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Linear systems of equations

Three operations to simplify the linear system:
1 (λEi)→ (Ei): Equation Ei can be multiplied by λ 6= 0 with

the resulting equation used in place of Ei.
2 (Ei + λEj)→ (Ei): Equation Ej can be multiplied by λ 6= 0

and added to equation Ei with the resulting equation used
in place of Ei.

3 (Ei)↔ (Ej): Equation Ei and Ej can be transposed in
order.

Example 1

E1 : x1 + x2 + 3x4 = 4,
E2 : 2x1 + x2 − x3 + x4 = 1,
E3 : 3x1 − x2 − x3 + 2x4 = −3,
E4 : −x1 + 2x2 + 3x3 − x4 = 4.

6 / 255



logo

Linear systems of equations Pivoting Strategies Matrix factorization Special types of matrices

Linear systems of equations

Three operations to simplify the linear system:
1 (λEi)→ (Ei): Equation Ei can be multiplied by λ 6= 0 with

the resulting equation used in place of Ei.
2 (Ei + λEj)→ (Ei): Equation Ej can be multiplied by λ 6= 0

and added to equation Ei with the resulting equation used
in place of Ei.

3 (Ei)↔ (Ej): Equation Ei and Ej can be transposed in
order.

Example 1

E1 : x1 + x2 + 3x4 = 4,
E2 : 2x1 + x2 − x3 + x4 = 1,
E3 : 3x1 − x2 − x3 + 2x4 = −3,
E4 : −x1 + 2x2 + 3x3 − x4 = 4.

7 / 255



logo

Linear systems of equations Pivoting Strategies Matrix factorization Special types of matrices

Linear systems of equations

Three operations to simplify the linear system:
1 (λEi)→ (Ei): Equation Ei can be multiplied by λ 6= 0 with

the resulting equation used in place of Ei.
2 (Ei + λEj)→ (Ei): Equation Ej can be multiplied by λ 6= 0

and added to equation Ei with the resulting equation used
in place of Ei.

3 (Ei)↔ (Ej): Equation Ei and Ej can be transposed in
order.

Example 1

E1 : x1 + x2 + 3x4 = 4,
E2 : 2x1 + x2 − x3 + x4 = 1,
E3 : 3x1 − x2 − x3 + 2x4 = −3,
E4 : −x1 + 2x2 + 3x3 − x4 = 4.

8 / 255



logo

Linear systems of equations Pivoting Strategies Matrix factorization Special types of matrices

Linear systems of equations

Three operations to simplify the linear system:
1 (λEi)→ (Ei): Equation Ei can be multiplied by λ 6= 0 with

the resulting equation used in place of Ei.
2 (Ei + λEj)→ (Ei): Equation Ej can be multiplied by λ 6= 0

and added to equation Ei with the resulting equation used
in place of Ei.

3 (Ei)↔ (Ej): Equation Ei and Ej can be transposed in
order.

Example 1

E1 : x1 + x2 + 3x4 = 4,
E2 : 2x1 + x2 − x3 + x4 = 1,
E3 : 3x1 − x2 − x3 + 2x4 = −3,
E4 : −x1 + 2x2 + 3x3 − x4 = 4.

9 / 255



logo

Linear systems of equations Pivoting Strategies Matrix factorization Special types of matrices

Solution:

(E2 − 2E1)→ (E2), (E3 − 3E1)→ (E3) and
(E4 + E1)→ (E4):

E1 : x1 + x2 + 3x4 = 4,
E2 : − x2 − x3 − 5x4 = −7,
E3 : − 4x2 − x3 − 7x4 = −15,
E4 : 3x2 + 3x3 + 2x4 = 8.

(E3 − 4E2)→ (E3) and (E4 + 3E2)→ (E4):

E1 : x1 + x2 + 3x4 = 4,
E2 : − x2 − x3 − 5x4 = −7,
E3 : 3x3 + 13x4 = 13,
E4 : − 13x4 = −13.
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Backward-substitution process:
1 E4 ⇒ x4 = 1
2 Solve E3 for x3:

x3 =
1

3
(13− 13x4) =

1

3
(13− 13) = 0.

3 E2 gives

x2 = −(−7 + 5x4 + x3) = −(−7 + 5 + 0) = 2.

4 E1 gives

x1 = 4− 3x4 − x2 = 4− 3− 2 = −1.
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Solve linear systems of equations
a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
an1x1 + an2x2 + · · ·+ annxn = bn

Rewrite in the matrix form

Ax = b, (1)

where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 , b =


b1
b2
...
bn

 , x =


x1
x2
...
xn


and [A, b] is called the augmented matrix.
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Gaussian elimination with backward substitution

The augmented matrix in previous example is
1 1 0 3 4
2 1 −1 1 1
3 −1 −1 2 −3
−1 2 3 −1 4

 .
(E2 − 2E1)→ (E2), (E3 − 3E1)→ (E3) and (E4 + E1)→ (E4):

1 1 0 3 4
0 −1 −1 −5 −7
0 −4 −1 −7 −15
0 3 3 2 8

 .
(E3 − 4E2)→ (E3) and (E4 + 3E2)→ (E4):

1 1 0 3 4
0 −1 −1 −5 −7
0 0 3 13 13
0 0 0 −13 −13

 .
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The general Gaussian elimination procedure
Provided a11 6= 0, for each i = 2, 3, . . . , n,(

Ei −
ai1
a11

E1

)
→ (Ei).

Transform all the entries in the first col. below the diagonal are
zero. Denote the new entry in the ith row and jth col. by aij .

For i = 2, 3 . . . , n− 1, provided aii 6= 0,(
Ej −

aji
aii

Ei

)
→ (Ej), ∀ j = i+ 1, i+ 2, . . . , n.

Transform all the entries in the ith column below the diagonal
are zero.

Result an upper triangular matrix:
a11 a12 · · · a1n b1
0 a22 · · · a2n b2
...

. . . . . .
...

...
0 · · · 0 ann bn

 .
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The process of Gaussian elimination result in a sequence of
matrices as follows:

A = A(1) → A(2) → · · · → A(n) = upper triangular matrix

The matrix A(k) has the following form:

A(k) =



a
(1)
11 · · · a

(1)
1,k−1 a

(1)
1k · · · a

(1)
1j · · · a

(1)
1n

...
. . .

...
...

...
...

0 · · · a
(k−1)
k−1,k−1 a

(k−1)
k−1,k · · · a

(k−1)
k−1,j · · · a

(k−1)
k−1,n

0 · · · 0 a
(k)
kk · · · a

(k)
kj · · · a

(k)
kn

...
...

...
...

...
0 · · · 0 a

(k)
ik · · · a

(k)
ij · · · a

(k)
in

...
...

...
...

...
0 · · · 0 a

(k)
nk · · · a

(k)
nj · · · a

(k)
nn


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The entries of A(k) are produced by the formula

a
(k)
ij =


a
(k−1)
ij , for i = 1, . . . , k − 1, j = 1, . . . , n;

0, for i = k, . . . , n, j = 1, . . . , k − 1;

a
(k−1)
ij − a

(k−1)
i,k−1

a
(k−1)
k−1,k−1

× a(k−1)k−1,j , for i = k, . . . , n, j = k, . . . , n.

The procedure will fail if one of the elements a(1)11 , a(2)22 , . . . ,
a
(n)
nn is zero.
a
(i)
ii is called the pivot element.
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Backward substitution

The new linear system is triangular:

a11x1 + a12x2 + · · · + a1nxn = b1,
a22x2 + · · · + a2nxn = b2,

...
annxn = bn

Solving the nth equation for xn gives

xn =
bn
ann

.

Solving the (n− 1)th equation for xn−1 and using the value for
xn yields

xn−1 =
bn−1 − an−1,nxn

an−1,n−1
.

In general,

xi =
bi −

∑n
j=i+1 aijxj

aii
, ∀ i = n− 1, n− 2, . . . , 1.

34 / 255
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...
annxn = bn

Solving the nth equation for xn gives

xn =
bn
ann

.

Solving the (n− 1)th equation for xn−1 and using the value for
xn yields

xn−1 =
bn−1 − an−1,nxn

an−1,n−1
.

In general,

xi =
bi −

∑n
j=i+1 aijxj

aii
, ∀ i = n− 1, n− 2, . . . , 1.
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Algorithm 1 (Backward Substitution)

Suppose that U ∈ Rn×n is nonsingular upper triangular and
b ∈ Rn. This algorithm computes the solution of Ux = b.

For i = n, . . . , 1
tmp = 0
For j = i+ 1, . . . , n
tmp = tmp+ U(i, j) ∗ x(j)

End for
x(i) = (b(i)− tmp)/U(i, i)

End for

38 / 255



logo

Linear systems of equations Pivoting Strategies Matrix factorization Special types of matrices

Example 2
Solve system of linear equations.

6 −2 2 4
12 −8 6 10
3 −13 9 3
−6 4 1 −18



x1
x2
x3
x4

 =


12
34
27
−38


Solution:

1st step Use 6 as pivot element, the first row as pivot row,
and multipliers 2, 12 ,−1 are produced to reduce the
system to

6 −2 2 4
0 −4 2 2
0 −12 8 1
0 2 3 −14



x1
x2
x3
x4

 =


12
10
21
−26


39 / 255



logo

Linear systems of equations Pivoting Strategies Matrix factorization Special types of matrices

Example 2
Solve system of linear equations.

6 −2 2 4
12 −8 6 10
3 −13 9 3
−6 4 1 −18



x1
x2
x3
x4

 =


12
34
27
−38


Solution:

1st step Use 6 as pivot element, the first row as pivot row,
and multipliers 2, 12 ,−1 are produced to reduce the
system to

6 −2 2 4
0 −4 2 2
0 −12 8 1
0 2 3 −14



x1
x2
x3
x4

 =


12
10
21
−26


40 / 255



logo

Linear systems of equations Pivoting Strategies Matrix factorization Special types of matrices

2nd step Use −4 as pivot element, the second row as pivot
row, and multipliers 3,−1

2 are computed to reduce
the system to

6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 4 −13



x1
x2
x3
x4

 =


12
10
−9
−21


3rd step Use 2 as pivot element, the third row as pivot row,

and multipliers 2 is found to reduce the system to
6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 0 −3



x1
x2
x3
x4

 =


12
10
−9
−3


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4th step The backward substitution is applied:

x4 =
−3

−3
= 1,

x3 =
−9 + 5x4

2
=
−9 + 5

2
= −2,

x2 =
10− 2x4 − 2x3

−4
=

10− 2 + 4

−4
= −3,

x1 =
12− 4x4 − 2x3 + 2x2

6
=

12− 4 + 4− 6

6
= 1.

This example is done since a(k)kk 6= 0 for all k = 1, 2, 3, 4.

How to do if a(k)kk = 0 for some k?
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Example 3
Solve system of linear equations.

1 −1 2 −1
2 −2 3 −3
1 1 1 0
1 −1 4 3



x1
x2
x3
x4

 =


−8
−20
−2

4


Solution:

1st step Use 1 as pivot element, the first row as pivot row,
and multipliers 2, 1, 1 are produced to reduce the
system to

1 −1 2 −1
0 0 −1 −1
0 2 −1 1
0 0 2 4



x1
x2
x3
x4

 =


−8
−4

6
12


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Example 3
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2nd step Since a(2)22 = 0 and a(2)32 6= 0, the operation
(E2)↔ (E3) is performed to obtain a new system

1 −1 2 −1
0 2 −1 1
0 0 −1 −1
0 0 2 4



x1
x2
x3
x4

 =


−8

6
−4
12


3rd step Use −1 as pivot element, the third row as pivot

row, and multipliers −2 is found to reduce the
system to

1 −1 2 −1
0 2 −1 1
0 0 −1 −1
0 0 0 2



x1
x2
x3
x4

 =


−8

6
−4

4


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4th step The backward substitution is applied:

x4 =
4

2
= 2,

x3 =
−4 + x4
−1

= 2,

x2 =
6− x4 + x3

2
= 3,

x1 =
−8 + x4 − 2x3 + x2

1
= −7.

This example illustrates what is done if a(k)kk = 0 for some k.

If a(k)pk 6= 0 for some p with k+ 1 ≤ p ≤ n, then the operation
(Ek)↔ (Ep) is performed to obtain new matrix.

If a(k)pk = 0 for each p, then the linear system does not have
a unique solution and the procedure stops.
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Algorithm 2 (Gaussian elimination)

Given A ∈ Rn×n and b ∈ Rn, this algorithm implements the
Gaussian elimination procedure to reduce A to upper triangular
and modify the entries of b accordingly.

For k = 1, . . . , n− 1
Let p be the smallest integer with k ≤ p ≤ n and apk 6= 0.
If @ p, then stop.
If p 6= k, then perform (Ep)↔ (Ek).
For i = k + 1, . . . , n
t = A(i, k)/A(k, k)
A(i, k) = 0
b(i) = b(i)− t× b(k)
For j = k + 1, . . . , n
A(i, j) = A(i, j)− t×A(k, j)

End for
End for

End for 54 / 255
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Number of floating-point arithmetic operations

Eliminate kth column

For i = k + 1, . . . , n
t = A(i, k)/A(k, k); b(i) = b(i)− t× b(k).
For j = k + 1, . . . , n
A(i, j) = A(i, j)− t×A(k, j)

End for
End for

Multiplications/divisions

(n− k) + (n− k) + (n− k)(n− k) = (n− k)(n− k + 2)

Additions/subtractions

(n− k) + (n− k)(n− k) = (n− k)(n− k + 1)
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Total number of operations for multiplications/divisions
n−1∑
k=1

(n− k)(n− k + 2) =

n−1∑
k=1

(n2 − 2nk + k2 + 2n− 2k)

= (n2 + 2n)

n−1∑
k=1

1− 2(n+ 1)

n−1∑
k=1

k +

n−1∑
k=1

k2

= (n2 + 2n)(n− 1)− 2(n+ 1)
(n− 1)n

2
+

(n− 1)n(2n− 1)

6

=
2n3 + 3n2 − 5n

6
.

Total number of operations for additions/subtractions
n−1∑
k=1

(n− k)(n− k + 1) =

n−1∑
k=1

(n2 − 2nk + k2 + n− k)

= (n2 + n)
n−1∑
k=1

1− (2n+ 1)
n−1∑
k=1

k +
n−1∑
k=1

k2 =
n3 − n

3
.
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Total number of operations for multiplications/divisions
n−1∑
k=1

(n− k)(n− k + 2) =

n−1∑
k=1

(n2 − 2nk + k2 + 2n− 2k)

= (n2 + 2n)

n−1∑
k=1

1− 2(n+ 1)

n−1∑
k=1
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n−1∑
k=1

k2

= (n2 + 2n)(n− 1)− 2(n+ 1)
(n− 1)n

2
+

(n− 1)n(2n− 1)

6

=
2n3 + 3n2 − 5n

6
.

Total number of operations for additions/subtractions
n−1∑
k=1

(n− k)(n− k + 1) =

n−1∑
k=1

(n2 − 2nk + k2 + n− k)

= (n2 + n)

n−1∑
k=1

1− (2n+ 1)

n−1∑
k=1

k +

n−1∑
k=1

k2 =
n3 − n

3
.
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Backward substitution

x(n) = b(n)/U(n, n).
For i = n− 1, . . . , 1
tmp = U(i, i+ 1)× x(i+ 1)
For j = i+ 2, . . . , n
tmp = tmp+ U(i, j)× x(j)

End for
x(i) = (b(i)− tmp)/U(i, i)

End for

Multiplications/divisions

1 +

n−1∑
i=1

[(n− i) + 1] =
n2 + n

2

Additions/subtractions
n−1∑
i=1

[(n− i− 1) + 1] =
n2 − n

2
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x(n) = b(n)/U(n, n).
For i = n− 1, . . . , 1
tmp = U(i, i+ 1)× x(i+ 1)
For j = i+ 2, . . . , n
tmp = tmp+ U(i, j)× x(j)

End for
x(i) = (b(i)− tmp)/U(i, i)

End for

Multiplications/divisions

1 +

n−1∑
i=1

[(n− i) + 1] =
n2 + n

2

Additions/subtractions
n−1∑
i=1

[(n− i− 1) + 1] =
n2 − n

2
62 / 255



logo

Linear systems of equations Pivoting Strategies Matrix factorization Special types of matrices

The total number of arithmetic operations in Gaussian
elimination with backward substitution is:

Multiplications/divisions

2n3 + 3n2 − 5n

6
+
n2 + n

2
=
n3

3
+ n2 − n

3
≈ n3

3

Additions/subtractions

n3 − n
3

+
n2 − n

2
=
n3

3
+
n2

2
− 5n

6
≈ n3

3
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Exercise
Page 368: 5, 10, 12, 15
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Pivoting Strategies

If a(k)kk is small in magnitude compared to a(k)jk , then

|mjk| =

∣∣∣∣∣∣a
(k)
jk

a
(k)
kk

∣∣∣∣∣∣ > 1.

Round-off error introduced in the computation of

a
(k+1)
j` = a

(k)
j` −mjka

(k)
k` , for ` = k + 1, . . . , n.

Error can be increased when performing the backward
substitution for

xk =
bk −

∑n
j=k+1 a

(k)
kj xj

a
(k)
kk

with a small value of a(k)kk .
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Example 4
The linear system

E1 : 0.003000x1 + 59.14x2 = 59.17,
E2 : 5.291x1 − 6.130x2 = 46.78,

has the exact solution x1 = 10.00 and x2 = 1.000. Suppose
Gaussian elimination is performed on this system using
four-digit arithmetic with rounding.

a11 = 0.0030 is small and

m21 =
5.291

0.0030
= 1763.66̄ ≈ 1764.

Perform (E2 −m21E1)→ (E2):

0.0030x1 + 59.14x2 = 59.17
− 104309.376̄x2 = −104309.376̄.
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Rounding with four-digit arithmetic:
Coefficient of x2:

−6.130− 1764× 59.14 = −6.130− 104322.96

≈ −6.130− 104300 = −104306.13

≈ −104300.

Right hand side:

46.78− 1764× 59.17 = 46.78− 104375.88

≈ 46.78− 104400 = −104353.22

≈ −104400.

New linear system:

0.0030x1 + 59.14x2 = 59.17
− 104300x2 ≈ −104400.
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Approximated solution:

x2 =
104400

104300
≈ 1.001,

x1 =
59.17− 59.14× 1.001

0.0030
=

59.17− 59.19914

0.0030

≈ 59.17− 59.20

0.0030
= −10.00.

This ruins the approximation to the actual value x1 = 10.00.
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Partial pivoting

To avoid the pivot element small relative to other entries,
pivoting is performed by selecting an element a(k)pq with a
larger magnitude as the pivot.

Specifically, select pivoting a(k)pk with

|a(k)pk | = max
k≤i≤n

|a(k)ik |

and perform (Ek)↔ (Ep).
This row interchange strategy is called partial pivoting.
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Example 5
Reconsider the linear system

E1 : 0.003000x1 + 59.14x2 = 59.17,
E2 : 5.291x1 − 6.130x2 = 46.78.

Find pivoting with

max{|a11|, |a21|} = 5.291 = |a21|.

Perform (E2)↔ (E1):

E1 : 5.291x1 − 6.130x2 = 46.78,
E2 : 0.003000x1 + 59.14x2 = 59.17.

The multiplier for new system is

m21 =
a21
a11

= 0.0005670.
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The operation (E2 −m21E1)→ (E2) reduces the system to

5.291x1 − 6.130x2 = 46.78,
59.14x2 ≈ 59.14.

The four-digit answers resulting from the backward
substitution are the correct values x1 = 10.00 and
x2 = 1.000.

84 / 255



logo

Linear systems of equations Pivoting Strategies Matrix factorization Special types of matrices

The operation (E2 −m21E1)→ (E2) reduces the system to

5.291x1 − 6.130x2 = 46.78,
59.14x2 ≈ 59.14.

The four-digit answers resulting from the backward
substitution are the correct values x1 = 10.00 and
x2 = 1.000.

85 / 255



logo

Linear systems of equations Pivoting Strategies Matrix factorization Special types of matrices

Example 6
The linear system

E1 : 30.00x1 + 591400x2 = 591700,
E2 : 5.291x1 − 6.130x2 = 46.78,

is the same as that in previous example except that all the
entries in the first equation have been multiplied by 104.

The pivoting is a11 = 30.00 and the multiplier

m21 =
5.291

30.00
= 0.1764

leads to the system

30.00x1 + 591400x2 = 591700
− 104300x2 ≈ −104400,

which has inaccurate solution x2 ≈ 1.001 and x1 ≈ −10.00.
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Scaled partial pivoting

Define a scale factor si as

si = max
1≤j≤n

|aij |, for i = 1, . . . , n.

If si = 0 for some i, then the system has no unique
solution.
In the ith column, choose the least integer p ≥ i with

|api|
sp

= max
i≤k≤n

|aki|
sk

and perform (Ei)↔ (Ep) if p 6= i.
The scale factors s1, . . . , sn are computed only once and
must also be interchanged when row interchanges are
performed.
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Example 7

Apply scaled partial pivoting to the linear system

E1 : 30.00x1 + 591400x2 = 591700,
E2 : 5.291x1 − 6.130x2 = 46.78.

The scale factors s1 and s2 are

s1 = max{|30.00|, |591400|} = 591400

and

s2 = max{|5.291|, | − 6.130|} = 6.130.

Consequently,

|a11|
s1

=
30.00

591400
= 0.5073× 10−4,

|a21|
s2

=
5.291

6.130
= 0.8631,

and the interchange (E1)↔ (E2) is made.
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Applying Gaussian elimination to the new system

5.291x1 − 6.130x2 = 46.78,
30.00x1 + 591400x2 = 591700

produces the correct results: x1 = 10.00 and x2 = 1.000.
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Exercise
Page 379: 2, 4, 6, 31
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Matrix factorization

This equation has a unique solution x = A−1b when the
coefficient matrix A is nonsingular.
Use Gaussian elimination to factor the coefficient matrix
into a product of matrices. The factorization is called
LU -factorization and has the form A = LU , where L is unit
lower triangular and U is upper triangular.
The solution to the original problem Ax = LUx = b is then
found by a two-step triangular solve process:

Ly = b, Ux = y.

LU factorization requires O(n3) arithmetic operations.
Forward substitution for solving a lower-triangular system
Ly = b requires O(n2). Backward substitution for solving
an upper-triangular system Ux = y requires O(n2)
arithmetic operations.
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A =


1 1 0 3
2 1 −1 1
3 −1 −1 2
−1 2 3 −1



⇒ A1 := L1A ≡


1 0 0 0
−2 1 0 0
−3 0 1 0

1 0 0 1

A =


1 1 0 3
0 −1 −1 −5
0 −4 −1 −7
0 3 3 2



⇒ A2 := L2A1 ≡


1 0 0 0
0 1 0 0
0 −4 1 0
0 3 0 1

A1 =


1 1 0 3
0 −1 −1 −5
0 0 3 13
0 0 0 −13


= L2L1A
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We have

A = L−11 L−12 A2 = LR.

where L and R are lower and upper triangular, respectively.

Question

How to compute L−11 and L−12 ?

L1 =


1 0 0 0
−2 1 0 0
−3 0 1 0

1 0 0 1

 = I −


0
2
3
−1

 [ 1 0 0 0
]

L2 =


1 0 0 0
0 1 0 0
0 −4 1 0
0 3 0 1

 = I −


0
0
4
−3

 [ 0 1 0 0
]
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SinceI −


0
2
3
−1

 [ 1 0 0 0
]
I +


0
2
3
−1

 [ 1 0 0 0
] = I,

we have

L−11 =


1 0 0 0
−2 1 0 0
−3 0 1 0

1 0 0 1


−1

=


1 0 0 0
2 1 0 0
3 0 1 0
−1 0 0 1


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SinceI −


0
0
4
−3

 [ 0 1 0 0
]
I +


0
0
4
−3

 [ 0 1 0 0
] = I,

we have

L−12 =


1 0 0 0
0 1 0 0
0 −4 1 0
0 3 0 1


−1

=


1 0 0 0
0 1 0 0
0 4 1 0
0 −3 0 1


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By the fact

L−11 L−12 =


1 0 0 0
2 1 0 0
3 0 1 0
−1 0 0 1




1 0 0 0
0 1 0 0
0 4 1 0
0 −3 0 1

 =


1 0 0 0
2 1 0 0
3 4 1 0
−1 −3 0 1

 ,
it holds that

1 1 0 3
2 1 −1 1
3 −1 −1 2
−1 2 3 −1

 =


1 0 0 0
2 1 0 0
3 4 1 0
−1 −3 0 1




1 1 0 3
0 −1 −1 −5
0 0 3 13
0 0 0 −13

 .
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For a given vector v ∈ Rn with vk 6= 0 for some 1 ≤ k ≤ n, let

`ik =
vi
vk
, i = k + 1, . . . , n,

`k =
[

0 · · · 0 `k+1,k · · · `n,k
]T
,

and

Mk = I − `keTk =



1 · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · · 1 0 · · · 0
0 · · · −`k+1,k 1 · · · 0
...

...
...

. . .
...

0 · · · −`n,k 0 · · · 1


.
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Then one can verify that

Mkv =
[
v1 · · · vk 0 · · · 0

]T
.

Mk is called a Gaussian transformation, the vector `k a Gauss
vector. Furthermore, one can verify that

M−1k = (I − `keTk )−1 = I + `ke
T
k =



1 · · · 0 0 · · · 0
...

. . .
...

...
...

0 · · · 1 0 · · · 0
0 · · · `k+1,k 1 · · · 0
...

...
...

. . .
...

0 · · · `n,k 0 · · · 1


.
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Given a nonsingular matrix A ∈ Rn×n, denote A(1) ≡ [a
(1)
ij ] = A.

If a(1)11 6= 0, then
M1 = I − `1eT1 ,

where

`1 =
[

0 `21 · · · `n1
]T
, `i1 =

a
(1)
i1

a
(1)
11

, i = 2, . . . , n,

can be formed such that

A(2) = M1A
(1) =


a
(1)
11 a

(1)
12 · · · a

(1)
1n

0 a
(2)
22 · · · a

(2)
2n

...
...

. . .
...

0 a
(2)
n2 · · · a

(2)
nn

 ,
where

a
(2)
ij = a

(1)
ij − `i1 × a

(1)
1j , for i = 2, . . . , n and j = 2, . . . , n.
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In general, at the k-th step, we are confronted with a matrix

A(k) = Mk−1 · · ·M2M1A
(1)

=



a
(1)
11 a

(1)
12 · · · a

(1)
1,k−1 a

(1)
1k · · · a

(1)
1n

0 a
(2)
22 · · · a

(2)
2,k−1 a

(2)
2k · · · a

(2)
2n

...
...

. . .
...

...
...

0 0 · · · a
(k−1)
k−1,k−1 a

(k−1)
k−1,k · · · a

(k−1)
k−1,n

0 0 · · · 0 a
(k)
kk · · · a

(k)
kn

...
...

...
...

. . .
...

0 0 · · · 0 a
(k)
kn · · · a

(k)
nn


.

If the pivot a(k)kk 6= 0, then the multipliers

`ik =
a
(k)
ik

a
(k)
kk

, i = k + 1, . . . , n,
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can be computed and the Gaussian transformation

Mk = I − `keTk , where `k =
[

0 · · · 0 `k+1,k · · · `nk
]T
,

can be applied to the left of A(k) to obtain

A(k+1) = MkA
(k)

=



a
(1)
11 a

(1)
12 · · · a

(1)
1,k−1 a

(1)
1k a

(1)
1,k+1 · · · a

(1)
1n

0 a
(2)
22 · · · a

(2)
2,k−1 a

(2)
2k a

(2)
2,k+1 · · · a

(2)
2n

...
...

. . .
...

...
...

...
0 0 · · · a

(k−1)
k−1,k−1 a

(k−1)
k−1,k a

(k−1)
k−1,k+1 · · · a

(k−1)
k−1,n

0 0 · · · 0 a
(k)
kk a

(k)
k,k+1 · · · a

(k)
kn

...
...

... 0 a
(k+1)
k+1,k+1 · · · a

(k+1)
k+1,n

...
...

...
...

...
...

0 0 · · · 0 0 a
(k+1)
n,k+1 · · · a

(k+1)
nn


,
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in which

a
(k+1)
ij = a

(k)
ij − `ika

(k)
kj , (2)

for i = k + 1, . . . , n, j = k + 1, . . . , n. Upon the completion,

U ≡ A(n) = Mn−1 · · ·M2M1A

is upper triangular. Hence

A = M−11 M−12 · · ·M
−1
n−1U ≡ LU,
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where

L ≡M−11 · · ·M
−1
n−1 = (I − `1eT1 )−1(I − `2eT2 )−1 · · · (I − `n−1eTn−1)−1

= (I + `1e
T
1 )(I + `2e

T
2 ) · · · (I + `n−1e

T
n−1)

= I + `1e
T
1 + `2e

T
2 + · · ·+ `n−1e

T
n−1

=


1 0 0 · · · 0
`21 1 0 · · · 0
`31 `32 1 · · · 0
...

...
...

. . .
...

`n1 `n2 `n3 · · · 1


is unit lower triangular. This matrix factorization is called the
LU -factorization of A.
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Algorithm 3 (LU Factorization)

Given a nonsingular square matrix A ∈ Rn×n, this algorithm
computes a unit lower triangular matrix L and an upper
triangular matrix U such that A = LU . The matrix A is
overwritten by L and U .

For k = 1, . . . , n− 1
For i = k + 1, . . . , n
A(i, k) = A(i, k)/A(k, k)
For j = k + 1, . . . , n
A(i, j) = A(i, j)−A(i, k)×A(k, j)

End for
End for

End for
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Forward Substitution

When a linear system Lx = b is lower triangular of the form
`11 0 · · · 0
`21 `22 · · · 0
...

...
. . .

...
`n1 `n2 · · · `nn



x1
x2
...
xn

 =


b1
b2
...
bn

 ,
where all diagonals `ii 6= 0, xi can be obtained by the following
procedure

x1 = b1/`11,

x2 = (b2 − `21x1)/`22,
x3 = (b3 − `31x1 − `32x2)/`33,

...
xn = (bn − `n1x1 − `n2x2 − · · · − `n,n−1xn−1)/`nn.
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The general formulation for computing xi is

xi =

bi − i−1∑
j=1

`ijxj

/`ii, i = 1, 2, . . . , n.

Algorithm 4 (Forward Substitution)

Suppose that L ∈ Rn×n is nonsingular lower triangular and
b ∈ Rn. This algorithm computes the solution of Lx = b.

For i = 1, . . . , n
tmp = 0
For j = 1, . . . , i− 1
tmp = tmp+ L(i, j) ∗ x(j)

End for
x(i) = (b(i)− tmp)/L(i, i)

End for
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Example 8

E1 : x1 + x2 + 3x4 = 4,
E2 : 2x1 + x2 − x3 + x4 = 1,
E3 : 3x1 − x2 − x3 + 2x4 = −3,
E4 : −x1 + 2x2 + 3x3 − x4 = 4.

Solution:
The sequence {(E2 − 2E1)→ (E2), (E3 − 3E1)→ (E3),
(E4 − (−1)E1)→ (E4), (E3 − 4E2)→ (E3),
(E4 − (−3)E2)→ (E4)} converts the system to the
triangular system

x1 + x2 + 3x4 = 4,
− x2 − x3 − 5x4 = −7,

3x3 + 13x4 = 13,
− 13x4 = −13.
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LU factorization of A:

A =


1 1 0 3
2 1 −1 1
3 −1 −1 2
−1 2 3 −1



=


1 0 0 0
2 1 0 0
3 4 1 0
−1 −3 0 1




1 1 0 3
0 −1 −1 −5
0 0 3 13
0 0 0 −13

 = LU.
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Solve Ly = b:
1 0 0 0
2 1 0 0
3 4 1 0
−1 −3 0 1



y1
y2
y3
y4

 =


8
7

14
−7


which implies that

y1 = 8,

y2 = 7− 2y1 = −9,

y3 = 14− 3y1 − 4y2 = 26,

y4 = −7 + y1 + 3y2 = −26.
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Solve Ux = y:
1 1 0 3
0 −1 −1 −5
0 0 3 13
0 0 0 −13



x1
x2
x3
x4

 =


8
−9
26
−26


which implies that

x4 = 2,

x3 = (26− 13x4)/3 = 0,

x2 = (−9 + 5x4 + x3)/(−1) = −1,

x1 = 8− 3x4 − x2 = 3.
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Partial pivoting

At the k-th step, select pivoting a(k)pk with

|a(k)pk | = max
k≤i≤n

|a(k)ik |

and perform (Ek)↔ (Ep). That is, choose a permutation matrix

Pk =


Ik−1 0 0 0 0

0 0 0 1 0
0 0 Ip−k−1 0 0
0 1 0 0 0
0 0 0 0 In−p


so that ∣∣∣(PkA

(k))kk

∣∣∣ = max
k≤i≤n

∣∣∣(A(k))ik

∣∣∣
and

A(k+1) = M (k)PkA
(k).
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Let P1, . . . , Pk−1 be the permutations chosen and M1, . . .Mk−1
denote the Gaussian transformations performed in the first
k − 1 steps. At the k-th step, a permutation matrix Pk is chosen
so that

|(PkMk−1 · · ·M1P1A)kk| = max
k≤i≤n

|(Mk−1 · · ·M1P1A)ik| .

As a consequence, |`ij | ≤ 1 for i = 1, . . . , n, j = 1, . . . , i. Upon
completion, we obtain an upper triangular matrix

U ≡Mn−1Pn−1 · · ·M1P1A. (3)

Since any Pk is symmetric and P T
k Pk = P 2

k = I, we have

Mn−1Pn−1 · · ·M2P2M1P2 · · ·Pn−1Pn−1 · · ·P2P1A = U,

therefore,

Pn−1 · · ·P1A = (Mn−1Pn−1 · · ·M2P2M1P2 · · ·Pn−1)
−1U.
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k − 1 steps. At the k-th step, a permutation matrix Pk is chosen
so that

|(PkMk−1 · · ·M1P1A)kk| = max
k≤i≤n

|(Mk−1 · · ·M1P1A)ik| .
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In summary, Gaussian elimination with partial pivoting leads to
the LU factorization

PA = LU, (4)

where
P = Pn−1 · · ·P1

is a permutation matrix, and

L ≡ (Mn−1Pn−1 · · ·M2P2M1P2 · · ·Pn−1)
−1

= Pn−1 · · ·P2M
−1
1 P2M

−1
2 · · ·Pn−1M

−1
n−1.

Since

Pj =


Ij−1 0 0 0 0

0 0 0 1 0
0 0 Ip−j−1 0 0
0 1 0 0 0
0 0 0 0 In−p

 , `j =



0
...
0

`j+1,j
...
`nj


,

142 / 255



logo

Linear systems of equations Pivoting Strategies Matrix factorization Special types of matrices

In summary, Gaussian elimination with partial pivoting leads to
the LU factorization

PA = LU, (4)

where
P = Pn−1 · · ·P1

is a permutation matrix, and

L ≡ (Mn−1Pn−1 · · ·M2P2M1P2 · · ·Pn−1)
−1

= Pn−1 · · ·P2M
−1
1 P2M

−1
2 · · ·Pn−1M

−1
n−1.

Since

Pj =


Ij−1 0 0 0 0

0 0 0 1 0
0 0 Ip−j−1 0 0
0 1 0 0 0
0 0 0 0 In−p

 , `j =



0
...
0

`j+1,j
...
`nj


,

143 / 255



logo

Linear systems of equations Pivoting Strategies Matrix factorization Special types of matrices

In summary, Gaussian elimination with partial pivoting leads to
the LU factorization

PA = LU, (4)

where
P = Pn−1 · · ·P1

is a permutation matrix, and

L ≡ (Mn−1Pn−1 · · ·M2P2M1P2 · · ·Pn−1)
−1

= Pn−1 · · ·P2M
−1
1 P2M

−1
2 · · ·Pn−1M

−1
n−1.

Since

Pj =


Ij−1 0 0 0 0

0 0 0 1 0
0 0 Ip−j−1 0 0
0 1 0 0 0
0 0 0 0 In−p

 , `j =



0
...
0

`j+1,j
...
`nj


,

144 / 255



logo

Linear systems of equations Pivoting Strategies Matrix factorization Special types of matrices

it implies that for i < j,

eTi Pj = eTi , eTi `j = 0,

Pj`i =
[

0 · · · 0 ˜̀
i+1,i · · · ˜̀

n,i

]T ≡ ˜̀
i,

⇒

P2M
−1
1 P2 = P2(I + `1e

T
1 )P2 = I + ˜̀

1e
T
1

⇒

P2M
−1
1 P2M

−1
2 = (I + ˜̀

1e
T
1 )(I + `2e

T
2 ) = I + ˜̀

1e
T
1 + `2e

T
2 ,

⇒

P3

(
P2M

−1
1 P2M

−1
2

)
P3 = I + ˆ̀

1e
T
1 + ˜̀

2e
T
2

⇒ · · ·
Therefore, L is unit lower triangular.
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Algorithm 5 (LU -factorization with Partial Pivoting)
Given a nonsingular A ∈ Rn×n, this algorithm finds a permutation P ,
and computes a unit lower triangular L and an upper triangular U
such that PA = LU . A is overwritten by L and U , and P is not
formed. An integer array p is instead used for storing the row/column
indices.

p(1 : n) = 1 : n
For k = 1, . . . , n− 1
m = k
For i = k + 1, . . . , n

If |A(p(m), k)| < |A(p(i), k)|, then m = i
End For
` = p(k); p(k) = p(m); p(m) = `
For i = k + 1, . . . , n
A(p(i), k) = A(p(i), k)/A(p(k), k)
For j = k + 1, . . . , n
A(p(i), j) = A(p(i), j)−A(p(i), k)A(p(k), j)

End For
End For

End For 150 / 255
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Since the Gaussian elimination with partial pivoting produces the
factorization (4), the linear system problem should comply accordingly

Ax = b =⇒ PAx = Pb =⇒ LUx = Pb.

Example 9

Find an LU factorization of

A =


0 1 −1 1
1 1 −1 2
−1 −1 1 0

1 2 0 2

 .

(E1)↔ (E2), (E3 + E1)→ (E3) and (E4 − E1)→ (E4):

A(2) =


1 1 −1 2
0 1 −1 1
0 0 0 2
0 1 1 0

 , P1 =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 ,M1 =


1 0 0 0
0 1 0 0
1 0 1 0
−1 0 0 1

 .
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(E3)↔ (E4) and (E3 − E2)→ (E3):

A(3) =


1 1 −1 2
0 1 −1 1
0 0 2 −1
0 0 0 2

 , P2 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,M2 =


1 0 0 0
0 1 0 0
0 −1 1 0
0 0 0 1

 .
Permutation matrix P :

P = P2P1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


Unit lower triangular matrix L:

L = P2M
−1
1 P2M

−1
2 =


1 0 0 0
0 1 0 0
1 1 1 0
−1 0 0 1


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The LU factorization of PA:

PA =


1 0 0 0
0 1 0 0
1 1 1 0
−1 0 0 1




1 1 −1 2
0 1 −1 1
0 0 2 −1
0 0 0 2

 = LU.

So

A = P−1LU = (P TL)U =


0 1 0 0
1 0 0 0
−1 0 0 1

1 1 1 0




1 1 −1 2
0 1 −1 1
0 0 2 −1
0 0 0 2

 .
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Exercise
Page 409: 3, 9
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Special types of matrices

Definition 10
A matrix A ∈ Rn×n is said to be strictly diagonally dominant if

|aii| >
n∑

j=1,j 6=i

|aij |.

Lemma 11
If A ∈ Rn×n is strictly diagonally dominant, then A is
nonsingular.

Proof: Suppose A is singular. Then there exists x ∈ Rn, x 6= 0
such that Ax = 0. Let k be the integer index such that

|xk| = max
1≤i≤n

|xi| =⇒ |xi|
|xk|
≤ 1, ∀ |xi|.
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Proof: Suppose A is singular. Then there exists x ∈ Rn, x 6= 0
such that Ax = 0. Let k be the integer index such that

|xk| = max
1≤i≤n

|xi| =⇒ |xi|
|xk|
≤ 1, ∀ |xi|.
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Since Ax = 0, for the fixed k, we have

n∑
j=1

akjxj = 0 ⇒ akkxk = −
n∑

j=1,j 6=k

akjxj

⇒ |akk||xk| ≤
n∑

j=1,j 6=k

|akj ||xj |,

which implies

|akk| ≤
n∑

j=1,j 6=k

|akj |
|xj |
|xk|
≤

n∑
j=1,j 6=k

|akj |.

But this contradicts the assumption that A is diagonally
dominant. Therefore A must be nonsingular.
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Theorem 12

Gaussian elimination without pivoting preserve the diagonal
dominance of a matrix.

Proof: Let A ∈ Rn×n be a diagonally dominant matrix and
A(2) = [a

(2)
ij ] is the result of applying one step of Gaussian

elimination to A(1) = A without any pivoting strategy.
After one step of Gaussian elimination, a(2)i1 = 0 for i = 2, . . . , n,
and the first row is unchanged. Therefore, the property

|a(2)11 | >
n∑

j=2

|a(2)1j |

is preserved, and all we need to show is that

|a(2)ii | >
n∑

j=2,j 6=i

|a(2)ij |, for i = 2, . . . , n.
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Using the Gaussian elimination formula (2), we have

|a(2)ii | =

∣∣∣∣∣a(1)ii −
a
(1)
i1

a
(1)
11

a
(1)
1i

∣∣∣∣∣ =

∣∣∣∣aii − ai1
a11

a1i

∣∣∣∣
≥ |aii| −

|ai1|
|a11|

|a1i|

= |aii| − |ai1|+ |ai1| −
|ai1|
|a11|

|a1i|

= |aii| − |ai1|+
|ai1|
|a11|

(|a11| − |a1i|)

>

n∑
j=2,j 6=i

|aij |+
|ai1|
|a11|

n∑
j=2,j 6=i

|a1j |

=

n∑
j=2,j 6=i

|aij |+
n∑

j=2,j 6=i

|ai1|
|a11|

|a1j |

≥
n∑

j=2,j 6=i

∣∣∣∣aij − ai1
a11

a1j

∣∣∣∣ =
n∑

j=2,j 6=i

|a(2)ij |.
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Thus A(2) is still diagonally dominant. Since the subsequent
steps of Gaussian elimination mimic the first, except for being
applied to submatrices of smaller size, it suffices to conclude
that Gaussian elimination without pivoting preserves the
diagonal dominance of a matrix.

Theorem 13
Let A be strictly diagonally dominant. Then Gaussian
elimination can be performed on Ax = b to obtain its unique
solution without row or column interchanges.

Definition 14

A matrix A is positive definite if it is symmetric and xTAx > 0
∀ x 6= 0.
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Theorem 15
If A is an n× n positive definite matrix, then

(a) A has an inverse;
(b) aii > 0, ∀ i = 1, . . . , n;
(c) max1≤k,j≤n |akj | ≤ max1≤i≤n |aii|;
(d) (aij)

2 < aiiajj , ∀ i 6= j.

Proof:
(a) If x satisfies Ax = 0, then xTAx = 0. Since A is

positive definite, this implies x = 0. Consequently,
Ax = 0 has only the zero solution, and A is
nonsingular.

(b) Since A is positive definite,

aii = eTi Aei > 0,

where ei is the i-th column of the n× n identify
matrix. 179 / 255
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(c) For k 6= j, define x = [xi] by

xi =


0, if i 6= j and i 6= k,
1, if i = j,
−1, if i = k.

Since x 6= 0,

0 < xTAx = ajj + akk − ajk − akj .

But AT = A, so

2akj < ajj + akk. (5)

Now define z = [zi] by

zi =

{
0, if i 6= j and j 6= k,
1, if i = j or i = k.
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Then zTAz > 0, so

−2akj < ajj + akk. (6)

Equations (5) and (6) imply that for each k 6= j,

|akj | <
akk + ajj

2
≤ max

1≤i≤n
|aii|,

so

max
1≤k,j≤n

|akj | ≤ max
1≤i≤n

|aii|.

(d) For i 6= j, define x = [xk] by

xk =


0, if k 6= j and k 6= i,
α, if k = i,
1, if k = j,

where α represents an arbitrary real number.
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Since x 6= 0,

0 < xTAx = aiiα
2 + 2aijα+ ajj ≡ P (α), ∀ α ∈ R.

That is the quadratic polynomial P (α) has no real
roots. It implies that

4a2ij − 4aiiajj < 0 and a2ij < aiiajj .

Definition 16 (Leading principal minor)
Let A be an n× n matrix. The upper left k × k submatrix,
denoted as

Ak =


a11 a12 · · · a1k
a21 a22 · · · a2k
...

...
. . .

...
ak1 ak2 · · · akk

 ,
is called the leading k × k principal submatrix, and the
determinant of Ak, det(Ak), is called the leading principal
minor. 196 / 255
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Theorem 17
A symmetric matrix A is positive definite if and only if each of its
leading principal submatrices has a positive determinant.

Theorem 18
The symmetric matrix A is positive definite if and only if
Gaussian elimination without row interchanges can be
performed on Ax = b with all pivot elements positive.

Corollary 19
The matrix A is positive definite if and only if A can be factored
in the form LDLT , where L is lower triangular with 1’s on its
diagonal and D is a diagonal matrix with positive diagonal
entries.
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Theorem 20
If all leading principal submatrices of A ∈ Rn×n are nonsingular,
then A has an LU -factorization.

Proof: Proof by mathematical induction.
1 n = 1, A1 = [a11] is nonsingular, then a11 6= 0. Let L1 = [1]

and U1 = [a11]. Then A1 = L1U1. The theorem holds.
2 Assume that the leading principal submatrices A1, . . . , Ak

are nonsingular and Ak has an LU -factorization
Ak = LkUk, where Lk is unit lower triangular and Uk is
upper triangular.

3 Show that there exist an unit lower triangular matrix Lk+1

and an upper triangular matrix Uk+1 such that
Ak+1 = Lk+1Uk+1.
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Write

Ak+1 =

[
Ak vk
wT
k ak+1,k+1

]
,

where

vk =


a1,k+1

a2,k+1
...

ak,k+1

 and wk =


ak+1,1

ak+1,2
...

ak+1,k

 .
Since Ak is nonsingular, both Lk and Uk are nonsingular.
Therefore, Lkyk = vk has a unique solution yk ∈ Rk, and
ztUk = wT

k has a unique solution zk ∈ Rk. Let

Lk+1 =

[
Lk 0
zTk 1

]
and Uk+1 =

[
Uk yk
0 ak+1,k+1 − zTk yk

]
.
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Then Lk+1 is unit lower triangular, Uk+1 is upper triangular, and

Lk+1Uk+1 =

[
LkUk Lkyk
zTk Uk zTk yk + ak+1,k+1 − zTk yk

]
=

[
Ak vk
wT
k ak+1,k+1

]
= Ak+1.

This proves the theorem.
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Theorem 21
If A is nonsingular and the LU factorization exists, then the LU
factorization is unique.

Proof: Suppose both

A = L1U1 and A = L2U2

are LU factorizations. Since A is nonsingular, L1, U1, L2, U2 are
all nonsingular, and

A = L1U1 = L2U2 =⇒ L−12 L1 = U2U
−1
1 .

Since L1 and L2 are unit lower triangular, it implies that L−12 L1

is also unit lower triangular. On the other hand, since U1 and U2

are upper triangular, U2U
−1
1 is also upper triangular. Therefore,

L−12 L1 = I = U2U
−1
1

which implies that L1 = L2 and U1 = U2.
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Lemma 22

If A ∈ Rn×n is positive definite, then all leading principal
submatrices of A are nonsingular.

Proof: For 1 ≤ k ≤ n, let

zk = [x1, . . . , xk]T ∈ Rk and x = [x1, . . . , xk, 0, . . . , 0]T ∈ Rn,

where x1, . . . , xk ∈ R are not all zero. Since A is positive
definite,

zTk Akzk = xTAx > 0,

where Ak is the k × k leading principal submatrix of A. This
shows that Ak are also positive definite, hence Ak are
nonsingular.
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Corollary 23
The matrix A is positive definite if and only if

A = GGT , (7)

where G is lower triangular with positive diagonal entries.

Proof: “⇒” A is positive definite
⇒ all leading principal submatrices of A are nonsingular
⇒ A has the LU factorization A = LU , where L is unit lower
triangular and U is upper triangular.
Since A is symmetric,

LU = A = AT = UTLT =⇒ U(LT )−1 = L−1UT .

U(LT )−1 is upper triangular and L−1UT is lower triangular
⇒ U(LT )−1 to be a diagonal matrix, say, U(LT )−1 = D.
⇒ U = DLT . Hence

A = LDLT .
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Since A is positive definite,

xTAx > 0 =⇒ xTLDLTx = (LTx)TD(LTx) > 0.

This means D is also positive definite, and hence dii > 0. Thus
D1/2 is well-defined and we have

A = LDLT = LD1/2D1/2LT ≡ GGT ,

where G ≡ LD1/2. Since the LU factorization is unique, G is
unique.
“⇐”
Since G is lower triangular with positive diagonal entries, G is
nonsingular. It implies that

GTx 6= 0, ∀ x 6= 0.

Hence

xTAx = xTGGTx = ‖GTx‖22 > 0, ∀ x 6= 0

which implies that A is positive definite.
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unique.
“⇐”
Since G is lower triangular with positive diagonal entries, G is
nonsingular. It implies that

GTx 6= 0, ∀ x 6= 0.

Hence

xTAx = xTGGTx = ‖GTx‖22 > 0, ∀ x 6= 0

which implies that A is positive definite.
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The factorization (7) is referred to as the Cholesky factorization.
Derive an algorithm for computing the Cholesky factorization:
Let

A ≡ [aij ] and G =


g11 0 · · · 0

g21 g22
. . .

...
...

...
. . . 0

gn1 gn2 · · · gnn

 .
Assume the first k− 1 columns of G have been determined after k− 1
steps. By componentwise comparison with

[aij ] =


g11 0 · · · 0

g21 g22
. . .

...
...

...
. . . 0

gn1 gn2 · · · gnn



g11 g21 · · · gn1
0 g22 · · · gn2
...

. . . . . .
...

0 · · · 0 gnn

 ,
one has

akk =

k∑
j=1

g2kj ,
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which gives

g2kk = akk −
k−1∑
j=1

g2kj .

Moreover,

aik =

k∑
j=1

gijgkj , i = k + 1, . . . , n,

hence the k-th column of G can be computed by

gik =

aik − k−1∑
j=1

gijgkj

/gkk, i = k + 1, . . . , n.
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Algorithm 6 (Cholesky Factorization)
Given an n× n symmetric positive definite matrix A, this
algorithm computes the Cholesky factorization A = GGT .

Initialize G = 0
For k = 1, . . . , n

G(k, k) =
√
A(k, k)−

∑k−1
j=1 G(k, j)G(k, j)

For i = k + 1, . . . , n

G(i, k) =
(
A(i, k)−

∑k−1
j=1 G(i, j)G(k, j)

)/
G(k, k)

End For
End For

In addition to n square root operations, there are approximately
n∑

k=1

[2k − 2 + (2k − 1)(n− k)] =
1

3
n3 +

1

2
n2 − 5

6
n

floating-point arithmetic required by the algorithm.
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Band matrix

Definition 24
An n× n matrix A is called a band matrix if ∃ p and q with 1 < p, q < n
such that

aij = 0 whenever p ≤ j − i or q ≤ i− j.

The bandwidth of a band matrix is defined as w = p+ q − 1. That is

A =



a11 · · · a1p 0 · · · 0
...

. . . . . . . . .
...

aq1
. . . . . . 0

0
. . . . . . an−p+1,n

...
. . . . . . . . .

...
0 · · · 0 an,n−q+1 · · · ann


.
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Definition 25
A square matrix A = [aij ] is said to be tridiagonal if

A =


a11 a12 0

a21 a22
. . .

. . . . . . an−1,n
0 an,n−1 an,n

 .

If Gaussian elimination can be applied safely without pivoting. Then L
and U factors would have the form

L =


1
`21 1

. . . . . .
0 `n,n−1 1

 and U =


u11 u12 0

u22
. . .
. . . un−1,n

unn

 ,
and the entries are computed by the simple algorithm which only
costs 3n flops.
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Algorithm 7 (Tridiagonal LU Factorization)
This algorithm computes the LU factorization for a tridiagonal
matrix without using pivoting strategy.

U(1, 1) = A(1, 1)
For i = 2, . . . , n
U(i− 1, i) = A(i− 1, i)
L(i, i− 1) = A(i, i− 1)/U(i− 1, i− 1)
U(i, i) = A(i, i)− L(i, i− 1)U(i− 1, i)

End For

A tridiagonal linear system arises in many applications, such as
finite difference discretization to second order linear
boundary-value problem and the cubic spline approximations.
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Exercise
Page 425: 2, 6, 12, 15, 17, 19, 20, 21
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