_{j=1, j \neq k}^{n}\left|a_{k j}\right|
$$

But this contradicts the assumption that A is diagonally
dominant. Therefore A must be nonsinaular

Since $A x=0$, for the fixed k, we have

$$
\begin{aligned}
\sum_{j=1}^{n} a_{k j} x_{j}=0 & \Rightarrow a_{k k} x_{k}=-\sum_{j=1, j \neq k}^{n} a_{k j} x_{j} \\
& \Rightarrow\left|a_{k k}\right|\left|x_{k}\right| \leq \sum_{j=1, j \neq k}^{n}\left|a_{k j}\right|\left|x_{j}\right|
\end{aligned}
$$

which implies

$$
\left|a_{k k}\right| \leq \sum_{j=1, j \neq k}^{n}\left|a_{k j}\right| \frac{\left|x_{j}\right|}{\left|x_{k}\right|} \leq \sum_{j=1, j \neq k}^{n}\left|a_{k j}\right| .
$$

But this contradicts the assumption that A is diagonally dominant.

Since $A x=0$, for the fixed k, we have

$$
\begin{aligned}
\sum_{j=1}^{n} a_{k j} x_{j}=0 & \Rightarrow a_{k k} x_{k}=-\sum_{j=1, j \neq k}^{n} a_{k j} x_{j} \\
& \Rightarrow\left|a_{k k}\right|\left|x_{k}\right| \leq \sum_{j=1, j \neq k}^{n}\left|a_{k j}\right|\left|x_{j}\right|
\end{aligned}
$$

which implies

$$
\left|a_{k k}\right| \leq \sum_{j=1, j \neq k}^{n}\left|a_{k j}\right| \frac{\left|x_{j}\right|}{\left|x_{k}\right|} \leq \sum_{j=1, j \neq k}^{n}\left|a_{k j}\right| .
$$

But this contradicts the assumption that A is diagonally dominant. Therefore A must be nonsingular.

Theorem 12

Gaussian elimination without pivoting preserve the diagonal dominance of a matrix.

Proof: Let $A \in \mathbb{R}^{n \times n}$ be a diagonally dominant matrix and $A^{(2)}=\left[a_{i j}^{(2)}\right]$ is the result of applying one step of Gaussian
elimination to
After one step of Gaussian elimination
and the first row is unchanged

Theorem 12

Gaussian elimination without pivoting preserve the diagonal dominance of a matrix.

Proof: Let $A \in \mathbb{R}^{n \times n}$ be a diagonally dominant matrix and $A^{(2)}=\left[a_{i j}^{(2)}\right]$ is the result of applying one step of Gaussian elimination to $A^{(1)}=A$ without any pivoting strategy.
is preserved,

Theorem 12

Gaussian elimination without pivoting preserve the diagonal dominance of a matrix.

Proof: Let $A \in \mathbb{R}^{n \times n}$ be a diagonally dominant matrix and $A^{(2)}=\left[a_{i j}^{(2)}\right]$ is the result of applying one step of Gaussian elimination to $A^{(1)}=A$ without any pivoting strategy. After one step of Gaussian elimination, $a_{i 1}^{(2)}=0$ for $i=2, \ldots, n$, and the first row is unchanged.
is preserved, and all we need to show is that

Theorem 12

Gaussian elimination without pivoting preserve the diagonal dominance of a matrix.

Proof: Let $A \in \mathbb{R}^{n \times n}$ be a diagonally dominant matrix and $A^{(2)}=\left[a_{i j}^{(2)}\right]$ is the result of applying one step of Gaussian elimination to $A^{(1)}=A$ without any pivoting strategy. After one step of Gaussian elimination, $a_{i 1}^{(2)}=0$ for $i=2, \ldots, n$, and the first row is unchanged. Therefore, the property

$$
\left|a_{11}^{(2)}\right|>\sum_{j=2}^{n}\left|a_{1 j}^{(2)}\right|
$$

is preserved,

Theorem 12

Gaussian elimination without pivoting preserve the diagonal dominance of a matrix.

Proof: Let $A \in \mathbb{R}^{n \times n}$ be a diagonally dominant matrix and $A^{(2)}=\left[a_{i j}^{(2)}\right]$ is the result of applying one step of Gaussian elimination to $A^{(1)}=A$ without any pivoting strategy. After one step of Gaussian elimination, $a_{i 1}^{(2)}=0$ for $i=2, \ldots, n$, and the first row is unchanged. Therefore, the property

$$
\left|a_{11}^{(2)}\right|>\sum_{j=2}^{n}\left|a_{1 j}^{(2)}\right|
$$

is preserved, and all we need to show is that

$$
\left|a_{i i}^{(2)}\right|>\sum_{j=2, j \neq i}^{n}\left|a_{i j}^{(2)}\right|, \quad \text { for } \quad i=2, \ldots, n
$$

Using the Gaussian elimination formula (2), we have

$$
\begin{aligned}
\left|a_{i i}^{(2)}\right| & =\left|a_{i i}^{(1)}-\frac{a_{i 1}^{(1)}}{a_{11}^{(1)}} a_{1 i}^{(1)}\right|=\left|a_{i i}-\frac{a_{i 1}}{a_{11}} a_{1 i}\right| \\
& \geq\left|a_{i i}\right|-\frac{\left|a_{i 1}\right|}{\left|a_{11}\right|}\left|a_{1 i}\right| \\
& =\left|a_{i i}\right|-\left|a_{i 1}\right|+\left|a_{i 1}\right|-\frac{\left|a_{i 1}\right|}{\left|a_{11}\right|}\left|a_{1 i}\right| \\
& =\left|a_{i i}\right|-\left|a_{i 1}\right|+\frac{\left|a_{i 1}\right|}{\left|a_{11}\right|}\left(\left|a_{11}\right|-\left|a_{1 i}\right|\right) \\
& >\sum_{j=2, j \neq i}^{n}\left|a_{i j}\right|+\frac{\left|a_{i 1}\right|}{\left|a_{11}\right|} \sum_{j=2, j \neq i}^{n}\left|a_{1 j}\right| \\
& =\sum_{j=2, j \neq i}^{n}\left|a_{i j}\right|+\sum_{j=2, j \neq i}^{n} \frac{\left|a_{i 1}\right|}{\left|a_{11}\right|}\left|a_{1 j}\right| \\
& \geq \sum_{j=2, j \neq i}^{n}\left|a_{i j}-\frac{a_{i 1}}{a_{11}} a_{1 j}\right|=\sum_{j=2, j \neq i}^{n}\left|a_{i j}^{(2)}\right| .
\end{aligned}
$$

Thus $A^{(2)}$ is still diagonally dominant.

 applied to submatrices of smaller size, it suffices to conclude that Gaussian elimination without pivotina preserves the diagonal dominance of a matrix.
Theorem 13

Int 1 be strintl diagonally dominant. Then Gaussian
elimination can be performed on $A x=b$ to obtain its unique solution without row or column interchanges.

Thus $A^{(2)}$ is still diagonally dominant. Since the subsequent steps of Gaussian elimination mimic the first, except for being applied to submatrices of smaller size, it suffices to conclude that Gaussian elimination without pivoting preserves the diagonal dominance of a matrix.

Thus $A^{(2)}$ is still diagonally dominant. Since the subsequent steps of Gaussian elimination mimic the first, except for being applied to submatrices of smaller size, it suffices to conclude that Gaussian elimination without pivoting preserves the diagonal dominance of a matrix.

Theorem 13

Let A be strictly diagonally dominant. Then Gaussian elimination can be performed on $A x=b$ to obtain its unique solution without row or column interchanges.

[^1]Thus $A^{(2)}$ is still diagonally dominant. Since the subsequent steps of Gaussian elimination mimic the first, except for being applied to submatrices of smaller size, it suffices to conclude that Gaussian elimination without pivoting preserves the diagonal dominance of a matrix.

Theorem 13

Let A be strictly diagonally dominant. Then Gaussian elimination can be performed on $A x=b$ to obtain its unique solution without row or column interchanges.

Definition 14

A matrix A is positive definite if it is symmetric and $x^{T} A x>0$ $\forall x \neq 0$.

Theorem 15

If A is an $n \times n$ positive definite matrix, then

Theorem 15

If A is an $n \times n$ positive definite matrix, then (a) A has an inverse;

Theorem 15

If A is an $n \times n$ positive definite matrix, then
(a) A has an inverse;
(b) $a_{i i}>0, \forall i=1, \ldots, n$;

Theorem 15

If A is an $n \times n$ positive definite matrix, then
(a) A has an inverse;
(b) $a_{i i}>0, \forall i=1, \ldots, n$;
(c) $\max _{1 \leq k, j \leq n}\left|a_{k j}\right| \leq \max _{1 \leq i \leq n}\left|a_{i i}\right|$;

Theorem 15

If A is an $n \times n$ positive definite matrix, then
(a) A has an inverse;
(b) $a_{i i}>0, \forall i=1, \ldots, n$;
(c) $\max _{1 \leq k, j \leq n}\left|a_{k j}\right| \leq \max _{1 \leq i \leq n}\left|a_{i i}\right|$;
(d) $\left(a_{i j}\right)^{2}<a_{i i} a_{j j}, \forall i \neq j$.

Theorem 15

If A is an $n \times n$ positive definite matrix, then
(a) A has an inverse;
(b) $a_{i i}>0, \forall i=1, \ldots, n$;
(c) $\max _{1 \leq k, j \leq n}\left|a_{k j}\right| \leq \max _{1 \leq i \leq n}\left|a_{i i}\right|$;
(d) $\left(a_{i j}\right)^{2}<a_{i i} a_{j j}, \forall i \neq j$.

Proof:
(a) If x satisfies $A x=0$, then $x^{T} A x=0$.

Theorem 15

If A is an $n \times n$ positive definite matrix, then
(a) A has an inverse;
(b) $a_{i i}>0, \forall i=1, \ldots, n$;
(c) $\max _{1 \leq k, j \leq n}\left|a_{k j}\right| \leq \max _{1 \leq i \leq n}\left|a_{i i}\right|$;
(d) $\left(a_{i j}\right)^{2}<a_{i i} a_{j j}, \forall i \neq j$.

Proof:
(a) If x satisfies $A x=0$, then $x^{T} A x=0$. Since A is positive definite, this implies $x=0$.
nonsingular.
(J) Since A is positive definite

Theorem 15

If A is an $n \times n$ positive definite matrix, then
(a) A has an inverse;
(b) $a_{i i}>0, \forall i=1, \ldots, n$;
(c) $\max _{1 \leq k, j \leq n}\left|a_{k j}\right| \leq \max _{1 \leq i \leq n}\left|a_{i i}\right|$;
(d) $\left(a_{i j}\right)^{2}<a_{i i} a_{j j}, \forall i \neq j$.

Proof:
(a) If x satisfies $A x=0$, then $x^{T} A x=0$. Since A is positive definite, this implies $x=0$. Consequently, $A x=0$ has only the zero solution, and A is nonsingular.

Theorem 15

If A is an $n \times n$ positive definite matrix, then
(a) A has an inverse;
(b) $a_{i i}>0, \forall i=1, \ldots, n$;
(c) $\max _{1 \leq k, j \leq n}\left|a_{k j}\right| \leq \max _{1 \leq i \leq n}\left|a_{i i}\right|$;
(d) $\left(a_{i j}\right)^{2}<a_{i i} a_{j j}, \forall i \neq j$.

Proof:
(a) If x satisfies $A x=0$, then $x^{T} A x=0$. Since A is positive definite, this implies $x=0$. Consequently, $A x=0$ has only the zero solution, and A is nonsingular.
(b) Since A is positive definite,

$$
a_{i i}=e_{i}^{T} A e_{i}>0
$$

where e_{i} is the i-th column of the $n \times n$ identify matrix.
(c) For $k \neq j$, define $x=\left[x_{i}\right]$ by

$$
x_{i}=\left\{\begin{aligned}
0, & \text { if } i \neq j \text { and } i \neq k, \\
1, & \text { if } i=j, \\
-1, & \text { if } i=k .
\end{aligned}\right.
$$

(c) For $k \neq j$, define $x=\left[x_{i}\right]$ by

$$
x_{i}=\left\{\begin{aligned}
0, & \text { if } i \neq j \text { and } i \neq k, \\
1, & \text { if } i=j, \\
-1, & \text { if } i=k .
\end{aligned}\right.
$$

Since $x \neq 0$,

$$
0<x^{T} A x=a_{j j}+a_{k k}-a_{j k}-a_{k j} .
$$

(c) For $k \neq j$, define $x=\left[x_{i}\right]$ by

$$
x_{i}=\left\{\begin{aligned}
0, & \text { if } i \neq j \text { and } i \neq k, \\
1, & \text { if } i=j, \\
-1, & \text { if } i=k .
\end{aligned}\right.
$$

Since $x \neq 0$,

$$
0<x^{T} A x=a_{j j}+a_{k k}-a_{j k}-a_{k j} .
$$

But $A^{T}=A$, so

$$
\begin{equation*}
2 a_{k j}<a_{j j}+a_{k k} \tag{5}
\end{equation*}
$$

(c) For $k \neq j$, define $x=\left[x_{i}\right]$ by

$$
x_{i}=\left\{\begin{aligned}
0, & \text { if } i \neq j \text { and } i \neq k, \\
1, & \text { if } i=j, \\
-1, & \text { if } i=k .
\end{aligned}\right.
$$

Since $x \neq 0$,

$$
0<x^{T} A x=a_{j j}+a_{k k}-a_{j k}-a_{k j} .
$$

But $A^{T}=A$, so

$$
\begin{equation*}
2 a_{k j}<a_{j j}+a_{k k} . \tag{5}
\end{equation*}
$$

Now define $z=\left[z_{i}\right]$ by

$$
z_{i}= \begin{cases}0, & \text { if } i \neq j \text { and } j \neq k \\ 1, & \text { if } i=j \text { or } i=k\end{cases}
$$

Then $z^{T} A z>0$, so
 $$
\begin{equation*} -2 a_{k j}<a_{j j}+a_{k k} . \tag{6} \end{equation*}
$$

Then $z^{T} A z>0$, so

$$
\begin{equation*}
-2 a_{k j}<a_{j j}+a_{k k} . \tag{6}
\end{equation*}
$$

Equations (5) and (6) imply that for each $k \neq j$,

$$
\left|a_{k j}\right|<\frac{a_{k k}+a_{j j}}{2} \leq \max _{1 \leq i \leq n}\left|a_{i i}\right|
$$

Then $z^{T} A z>0$, so

$$
\begin{equation*}
-2 a_{k j}<a_{j j}+a_{k k} . \tag{6}
\end{equation*}
$$

Equations (5) and (6) imply that for each $k \neq j$,

$$
\left|a_{k j}\right|<\frac{a_{k k}+a_{j j}}{2} \leq \max _{1 \leq i \leq n}\left|a_{i i}\right|
$$

SO

$$
\max _{1 \leq k, j \leq n}\left|a_{k j}\right| \leq \max _{1 \leq i \leq n}\left|a_{i i}\right|
$$

Then $z^{T} A z>0$, so

$$
\begin{equation*}
-2 a_{k j}<a_{j j}+a_{k k} \tag{6}
\end{equation*}
$$

Equations (5) and (6) imply that for each $k \neq j$,

$$
\left|a_{k j}\right|<\frac{a_{k k}+a_{j j}}{2} \leq \max _{1 \leq i \leq n}\left|a_{i i}\right|
$$

so

$$
\max _{1 \leq k, j \leq n}\left|a_{k j}\right| \leq \max _{1 \leq i \leq n}\left|a_{i i}\right| .
$$

(d) For $i \neq j$, define $x=\left[x_{k}\right]$ by

$$
x_{k}= \begin{cases}0, & \text { if } k \neq j \text { and } k \neq i, \\ \alpha, & \text { if } k=i, \\ 1, & \text { if } k=j,\end{cases}
$$

where α represents an arbitrary real number.

Since $x \neq 0$,
$0<x^{T} A x=a_{i i} \alpha^{2}+2 a_{i j} \alpha+a_{j j} \equiv P(\alpha), \forall \alpha \in \mathbb{R}$.

Since $x \neq 0$,
$0<x^{T} A x=a_{i i} \alpha^{2}+2 a_{i j} \alpha+a_{j j} \equiv P(\alpha), \forall \alpha \in \mathbb{R}$.
That is the quadratic polynomial $P(\alpha)$ has no real roots.

Since $x \neq 0$,
$0<x^{T} A x=a_{i i} \alpha^{2}+2 a_{i j} \alpha+a_{j j} \equiv P(\alpha), \forall \alpha \in \mathbb{R}$.
That is the quadratic polynomial $P(\alpha)$ has no real roots. It implies that
$4 a_{i j}^{2}-4 a_{i i} a_{j j}<0 \quad$ and $\quad a_{i j}^{2}<a_{i i} a_{j j}$.
Definition 16 (Leading principa minor)

Since $x \neq 0$,
$0<x^{T} A x=a_{i i} \alpha^{2}+2 a_{i j} \alpha+a_{j j} \equiv P(\alpha), \forall \alpha \in \mathbb{R}$.
That is the quadratic polynomial $P(\alpha)$ has no real roots. It implies that

$$
4 a_{i j}^{2}-4 a_{i i} a_{j j}<0 \quad \text { and } \quad a_{i j}^{2}<a_{i i} a_{j j}
$$

Definition 16 (Leading principal minor)

Let A be an $n \times n$ matrix. The upper left $k \times k$ submatrix, denoted as

$$
A_{k}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 k} \\
a_{21} & a_{22} & \cdots & a_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
a_{k 1} & a_{k 2} & \cdots & a_{k k}
\end{array}\right]
$$

is called the leading $k \times k$ principal submatrix, and the determinant of A_{k}, $\operatorname{det}\left(A_{k}\right)$, is called the leading principal minnr

Theorem 17

A symmetric matrix A is positive definite if and only if each of its leading principal submatrices has a positive determinant.

Theorem 17

A symmetric matrix A is positive definite if and only if each of its leading principal submatrices has a positive determinant.

Theorem 18

The symmetric matrix A is positive definite if and only if Gaussian elimination without row interchanges can be performed on $A x=b$ with all pivot elements positive.
diagonal and D is a diagonal matrix with positive diagonal

Theorem 17

A symmetric matrix A is positive definite if and only if each of its leading principal submatrices has a positive determinant.

Theorem 18

The symmetric matrix A is positive definite if and only if Gaussian elimination without row interchanges can be performed on $A x=b$ with all pivot elements positive.

Corollary 19

The matrix A is positive definite if and only if A can be factored in the form $L D L^{T}$, where L is lower triangular with 1 's on its diagonal and D is a diagonal matrix with positive diagonal entries.

Theorem 20

If all leading principal submatrices of $A \in \mathbb{R}^{n \times n}$ are nonsingular, then A has an $L U$-factorization.

Proof: Proof by mathematical induction

Theorem 20

If all leading principal submatrices of $A \in \mathbb{R}^{n \times n}$ are nonsingular, then A has an $L U$-factorization.

Proof: Proof by mathematical induction.

Theorem 20

If all leading principal submatrices of $A \in \mathbb{R}^{n \times n}$ are nonsingular, then A has an $L U$-factorization.

Proof: Proof by mathematical induction.
(1) $n=1, A_{1}=\left[a_{11}\right]$ is nonsingular, then $a_{11} \neq 0$.

Theorem 20

If all leading principal submatrices of $A \in \mathbb{R}^{n \times n}$ are nonsingular, then A has an $L U$-factorization.

Proof: Proof by mathematical induction.
(1) $n=1, A_{1}=\left[a_{11}\right]$ is nonsingular, then $a_{11} \neq 0$. Let $L_{1}=[1]$ and $U_{1}=\left[a_{11}\right]$.

Theorem 20

If all leading principal submatrices of $A \in \mathbb{R}^{n \times n}$ are nonsingular, then A has an $L U$-factorization.

Proof: Proof by mathematical induction.
(1) $n=1, A_{1}=\left[a_{11}\right]$ is nonsingular, then $a_{11} \neq 0$. Let $L_{1}=[1]$ and $U_{1}=\left[a_{11}\right]$. Then $A_{1}=L_{1} U_{1}$.
Assume that the leading principal submatrices A are nonsingular and A_{k} has an $L U$-factorization upper triangular

Theorem 20

If all leading principal submatrices of $A \in \mathbb{R}^{n \times n}$ are nonsingular, then A has an $L U$-factorization.

Proof: Proof by mathematical induction.
(1) $n=1, A_{1}=\left[a_{11}\right]$ is nonsingular, then $a_{11} \neq 0$. Let $L_{1}=[1]$ and $U_{1}=\left[a_{11}\right]$. Then $A_{1}=L_{1} U_{1}$. The theorem holds. Assume that the leading principal submatrices A are nonsingular and A_{k} has an $L U$-factorization upper triangular
\square and an upper triangular matrix U_{k+1} such that

Theorem 20

If all leading principal submatrices of $A \in \mathbb{R}^{n \times n}$ are nonsingular, then A has an $L U$-factorization.

Proof: Proof by mathematical induction.
(1) $n=1, A_{1}=\left[a_{11}\right]$ is nonsingular, then $a_{11} \neq 0$. Let $L_{1}=[1]$ and $U_{1}=\left[a_{11}\right]$. Then $A_{1}=L_{1} U_{1}$. The theorem holds.
(2) Assume that the leading principal submatrices A_{1}, \ldots, A_{k} are nonsingular and A_{k} has an $L U$-factorization $A_{k}=L_{k} U_{k}$, where L_{k} is unit lower triangular and U_{k} is upper triangular.

Theorem 20

If all leading principal submatrices of $A \in \mathbb{R}^{n \times n}$ are nonsingular, then A has an $L U$-factorization.

Proof: Proof by mathematical induction.
(1) $n=1, A_{1}=\left[a_{11}\right]$ is nonsingular, then $a_{11} \neq 0$. Let $L_{1}=[1]$ and $U_{1}=\left[a_{11}\right]$. Then $A_{1}=L_{1} U_{1}$. The theorem holds.
(2) Assume that the leading principal submatrices A_{1}, \ldots, A_{k} are nonsingular and A_{k} has an $L U$-factorization $A_{k}=L_{k} U_{k}$, where L_{k} is unit lower triangular and U_{k} is upper triangular.
(3) Show that there exist an unit lower triangular matrix L_{k+1} and an upper triangular matrix U_{k+1} such that $A_{k+1}=L_{k+1} U_{k+1}$.

Write

$$
A_{k+1}=\left[\begin{array}{cc}
A_{k} & v_{k} \\
w_{k}^{T} & a_{k+1, k+1}
\end{array}\right]
$$

where

$$
v_{k}=\left[\begin{array}{c}
a_{1, k+1} \\
a_{2, k+1} \\
\vdots \\
a_{k, k+1}
\end{array}\right] \quad \text { and } \quad w_{k}=\left[\begin{array}{c}
a_{k+1,1} \\
a_{k+1,2} \\
\vdots \\
a_{k+1, k}
\end{array}\right]
$$

Write

$$
A_{k+1}=\left[\begin{array}{cc}
A_{k} & v_{k} \\
w_{k}^{T} & a_{k+1, k+1}
\end{array}\right]
$$

where

$$
v_{k}=\left[\begin{array}{c}
a_{1, k+1} \\
a_{2, k+1} \\
\vdots \\
a_{k, k+1}
\end{array}\right] \quad \text { and } \quad w_{k}=\left[\begin{array}{c}
a_{k+1,1} \\
a_{k+1,2} \\
\vdots \\
a_{k+1, k}
\end{array}\right]
$$

Since A_{k} is nonsingular, both L_{k} and U_{k} are nonsingular.

Write

$$
A_{k+1}=\left[\begin{array}{cc}
A_{k} & v_{k} \\
w_{k}^{T} & a_{k+1, k+1}
\end{array}\right]
$$

where

$$
v_{k}=\left[\begin{array}{c}
a_{1, k+1} \\
a_{2, k+1} \\
\vdots \\
a_{k, k+1}
\end{array}\right] \quad \text { and } \quad w_{k}=\left[\begin{array}{c}
a_{k+1,1} \\
a_{k+1,2} \\
\vdots \\
a_{k+1, k}
\end{array}\right]
$$

Since A_{k} is nonsingular, both L_{k} and U_{k} are nonsingular. Therefore, $L_{k} y_{k}=v_{k}$ has a unique solution $y_{k} \in \mathbb{R}^{k}$, and $z^{t} U_{k}=w_{k}^{T}$ has a unique solution $z_{k} \in \mathbb{R}^{k}$.

Write

$$
A_{k+1}=\left[\begin{array}{cc}
A_{k} & v_{k} \\
w_{k}^{T} & a_{k+1, k+1}
\end{array}\right]
$$

where

$$
v_{k}=\left[\begin{array}{c}
a_{1, k+1} \\
a_{2, k+1} \\
\vdots \\
a_{k, k+1}
\end{array}\right] \quad \text { and } \quad w_{k}=\left[\begin{array}{c}
a_{k+1,1} \\
a_{k+1,2} \\
\vdots \\
a_{k+1, k}
\end{array}\right]
$$

Since A_{k} is nonsingular, both L_{k} and U_{k} are nonsingular. Therefore, $L_{k} y_{k}=v_{k}$ has a unique solution $y_{k} \in \mathbb{R}^{k}$, and $z^{t} U_{k}=w_{k}^{T}$ has a unique solution $z_{k} \in \mathbb{R}^{k}$. Let

$$
L_{k+1}=\left[\begin{array}{cc}
L_{k} & 0 \\
z_{k}^{T} & 1
\end{array}\right] \quad \text { and } \quad U_{k+1}=\left[\begin{array}{cc}
U_{k} & y_{k} \\
0 & a_{k+1, k+1}-z_{k}^{T} y_{k}
\end{array}\right]
$$

Then L_{k+1} is unit lower triangular, U_{k+1} is upper triangular, and

$$
\begin{aligned}
L_{k+1} U_{k+1} & =\left[\begin{array}{cc}
L_{k} U_{k} & L_{k} y_{k} \\
z_{k}^{T} U_{k} & z_{k}^{T} y_{k}+a_{k+1, k+1}-z_{k}^{T} y_{k}
\end{array}\right] \\
& =\left[\begin{array}{cc}
A_{k} & v_{k} \\
w_{k}^{T} & a_{k+1, k+1}
\end{array}\right]=A_{k+1} .
\end{aligned}
$$

This proves the theorem.

Theorem 21

If A is nonsingular and the $L U$ factorization exists, then the $L U$ factorization is unique.

Proof: Suppose both
are LU factorizations. Since A is nonsingular, $L_{1}, U_{1}, L_{2}, U_{2}$ are
all nonsinaular, and

Theorem 21

If A is nonsingular and the $L U$ factorization exists, then the $L U$ factorization is unique.

Proof: Suppose both

$$
A=L_{1} U_{1} \quad \text { and } \quad A=L_{2} U_{2}
$$

are LU factorizations.

Since L_{1} and L_{2} are unit lower triangular, it implies that $L_{2}^{-1} L$
is also unit lower trianaular

Theorem 21

If A is nonsingular and the $L U$ factorization exists, then the $L U$ factorization is unique.

Proof: Suppose both

$$
A=L_{1} U_{1} \quad \text { and } \quad A=L_{2} U_{2}
$$

are LU factorizations. Since A is nonsingular, $L_{1}, U_{1}, L_{2}, U_{2}$ are all nonsingular, and

$$
A=L_{1} U_{1}=L_{2} U_{2} \Longrightarrow L_{2}^{-1} L_{1}=U_{2} U_{1}^{-1}
$$

Since L_{1} and I
\qquad

Theorem 21

If A is nonsingular and the $L U$ factorization exists, then the $L U$ factorization is unique.

Proof: Suppose both

$$
A=L_{1} U_{1} \quad \text { and } \quad A=L_{2} U_{2}
$$

are LU factorizations. Since A is nonsingular, $L_{1}, U_{1}, L_{2}, U_{2}$ are all nonsingular, and

$$
A=L_{1} U_{1}=L_{2} U_{2} \Longrightarrow L_{2}^{-1} L_{1}=U_{2} U_{1}^{-1}
$$

Since L_{1} and L_{2} are unit lower triangular, it implies that $L_{2}^{-1} L_{1}$ is also unit lower triangular.

Theorem 21

If A is nonsingular and the $L U$ factorization exists, then the $L U$ factorization is unique.

Proof: Suppose both

$$
A=L_{1} U_{1} \quad \text { and } \quad A=L_{2} U_{2}
$$

are LU factorizations. Since A is nonsingular, $L_{1}, U_{1}, L_{2}, U_{2}$ are all nonsingular, and

$$
A=L_{1} U_{1}=L_{2} U_{2} \Longrightarrow L_{2}^{-1} L_{1}=U_{2} U_{1}^{-1}
$$

Since L_{1} and L_{2} are unit lower triangular, it implies that $L_{2}^{-1} L_{1}$ is also unit lower triangular. On the other hand, since U_{1} and U_{2} are upper triangular, $U_{2} U_{1}^{-1}$ is also upper triangular.

Theorem 21

If A is nonsingular and the $L U$ factorization exists, then the $L U$ factorization is unique.

Proof: Suppose both

$$
A=L_{1} U_{1} \quad \text { and } \quad A=L_{2} U_{2}
$$

are LU factorizations. Since A is nonsingular, $L_{1}, U_{1}, L_{2}, U_{2}$ are all nonsingular, and

$$
A=L_{1} U_{1}=L_{2} U_{2} \Longrightarrow L_{2}^{-1} L_{1}=U_{2} U_{1}^{-1}
$$

Since L_{1} and L_{2} are unit lower triangular, it implies that $L_{2}^{-1} L_{1}$ is also unit lower triangular. On the other hand, since U_{1} and U_{2} are upper triangular, $U_{2} U_{1}^{-1}$ is also upper triangular. Therefore,

$$
L_{2}^{-1} L_{1}=I=U_{2} U_{1}^{-1}
$$

which implies that $L_{1}=L_{2}$ and $U_{1}=U_{2}$.

Lemma 22

If $A \in \mathbb{R}^{n \times n}$ is positive definite, then all leading principal submatrices of A are nonsingular.

Proof: For $1 \leq k \leq n$, let
where definite
where A_{k} is the $k \times k$ leading principal submatrix of A

Lemma 22

If $A \in \mathbb{R}^{n \times n}$ is positive definite, then all leading principal submatrices of A are nonsingular.

Proof: For $1 \leq k \leq n$, let
$z_{k}=\left[x_{1}, \ldots, x_{k}\right]^{T} \in \mathbb{R}^{k}$ and $x=\left[x_{1}, \ldots, x_{k}, 0, \ldots, 0\right]^{T} \in \mathbb{R}^{n}$,
where $x_{1}, \ldots, x_{k} \in \mathbb{R}$ are not all zero.
where A_{k} is the $k \times k$ leading principal submatrix of A. This shows that A_{l}. are also Dositive definite. hence A_{l}. are nonsingular

Lemma 22

If $A \in \mathbb{R}^{n \times n}$ is positive definite, then all leading principal submatrices of A are nonsingular.

Proof: For $1 \leq k \leq n$, let
$z_{k}=\left[x_{1}, \ldots, x_{k}\right]^{T} \in \mathbb{R}^{k}$ and $x=\left[x_{1}, \ldots, x_{k}, 0, \ldots, 0\right]^{T} \in \mathbb{R}^{n}$,
where $x_{1}, \ldots, x_{k} \in \mathbb{R}$ are not all zero. Since A is positive definite,

$$
z_{k}^{T} A_{k} z_{k}=x^{T} A x>0,
$$

where A_{k} is the $k \times k$ leading principal submatrix of A.

Lemma 22

If $A \in \mathbb{R}^{n \times n}$ is positive definite, then all leading principal submatrices of A are nonsingular.

Proof: For $1 \leq k \leq n$, let
$z_{k}=\left[x_{1}, \ldots, x_{k}\right]^{T} \in \mathbb{R}^{k}$ and $x=\left[x_{1}, \ldots, x_{k}, 0, \ldots, 0\right]^{T} \in \mathbb{R}^{n}$,
where $x_{1}, \ldots, x_{k} \in \mathbb{R}$ are not all zero. Since A is positive definite,

$$
z_{k}^{T} A_{k} z_{k}=x^{T} A x>0,
$$

where A_{k} is the $k \times k$ leading principal submatrix of A. This shows that A_{k} are also positive definite, hence A_{k} are nonsingular.

Corollary 23

The matrix A is positive definite if and only if

$$
\begin{equation*}
A=G G^{T} \tag{7}
\end{equation*}
$$

where G is lower triangular with positive diagonal entries.
all leading principal submatrices of A are nonsingular

Corollary 23

The matrix A is positive definite if and only if

$$
\begin{equation*}
A=G G^{T} \tag{7}
\end{equation*}
$$

where G is lower triangular with positive diagonal entries.
Proof: " \Rightarrow " A is positive definite

Corollary 23

The matrix A is positive definite if and only if

$$
\begin{equation*}
A=G G^{T} \tag{7}
\end{equation*}
$$

where G is lower triangular with positive diagonal entries.
Proof: " \Rightarrow " A is positive definite
\Rightarrow all leading principal submatrices of A are nonsingular
triangular and U is upper triangular.
Since

Corollary 23

The matrix A is positive definite if and only if

$$
\begin{equation*}
A=G G^{T} \tag{7}
\end{equation*}
$$

where G is lower triangular with positive diagonal entries.
Proof: " \Rightarrow " A is positive definite
\Rightarrow all leading principal submatrices of A are nonsingular
$\Rightarrow A$ has the $L U$ factorization $A=L U$, where L is unit lower triangular and U is upper triangular.

Corollary 23

The matrix A is positive definite if and only if

$$
\begin{equation*}
A=G G^{T} \tag{7}
\end{equation*}
$$

where G is lower triangular with positive diagonal entries.
Proof: " \Rightarrow " A is positive definite
\Rightarrow all leading principal submatrices of A are nonsingular
$\Rightarrow A$ has the $L U$ factorization $A=L U$, where L is unit lower triangular and U is upper triangular.
Since A is symmetric,

$$
L U=A=A^{T}=U^{T} L^{T} \quad \Longrightarrow \quad U\left(L^{T}\right)^{-1}=L^{-1} U^{T} .
$$

Corollary 23

The matrix A is positive definite if and only if

$$
\begin{equation*}
A=G G^{T} \tag{7}
\end{equation*}
$$

where G is lower triangular with positive diagonal entries.
Proof: " \Rightarrow " A is positive definite
\Rightarrow all leading principal submatrices of A are nonsingular
$\Rightarrow A$ has the $L U$ factorization $A=L U$, where L is unit lower triangular and U is upper triangular.
Since A is symmetric,

$$
L U=A=A^{T}=U^{T} L^{T} \quad \Longrightarrow \quad U\left(L^{T}\right)^{-1}=L^{-1} U^{T} .
$$

$U\left(L^{T}\right)^{-1}$ is upper triangular and $L^{-1} U^{T}$ is lower triangular

Corollary 23

The matrix A is positive definite if and only if

$$
\begin{equation*}
A=G G^{T} \tag{7}
\end{equation*}
$$

where G is lower triangular with positive diagonal entries.
Proof: " \Rightarrow " A is positive definite
\Rightarrow all leading principal submatrices of A are nonsingular
$\Rightarrow A$ has the $L U$ factorization $A=L U$, where L is unit lower triangular and U is upper triangular.
Since A is symmetric,

$$
L U=A=A^{T}=U^{T} L^{T} \quad \Longrightarrow \quad U\left(L^{T}\right)^{-1}=L^{-1} U^{T} .
$$

$U\left(L^{T}\right)^{-1}$ is upper triangular and $L^{-1} U^{T}$ is lower triangular $\Rightarrow U\left(L^{T}\right)^{-1}$ to be a diagonal matrix, say, $U\left(L^{T}\right)^{-1}=D$.

Corollary 23

The matrix A is positive definite if and only if

$$
\begin{equation*}
A=G G^{T} \tag{7}
\end{equation*}
$$

where G is lower triangular with positive diagonal entries.
Proof: " \Rightarrow " A is positive definite
\Rightarrow all leading principal submatrices of A are nonsingular
$\Rightarrow A$ has the $L U$ factorization $A=L U$, where L is unit lower triangular and U is upper triangular.
Since A is symmetric,

$$
L U=A=A^{T}=U^{T} L^{T} \quad \Longrightarrow \quad U\left(L^{T}\right)^{-1}=L^{-1} U^{T} .
$$

$U\left(L^{T}\right)^{-1}$ is upper triangular and $L^{-1} U^{T}$ is lower triangular $\Rightarrow U\left(L^{T}\right)^{-1}$ to be a diagonal matrix, say, $U\left(L^{T}\right)^{-1}=D$.
$\Rightarrow U=D L^{T}$. Hence

$$
A=L D L^{T}
$$

Since A is positive definite,

$$
x^{T} A x>0 \quad \Longrightarrow \quad x^{T} L D L^{T} x=\left(L^{T} x\right)^{T} D\left(L^{T} x\right)>0
$$

Since A is positive definite,

$$
x^{T} A x>0 \quad \Longrightarrow \quad x^{T} L D L^{T} x=\left(L^{T} x\right)^{T} D\left(L^{T} x\right)>0 .
$$

This means D is also positive definite, and hence $d_{i i}>0$.

Since A is positive definite,

$$
x^{T} A x>0 \quad \Longrightarrow \quad x^{T} L D L^{T} x=\left(L^{T} x\right)^{T} D\left(L^{T} x\right)>0 .
$$

This means D is also positive definite, and hence $d_{i i}>0$. Thus $D^{1 / 2}$ is well-defined and we have

$$
A=L D L^{T}=L D^{1 / 2} D^{1 / 2} L^{T} \equiv G G^{T},
$$

where $G \equiv L D^{1 / 2}$.

Since A is positive definite,

$$
x^{T} A x>0 \quad \Longrightarrow \quad x^{T} L D L^{T} x=\left(L^{T} x\right)^{T} D\left(L^{T} x\right)>0 .
$$

This means D is also positive definite, and hence $d_{i i}>0$. Thus $D^{1 / 2}$ is well-defined and we have

$$
A=L D L^{T}=L D^{1 / 2} D^{1 / 2} L^{T} \equiv G G^{T},
$$

where $G \equiv L D^{1 / 2}$. Since the $L U$ factorization is unique, G is unique.

Since A is positive definite,

$$
x^{T} A x>0 \quad \Longrightarrow \quad x^{T} L D L^{T} x=\left(L^{T} x\right)^{T} D\left(L^{T} x\right)>0 .
$$

This means D is also positive definite, and hence $d_{i i}>0$. Thus $D^{1 / 2}$ is well-defined and we have

$$
A=L D L^{T}=L D^{1 / 2} D^{1 / 2} L^{T} \equiv G G^{T}
$$

where $G \equiv L D^{1 / 2}$. Since the $L U$ factorization is unique, G is unique.
" \Leftarrow "
Since G is lower triangular with positive diagonal entries, G is nonsingular.

Since A is positive definite,

$$
x^{T} A x>0 \quad \Longrightarrow \quad x^{T} L D L^{T} x=\left(L^{T} x\right)^{T} D\left(L^{T} x\right)>0 .
$$

This means D is also positive definite, and hence $d_{i i}>0$. Thus $D^{1 / 2}$ is well-defined and we have

$$
A=L D L^{T}=L D^{1 / 2} D^{1 / 2} L^{T} \equiv G G^{T}
$$

where $G \equiv L D^{1 / 2}$. Since the $L U$ factorization is unique, G is unique.
" \Leftarrow "
Since G is lower triangular with positive diagonal entries, G is nonsingular. It implies that

$$
G^{T} x \neq 0, \forall x \neq 0
$$

Since A is positive definite,

$$
x^{T} A x>0 \quad \Longrightarrow \quad x^{T} L D L^{T} x=\left(L^{T} x\right)^{T} D\left(L^{T} x\right)>0 .
$$

This means D is also positive definite, and hence $d_{i i}>0$. Thus $D^{1 / 2}$ is well-defined and we have

$$
A=L D L^{T}=L D^{1 / 2} D^{1 / 2} L^{T} \equiv G G^{T}
$$

where $G \equiv L D^{1 / 2}$. Since the $L U$ factorization is unique, G is unique.
" \Leftarrow "
Since G is lower triangular with positive diagonal entries, G is nonsingular. It implies that

$$
G^{T} x \neq 0, \forall x \neq 0
$$

Hence

$$
x^{T} A x=x^{T} G G^{T} x=\left\|G^{T} x\right\|_{2}^{2}>0, \forall x \neq 0
$$

which implies that A is positive definite.

The factorization (7) is referred to as the Cholesky factorization.

The factorization (7) is referred to as the Cholesky factorization. Derive an algorithm for computing the Cholesky factorization:

The factorization (7) is referred to as the Cholesky factorization. Derive an algorithm for computing the Cholesky factorization: Let

$$
A \equiv\left[a_{i j}\right] \text { and } G=\left[\begin{array}{cccc}
g_{11} & 0 & \cdots & 0 \\
g_{21} & g_{22} & \ddots & \vdots \\
\vdots & \vdots & \ddots & 0 \\
g_{n 1} & g_{n 2} & \cdots & g_{n n}
\end{array}\right]
$$

Assume the first $k-1$ columns of G have been determined after steps. By componentwise comparison with

The factorization (7) is referred to as the Cholesky factorization. Derive an algorithm for computing the Cholesky factorization: Let

$$
A \equiv\left[a_{i j}\right] \text { and } G=\left[\begin{array}{cccc}
g_{11} & 0 & \cdots & 0 \\
g_{21} & g_{22} & \ddots & \vdots \\
\vdots & \vdots & \ddots & 0 \\
g_{n 1} & g_{n 2} & \cdots & g_{n n}
\end{array}\right] .
$$

Assume the first $k-1$ columns of G have been determined after $k-1$ steps.

The factorization (7) is referred to as the Cholesky factorization. Derive an algorithm for computing the Cholesky factorization: Let

$$
A \equiv\left[a_{i j}\right] \text { and } G=\left[\begin{array}{cccc}
g_{11} & 0 & \cdots & 0 \\
g_{21} & g_{22} & \ddots & \vdots \\
\vdots & \vdots & \ddots & 0 \\
g_{n 1} & g_{n 2} & \cdots & g_{n n}
\end{array}\right]
$$

Assume the first $k-1$ columns of G have been determined after $k-1$ steps. By componentwise comparison with

$$
\left[a_{i j}\right]=\left[\begin{array}{cccc}
g_{11} & 0 & \cdots & 0 \\
g_{21} & g_{22} & \ddots & \vdots \\
\vdots & \vdots & \ddots & 0 \\
g_{n 1} & g_{n 2} & \cdots & g_{n n}
\end{array}\right]\left[\begin{array}{cccc}
g_{11} & g_{21} & \cdots & g_{n 1} \\
0 & g_{22} & \cdots & g_{n 2} \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & g_{n n}
\end{array}\right]
$$

one has

$$
a_{k k}=\sum_{j=1}^{k} g_{k j}^{2}
$$

which gives

$$
g_{k k}^{2}=a_{k k}-\sum_{j=1}^{k-1} g_{k j}^{2}
$$

hence the k-th column of G can be computed by

which gives

$$
g_{k k}^{2}=a_{k k}-\sum_{j=1}^{k-1} g_{k j}^{2}
$$

Moreover,

$$
a_{i k}=\sum_{j=1}^{k} g_{i j} g_{k j}, \quad i=k+1, \ldots, n
$$

hence the k-th column of G can be computed by
which gives

$$
g_{k k}^{2}=a_{k k}-\sum_{j=1}^{k-1} g_{k j}^{2}
$$

Moreover,

$$
a_{i k}=\sum_{j=1}^{k} g_{i j} g_{k j}, \quad i=k+1, \ldots, n
$$

hence the k-th column of G can be computed by

$$
g_{i k}=\left(a_{i k}-\sum_{j=1}^{k-1} g_{i j} g_{k j}\right) / g_{k k}, \quad i=k+1, \ldots, n
$$

Algorithm 6 (Cholesky Factorization)

Given an $n \times n$ symmetric positive definite matrix A, this algorithm computes the Cholesky factorization $A=G G^{T}$.

Initialize $G=0$
For $k=1, \ldots, n$

$$
G(k, k)=\sqrt{A(k, k)-\sum_{j=1}^{k-1} G(k, j) G(k, j)}
$$

$$
\text { For } i=k+1, \ldots, n
$$

$$
G(i, k)=\left(A(i, k)-\sum_{j=1}^{k-1} G(i, j) G(k, j)\right) / G(k, k)
$$

End For
 End For

In addition to n square root operations, there are aporoximately

Algorithm 6 (Cholesky Factorization)

Given an $n \times n$ symmetric positive definite matrix A, this algorithm computes the Cholesky factorization $A=G G^{T}$.

Initialize $G=0$
For $k=1, \ldots, n$

$$
\begin{aligned}
& G(k, k)=\sqrt{A(k, k)-\sum_{j=1}^{k-1} G(k, j) G(k, j)} \\
& \text { For } i=k+1, \ldots, n \\
& \qquad G(i, k)=\left(A(i, k)-\sum_{j=1}^{k-1} G(i, j) G(k, j)\right) / G(k, k)
\end{aligned}
$$

End For
End For

In addition to n square root operations, there are approximately

$$
\sum_{k=1}^{n}[2 k-2+(2 k-1)(n-k)]=\frac{1}{3} n^{3}+\frac{1}{2} n^{2}-\frac{5}{6} n
$$

Band matrix

Definition 24

An $n \times n$ matrix A is called a band matrix if $\exists p$ and q with $1<p, q<n$ such that

$$
a_{i j}=0 \text { whenever } p \leq j-i \text { or } q \leq i-j
$$

The bandwidth of a band matrix is defined as $w=p+q-1$. That is

$$
A=\left[\begin{array}{cccccc}
a_{11} & \cdots & a_{1 p} & 0 & \cdots & 0 \\
\vdots & \ddots & & \ddots & \ddots & \vdots \\
a_{q 1} & & \ddots & & \ddots & 0 \\
0 & \ddots & & \ddots & & a_{n-p+1, n} \\
\vdots & \ddots & \ddots & & \ddots & \vdots \\
0 & \cdots & 0 & a_{n, n-q+1} & \cdots & a_{n n}
\end{array}\right]
$$

Definition 25

A square matrix $A=\left[a_{i j}\right]$ is said to be tridiagonal if

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & & 0 \\
a_{21} & a_{22} & \ddots & \\
& \ddots & \ddots & a_{n-1, n} \\
0 & & a_{n, n-1} & a_{n, n}
\end{array}\right]
$$

[^2]
Definition 25

A square matrix $A=\left[a_{i j}\right]$ is said to be tridiagonal if

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & & 0 \\
a_{21} & a_{22} & \ddots & \\
& \ddots & \ddots & a_{n-1, n} \\
0 & & a_{n, n-1} & a_{n, n}
\end{array}\right]
$$

If Gaussian elimination can be applied safely without pivoting.

Definition 25

A square matrix $A=\left[a_{i j}\right]$ is said to be tridiagonal if

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & & 0 \\
a_{21} & a_{22} & \ddots & \\
& \ddots & \ddots & a_{n-1, n} \\
0 & & a_{n, n-1} & a_{n, n}
\end{array}\right]
$$

If Gaussian elimination can be applied safely without pivoting. Then L and U factors would have the form
$L=\left[\begin{array}{cccc}1 & & & \\ \ell_{21} & 1 & & \\ & \ddots & \ddots & \\ 0 & & \ell_{n, n-1} & 1\end{array}\right]$ and $U=\left[\begin{array}{cccc}u_{11} & u_{12} & & 0 \\ & u_{22} & \ddots & \\ & & \ddots & u_{n-1, n} \\ & & & u_{n n}\end{array}\right]$,
and the entries are computed by the simple algorithm which only

Definition 25

A square matrix $A=\left[a_{i j}\right]$ is said to be tridiagonal if

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & & 0 \\
a_{21} & a_{22} & \ddots & \\
& \ddots & \ddots & a_{n-1, n} \\
0 & & a_{n, n-1} & a_{n, n}
\end{array}\right]
$$

If Gaussian elimination can be applied safely without pivoting. Then L and U factors would have the form
$L=\left[\begin{array}{cccc}1 & & & \\ \ell_{21} & 1 & & \\ & \ddots & \ddots & \\ 0 & & \ell_{n, n-1} & 1\end{array}\right]$ and $U=\left[\begin{array}{cccc}u_{11} & u_{12} & & 0 \\ & u_{22} & \ddots & \\ & & \ddots & u_{n-1, n} \\ & & & u_{n n}\end{array}\right]$,
and the entries are computed by the simple algorithm which only costs $3 n$ flops.

Algorithm 7 (Tridiagonal $L U$ Factorization)

This algorithm computes the $L U$ factorization for a tridiagonal matrix without using pivoting strategy.

```
\(U(1,1)=A(1,1)\)
For \(i=2, \ldots, n\)
    \(U(i-1, i)=A(i-1, i)\)
    \(L(i, i-1)=A(i, i-1) / U(i-1, i-1)\)
    \(U(i, i)=A(i, i)-L(i, i-1) U(i-1, i)\)
```

End For

A tridiagonal linear system arises in many applications, such as finite difference discretization to second order linear boundary-value problem and the cubic spline approximations

Algorithm 7 (Tridiagonal $L U$ Factorization)

This algorithm computes the $L U$ factorization for a tridiagonal matrix without using pivoting strategy.

```
\(U(1,1)=A(1,1)\)
For \(i=2, \ldots, n\)
    \(U(i-1, i)=A(i-1, i)\)
    \(L(i, i-1)=A(i, i-1) / U(i-1, i-1)\)
    \(U(i, i)=A(i, i)-L(i, i-1) U(i-1, i)\)
```

End For

A tridiagonal linear system arises in many applications, such as finite difference discretization to second order linear boundary-value problem and the cubic spline approximations.

Exercise

Page 425: 2, 6, 12, 15, 17, 19, 20, 21

[^0]: - Perform $\left(E_{2}\right.$

[^1]: Definition 14
 A matrix A is oositive definite if it is symmetric and

[^2]: If Gaussian elimination can be applied safely without pivoting. Then L and U factors would have the form

