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Linear systems of equations

Linear systems of equations

Three operations to simplify the linear system:
Q@ (\E;) — (E;): Equation E; can be multiplied by \ # 0 with
the resulting equation used in place of F;.
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Linear systems of equations

Linear systems of equations

Three operations to simplify the linear system:
Q@ (\E;) — (E;): Equation E; can be multiplied by \ # 0 with
the resulting equation used in place of F;.
Q (E; + \E;) — (E;): Equation E; can be multiplied by A # 0
and added to equation F; with the resulting equation used
in place of F;.
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Linear systems of equations

Linear systems of equations

Three operations to simplify the linear system:

Q@ (\E;) — (E;): Equation E; can be multiplied by \ # 0 with
the resulting equation used in place of F;.

Q (E; + \E;) — (E;): Equation E; can be multiplied by A # 0
and added to equation F; with the resulting equation used
in place of F;.

©Q (E) < (E;): Equation E; and E; can be transposed in
order.
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Linear systems of equations

Linear systems of equations

Three operations to simplify the linear system:
Q@ (\E;) — (E;): Equation E; can be multiplied by \ # 0 with
the resulting equation used in place of F;.
Q (E; + \E;) — (E;): Equation E; can be multiplied by A # 0
and added to equation F; with the resulting equation used

in place of F;.

©Q (E) < (E;): Equation E; and E; can be transposed in
order.

(Examplet
FEy: r1 + T2 + 3zy = 4,
Ey: 2x1 4+ a9 — 3 + x4 = 1,
Es: 3x1 — 1z — x3 + 224 = -3,
Ey: —x1 + 229 + 33 — T4 = 4.
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Linear systems of equations

Solution:

(*] (E2 — 2E1) — (EQ), (Eg — 3E1) — (Eg) and
(E4 + El) — <E4>:

EFi: 21 + 1o + 3xr4 = 4,
E2 : — Tro — r3 — 5564 = —7,
Es: — 4xy — x3 — Txy = -—1b5,

FEy: 3rs + 3x3 + 2x4 = 8.

107985



Linear systems of equations

Solution:

(*] (E2 — 2E1) — (EQ), (Eg — 3E1) — (Eg) and
(E4 + El) — <E4>:

Eli
Es
Eg:
E4:

x1

_|_

x2
z2
41’2
31‘2

+

3
z3
3.%'3

BRI
5:64
Txy
2.%4

o (Eg — 4E2) — (Eg) and (E4 + 3E2) — (E4):

I

+

Z2
Z2

z3
3x3

324
5.%'4
134
1324
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Linear systems of equations

@ Backward-substitution process:
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Linear systems of equations

@ Backward-substitution process:
o Ey, = z4=1
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Linear systems of equations

@ Backward-substitution process:
o Ey, = z4=1
© Solve E; for z3:

1 1
w3 = (13— 1324) = (13- 13) =0.
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Linear systems of equations

@ Backward-substitution process:
o Ey, = z4=1
© Solve E; for z3:

1 1
w3 = (13— 1324) = (13- 13) =0.

© E, gives

x9=—(-T4+5x4+23)=—(-7T+5+0)=2.
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Linear systems of equations

@ Backward-substitution process:
o Ey, = z4=1
© Solve E; for z3:

1 1
w3 = (13— 1324) = (13- 13) =0.

© E, gives

xo=—(=T+bxg+23)=—(—74+5+0)=2.

Q E gives

1 =4—-3x4—20=4—-3—-2=-1.
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Linear systems of equations

Solve linear systems of equations

a1121 + a1ra + -+ apr, = by
ag1x1 + ax + - -+ + a2y, = bQ
Ap1T1 + Ap2T2 + -+ AppTy, = by

4177988



Linear systems of equations

Solve linear systems of equations

a1121 + a1ra + -+ apr, = by
ag1x1 + ax + - -+ + a2y, = b2
Ap1T1 + Ap2T2 + -+ AppTy, = by

Rewrite in the matrix form

Ax = b, (1)
where

air a2 - Qin b1 x1
a1 G2 - Q2p bo )

anl Aanp2 -  Qpp by, In
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Linear systems of equations

Solve linear systems of equations

a1121 + a1ra + -+ apr, = by
ag1x1 + ax + - -+ + a2y, = b2
Ap1T1 + Ap2T2 + -+ AppTy, = by

Rewrite in the matrix form

Ax = b, (1)
where
air a2 - Qin b1 x1
a1 G2 - Q2p bo )
A= b= o=
an1 Gp2 - Qnn bn, In

and [A, b] is called the augmented matrix.

1079EE



Linear systems of equations

Gaussian elimination with backward substitution

The augmented matrix in previous example is

1 1 0 3 4
2 1 -1 1 1
3 -1 -1 2|1 -3
-1 2 3 -1 4
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Linear systems of equations

Gaussian elimination with backward substitution

The augmented matrix in previous example is

1 1 0 3 4
2 1 -1 1 1
3 -1 -1 21 -3
-1 2 3 -1 4
(*] (E2 — 2E1) — (Eg , (E3 — 3E1) — (Eg) and (E4 + El) — (E4):

)

1 1 0 3 4
0 -1 -1 =5| -7
0 -4 -1 —-7|-15
0 3 3 2 8

24798585



Linear systems of equations

Gaussian elimination with backward substitution

The augmented matrix in previous example is

1 1 0 3 4
2 1 -1 1 1
3 -1 -1 21 -3
-1 2 3 -1 4
(*] (E2 — 2E1) — (Eg), (E3 — 3E1) — (Eg) and (E4 + El) — (E4):

1 1 0 3 4
0 -1 -1 =5| -7
0 -4 -1 —-7|-15
0 3 3 2 8

(*] (E3 — 4E2) — (Eg) and (E4 + 3E2) — (E4):

1 0 3 4
1 -1 -5 =7
0 3 13 13
0 0 —13|-13

1
0 —
0
0
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Linear systems of equations

The general Gaussian elimination procedure
@ Provided ay; #0,foreach:=2,3,...,n,

(E — E1> 5 (E)).

a11
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Linear systems of equations

The general Gaussian elimination procedure
@ Provided ay; #0,foreach:=2,3,...,n,

(E — E1> 5 (E)).

a11

Transform all the entries in the first col. below the diagonal are
zero.
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Linear systems of equations

The general Gaussian elimination procedure
@ Provided ay; #0,foreach:=2,3,...,n,

(E — E1> 5 (E)).

a11

Transform all the entries in the first col. below the diagonal are
zero. Denote the new entry in the ith row and jth col. by a;;.
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Linear systems of equations

The general Gaussian elimination procedure
@ Provided ay; #0,foreach:=2,3,...,n,

(E — E1> 5 (E)).

a11

Transform all the entries in the first col. below the diagonal are
zero. Denote the new entry in the ith row and jth col. by a;;.

@ Fori=2,3...,n—1, provided a;; # 0,

(Ej—“*”Ei> S (), Vi=i+1,i+2,....n
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Linear systems of equations

The general Gaussian elimination procedure
@ Provided ay; #0,foreach:=2,3,...,n,

(E — E1> 5 (E)).

a11

Transform all the entries in the first col. below the diagonal are
zero. Denote the new entry in the ith row and jth col. by a;;.

@ Fori=2,3...,n—1, provided a;; # 0,
(Ej—“*”Ei> S (), Vi=i+1,i+2,....n
Qi

Transform all the entries in the ith column below the diagonal
are zero.
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Linear systems of equations

The general Gaussian elimination procedure
@ Provided ay; #0,foreach:=2,3,...,n,

(E — E1> 5 (E)).

a11

Transform all the entries in the first col. below the diagonal are
zero. Denote the new entry in the ith row and jth col. by a;;.

@ Fori=2,3...,n—1, provided a;; # 0,
(Ej—“*”Ei> S (), Vi=i+1,i+2,....n
Qi

Transform all the entries in the ith column below the diagonal
are zero.

@ Result an upper triangular matrix:

aiy G2 -+ G | b
0 axx -+ a2, | bo
o - 0 ann | bn

DI Y144



Linear systems of equations

The process of Gaussian elimination result in a sequence of
matrices as follows:

A=AM - A@ ... 5 A™ = ypper triangular matrix
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Linear systems of equations

The process of Gaussian elimination result in a sequence of
matrices as follows:

A=AM - A@ ... 5 A™ = ypper triangular matrix

The matrix A¥) has the following form:

o o d e [ a6 ]
:al(fk—_llll—l aék__f,l a;’“_—llj) az(c/:l%
g0 _ |00 7;53 a0 'a;(fff
O N I S
oo e e a

2079855



Linear systems of equations

The entries of A%) are produced by the formula

af-f*l), fori=1,....k—1,7=1,...,n;
(k) _ ) O fori=+k, ....n,j=1,....k—1
B O v B

a;; = g xay 5, fori=k,...onj=k...n

2479855



Linear systems of equations

The entries of A%) are produced by the formula

k—1 . .
afi‘ ), fori=1,....k—1,7=1,...,n;
k) _ ) 0, fori=Fk,...,n,7=1,...,k—1;
B T s S T
v— i,k—]1 v— : - 7N —
a;; 7a(k¥1>l xap 5, fori=k,...onj=k. ... n
k—1,k—1

@ The procedure will fail if one of the elements ag?, ag), e

aﬁf,‘) is zero.

2971985



Linear systems of equations

The entries of A%) are produced by the formula

(1&?771), fori = s k—=1,7=1,....,n;
k) _ ) 0, fori=Fk,...,n,7=1,...,k—1;
“ T oy e (k—1)

a; - Tt X ay_1j, fori=k,....on,j=k. .. n

Ap—1,k—1

@ The procedure will fail if one of the elements ag?, ag), e
ally is zero.

o a” is called the pivot element.

227988



Linear systems of equations

Backward substitution

The new linear system is triangular:

anri + aipr2 + -+ awTp, = by,
agerz + - 4+ ax, = b,
ApnTn = by

2479885



Linear systems of equations

Backward substitution

The new linear system is triangular:

anri + aipr2 + -+ awTp, = by,
agerz + - 4+ ax, = b,
UpnTn, = by
@ Solving the nth equation for x,, gives
b,
Ty = —.

ann

25798585



Linear systems of equations

Backward substitution

The new linear system is triangular:

a1z + apprs + -+ 4T, = by,
azTy + -+ amn, = b,
UpnTn = by
@ Solving the nth equation for x,, gives
bn
Ty = —.
ann
@ Solving the (n — 1)th equation for x,,_; and using the value for
p yields

x _ bnfl — Ap—1,nTn
n—-1— - -
Gn—1,n—-1

267985



Linear systems of equations

Backward substitution

The new linear system is triangular:

ap1ry + apr2 + - 4+ awmr, = b,
a22T2 + -+ AT, = by,
UpnTn, = by
@ Solving the nth equation for x,, gives
bn,
Tp = —.
ann
@ Solving the (n — 1)th equation for x,,_; and using the value for
p yields
_ bnfl — Ap—1,nTn
Tp] = —————.
Gn—1,n—-1
@ In general,
by — > a4y
T = — 2jmiet % I Vi=n—-1,n-2,...,1.

Qi
7 a7lokk



Linear systems of equations

Algorithm 1 (Backward Substitution)

Suppose that U € R™*" is nonsingular upper triangular and
b € R™. This algorithm computes the solution of Uz = b.

Fori=mn,...,1
tmp =0
Forj=i+1,...,n
tmp =tmp + U(i,j) * x(j)
End for
2(i) = (b(i) — tmp) /U (3, 1)
End for

207955



Linear systems of equations

Solve system of linear equations.

6 -2 2 47 x 12
12 -8 6 10| | x| | 34
3 —13 9 3| |as | | 27
—6 41 —18 | | a4 —38

2079855



Linear systems of equations

Solve system of linear equations.

6 -2 2 47 x 12
12 -8 6 10| | x| | 34
3 —13 9 3| |as | | 27
—6 41 —18 | | a4 —38

Solution:

1%t step Use 6 as pivot element, the first row as pivot row,

and multipliers 2, %, —1 are produced to reduce the

system to
6 -2 2 4 T 12
0 —4 2 2| |x| | 10
0 —12 8 1 x3 | 21
0 2 3 —14 T4 —26

407928558



Linear systems of equations

2" step Use —4 as pivot element, the second row as pivot
row, and multipliers 3, —% are computed to reduce
the system to

6 -2 2 471 [m= 12
0 -4 2 2| |la]| | 10
0 02 5| |las]| | -9
0 0 4 13| | a4 —21

417988



Linear systems of equations

2" step Use —4 as pivot element, the second row as pivot
row, and multipliers 3, —% are computed to reduce
the system to

6 -2 2 471 [m= 12
0 -4 2 2| |a]| | 10
0 02 5| |las]| | -9
0 0 4 13| | a4 —21

37! step Use 2 as pivot element, the third row as pivot row,
and multipliers 2 is found to reduce the system to

6 -2 2 41[m= 12
0 =4 2 2| |a| | 10
0 02 5| |a| | -9
0 00 =3 |2 -3

49719858



Linear systems of equations

4" step The backward substitution is applied:

Zq

T3

Z2

x7

-3
7:1’
-3
—9+5$4_—9+5__2
2 27
10 —2z4 — 225 10—244 5
—4 - —4 -
12—4$4—2$3+2$2_12—4+4—6_
6 N 6 -

1.

A7 9858



Linear systems of equations

4" step The backward substitution is applied:

Zq

T3

Z2

x7

@ This example is done since a,(jg) #£0forall k =1,2,3,4.

-3
7:1’
-3
—9+5.T4_—9+5__2
2 27
10 — 224 — 223 10—2+4__3
—4 - —4 -
12—4$4—2$3+2$2_12—4+4—6_
6 N 6 -

1.

44719858



Linear systems of equations

4" step The backward substitution is applied:

Zq

T3

Z2

x7

@ This example is done since a,(jg) #£0forall k =1,2,3,4.

@ Howtodoifa

-3
7:1’
-3
—9+5.T4_—9+5__2
2 27
10 — 224 — 223 10—2+4__3
—4 - —4 -
12—4$4—2$3+2$2_12—4+4—6_
6 N 6 -

we = 0 for some £7?

1.

AR 71988



Linear systems of equations

Solve system of linear equations.

1 -1 2 -1 a1 -8
2 -2 3 3| |2 | | -20
1 11 0 zs | | =2
1 -1 4 3| | ay 4

V. (ybli3



Linear systems of equations

Solve system of linear equations.

1 -1
2 =2
1 1
1 -1

2
3
1
4

=1l
-3

0
3

-8

Solution:

1%t step Use 1 as pivot element, the first row as pivot row,
and multipliers 2,1, 1 are produced to reduce the

system to

o O o=

o N O =

-8
—4
6
12

Aa4A771 988



Linear systems of equations

24 step Since a;? =0 and ag) # 0, the operation
(E2) < (E3) is performed to obtain a new system

1 -1 2 —17[m -8
0 2 -1 1 ||a| | 6
0 0 -1 —1||a| | -4
0 0 2 4]|m 12

AR 719858



Linear systems of equations

24 step Since a;? =0 and ag) # 0, the operation
(E2) < (E3) is performed to obtain a new system

1 -1 2 —17[m -8
0 2 -1 1 ||a| | 6
0 0 -1 —1||a| | -4
0 0 2 4]|m 12

37" step Use —1 as pivot element, the third row as pivot
row, and multipliers —2 is found to reduce the

system to
1 -1 2 -1 T -8
0 2 -1 1| |x| | 6
0 0 -1 -1 x3 | | —4
0 0 0 2 Ty 4

4979858



Linear systems of equations

4" step The backward substitution is applied:

4
= — = 2
T4 2 )
—4
gy = AT,
—1
6_
gy = STmata o
2
—8+ x4 — 223 + T2
r1r = =—T.

1

BN7985



Linear systems of equations

4" step The backward substitution is applied:

4
= — = 2
T4 2 )
—4
o ﬁ:Z,
-1
6 —
vy — $4+1‘3:3’
2
—8+ x4 — 223 + T2
r1r = =—T.

1
u

@ This example illustrates what is done if a,i’z) = 0 for some k.

517985



Linear systems of equations

4" step The backward substitution is applied:
4

= - = 2
T4 2 )
—4
gy = AT,
—1
6_
gy = STmata o
2
—8+ x4 — 223 + T2
r1r = =—T.

1
u

@ This example illustrates what is done if a,i’z) = 0 for some k.

o If ag,? # 0 for some p with & + 1 < p < n, then the operation
(Ex) < (E,) is performed to obtain new matrix.

B279855



Linear systems of equations

4" step The backward substitution is applied:

4
= — = 2
T4 2 )
—4
r3 = +x4:2,
—1
6 — x4+ 23
o = 72 :3,
—8+ x4 — 223 + T2
r1r = =—T.

1
u

@ This example illustrates what is done if a,i’z) = 0 for some k.

o If ag,? # 0 for some p with & + 1 < p < n, then the operation
(Ex) < (E,) is performed to obtain new matrix.

o If a](]];) = 0 for each p, then the linear system does not have

a unique solution and the procedure stops.

B?79855



Linear systems of equations

Algorithm 2 (Gaussian elimination)

Given A € R™*"™ and b € R", this algorithm implements the
Gaussian elimination procedure to reduce A to upper triangular
and modify the entries of b accordingly.
Fork=1,...,n—1
Let p be the smallest integer with £ < p < n and ay, # 0.
If A p, then stop.
If p # k, then perform (E,) < (Ey).
Fori=k+1,...,n
t=A(i, k)/A(k, k)
A(i, k) =0
b(i) = b(i) — t x b(k)
Forj=k+1,...,n
A(Zaj) = A(Zh]) —tX A<k7.7)
End for
End for
End for

B 7955



Linear systems of equations

Number of floating-point arithmetic operations

Eliminate £th column

Fori=k+1,....n
t=A(i, k)/A(k,k); b(i) = b(i) — t x b(k).
Forj=k+1,...,n
A(i, j) = A(i,5) — t x A(k, 5)
End for
End for

BRE79858



Linear systems of equations

Number of floating-point arithmetic operations

Eliminate £th column

Fori=k+1,....n
t=A(i, k)/A(k,k); b(i) = b(i) — t x b(k).
Forj=k+1,...,n
A(i, j) = A(i,5) — t x A(k, 5)
End for
End for

@ Multiplications/divisions
m—k)+(n—k)+n—-kin—k)=mn—-k)(n—k+2)

BR798K8



Linear systems of equations

Number of floating-point arithmetic operations

Eliminate £th column

Fori=k+1,....n
t=A(i, k)/A(k,k); b(i) = b(i) — t x b(k).
Forj=k+1,...,n
A(i, j) = A(i,5) — t x A(k, 5)
End for
End for

@ Multiplications/divisions
m—k)+(n—k)+n—-kin—k)=mn—-k)(n—k+2)

@ Additions/subtractions
m—k)+(n—k)n—k)=Mn—-k)(n—k+1)

R77988



Linear systems of equations

@ Total number of operations for multiplications/divisions

n—1 ne1
S (n—k)n—k+2) =3 (1 — 20k + K + 20 — 2k)
k=1 k=1
n—1 n—1 no1
= (n2—|—2n>21—2(n+1)2k+2k,2
k=1 k=1 k=1
= (m2+2n)(n—1)—2(n+1) (n=Dn  (n=1)n(2n—1)

6
2n3 4+ 3n? — 5n
s )

BR7T9858



Linear systems of equations

@ Total number of operations for multiplications/divisions

n—1 ne1
S (n—k)n—k+2) =3 (1 — 20k + K + 20 — 2k)
k=1 k=1
n—1 n—1 no1
= (n2—|—2n>21—2(n+1)2k+2k,2
k=1 k=1 k=1
= (m2+2n)(n—1)—2(n+1) (n=Dn  (n=1)n(2n—1)

6
2n3 4+ 3n? — 5n

G .
@ Total number of operations for additions/subtractions

n—1 n—1
Y (n=k)(n-k+1)=> (0’ —2nk+k +n—k)
k=1 k=1
n—1 n—1 n—1 n3 n
2 2 —
= 1-(2n+1 k k=
(n +n)z (2n+1) + 3

k=1 k=1 k=1

EQ7OEE



Linear systems of equations

Backward substitution
xz(n) =b(n)/U(n,n).

Fori=n—1,...,1
tmp=U(3,i+1) x z(i + 1)
Forj=i+2,...,n

tmp = tmp + U (i, 5) x z(j)

End for
2(3) = (b(3) — tmp) /U (i, i)
End for

6079855



Linear systems of equations

Backward substitution
xz(n) =b(n)/U(n,n).

Fori=n—1,...,1
tmp=U(3,i+1) x z(i + 1)
Forj=i+2,...,n

tmp = tmp + U (i, 5) x z(j)

End for
2(3) = (b(3) — tmp) /U (i, i)
End for

@ Multiplications/divisions

n2+n

1+i[(n—i)+1}: 5

61798558



Linear systems of equations

Backward substitution

xz(n) =b(n)/U(n,n).

Fori=n—1,...,1

tmp=U(3,i+1) x z(i + 1)

Forj=i+2,...

tmp = tmp + U (i, 5) x z(j)

End for

2(i) = (b(i) — tmp) /U (i, )

End for

,n

@ Multiplications/divisions
n—1

L+ [(n—i)+
1=1

@ Additions/subtractions

n—1

dln—i-1)+

=1

1}:n2+n
2

1}:712771
2

A2 7198558



Linear systems of equations

The total number of arithmetic operations in Gaussian
elimination with backward substitution is:

ARR79858



Linear systems of equations

The total number of arithmetic operations in Gaussian
elimination with backward substitution is:

@ Multiplications/divisions

n
6 2 3

2n +3n%? —5n  n?+n 3 2 n?
3

RA7198558



Linear systems of equations

The total number of arithmetic operations in Gaussian
elimination with backward substitution is:

@ Multiplications/divisions

2n* +3n2 —5n  n?+n n? s n _n?
e — + n® — — =~ —
6 2 3 3 3
@ Additions/subtractions
nd—n n?2-n 3 2 5n n3

AR 798558



Linear systems of equations

Page 368: 5, 10, 12, 15

AR 71988



Pivoting Strategies

Pivoting Strategies

o If agz) is small in magnitude compared to ag.’,?, then
()
ajp,

Imjk| = | =5

R771988



Pivoting Strategies

Pivoting Strategies

o If a(k) is small in magnitude compared to agl,?, then

o
Imil = |55 | > 1
a
kk
Round-off error introduced in the computation of

%H) agg) mjkagz), for e=Fk+1,.

ARR7988



Pivoting Strategies

Pivoting Strategies

o If a(k) is small in magnitude compared to agl,?, then
|mk| = |5 > 1.
J aF)

Round-off error introduced in the computation of

%H) agg) mjkagz), for e=Fk+1,.
@ Error can be increased when performing the backward
substitution for
k
by, — Z] =k+1 al(cg)xj

k= D)
kk

with a small value of a,(f;).

RO 79858



Pivoting Strategies

Example 4

The linear system

Ep: 0.003000z; + 59.14z9 = 59.17,
Es 5.291zy — 6.130z2 = 46.78,

has the exact solution z; = 10.00 and z2 = 1.000. Suppose
Gaussian elimination is performed on this system using
four-digit arithmetic with rounding.

707985



Pivoting Strategies

Example 4

The linear system

Ep: 0.003000z; + 59.14z9 = 59.17,
Es 5.291zy — 6.130z2 = 46.78,

has the exact solution z; = 10.00 and z2 = 1.000. Suppose
Gaussian elimination is performed on this system using
four-digit arithmetic with rounding.

@ a1 = 0.0030 is small and
5.291

= ——— =1763.66 ~ 1764.
0.0030

ma1

74179858



Pivoting Strategies

Example 4

The linear system

Ep: 0.003000z; + 59.14z9 = 59.17,
Es 5.291zy — 6.130z2 = 46.78,

has the exact solution z; = 10.00 and z2 = 1.000. Suppose
Gaussian elimination is performed on this system using
four-digit arithmetic with rounding.

@ a1 = 0.0030 is small and
5.291

= ——— =1763.66 ~ 1764.
0.0030

mai
@ Perform (Ey — mo1 Ey) — (E2):

0.0030z; + 099.14zy = 59.17
— 104309.376z2 = —104309.376.

79798585



Pivoting Strategies

@ Rounding with four-digit arithmetic:
Coefficient of x5:

—6.130 — 1764 x 59.14 = —6.130 — 104322.96
~ —6.130 — 104300 = —104306.13
—104300.

Q

72798558



Pivoting Strategies

@ Rounding with four-digit arithmetic:
Coefficient of x5:

—6.130 — 1764 x 59.14 = —6.130 — 104322.96
~ —6.130 — 104300 = —104306.13
~ —104300.

Right hand side:

46.78 — 1764 x 59.17 = 46.78 — 104375.88
~ 46.78 — 104400 = —104353.22
—104400.

74719885



Pivoting Strategies

@ Rounding with four-digit arithmetic:
Coefficient of x5:

—6.130 — 1764 x 59.14 = —6.130 — 104322.96
~ —6.130 — 104300 = —104306.13
~ —104300.

Right hand side:

46.78 — 1764 x 59.17 = 46.78 — 104375.88
~ 46.78 — 104400 = —104353.22
—104400.

New linear system:

0.0030z; +  959.14z2 = 59.17
— 104300z2 —104400.

Q

7579855



Pivoting Strategies

@ Approximated solution:

104400

= ~ 1.001
2 104300 = 1008

5917 -59.14 x 1.001 _ 59.17 — 59.19914
"= 0.0030 - 0.0030

59.17 — 59.20
~ 22799 g0.00.
0.0030

This ruins the approximation to the actual value x; = 10.00.
[ ]

767985



Pivoting Strategies

Partial pivoting

@ To avoid the pivot element small relative to other entries,
pivoting is performed by selecting an element a;(,]fl) with a

larger magnitude as the pivot.

77719885



Pivoting Strategies

Partial pivoting

@ To avoid the pivot element small relative to other entries,
pivoting is performed by selecting an element a;(,]fl) with a
larger magnitude as the pivot.

@ Specifically, select pivoting ag,? with

(k)| _ (k)
lay | = ax [

and perform (Ej) < (Ep).

7R798585



Pivoting Strategies

Partial pivoting

@ To avoid the pivot element small relative to other entries,
pivoting is performed by selecting an element a;(,]fl) with a
larger magnitude as the pivot.

@ Specifically, select pivoting ag,? with

(k)| _ (k)
lay | = ax [

and perform (Ej) < (Ep).
@ This row interchange strategy is called partial pivoting.

7979855



Pivoting Strategies

Reconsider the linear system

Ep: 0.003000z; + 59.14z9 = 59.17,
Es 5.291z; — 6.130x2 = 46.78.

an72858



Pivoting Strategies

Reconsider the linear system

Ep: 0.003000z; + 59.14z9 = 59.17,
Es 5.291z; — 6.130x2 = 46.78.

@ Find pivoting with

max{]anl, ’agll} =5.291 = ’a21’.

2479858



Pivoting Strategies

Reconsider the linear system

Ep: 0.003000z; + 59.14z9 = 59.17,
Es 5.291z; — 6.130x2 = 46.78.

@ Find pivoting with

max{]anl, ’agll} =5.291 = ’a21’.
@ Perform (E») <> (E1):

Ey: 5.291z; — 6.130z9 = 46.78,
Ey: 0.003000z; + 59.14z9 = 59.17.

Q979K



Pivoting Strategies

Reconsider the linear system

Ep: 0.003000z; + 59.14z9 = 59.17,
Es 5.291z; — 6.130x2 = 46.78.

@ Find pivoting with

max{]anl, ’agll} =5.291 = ’a21’.

@ Perform (E») <> (E1):

Ey: 5.291z; — 6.130z9 = 46.78,
Ey: 0.003000z; + 59.14z9 = 59.17.

@ The multiplier for new system is

may = 22X = 0.0005670.
all

Q2 7198K



Pivoting Strategies

@ The operation (Ey — me1 E1) — (E2) reduces the system to

5.291z; — 6.130z2 = 46.78,
59.14x4 09.14.

Q
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Pivoting Strategies

@ The operation (Ey — me1 E1) — (E2) reduces the system to

5.291z; — 6.130z2 = 46.78,
59.14x4 09.14.

Q

@ The four-digit answers resulting from the backward
substitution are the correct values z; = 10.00 and
x9 = 1.000. [ |

QR 79858



Pivoting Strategies

Example 6

The linear system

E;: 30.00z; + 591400z2 = 591700,
Ey: 5291z —  6.130z2 =  46.7§,

is the same as that in previous example except that all the
entries in the first equation have been multiplied by 10*.

QRTI98R



Pivoting Strategies

Example 6

The linear system

E;: 30.00z; + 591400z2 = 591700,
Ey: 5291z —  6.130z2 =  46.7§,

is the same as that in previous example except that all the
entries in the first equation have been multiplied by 10*.

The pivoting is a1; = 30.00 and the multiplier

5.291

= 25— 0.1764
50.00 170

ma1

2779858



Pivoting Strategies

Example 6

The linear system

E;: 30.00z; + 591400z2 = 591700,
Ey: 5291z —  6.130z2 =  46.7§,

is the same as that in previous example except that all the
entries in the first equation have been multiplied by 10*.

The pivoting is a1; = 30.00 and the multiplier

5.291

= 25— 0.1764
50.00 170

ma1

leads to the system

30.00x1 + 591400zx2 591700
— 104300z =~ —104400,

1V 144



Pivoting Strategies

Example 6

The linear system

E;: 30.00z; + 591400z2 = 591700,
Ey: 5291z —  6.130z2 =  46.7§,

is the same as that in previous example except that all the
entries in the first equation have been multiplied by 10*.

The pivoting is a1; = 30.00 and the multiplier

5.291
=——=0.1764
ma1 = g5 gp = 0170
leads to the system
30.00x1 4+ 591400z = 591700

— 104300z =~ —104400,

which has inaccurate solution z5 ~ 1.001 and z; ~ —10.00. H

207958



Pivoting Strategies

Scaled partial pivoting

@ Define a scale factor s; as

s; = max l|a;i|, for i =1,.... n.
) 1§j§n|”|7 ) 9

an’/ 9285



Pivoting Strategies

Scaled partial pivoting

@ Define a scale factor s; as

s; = max l|a;i|, for i =1,.... n.
i 1§j§n|”|7 y )

@ If s; = 0 for some i, then the system has no unique
solution.

Q17985



Pivoting Strategies

Scaled partial pivoting

@ Define a scale factor s; as

s; = max l|a;i|, for i =1,.... n.
7 1§j§n|”|7 y )

@ If s; = 0 for some i, then the system has no unique
solution.
@ In the 7th column, choose the least integer p > i with
‘api| — ma |akz|

X —

sp  i<k<n S

and perform (E;) < (E,) if p # i.

Q279855



Pivoting Strategies

Scaled partial pivoting

@ Define a scale factor s; as

s; = max l|a;i|, for i =1,.... n.
i 1§j§n|”|7 y )

@ If s; = 0 for some i, then the system has no unique
solution.
@ In the 7th column, choose the least integer p > i with
lapil _ o lawil
Sp i<k<n S
and perform (E;) < (E,) if p # i.
@ The scale factors sy, ..., s, are computed only once and
must also be interchanged when row interchanges are
performed.

Q79855



Pivoting Strategies

Apply scaled partial pivoting to the linear system

Ey: 30.00z7 + 591400z, = 591700,
Ey: 5291z — 6.130z2 =  46.78.

Q47988



Pivoting Strategies

Apply scaled partial pivoting to the linear system

Ey: 30.00z7 + 591400z, = 591700,
Ey: 5291z — 6.130z2 =  46.78.

The scale factors s; and s, are
s1 = max{|30.00|, |591400|} = 591400
and

s = max{]5.291|, | — 6.130|} = 6.130.

QR 79855



Pivoting Strategies

Apply scaled partial pivoting to the linear system

Ey: 30.00z7 + 591400z, = 591700,
Ey: 5291z — 6.130z2 =  46.78.

The scale factors s; and s, are

s1 = max{|30.00], |591400|} = 591400

and
s = max{]5.291|, | — 6.130|} = 6.130.
Consequently,
|a11| 3000 —4
= = 0.5073 x 10
51 591400 S
|ag | 5.291
= = —0.8631,
So 6.130

and the interchange (E;) < (Fs) is made.

QR /985



Pivoting Strategies

Applying Gaussian elimination to the new system

5.291z1 —  6.130xz2 = 46.78,
30.00x1 + 5914002 591700

produces the correct results: z; = 10.00 and z» = 1.000. [ |

Q77985



Pivoting Strategies

Page 379: 2, 4, 6, 31

QR79858



Matrix factorization

Matrix factorization

@ This equation has a unique solution 2 = A~'b when the
coefficient matrix A is nonsingular.

QQ 79855



Matrix factorization

Matrix factorization

@ This equation has a unique solution = = A~'b when the
coefficient matrix A is nonsingular.

@ Use Gaussian elimination to factor the coefficient matrix
into a product of matrices. The factorization is called
LU-factorization and has the form A = LU, where L is unit
lower triangular and U is upper triangular.

1007 9285



Matrix factorization

Matrix factorization

@ This equation has a unique solution = = A~'b when the
coefficient matrix A is nonsingular.

@ Use Gaussian elimination to factor the coefficient matrix
into a product of matrices. The factorization is called
LU-factorization and has the form A = LU, where L is unit
lower triangular and U is upper triangular.

@ The solution to the original problem Az = LUx = b is then
found by a two-step triangular solve process:

Ly =0, Ux=y.

1017985



Matrix factorization

Matrix factorization

@ This equation has a unique solution = = A~'b when the
coefficient matrix A is nonsingular.

@ Use Gaussian elimination to factor the coefficient matrix
into a product of matrices. The factorization is called
LU-factorization and has the form A = LU, where L is unit
lower triangular and U is upper triangular.

@ The solution to the original problem Az = LUx = b is then
found by a two-step triangular solve process:

Ly =0, Ur=y.

@ LU factorization requires O(n?) arithmetic operations.
Forward substitution for solving a lower-triangular system
Ly = b requires O(n?). Backward substitution for solving
an upper-triangular system Uz = y requires O(n?)
arithmetic operations.

10927985
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Matrix factorization

We have
A=IL;'L;'Ay = LR.

where L and R are lower and upper triangular, respectively.

10479858



Matrix factorization

We have
A=IL;'L;'Ay = LR.

where L and R are lower and upper triangular, respectively.

How to compute L;* and L, '?

10579858



Matrix factorization

We have
A=IL;'L;'Ay = LR.

where L and R are lower and upper triangular, respectively.

How to compute L;* and L, '?

1000 0
-2 100 2

Li=| 561 0|=1" 3[1000]
| 1.0 0 1] -1
[1 0 0 0] [ 0]
0 100 0

Lo=1|o 41 o|=1-| 4|[0100]
[0 3 0 1] =N

10679858



Matrix factorization

Since

[1 00 0] I+ [1 00 0]]=1,

= W N O
—= W N O

10779858



Matrix factorization

Since
0 0
I— 2[1000} I+2[1000]:I
3 3 ’
-1 -1
we have
100 07" 100 0
L_l_—2100 _ 2100
L =1 3010 - 3010
100 1 -1 0 0 1

10R7 9858



Matrix factorization

Since

(01 00]| |1+ (01 00]]|=1,

W O O
Wk O O

10979855



Matrix factorization

Since
0 0
1—0[0100} I+0[0100]:I
4 4 ’
-3 -3
we have
1 001" 1 000
-1 0 100 1o 100
2710 -4 10 10 410
0 30 1 0 -3 0 1

110792858
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Matrix factorization

For a given vector v € R™ with v, # 0 for some 1 < k < n, let

v;

and

Mo=I-tef=| ¢ T, 1

—_
o

0 o —lyp 0 -1

11279858



Matrix factorization

Then one can verify that

Mypw=[v -+ v 0 - 0

11479858



Matrix factorization

Then one can verify that
Mw=[v, - v, 0 - 0]".

M, is called a Gaussian transformation, the vector ¢, a Gauss
vector.

11579858



Matrix factorization

Then one can verify that
Mw=[v, - v, 0 - 0]".

M, is called a Gaussian transformation, the vector ¢, a Gauss
vector. Furthermore, one can verify that

1 .- 0 0O -~ 0
: 0 1 0 0
[l (71— peTV1 — o —
My (I = tret) I+ ey 0 -+ Llrpp 1 0
0 - bpg 0 o 1]

11679858



Matrix factorization

Given a nonsingular matrix A € R™*", denote A" = [al(-;-)] = A.

If aﬁ) # 0, then .
My =1— /ey,

where
T al}
61:[0 «ﬁ,gl énl} 5 le— 7’1,7:2,....77/.
2D
11
can be formed such that
1 1 1
Ry
A(Q) _ MlA(l) _ 0 Qo9 T Qo 7
0 a%) aﬁﬁ%
where
(L,EJQ») = CLEJU — Ui % “(13) fori=2,...,nand j=2,... n.

11779858



Matrix factorization

In general, at the k-th step, we are confronted with a matrix

AR = My My M AD

¢! 1 1 1 1) 7
S

2 2 2

0 ayy - Qg k-1 Aok 2n

_ k1 k—1 k1
- al(e—u)c—l I(czkl)l)c al(czkl),gz
0 kk Opn

11K79858



Matrix factorization

In general, at the k-th step, we are confronted with a matrix

AR = My My M AD

¢! 1 1 1 1) 7
TEE AT

2 2 2

0 ayy -+ a4y, Qo 2n

_ k—1 k-1 k-1
- al(e—u)c—l I(c—l,l)c aé—u)z
o Tl
0 0 0 | a® . a®

11979858



Matrix factorization

can be computed and the Gaussian transformation

M = I*fk(ii{, where /(;, = [ O --- 0 ﬁk—}—l,k oo Ak }T

can be applied to the left of A*) to obtain
AU g A

1 1 1 1 1 1)
agl) ‘1%2; e aé,%1 agk) aé,l)cﬂ T agn)
2 2 p) 2
0 azy -+ Gy, agk) a2,l)c+1 T agn)
(k—-l) (k.—l) (k‘—-l) (k-—l)
_ Ap 1 k-1 akzkl),k akzl),k+1 "' akzl),n
- k k )
0 o - 0 Ak Opk+1 7 Oy
(k+1) (k+1)
0 iy 0 Gpyin
0 0 - 0 0 aflkkti)l U GARY

192079858



Matrix factorization

in which

o) = o

~ liay)) 2)

fori=k+1,...,n,5=k+1,...,n

19179858



Matrix factorization

in which

olb40) _ o0

— ,), 2)
fori=k+1,...,n,j=k+1,...,n. Upon the completion,
U= A(n> = ]\’]n,fl e ]\[2]\[1A

is upper triangular.

19979858



Matrix factorization

in which

o) = o

~ liay)) 2)

fori=k+1,...,n,7=%k~+1,...,n. Upon the completion,
U=A"™ = M,_--- MyM A

is upper triangular. Hence

A=MMyt MU = LU,

197798558



Matrix factorization

where

L=M" MY = (T — el T —tped) ™ (T =ty gel )7
= (I + e )(I+bae3) - (I +Llnre)_y)
=T+ 0] +loed + -+ ly1el

1 0 0 - 0]

lyy 1 o --- 0
— |l 3 1 - 0

_fnl ﬁnQ énS e 1

is unit lower triangular.

1247985



Matrix factorization

where

L=M{ MY = (T —tel) H(I —tbaed) ™ (I —lynel 1)t
— (T +L1el)(I + Loed) -+ (I + £y_1el_))
=T+ el +bel +- by el

1 0 0 --- 0]

£21 1 0 ... 0

_ 531 632 1 - 0
L €n1 EnQ énS e 1 |

is unit lower triangular. This matrix factorization is called the
LU-factorization of A.

19579855



Matrix factorization

Algorithm 3 (LU Factorization)

Given a nonsingular square matrix A € R™*" this algorithm
computes a unit lower triangular matrix . and an upper
triangular matrix U such that A = LU. The matrix A is
overwritten by L and U.

Fork=1,...,n—1
Fori=k+1,...,n
A(i, k) = A(i k) JA(k, k)
Forj=k+1,...,n
End for
End for
End for

192679858



Matrix factorization

Forward Substitution

When a linear system Lx = b is lower triangular of the form

611 0 tee 0 I bl
loy flop -+ 0 T2 B ba
b lpa -+ Upp Tn bn,

where all diagonals /;; # 0,

1977985



Matrix factorization

Forward Substitution

When a linear system Lx = b is lower triangular of the form

611 0 tee 0 I bl
lor fap --- 0 T2 B by
by ln2 - App Tn b,
where all diagonals /;; # 0, z; can be obtained by the following
procedure
z1 = bi/ln,
xo = (b2 —la11)/l22,
3 = (b3 — la171 — L3272)/lss,
Tn = (bn - Enlxl - £r1/2[[72 - fn/,'n,flfljnfl)/gnnn

19879855



Matrix factorization

The general formulation for computing x; is

i—1
T; = h, - th’jfljj /[,, 1= 1,2,..../71/.
J=1
Algorithm 4 (Forward Substitution)

Suppose that L € R™*™ is nonsingular lower triangular and
b € R™. This algorithm computes the solution of Lz = b.

Fori=1,...,n
tmp =0
Forj=1,...;i—1
tmp = tmp + L(i, j) * x(j)
End for
(i) = (b(i) — tmp)/L(i, i)
End for

490 5L



Matrix factorization

Example 8

Ey: r1 + T2 + 3zy = 4,

Ey: 2r7 + x — z3 + x4 = 1,

Es: 3x1 — 1z — x3 + 224 = -3,

Ey: —x1 + 229 + 313 — Ty = 4.
Solution:

@ The sequence {(E2 — 2E1) — (EQ), (Eg — 3E1) — (Eg),
(Ey — (=1)E1) — (E4), (B3 — 4E3) — (E3),
(E4 — (—3)E2) — (E4)} converts the system to the
triangular system

r1 + X9 + 3x4 = 4,
— T2 — r3 — 5%4 = —7,
3rs + 13z4 = 13,

- 13z4 = -13.

12?0N7 9285
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Matrix factorization

@ Solve Ly = b:

1 0 00 Y1 8
2 1 00 y2 | 7
3 4 10 y3 | 14
-1 -3 01 Ya -7
which implies that

y1r = 87

Yz = 7 — 22/1 = —9,

y3 = 14 — 3y — 4y2 = 26,

ys = —T7+y +3y2 = —26.

127979858



Matrix factorization

@ Solve Uz = y:

1 1 0 3][m 8
0 -1 =1 =5 ||a| | -9
0 0 3 13| |as| | 26
0 0 0 —13 | | 24 —26

which implies that

T4 = 2,

xs = (26 —13z4)/3 =0,

ro = (=9+45bxy+x3)/(—1)=—1,
r1 = 8—3r4— 190 =3.

12?7988



Matrix factorization

Partial pivoting

At the k-th step, select pivoting al(j,? with
(k) _ (k)
’apk- | = kllgl%xn |az;; |

and perform (Ej) < (Ep).

1247985



Matrix factorization

Partial pivoting

At the k-th step, select pivoting al(j,? with
(k) _ (k)
’apk- | = kllgl%xn |az;; |

and perform (Ej) < (Ep). That is, choose a permutation matrix

I._1 O 0 0 0
0 0 0 1 0
Po=| 0 0 I,41 0 O
0 1 0 0 0
0 0 0 0 I,
so that
(k) ‘: (k)
‘(PkA )ik Joax (AY)ik
and

1?57985



Matrix factorization

Let P, ..., P._1 be the permutations chosen and My, ... M 4
denote the Gaussian transformations performed in the first
k — 1 steps.

12679858



Matrix factorization

Let P, ..., P._1 be the permutations chosen and My, ... M 4
denote the Gaussian transformations performed in the first

k — 1 steps. At the k-th step, a permutation matrix P is chosen
so that

|(PpMp—1--- M1 Py A)y| = max |(Mp—1--- My PLA)] .

12779858



Matrix factorization

Let P, ..., P._1 be the permutations chosen and My, ... M 4
denote the Gaussian transformations performed in the first

k — 1 steps. At the k-th step, a permutation matrix P is chosen
so that

|(PpMp—1--- M1 Py A)y| = max |(Mp—1--- My PLA)] .

As a consequence, |(;;j| < 1fori=1,...,n,j=1,...,1.

12?R798558



Matrix factorization

Let P, ..., P._1 be the permutations chosen and My, ... M 4
denote the Gaussian transformations performed in the first

k — 1 steps. At the k-th step, a permutation matrix P is chosen
so that

|(PpMp—1--- M1 Py A)y| = max |(Mp—1--- My PLA)] .

As a consequence, |(;;| < 1fori=1,...,n,j=1,...,7. Upon
completion, we obtain an upper triangular matrix

U=M, 1P,_1--- M1 P A. (3)

1297985



Matrix factorization

Let P, ..., P._1 be the permutations chosen and My, ... M 4
denote the Gaussian transformations performed in the first

k — 1 steps. At the k-th step, a permutation matrix P is chosen
so that

|(PpMp—1--- M1 Py A)y| = max |(Mp—1--- My PLA)] .
As a consequence, |(;;| < 1fori=1,...,n,j=1,...,7. Upon
completion, we obtain an upper triangular matrix
U=M, 1P,_1--- M1 P A. (3)
Since any P is symmetric and P! P, = P? = I, we have

My 1Py MaPo M\ Py -+ Py 1Py - PhPLA=U,

14079858



Matrix factorization

Let P, ..., P._1 be the permutations chosen and My, ... M 4
denote the Gaussian transformations performed in the first

k — 1 steps. At the k-th step, a permutation matrix P is chosen
so that

(PuMj_y - Mi P A)i| = Jnax (Mj_y -+ M1 P A .
As a consequence, |(;;| < 1fori=1,...,n,j=1,...,7. Upon
completion, we obtain an upper triangular matrix

U= M, 1P,_1---MPA. (3)

Since any P is symmetric and P! P, = P? = I, we have

My 1Py 1 - Moo My Py - Py 1 Pyq - PPPLA =T,
therefore,

Pyy-PlA= (My_1Pyy- - MyPyMi Py Pyy) UL

14179858



Matrix factorization

In summary, Gaussian elimination with partial pivoting leads to
the LU factorization

PA=LU, (4)

1497988



Matrix factorization

In summary, Gaussian elimination with partial pivoting leads to
the LU factorization

PA= LU, (4)
where
P=P,, --P
is a permutation matrix, and
L = (My_1Py_1- MoPyMiPy---Pyyq)”

= Pyy---PM P MY Py ML

14279858



Matrix factorization

In summary, Gaussian elimination with partial pivoting leads to
the LU factorization

PA = LU, (4)
where
P=P,_,---P
is a permutation matrix, and
L = (My_1Py_1---MoyP,M Py---Py_y)
= Pyy---PM P MY Py ML
Since
S
Iiy 0 0 0 0 ;
0 0 0 1 0 (')
0 1 0 0 0 A
0 0 0 0 Inp :
f’n? 1447988




Matrix factorization

it implies that for i < 7,
I =l =0,

Piti=[0 -+ 0 lig1; Loy

1457988



Matrix factorization

it implies that for i < 7,
I =l =0,

Piti=[0 -+ 0 lig1; Loy

PoM7 Py = Py(I + £yel )Py = T + F1eT

14679858



Matrix factorization

it implies that for i < 7,
I =l =0,

Piti=[0 -+ 0 lig1; Loy
PoM{ Py = Po(I + 01eF)Py = T+ byl

=

PoM{ PoMyt = (I + Grel) (I + baed) = I + lre] + faed,

1477988



Matrix factorization

it implies that for i < 7,
I =l =0,

Piti=[0 -+ 0 lig1; Loy

PoM{YPy = Po(I + 61el)Py = 1 + b1t
-
PM oMyt = (I + Gref (I + toeg) = 1 + lre] + foes,
-

Py (PoaM{'PoMy ) Py =1+ lref + loe]

1487988



Matrix factorization

it implies that for i < 7,
I =l =0,

Piti=[0 -+ 0 lig1; Loy

PoM{YPy = Po(I + 61el)Py = 1 + b1t
-
PoMT Py Myt = (I + 01el ) (T 4 loel) = T+ 01el + 9ed
-
Py (PoaM{'PoMy ) Py =1+ lref + loe]

:> “ ..
Therefore, L is unit lower triangular.

14979858



Matrix factorization

Algorithm 5 (LU-factorization with Partial Pivoting)
Given a nonsingular A € R™*", this algorithm finds a permutation P,
and computes a unit lower triangular L. and an upper triangular U
such that PA = LU. A is overwritten by L and U, and P is not
formed. An integer array p is instead used for storing the row/column
indices.
p(l:n)=1:n
Fork=1,....n—1
m=k
Fori=k+1,.
If |[A(p(m), )\ < \A p(i), k)|, then m =i
End For
L= p(k); p(k) = p(m); p(m) = ¢
Fori=k+1,...,n
Alp(i), ) = Alp(i), B)/Alp(E),
Forj=k+1,.
A(p(i),j) = A(p(?),]) — A(p(3), k)A(p(k), )
End For
End For
End For 180 7oL




Matrix factorization

Since the Gaussian elimination with partial pivoting produces the
factorization (4), the linear system problem should comply accordingly

Ax =b=— PAx = Pb — LUz = Pb.

15179858



Matrix factorization

Since the Gaussian elimination with partial pivoting produces the
factorization (4), the linear system problem should comply accordingly

Ax = b=— PAx = Pb — LUz = Pb.

Example 9
Find an LU factorization of

0 1 -1 1
1 1 -1 2
A=14 1 1 9
1 2 0 2

159798558



Matrix factorization

Since the Gaussian elimination with partial pivoting produces the
factorization (4), the linear system problem should comply accordingly

Ax = b=— PAx = Pb — LUz = Pb.

Example 9
Find an LU factorization of

0 1 -1 1
1 1 -1 2
A=14 1 1 9
1 2 0 2

o ( ) 4 (EQ), (E3 + E1> — (Eg) and (E4 — El) — (E4>:

11 -1 2 01 00 1 000
@_ |01 -1 1 |1 o000 | 0100
A 00 o 2|N 001 0| M 1010

01 10 00 0 1 -1 0 0 1

15279858



c
L
=
©
N
=
S
2
°
]
8
x
i
=
©
=

o (E3) > (E4) and (E3 — Ez) — (Eg):

o o O -

S o~ O

O - — O

— O O O

3M2:

S o~ O

S O O

O~ O O

— O O O

— O O O

15479858



c
L
=
©
N
=
S
2
°
]
8
x
=
=
©
=

o (E3) > (E4) and (E3 — Ez) — (Eg):

o o O -

S o~ O

O - — O

— O O O

3M2:

S o~ O

S O O

o — O O

— O O O

— O O O

@ Permutation matrix P:

S o~ O

S O O

— O O O

S — O O

P=PP =

1557988



Matrix factorization

o (E3) > (E4) and (E3 — Ez) — (Eg):

1 1 -1 2 1 0 0 O 1 0 0 O
@_ |01 -1 1 o 100 0o 100
4 00 2 11" 1000 1[0 211 0
0 0 0 2 0 0 1 0 0 0 0 1
@ Permutation matrix P:
01 0 O
1 0 0 O
P=PP=1,¢ 9
0 0 1 0
@ Unit lower triangular matrix L:
1 0 0 O
B o1 | 0100
L=RM'PBM = | | | |
-1 0 0 1

15679858



Matrix factorization

@ The LU factorization of PA:

1 0 00 11 -1 2
0100 01 -1 1

PA= 1110 00 2 -1 = LU.
-1 0 0 1 00 0 2

185779858



c
L
=
©
N
=
S
2
°
]
8
x
i
=
©
=

@ The LU factorization of PA:

So

185R79858



Matrix factorization

Page 409: 3, 9

1507985



Special types of matrices

Special types of matrices

Definition 10
A matrix A € R"*" is said to be strictly diagonally dominant if

n

jaiil > D lagl.

J=Li#i

16079285



Special types of matrices

Special types of matrices

Definition 10

A matrix A € R"*" is said to be strictly diagonally dominant if

n

jaiil > D lagl.

j=lji

<

If A € R"*" js strictly diagonally dominant, then A is
nonsingular.

1617985



Special types of matrices

Special types of matrices

Definition 10

A matrix A € R"*" is said to be strictly diagonally dominant if

n

jaiil > D lagl.

j=lji

Lemma 11

If A € R"*" js strictly diagonally dominant, then A is
nonsingular.

| \

Proof: Suppose A is singular.

16927985



Special types of matrices

Special types of matrices

Definition 10

A matrix A € R"*" is said to be strictly diagonally dominant if

n

jaiil > D lagl.

j=lji

Lemma 11

If A € R"*" js strictly diagonally dominant, then A is
nonsingular.

| \

Proof: Suppose A is singular. Then there exists z € R", x # 0
such that Az = 0.

1627985



Special types of matrices

Special types of matrices

Definition 10

A matrix A € R"*" is said to be strictly diagonally dominant if

n

jaiil > D lagl.

j=lji

Lemma 11

If A € R"*" js strictly diagonally dominant, then A is
nonsingular.

| A

Proof: Suppose A is singular. Then there exists z € R", x # 0
such that Az = 0. Let k& be the integer index such that

||

ey =

|lzk| = ax ;| =

1647985



Special types of matrices

Since Az = 0, for the fixed k&, we have

n

n
Zaijj =0 = appTr = — Z Q)T
j=1 j=1,j7#k
n

= awellzel < Jargllagl,
=Ltk

168579858



Special types of matrices

Since Az = 0, for the fixed k&, we have

n n
Zaijj =0 = appTr = — Z Q)T
Jj=1 J=1,j#k
n
= awellzel < Jargllagl,
j=1,j#k

which implies

n

.
okl <D |ak:j’|x;|< > gl

j=1,j#k

16679858



Special types of matrices

Since Az = 0, for the fixed k&, we have

n

n
Zaijj =0 = appTr = — Z Q)T
j=1 j=1,j7#k
n

= awellzel < Jargllagl,
j=1,j#k
which implies

n n

|5
okl <D |akj’?;‘§ > gl

J=Lj#k J=1j#k

But this contradicts the assumption that A is diagonally
dominant.

168779858



Special types of matrices

Since Az = 0, for the fixed k&, we have

n

n
Zaijj =0 = appTr = — Z Q)T
j=1 j=1,j7#k
n

larkllzkl < D lagg|lz],
=Ltk

which implies

n n

£
|ak’k2| S Z |ak’] ’ ]‘ — Z |ak]|

J=Lj#k J=1j#k

But this contradicts the assumption that A is diagonally
dominant. Therefore A must be nonsingular. [ |

16R798558



Special types of matrices

Gaussian elimination without pivoting preserve the diagonal
dominance of a matrix.

168079558



Special types of matrices

Gaussian elimination without pivoting preserve the diagonal
dominance of a matrix.

Proof: Let A € R™"*™ be a diagonally dominant matrix and
A®) = [ag)] is the result of applying one step of Gaussian
elimination to A = A without any pivoting strategy.

17079858



Special types of matrices

Gaussian elimination without pivoting preserve the diagonal
dominance of a matrix.

Proof: Let A € R™"*™ be a diagonally dominant matrix and

A®) = [ag)] is the result of applying one step of Gaussian
elimination to A = A without any pivoting strategy.

After one step of Gaussian elimination, az(f) =0fori=2,...,n,
and the first row is unchanged.

17179858



Special types of matrices

Gaussian elimination without pivoting preserve the diagonal
dominance of a matrix.

Proof: Let A € R™"*™ be a diagonally dominant matrix and
A®) = [ag)] is the result of applying one step of Gaussian
elimination to A = A without any pivoting strategy.

After one step of Gaussian elimination, az(f) =0fori=2,...,n,

and the first row is unchanged. Therefore, the property
= 2
@i > 3" faf?)
j=2

is preserved,

41797988



Special types of matrices

Gaussian elimination without pivoting preserve the diagonal
dominance of a matrix.

Proof: Let A € R™"*™ be a diagonally dominant matrix and

A®) = [ag)] is the result of applying one step of Gaussian
elimination to A = A without any pivoting strategy.

After one step of Gaussian elimination, az(f) =0fori=2,...,n,
and the first row is unchanged. Therefore, the property

- 2
@D >3 ]
j=2

is preserved, and all we need to show is that

n
2 2 .
|az(i)|> E \az(.j)|, for i=2,...,n.
J=2,j#i
17279858



Special types of matrices

Using the Gaussian elimination formula (2), we have

(1)
) W ar a an
|aii | = m) ﬁ) (> = |4 — ailau‘
> agi| — m|(11i|
|la11]
o
= |ai| = |ai| + |ai| - 21| laxq]
lai]
—aal = laal {22 | = o)
n |a/11| n
> Z |ai;| + — Z |ay;]
|a11]
J=2,5#i J=2,5#i
11
= Z laij| + Z az |‘a1j|
=2 j=2g#i
- ;1 - . (2)
> Y ag——ay|= Y e
ai J
j=2,5#i j=2,5i

1747988



Special types of matrices

Thus A®) is still diagonally dominant.

178579858



Special types of matrices

Thus A® is still diagonally dominant. Since the subsequent
steps of Gaussian elimination mimic the first, except for being
applied to submatrices of smaller size, it suffices to conclude
that Gaussian elimination without pivoting preserves the
diagonal dominance of a matrix. [ |

17679858



Special types of matrices

Thus A® is still diagonally dominant. Since the subsequent
steps of Gaussian elimination mimic the first, except for being
applied to submatrices of smaller size, it suffices to conclude
that Gaussian elimination without pivoting preserves the
diagonal dominance of a matrix. [ |

Let A be strictly diagonally dominant. Then Gaussian
elimination can be performed on Ax = b to obtain its unique
solution without row or column interchanges.

41777988



Special types of matrices

Thus A® is still diagonally dominant. Since the subsequent
steps of Gaussian elimination mimic the first, except for being
applied to submatrices of smaller size, it suffices to conclude
that Gaussian elimination without pivoting preserves the
diagonal dominance of a matrix. [ |

Theorem 13

Let A be strictly diagonally dominant. Then Gaussian
elimination can be performed on Ax = b to obtain its unique
solution without row or column interchanges.

Definition 14

A matrix A is positive definite if it is symmetric and 27 Az > 0
vV x # 0.

17879858



Special types of matrices

Theorem 15

If A is ann x n positive definite matrix, then

17979858



Special types of matrices

Theorem 15

If A is ann x n positive definite matrix, then
(a) A has an inverse;

180792585



Special types of matrices

Theorem 15

If A is ann x n positive definite matrix, then
(a) A has an inverse;
(b) a;; >0, Vi=1,...,n;

18179858



Special types of matrices

Theorem 15

If A is ann x n positive definite matrix, then
(a) A has an inverse;
(b) a;; >0, Vi=1,...,n;

(€) maxi<k j<n |ar;| < maxi<i<n |ayl;

189798558



Special types of matrices

Theorem 15

If A is ann x n positive definite matrix, then
(a) A has an inverse;
(b) a;; >0, Vi=1,...,n;
(€) maxi<p j<n |ar;| < maxi<icn |asl;

(d) (aiy)? < agajj, Vi#j.

187798558



Special types of matrices

Theorem 15

If A is ann x n positive definite matrix, then
(a) A has an inverse;
(b) a;; >0, Vi=1,...,n;
(€) maxi<p j<n |ar;| < maxi<icn |asl;
(d) (aij)? < aiiajj, Vi# 3.

Proof:
(a) If z satisfies Az = 0, then 7 Az = 0.

18479858



Special types of matrices

Theorem 15

If A is ann x n positive definite matrix, then
(a) A has an inverse;
(b) a;; >0, Vi=1,...,n;
(€) maxi<p j<n |ar;| < maxi<icn |asl;
(d) (aij)? < aiiajj, Vi# 3.

Proof:
(a) If z satisfies Az = 0, then 27 Az = 0. Since A is
positive definite, this implies = 0.

185798558



Special types of matrices

Theorem 15

If A is ann x n positive definite matrix, then
(a) A has an inverse;
(b) a;; >0, Vi=1,...,n;
(€) maxi<p j<n |ar;| < maxi<icn |asl;
(d) (aij)? < aiiajj, Vi# 3.

Proof:
(a) If z satisfies Az = 0, then 27 Az = 0. Since A is
positive definite, this implies = = 0. Consequently,
Ax = 0 has only the zero solution, and A is
nonsingular.

18679858



Special types of matrices

Theorem 15

If A is ann x n positive definite matrix, then
(a) A has an inverse;
(b) a;; >0, Vi=1,...,n;
(€) maxi<p j<n |ar;| < maxi<icn [aiil;

(d) (aij)? < aiiajj, Vi# 3.

Proof:
(a) If z satisfies Az = 0, then 27 Az = 0. Since A is
positive definite, this implies = = 0. Consequently,
Ax = 0 has only the zero solution, and A is
nonsingular.
(b) Since A is positive definite,

Qi = eiTAei > 0,

where ¢; is the i-th column of the n x n identify
matrix.



Special types of matrices

(c) For k # j, define z = [x;] by
0, if i#j and i #k,

€T, = 1, if 1= j,

-1, if i=k.

188798558



Special types of matrices

(c) For k # j, define z = [x;] by
0, if i#j and i #k,
€T, = 1, if 1= j,
-1, if i=k.
Since x # 0,

T
0 <2 Az = ajj + ap, — aji — ag;-

18079558



Special types of matrices

(c) For k # j, define z = [x;] by
0, if i#j and i #k,
€T, = 1, if 1= j,
-1, if i=k.
Since x # 0,
0<alAx = ajj + Qpg — Qg — Q.
But AT = A, so

2ak; < ajj + agg. (5)

100792858



Special types of matrices

(c) For k # j, define z = [x;] by

0, if i#j and i #k,
€T, = 1, |fZ:],
-1, if i=k.

Since x # 0,
0<alAx = ajj + Qpg — Qg — Q.
But AT = A4, so

2ak; < ajj + agg. (5)

Now define z = [z;] by

. 0, ifi#yj and j#k,
11, ifi=j ori=k.

10179858



Special types of matrices

Then 2T Az > 0, so

—2ap; < ajj + apg. (6)

10979858



Special types of matrices

Then 2T Az > 0, so
—2ap; < ajj + apg. (6)
Equations (5) and (6) imply that for each & # j,

Ak T 55 o i),

|lak;| < 5 = max

10?7985



Special types of matrices

Then 2T Az > 0, so
—2ap; < ajj + apg. (6)
Equations (5) and (6) imply that for each & # j,

Ak T 55 o i),

|lak;| < 5 = max

SO

max |ag;| < max |a.
1<k,j<n 1<i<n

10479858



Special types of matrices

Then 2T Az > 0, so
—2ap; < ajj + apg. (6)
Equations (5) and (6) imply that for each & # j,

Ak + a5 max |aii,

|lak;| < 5 = max

SO
max |ag;| < max |a.
1<k,j<n 1<i<n

(d) For i # j, define = = [z] by

0, if k#7 and k #1i,
=< «, Iif k=1,
1, if k=j,
where « represents an arbitrary real number.

10579858



Special types of matrices

Since = # 0,
0<alAx = au‘a2 + Qaijoz +aj; = P(Oé), VaeR.

10679858



Special types of matrices

Since = # 0,
0<alAx = au‘a2 + Qaijoz +aj; = P(Oé), VaeR.

That is the quadratic polynomial P(«) has no real
roots.

19779858



Special types of matrices

Since = # 0,
0<alAx = au‘a2 + Qaijoz +aj; = P(Oé), VaeR.

That is the quadratic polynomial P(«) has no real
roots. It implies that

4(1%- — 4aiiajj <0 and CL?j < QG - |

10R798558



Special types of matrices

Since = # 0,
0<alAx = au‘a2 + Qaijoz +aj; = P(Oé), VaeR.

That is the quadratic polynomial P(«) has no real
roots. It implies that

4(1%- — 4aiiajj <0 and CL?j < QG - |

Definition 16 (Leading principal minor)
Let A be an n x n matrix. The upper left & x k submatrix,

denoted as
aixz a2 --- Qg
a1 Q22 - Q2
Ak = )
a1 Qg2 - Qg

is called the leading k& x k principal submatrix, and the
determinant of A, det(Ay), is called the leading principal

MINAYr 1do 7 oEE




Special types of matrices

A symmetric matrix A is positive definite if and only if each of its
leading principal submatrices has a positive determinant.

2007 2558



Special types of matrices

A symmetric matrix A is positive definite if and only if each of its
leading principal submatrices has a positive determinant.

Theorem 18

The symmetric matrix A is positive definite if and only if
Gaussian elimination without row interchanges can be
performed on Ax = b with all pivot elements positive.

2N1 798558



Special types of matrices

A symmetric matrix A is positive definite if and only if each of its
leading principal submatrices has a positive determinant.

Theorem 18

The symmetric matrix A is positive definite if and only if
Gaussian elimination without row interchanges can be
performed on Ax = b with all pivot elements positive.

Corollary 19

The matrix A is positive definite if and only if A can be factored
in the form LDL™, where L is lower triangular with 1’s on its
diagonal and D is a diagonal matrix with positive diagonal
entries.

20271958



Special types of matrices

Theorem 20

If all leading principal submatrices of A € R"*™ are nonsingular,
then A has an LU -factorization.

2N/ 9258



Special types of matrices

Theorem 20

If all leading principal submatrices of A € R"*™ are nonsingular,
then A has an LU -factorization.

Proof: Proof by mathematical induction.

2N47 98558



Special types of matrices

Theorem 20

If all leading principal submatrices of A € R"*™ are nonsingular,
then A has an LU -factorization.

Proof: Proof by mathematical induction.
@ n =1, A; = [a11] is nonsingular, then a;; # 0.

2N5 79858



Special types of matrices

Theorem 20

If all leading principal submatrices of A € R"*™ are nonsingular,
then A has an LU -factorization.

Proof: Proof by mathematical induction.

Q@ n =1, A; = [a11] is nonsingular, then aq; # 0. Let L = [1]
and Uy = [au].

2067 2858



Special types of matrices

Theorem 20

If all leading principal submatrices of A € R"*™ are nonsingular,
then A has an LU -factorization.

Proof: Proof by mathematical induction.

Q@ n =1, A; = [a11] is nonsingular, then aq; # 0. Let L = [1]
and Uy = [CLH]. Then Ay = L U;.

2N77 928558



Special types of matrices

Theorem 20

If all leading principal submatrices of A € R"*™ are nonsingular,
then A has an LU -factorization.

Proof: Proof by mathematical induction.

Q@ n =1, A; = [a11] is nonsingular, then aq; # 0. Let L = [1]
and U; = [a11]. Then A; = L1U;. The theorem holds.

2NKR7TI2K5K



Special types of matrices

Theorem 20

If all leading principal submatrices of A € R"*™ are nonsingular,
then A has an LU -factorization.

Proof: Proof by mathematical induction.

Q@ n =1, A; = [a11] is nonsingular, then aq; # 0. Let L = [1]
and U; = [a11]. Then A; = L1U;. The theorem holds.

© Assume that the leading principal submatrices A, ..., A
are nonsingular and A, has an LU-factorization

Ay = LUy, where Ly is unit lower triangular and Uy, is
upper triangular.

2N9 792558



Special types of matrices

Theorem 20

If all leading principal submatrices of A € R"*™ are nonsingular,
then A has an LU -factorization.

Proof: Proof by mathematical induction.

Q@ n =1, A; = [a11] is nonsingular, then aq; # 0. Let L = [1]
and U; = [a11]. Then A; = L1U;. The theorem holds.

© Assume that the leading principal submatrices A, ..., A
are nonsingular and A, has an LU-factorization
Ay = LUy, where Ly is unit lower triangular and Uy, is
upper triangular.

© Show that there exist an unit lower triangular matrix Ly 1
and an upper triangular matrix Uy such that
Agy1 = Lgg1Ugq1.

21079858



Special types of matrices

Write
Ay, Vg
Ak+1 = T
Wy Qk41,k+1
where
a1,k+1 Ak+1,1
az k+1 k41,2
v = , and  wi = )
Ak k+1 Ak+1,k

24479858



Special types of matrices

Write
A Uk
Ak+1 = T
Wy Qk+1,k+1
where
a1,k+1 Ak4+1,1
az k+1 Ak+1,2
Vv = . and w, = .
Ak k+1 Ak+1,k

Since Ay is nonsingular, both L, and U, are nonsingular.

241979858



Special types of matrices

Write
A Uk
Ak+1 = T
Wy Qk+1,k+1
where
a1,k+1 Ak4+1,1
az k+1 Ak+1,2
v = , and  wi = )
Ak k+1 Ak+1,k

Since Ay is nonsingular, both L, and U, are nonsingular.
Therefore, Ly, = vi, has a unique solution y;, € R¥, and
2'Uy, = wl has a unique solution z; € R*.

24279858



Special types of matrices

Write
A Uk
Ak+1 = T
Wy Qk+1,k+1
where
a1,k+1 Ak4+1,1
az k+1 Ak+1,2
Vv = . and w, = .
Ak k+1 Ak+1,k

Since Ay is nonsingular, both L, and U, are nonsingular.
Therefore, Ly, = vi, has a unique solution y;, € R¥, and
U, = w[ has a unique solution z;, € R¥. Let

Lp 0 Uy Yk
Ly = and Ugii =
. [ Z 1 } FH 0 Ghilkt1 — 24 Uk

2447988



Special types of matrices

Then Ly, is unit lower triangular, Uy 1 is upper triangular, and

LU, L
Lpy1Ugr = [ ok Yk

T T T
2, Up 23 Yk + Qpg1 k1 — 23, Yk

[ Ay, Vg

=A
T k+1-
Wy Qk41,k+1 }

This proves the theorem. [ |

41579858



Special types of matrices

If A is nonsingular and the LU factorization exists, then the LU
factorization is unique.

216798558



Special types of matrices

If A is nonsingular and the LU factorization exists, then the LU
factorization is unique.

Proof: Suppose both
A= LUy and A= LoUs

are LU factorizations.

477988



Special types of matrices

If A is nonsingular and the LU factorization exists, then the LU
factorization is unique.

Proof: Suppose both
A= LUy and A= LoUs

are LU factorizations. Since A is nonsingular, L1, Uy, Lo, U are
all nonsingular, and

A=LU = LUy = Ly 'Ly = UpUy L.

241879858



Special types of matrices

If A is nonsingular and the LU factorization exists, then the LU
factorization is unique.

Proof: Suppose both
A= LUy and A= LoUs

are LU factorizations. Since A is nonsingular, L1, Uy, Lo, U are
all nonsingular, and

A=LU = LUy = Ly 'Ly = UpUy L.

Since L, and L, are unit lower triangular, it implies that L;lLl
is also unit lower triangular.

241979858



Special types of matrices

If A is nonsingular and the LU factorization exists, then the LU
factorization is unique.

Proof: Suppose both
A= LUy and A= LoUs

are LU factorizations. Since A is nonsingular, L1, Uy, Lo, U are
all nonsingular, and

A=LU = LUy = Ly 'Ly = UpUy L.

Since L, and L, are unit lower triangular, it implies that L;lLl
is also unit lower triangular. On the other hand, since U; and U,
are upper triangular, U,U; ! is also upper triangular.

2990798558



Special types of matrices

If A is nonsingular and the LU factorization exists, then the LU
factorization is unique.

Proof: Suppose both
A= LUy and A= LoUs

are LU factorizations. Since A is nonsingular, L1, Uy, Lo, U are
all nonsingular, and

A=LU = LUy = Ly 'Ly = UpUy L.

Since L, and L, are unit lower triangular, it implies that L;lLl
is also unit lower triangular. On the other hand, since U; and U,
are upper triangular, UgUf1 is also upper triangular. Therefore,

Lyl =T =UsU; !
which implies that L., = Lo, and Uy = Us.
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Special types of matrices

If A € R™™ s positive definite, then all leading principal
submatrices of A are nonsingular.
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Special types of matrices

If A € R™™ s positive definite, then all leading principal
submatrices of A are nonsingular.

Proof: For 1 < k < n, let
zp = [z1,..., 2]t €R* and = = [z1,...,24,0,...,0]7 € R,

where z1, ...,z € R are not all zero.
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Special types of matrices

If A € R™™ s positive definite, then all leading principal
submatrices of A are nonsingular.

Proof: For 1 < k < n, let
zp = [z1,..., 2]t €R* and = = [z1,...,24,0,...,0]7 € R,

where z1,...,z, € R are not all zero. Since A is positive

definite,
ngkzk =T Az > 0,

where Ay, is the k£ x k leading principal submatrix of A.
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Special types of matrices

If A € R™™ s positive definite, then all leading principal
submatrices of A are nonsingular.

Proof: For 1 < k < n, let
zp = [z1,..., 2]t €R* and = = [z1,...,24,0,...,0]7 € R,

where z1,...,z, € R are not all zero. Since A is positive
definite,

ngkzk =T Az > 0,
where Ay, is the k£ x k leading principal submatrix of A. This
shows that A, are also positive definite, hence A are
nonsingular. [ ]
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Special types of matrices

The matrix A is positive definite if and only if

A =GGT, (7)

where G is lower triangular with positive diagonal entries.
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Special types of matrices

The matrix A is positive definite if and only if

A =GGT, (7)

where G is lower triangular with positive diagonal entries.

Proof: “=” A is positive definite
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Special types of matrices

The matrix A is positive definite if and only if

A =GGT, (7)

where G is lower triangular with positive diagonal entries.

Proof: “=” A is positive definite
= all leading principal submatrices of A are nonsingular
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Special types of matrices

The matrix A is positive definite if and only if

A=GG", (7)

where G is lower triangular with positive diagonal entries.

Proof: “=” A is positive definite

= all leading principal submatrices of A are nonsingular

= A has the LU factorization A = LU, where L is unit lower
triangular and U is upper triangular.
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Special types of matrices

The matrix A is positive definite if and only if

A=GG", (7)

where G is lower triangular with positive diagonal entries.

Proof: “=” A is positive definite

= all leading principal submatrices of A are nonsingular

= A has the LU factorization A = LU, where L is unit lower
triangular and U is upper triangular.

Since A is symmetric,

LWW=A=AT=0"" = v '=r"'0".
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Special types of matrices

The matrix A is positive definite if and only if

A =GGT, (7)

where G is lower triangular with positive diagonal entries.

Proof: “=” A is positive definite
= all leading principal submatrices of A are nonsingular
= A has the LU factorization A = LU, where L is unit lower
triangular and U is upper triangular.
Since A is symmetric,

LU=A=AT=0"" — vuvhH)*'=r"v".
U(LT)~! is upper triangular and L='U7 is lower triangular
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Special types of matrices

The matrix A is positive definite if and only if

A =GGT, (7)

where G is lower triangular with positive diagonal entries.

Proof: “=” A is positive definite

= all leading principal submatrices of A are nonsingular

= A has the LU factorization A = LU, where L is unit lower
triangular and U is upper triangular.

Since A is symmetric,

LU=A=AT=0"" — vuvhH)*'=r"v".

U(LT)~! is upper triangular and L='U7 is lower triangular
= U(L")~! to be a diagonal matrix, say, U(L”)~! = D.
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Special types of matrices

The matrix A is positive definite if and only if

A =GGT, (7)

where G is lower triangular with positive diagonal entries.

Proof: “=” A is positive definite

= all leading principal submatrices of A are nonsingular

= A has the LU factorization A = LU, where L is unit lower
triangular and U is upper triangular.

Since A is symmetric,

LU=A=AT=0"" — vuvhH)*'=r"v".

U(LT)~! is upper triangular and L='U7 is lower triangular
= U(L")~! to be a diagonal matrix, say, U(L”)~! = D.
= U = DL”. Hence

A=LDL"T.
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Special types of matrices

Since A is positive definite,
tTAr >0 = 2"LDL"z = (L"2)"'D(LTz) > 0.
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Special types of matrices

Since A is positive definite,
tTAr >0 = 2"LDL"z = (L"2)"'D(LTz) > 0.

This means D is also positive definite, and hence d;; > 0.
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Special types of matrices

Since A is positive definite,
tTAr >0 = 2"LDL"z = (L"2)"'D(LTz) > 0.

This means D is also positive definite, and hence d;; > 0. Thus
D'/2 is well-defined and we have

A=LDLT = LD'?2D?2[T = GGT,
where G = LDV/2.
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Special types of matrices

Since A is positive definite,
tTAr >0 = 2"LDL"z = (L"2)"'D(LTz) > 0.

This means D is also positive definite, and hence d;; > 0. Thus
D'/2 is well-defined and we have

A=LDLT = LD'?2D?2[T = GGT,

where G = LD'/2. Since the LU factorization is unique, G is
unique.
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Special types of matrices

Since A is positive definite,
tTAr >0 = 2"LDL"z = (L"2)"'D(LTz) > 0.
This means D is also positive definite, and hence d;; > 0. Thus
D'/2 is well-defined and we have
A=LDL" = LD'?D'V?2LT = GG™,

where G = LD'/2. Since the LU factorization is unique, G is
unique.

=
Since G is lower triangular with positive diagonal entries, G is
nonsingular.
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Special types of matrices

Since A is positive definite,
tTAr >0 = 2"LDL"z = (L"2)"'D(LTz) > 0.

This means D is also positive definite, and hence d;; > 0. Thus
D'/2 is well-defined and we have

A=LDLT = LD'?2D?2[T = GGT,

where G = LD'/2. Since the LU factorization is unique, G is
unique.

H<:ll

Since G is lower triangular with positive diagonal entries, G is

nonsingular. It implies that
Gla 40, Va#0.
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Special types of matrices

Since A is positive definite,
tTAr >0 = 2"LDL"z = (L"2)"'D(LTz) > 0.
This means D is also positive definite, and hence d;; > 0. Thus
D'/2 is well-defined and we have
A=LDL" = LD'?D'V?2LT = GG™,

where G = LD'/2. Since the LU factorization is unique, G is
unique.

H<:ll

Since G is lower triangular with positive diagonal entries, G is

nonsingular. It implies that
Gla 40, Va#0.
Hence
2T Az = 27GGTz = ||GTz|3 >0, V2 #0
which implies that A is positive definite.

240798558



Special types of matrices

The factorization (7) is referred to as the Cholesky factorization.
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Special types of matrices

The factorization (7) is referred to as the Cholesky factorization.
Derive an algorithm for computing the Cholesky factorization:
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Special types of matrices

The factorization (7) is referred to as the Cholesky factorization.
Derive an algorithm for computing the Cholesky factorization:
Let
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Special types of matrices

The factorization (7) is referred to as the Cholesky factorization.
Derive an algorithm for computing the Cholesky factorization:

Let
g11 0 e 0
A= [aij] and G = g?l 9%2
: : . 0
gn1 Gn2 - 9nn

Assume the first £ — 1 columns of G have been determined after k — 1
steps.

24479858



Special types of matrices

The factorization (7) is referred to as the Cholesky factorization.
Derive an algorithm for computing the Cholesky factorization:

Let
g11 0 e 0
A= [aij] and G = g21 922
: : . 0
gn1 Gn2 - 9nn

Assume the first £ — 1 columns of G have been determined after k — 1
steps. By componentwise comparison with

gu 0 0 g11 921 - Gni
K : 0 go2 -+ gn2
g21 922 . .
aig] = | 77 77 ST
: : " 0 : :
one has

k
E 2
Akl = gk]7
7=1
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Special types of matrices

which gives

k—1
2 2
9kk = Qkk — g [E
j=1
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Special types of matrices

which gives
k—1
2 2
Ikk = Akk — Z Ikj-
j=1
Moreover,

k
azkzzgwgk]? i:k+17"'7n7
j=1
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Special types of matrices

which gives
k—1
2 2
Ikl = Qkk — Z Ikj-
j=1
Moreover,
k
azkzzgwgk]? i:k+17"'7n7
J=1

hence the k-th column of G can be computed by
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Special types of matrices

Algorithm 6 (Cholesky Factorization)

Given an n x n symmetric positive definite matrix A, this
algorithm computes the Cholesky factorization A = GG

Initialize G = 0

Fork=1,.
JA >4L Gk, )Gk, )
For = k: +1,.
666 = (4GB - 251 6, )6k, ) [t
End For

End For

2409079858



Special types of matrices

Algorithm 6 (Cholesky Factorization)

Given an n x n symmetric positive definite matrix A, this
algorithm computes the Cholesky factorization A = GG™ .
Initialize G = 0
Fork=1,.
\/A S Gk, )G (k. )
For = k: + 1.
666 = (4GB - 251 6, )6k, ) [t
End For
End For

In addition to n square root operations, there are approximately

- 1, 1, 5
S 2k -2+ 2k —1)(n— k)] = 0 + 50— on
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Special types of matrices

Band matrix

Definition 24

An n x n matrix A is called a band matrix if 3 p and g with 1 < p,q <n
such that

a;; =0 whenever p<j—i or ¢ <i—j.

The bandwidth of a band matrix is defined as w = p + ¢ — 1. That is

B a11 ... alp O ... O T
A= aq1 0
0 o o An—p+1,n
L0 oo O Gopegw o Qnn
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Special types of matrices

Definition 25
A square matrix A = [a;;] is said to be tridiagonal if
ail a2 0
A— Q21 Q22
An—1,n
0 An,n—1 An,n
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Special types of matrices

Definition 25

A square matrix A = [a;;] is said to be tridiagonal if
ap;; a2 0
a a
A= 21 22
An—1,n
0 An,n—1 An,n

If Gaussian elimination can be applied safely without pivoting.
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Special types of matrices

Definition 25

A square matrix A = [a;;] is said to be tridiagonal if
ap;; a2 0
a a
A= 21 22
An—1,n
0 An,n—1 An,n

If Gaussian elimination can be applied safely without pivoting. Then L
and U factors would have the form

1 Uil U2 0
L= _ _ and U = 122 ,
. "L u -1,
0 emnfl 1 i "

U nn
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Special types of matrices

Definition 25

A square matrix A = [a;;] is said to be tridiagonal if
ap;; a2 0
a a
A= 21 22
An—1,n
0 An,n—1 An,n

If Gaussian elimination can be applied safely without pivoting. Then L
and U factors would have the form

1 U1 U2 0
f21 1 .
L= _ _ and U = 122 ,
. - . - u 717
0 emnfl 1 i "

U nn

and the entries are computed by the simple algorithm which only
costs 3n flops.
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Special types of matrices

Algorithm 7 (Tridiagonal LU Factorization)

This algorithm computes the LU factorization for a tridiagonal
matrix without using pivoting strategy.

U(1,1) = A(1,1)
Fori=2,...,n
U(i—1,i) = A@G — 1,4)
L(i,i—1)=A(,i—1)/U(i —1,i—1)
U(i,i) = A(3,43) — L(3,5 — 1)U (i — 1,3)
End For

DI 114



Special types of matrices

Algorithm 7 (Tridiagonal LU Factorization)

This algorithm computes the LU factorization for a tridiagonal
matrix without using pivoting strategy.

U(1,1) = A(1,1)
Fori=2,...,n
U(i—1,i) = A@G — 1,4)
L(i,i—1)=A(,i—1)/U(i —1,i—1)
U(i,i) = A(3,43) — L(3,5 — 1)U (i — 1,3)
End For

A tridiagonal linear system arises in many applications, such as
finite difference discretization to second order linear
boundary-value problem and the cubic spline approximations.
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Special types of matrices

Page 425: 2, 6, 12, 15, 17, 19, 20, 21
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