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Linear systems of equations

Linear systems of equations

Three operations to simplify the linear system:
Q@ (\E;) — (E;): Equation E; can be multiplied by \ # 0 with
the resulting equation used in place of F;.
Q (E; + \E;) — (E;): Equation E; can be multiplied by A # 0
and added to equation F; with the resulting equation used

in place of F;.

©Q (E) < (E)): Equation E; and E; can be transposed in
order.

(Examplet
FEy: r1 + T2 + 3zy = 4,
Ey: 2x1 4+ 290 — 3 + x4 = 1,
Es: 3x1 — 1z — x3 + 224 = -3,
Ey: —x1 + 229 + 313 — T4 = 4.




Linear systems of equations

Solution:

(*] (E2 — 2E1) — (EQ), (E3 — 3E1) — (Eg) and
(E4 + El) — (E4):

Eli T
EQ:
Eg:
E4:

_.I_

o +
T2 — T3 —
4I‘2 — r3 —

3xo + 3z3 +

34
5.%4
Txy
2.%4

o (Eg — 4E2) — (Eg) and (E4 + 3E2) — (E4):

X2 +
T2 — X3 —
3xz +

3x4
5$4
1324
13%4



Linear systems of equations

@ Backward-substitution process:

0 Ey = z4=1
@ Solve E; for x3:

1 1
w3 = 5(13 ~ 1314) = 5 (13 - 13) = 0,

© £, gives
xo=—(=T+bxg+23)=—(—74+5+0)=2.

Q £ gives

1 =4—-3x4—20=4—-3—-2=-1.



Linear systems of equations

Solve linear systems of equations

a1121 + a1ra + -+ apr, = by
ag1x1 + ax + - -+ + a2y, = b2
Ap1T1 + Ap2T2 + -+ AppTy, = by

Rewrite in the matrix form

Ax = b, (1)
where
air a2 - Qin b1 x1
a1 G2 -+ Q2p bo )
A= b= -
an1 Gp2 - Qnn bn, In

and [A, b] is called the augmented matrix.



Linear systems of equations

Gaussian elimination with backward substitution

The augmented matrix in previous example is

1 1 0 3 4
2 1 -1 1 1
3 -1 -1 2|-3

1 2 3 -1| 4

(*] (EQ — 2E1) — (EQ), (E3 — 3E1) — (Eg) and (E4 + El) — (E4):

1 1 0 3 4
0o -1 -1 —-5| -7
0 -4 -1 —-7|-15
0 3 3 2 8



Linear systems of equations

The general Gaussian elimination procedure
@ Provided ay; #0,foreach:=2,3,...,n,

(E — E1> 5 (E)).

a11

Transform all the entries in the first col. below the diagonal are
zero. Denote the new entry in the ith row and jth col. by a;;.

@ Fori=2,3...,n—1, provided a;; # 0,
(Ej—“*”Ei> S (), Vi=i+1,i+2,....n
Qi

Transform all the entries in the ith column below the diagonal
are zero.

@ Result an upper triangular matrix:

aiy G2 - G | b
0 ax -+ a2, | bo
o - 0 ann | bn



Linear systems of equations

The process of Gaussian elimination result in a sequence of
matrices as follows:

A=AM - A@ ... 5 A™ = ypper triangular matrix

The matrix A¥) has the following form:

o o d e [ e 6]
:al(fk—_llll—l aék__f,l a;’“_—llj) az(c/:l%
(G A 7;};3 a0 'a;(fff
O I S
oo e e




Linear systems of equations

The entries of A%) are produced by the formula

(1&?771), fori = s k—=1,7=1,....,n;
k) _ ) 0, fori=Fk,...,n,7=1,...,k—1;
“ T oy e (k—1)

a; - Tt X ay_1j, fori=k,....on,j=k. .. n

Ap—1,k—1

@ The procedure will fail if one of the elements ag?, ag), e
ally is zero.

o 4" is called the pivot element.
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Linear systems of equations

Backward substitution

The new linear system is triangular:

aj1ry + aprs + -+ awT, = by,
ary + - 4+ apx, = b,
ApnTn = bn
@ Solving the nth equation for z,, gives
by,
T, = —.
Ann
@ Solving the (n — 1)th equation for x,,_; and using the value for
T yields
bp—1 — Gn—1,nTn
Tp] = ——"F.
n—1,n—1
@ In general,
bi — 7}_» Q;i L5
T = 2jzien " Yi=n—1,n-2,...,1.

(027} 14 728



Linear systems of equations

Algorithm 1 (Backward Substitution)

Suppose that U € R™*" is nonsingular upper triangular and
b € R™. This algorithm computes the solution of Uz = b.

Fori=mn,...,1
tmp =0
Forj=i+1,...,n
tmp =tmp + U(i,j) * x(j)
End for
2(i) = (b(i) — tmp) /U (3, 1)
End for
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Linear systems of equations

Solve system of linear equations.

6 -2 2 47 x 12
12 -8 6 10| | x| | 34
3 —13 9 3| |as | | 27
—6 41 —18 | | a4 —38

Solution:

1%t step Use 6 as pivot element, the first row as pivot row,

and multipliers 2, %, —1 are produced to reduce the

system to
6 -2 2 4 T 12
0 —4 2 2| |x| | 10
0 —12 8 1 x3 | 21
0 2 3 —14 T4 —26

12 /R0



Linear systems of equations

2"t step Use —4 as pivot element, the second row as pivot

row, and multipliers 3, —% are computed to reduce
the system to

6 -2 2 47 [x= 12
0 -4 2 2| |a]| | 10
0 02 —5||a| | -9
0 0 4 —13| | x4 —21

374 step Use 2 as pivot element, the third row as pivot row,
and multipliers 2 is found to reduce the system to

6 —2 2 47 [x 12
0 —4 2 2| |a| | 10
0 02 5| |a]| | -9
0 00 —3] | o -3

14 /R0



Linear systems of equations

4" step The backward substitution is applied:

Zq

T3

Z2

x7

@ This example is done since a,(jg) #£0forall k =1,2,3,4.

@ Howtodoifa

-3
7:1’
-3
—9+5.T4_—9+5__2
2 27
10 — 224 — 223 10—2+4__3
—4 - —4 -
12—4$4—2$3+2$2_12—4+4—6_
6 N 6 -

we = 0 for some £?

1.
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Linear systems of equations

Solve system of linear equations.

1 -1
2 =2
1 1
1 -1

2
3
1
4

=1l
-3

0
3

-8

Solution:

1%t step Use 1 as pivot element, the first row as pivot row,
and multipliers 2,1, 1 are produced to reduce the

system to

o O o=

o N O =

-8
—4
6
12
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Linear systems of equations

24 step Since a%) =0and a:(f?) # 0, the operation
(E2) <> (E3) is performed to obtain a new system

1 -1 2 -1 T -8
0 2 -1 1| |a]| | 6
0 0 -1 -1 z3 | | —4
0O 0 2 4 24 12

37" step Use —1 as pivot element, the third row as pivot
row, and multipliers —2 is found to reduce the

system to
1 -1 2 -1 T -8
0 2 -1 1| |ax| | 6
0 0 -1 -1 z3 | | —4
0 0 O 2 T4 4

17 /R0



Linear systems of equations

4" step The backward substitution is applied:

4
= 7:2
T4 2 )
—4
r3 = +x4:2,
—1
6 — x4+ 23
o = 72 :3,
—8+ x4 — 223 + T2
r1r = =—T.

1
u

@ This example illustrates what is done if a,i’z) = 0 for some k.

o If ag,? # 0 for some p with k + 1 < p < n, then the operation
(Ex) < (E,) is performed to obtain new matrix.

o If a](]];) = 0 for each p, then the linear system does not have

a unique solution and the procedure stops.
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Linear systems of equations

Algorithm 2 (Gaussian elimination)

Given A € R™*"™ and b € R", this algorithm implements the
Gaussian elimination procedure to reduce A to upper triangular
and modify the entries of b accordingly.
Fork=1,...,n—1
Let p be the smallest integer with £ < p < n and ay, # 0.
If A p, then stop.
If p # k, then perform (E,) < (Ey).
Fori=k+1,...,n
t=A(i, k)/A(k, k)
A(i, k) =0
b(i) = b(i) — t x b(k)
Forj=k+1,...,n
A(Zaj) = A(Zh]) —tX A<k7.7)
End for
End for
End for
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Linear systems of equations

Number of floating-point arithmetic operations

Eliminate £th column

Fori=k+1,....n
t = A(i, k)/A(k,k); b(i) = b(i) — t x b(k).
Forj=k+1,...,n
A(’Laj) = A(la]) —tX A(k>])
End for
End for

@ Multiplications/divisions
m—k)+(n—k)+n—-kin—k)=mn—-k)(n—k+2)
@ Additions/subtractions

(n—k)+ (n—k)(n—k) = (n—k)(n—k-+1)

20/ R0



Linear systems of equations

@ Total number of operations for multiplications/divisions

n—1 n—1

dtn—k)n-k+2)= Z(n2 — 2nk + k2 + 2n — 2k)
k=1 k=1
n—1 n—
= (n2—|—2n)21—2(n+ —|—Zk‘2
k=1 k=1 =

(1= Un (1= (2= 1)

= (n2+2n)(n—1)—-2(n+1) 5 G

2n3 + 3n? — 5n
—
@ Total number of operations for additions/subtractions

n—1 n—1
Y tn—k)n-k+1)= Z(n2—2nk+k2+n—k)
k=1 =1

—1 n—1
= (2+n Zl—Qn—l—l Zk+2k2 non
k=1

24 /R0



Linear systems of equations

Backward substitution
xz(n) =b(n)/U(n,n).

Fori=n—1,...,1
tmp=U(3,i+1) x z(i + 1)
Forj=i+2,...,n

tmp = tmp + U (i, 5) x z(j)

End for
2(3) = (b(3) — tmp) /U (i, i)
End for

@ Multiplications/divisions

n2+n

1+i[(n—i)+1}: 5

@ Additions/subtractions

n—1
n2 —n

dn—i-1)+1] = 5

i=1

29 /R0



Linear systems of equations

The total number of arithmetic operations in Gaussian
elimination with backward substitution is:

@ Multiplications/divisions

2n* +3n2 —5n  n?+n n? 9 n?
6 2 3

@ Additions/subtractions

272 /R0



Linear systems of equations

Page 368: 5, 10, 12, 15
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Pivoting Strategies

Pivoting Strategies

o If a](jf) is small in magnitude compared to ag-?, then

Round-off error introduced in the computation of

aglerl) - agé) - mﬂ“g?» for {=k+1,...,n.
@ Error can be increased when performing the backward

substitution for

k

by, — Z; k+1 al(c])x]
Tk = ®)
Ak

with a small value of a(k)

25 /RO



Pivoting Strategies

Example 4

The linear system

Ep: 0.003000z; + 59.14z9 = 59.17,
By 5.291z; — 6.130x2 = 46.78,

has the exact solution z; = 10.00 and z2 = 1.000. Suppose
Gaussian elimination is performed on this system using
four-digit arithmetic with rounding.

@ a1; = 0.0030 is small and

5.291
~ 0.0030
@ Perform (Ey — mo1 E1) — (E2):

0.0030z1 + 09.14z2 = 59.17
— 104309.376z2 = —104309.376.

= 1763.66 ~ 1764.

ma1

26 / RO



Pivoting Strategies

@ Rounding with four-digit arithmetic:
Coefficient of x5:

—6.130 — 1764 x 59.14 = —6.130 — 104322.96
~ —6.130 — 104300 = —104306.13
~ —104300.

Right hand side:

46.78 — 1764 x 59.17 = 46.78 — 104375.88
~ 46.78 — 104400 = —104353.22
—104400.

New linear system:

0.0030z; +  959.14z2 = 59.17
— 104300z2 —104400.

Q

27 /R0



Pivoting Strategies

@ Approximated solution:

104400

= ~ 1.001
2 104300 = 1008

5917 -59.14 x 1.001 _ 59.17 — 59.19914
"= 0.0030 - 0.0030

59.17 — 59.20
~ 22799 g0.00.
0.0030

This ruins the approximation to the actual value x; = 10.00.
[ ]
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Pivoting Strategies

Partial pivoting

@ To avoid the pivot element small relative to other entries,
pivoting is performed by selecting an element a;(,]fl) with a
larger magnitude as the pivot.

@ Specifically, select pivoting ag,? with

(k)| _ (k)
|y | = max [

and perform (Ej) < (Ep).
@ This row interchange strategy is called partial pivoting.
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Pivoting Strategies

Reconsider the linear system

Eq: 0.003000x7 + 59.14z9 = 59.17,
Es 5.291z; — 6.130x2 = 46.78.

@ Find pivoting with
max{|ai1], |a21|} = 5.291 = |ag1|.
@ Perform (E») <> (E1):

By 0.291z; — 6.130x9 = 46.78,
Ey: 0.003000z; + 59.14z2 = 59.17.

@ The multiplier for new system is

Moy = 22 = 0.0005670.
all

20 /R0



Pivoting Strategies

@ The operation (E2 — m21 E1) — (F2) reduces the system to

5.291x1 — 6.130x2 = 46.78,
59.14z9 ~ 59.14.

@ The four-digit answers resulting from the backward
substitution are the correct values z; = 10.00 and
zo = 1.000. |
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Pivoting Strategies

Example 6

The linear system

E;: 30.00z; + 591400z2 = 591700,
Ey: 5291z —  6.130z2 =  46.7§,

is the same as that in previous example except that all the
entries in the first equation have been multiplied by 10*.

The pivoting is a1; = 30.00 and the multiplier

5.291
=——=0.1764
ma1 = g5 gp = 0170
leads to the system
30.00x1 + 591400z = 591700

— 104300z =~ —104400,

which has inaccurate solution z5 ~ 1.001 and z; ~ —10.00. H



Pivoting Strategies

Scaled partial pivoting

@ Define a scale factor s; as

s; = max l|a;i|, for i =1,.... n.
i 1Sj§n| 1]|7 y )

@ If s; = 0 for some i, then the system has no unique
solution.

@ In the 7th column, choose the least integer p > i with

apil _ o
i<k<n S

Sp
and perform (E;) < (E,) if p # i.
@ The scale factors sy, ..., s, are computed only once and

must also be interchanged when row interchanges are
performed.
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Pivoting Strategies

Apply scaled partial pivoting to the linear system

Ey: 30.00z7 + 591400z, = 591700,
Ey: 5291z — 6.130z2 =  46.78.

The scale factors s; and s, are

s1 = max{|30.00], |591400|} = 591400

and
s = max{]5.291|, | — 6.130|} = 6.130.
Consequently,
|a11| 3000 —4
= =0.5073 x 10
51 591400 S
|ag | 5.291
= = —0.8631,
So 6.130

and the interchange (E;) < (Fs) is made.

24 /R80



Pivoting Strategies

Applying Gaussian elimination to the new system

5.291z1 —  6.130xz2 = 46.78,
30.00x1 + 5914002 591700

produces the correct results: z; = 10.00 and z» = 1.000. [ |

25 /R0



Pivoting Strategies

Page 379: 2, 4, 6, 31
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Matrix factorization

Matrix factorization

@ This equation has a unique solution 2 = A~'b when the
coefficient matrix A is nonsingular.

@ Use Gaussian elimination to factor the coefficient matrix
into a product of matrices. The factorization is called
LU-factorization and has the form A = LU, where L is unit
lower triangular and U is upper triangular.

@ The solution to the original problem Az = LUx = b is then
found by a two-step triangular solve process:

Ly =0, Uz =y.

@ LU factorization requires O(n?*) arithmetic operations.
Forward substitution for solving a lower-triangular system
Ly = brequires O(n?). Backward substitution for solving
an upper-triangular system Uz = y requires O(n?)
arithmetic operations.

27 /R0
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=
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8
x
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©
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|

™M —~ N -

1 0
1 -1
-1 -1
2 3

1
2
3
-1

|

1 0
-1 -1
-4 -1

3 3

1
0
0
0

<
OO O -
O O —H O
o —H O O
—~ AN ™M

I

Il

<

—

~

I

—

<

Lol A
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Matrix factorization

We have
A=IL;'L;'Ay = LR.

where L and R are lower and upper triangular, respectively.

How to compute L;* and L, '?

1000 0
-2 100 2

Li=| 561 0|=1" 3[1000]
| 1.0 0 1] -1
[1 0 0 0] [ 0]
0 100 0

Lo=1|o 41 o|=1-| 4|[0100]
[0 3 0 1] =N

20 /R0



Matrix factorization

Since
0 0
I— 2[1000} I+2[1000]:I
3 3 ’
-1 -1
we have
100 07" 100 0
L_l_—2100 _ 2100
L =1 3010 - 3010
100 1 -1 0 0 1

a0 /K0



Matrix factorization

Since
0 0
1—0[0100} I+0[0100]:I
4 4 ’
-3 -3
we have
1 001" 1 000
-1 0 100 o 100
2710 -4 10 10 410
0 30 1 0 -3 0 1

41 /K0
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By the fact

| I |
—
SO O -
o O H O
S —H O O
— AN M -
|
| |
Il
—
]
~
—

it holds that

|
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0
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3
0

1
-1
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0
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I

SO O

o O —H O

S —= M

— AN ™M

R

™M — AN -

1 0
1 -1
-1 -1
2 3

1
2
3
-1



Matrix factorization

For a given vector v € R™ with v, # 0 for some 1 < k < n, let

v;

and

Mo=I-tef=| ¢ T, 1

—_
o

0 o —lyp 0 -1
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Matrix factorization

Then one can verify that
Mw=[v, - v, 0 - 0]".

M, is called a Gaussian transformation, the vector ¢, a Gauss
vector. Furthermore, one can verify that

1 .- 0 0O -~ 0
: 0 1 0 0
[l (17— peTV1 — o —
My (I = tret) I+ ey 0 -+ Lrpp 1 0
0 - bpg 0 o 1]

44 / R0



Matrix factorization

Given a nonsingular matrix A € R™*", denote A" = [al(-;-)] = A.

If aﬁ) # 0, then .
My =1— /ey,

where
T al}
61:[0 «ﬁ,gl énl} 5 le— 7’1,7:2,....77/.
2D
11
can be formed such that
1 1 1
Ry
A(Q) _ MlA(l) _ 0 Qo9 T Qo 7
0 a%) aﬁﬁ%
where
(L,EJQ») = CLEJU — Ui % “(13) fori=2,...,nand j=2,... n.
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Matrix factorization

In general, at the k-th step, we are confronted with a matrix

AR = My My M AD

¢! 1 1 1 1) 7
TEE AT

2 2 2

0 ayy -+ a4y, Qo 2n

_ k—1 k-1 k-1
- al(e—u)c—l I(c—l,l)c aé—u)z
o Tl
0 0 0 | a® . a®
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Matrix factorization

can be computed and the Gaussian transformation

M = I*fk(ii{, where /(;, = [ O --- 0 ﬁk—}—l,k oo Ak }T

can be applied to the left of A*) to obtain
AU g A

1 1 1 1 1 1)
agl) ‘1%2; e aé,%1 agk) aé,l)cﬂ T agn)
2 2 p) 2
0 azy -+ Gy, agk) a2,l)c+1 T agn)
(k—-l) (k.—l) (k‘—-l) (k-—l)
_ Ap 1 k-1 akzkl),k akzl),k+1 "' akzl),n
- k k )
0 o - 0 Ak Opk+1 7 Oy
(k+1) (k+1)
0 iy 0 Gpyin
0 0 - 0 0 aflkkti)l U GARY

47/ R0



Matrix factorization

in which

o) = o

~ liay)) 2)

fori=k+1,...,n,7=%k~+1,...,n. Upon the completion,
U=A"™ = M,_--- MyM A

is upper triangular. Hence

A=M'Myt MU = LU,

48 / RO



Matrix factorization

where

L=M{ MY = (T —tel) H(I —tbaed) ™ (I —lynel 1)t
— (T +L1el)(I + Loed) -+ (I + £y_1el_))
=T+ el +bel +- by el

1 0 0 --- 0]

£21 1 0 ... 0

_ 531 632 1 - 0
L €n1 EnQ énS e 1 |

is unit lower triangular. This matrix factorization is called the
LU -factorization of A.
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Matrix factorization

Algorithm 3 (LU Factorization)

Given a nonsingular square matrix A € R™*" this algorithm
computes a unit lower triangular matrix . and an upper
triangular matrix U such that A = LU. The matrix A is
overwritten by L and U.

Fork=1,...,n—1
Fori=k+1,...,n
A(i, k) = A(i k) JA(k, k)
Forj=k+1,...,n
End for
End for
End for

£ /RO



Matrix factorization

Forward Substitution

When a linear system Lx = b is lower triangular of the form

611 0 tee 0 I bl
lor fap --- 0 T2 B by
by ln2 - App Tn b,
where all diagonals 7;; # 0, z; can be obtained by the following
procedure
z1 = bi/ln,
xo = (ba —la11)/l22,
3 = (b3 — la171 — L3272)/lss,
Tn = (bn - Enlxl - £r1/2[[72 - fn/,'n,flfljnfl)/gnnn

51 /R0



Matrix factorization

The general formulation for computing x; is

i—1
T; = h, - th’jfljj /[,, 1= 1,2,..../71/.
J=1
Algorithm 4 (Forward Substitution)

Suppose that L € R™*™ is nonsingular lower triangular and
b € R™. This algorithm computes the solution of Lz = b.

Fori=1,...,n
tmp =0
Forj=1,...;i—1
tmp = tmp + L(i, j) * x(j)
End for
(i) = (b(i) — tmp)/L(i, i)
End for

59 /R0



Matrix factorization

Example 8

Ey: r1 + T2 + 3zy = 4,

Ey: 2r7 + x — z3 + x4 = 1,

Es: 3x1 — 1z — x3 + 224 = -3,

Ey: —x1 + 229 + 313 — Ty = 4.
Solution:

@ The sequence {(E2 — 2E1) — (EQ), (Eg — 3E1) — (Eg),
(Ey — (=1)E1) — (E4), (B3 — 4E3) — (E3),
(E4 — (—3)E2) — (E4)} converts the system to the
triangular system

r1 + X9 + 3x4 = 4,
— T2 — r3 — 5%4 = —7,
3rs + 13z4 = 13,

- 13z4 = -13.
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Matrix factorization

@ Solve Ly = b:

1 0 00 Y1 8
2 1 00 y2 | 7
3 4 10 y3 | 14
-1 -3 01 Ya -7
which implies that

y1r = 87

Yz = 7 — 22/1 = —9,

y3 = 14 — 3y — 4y2 = 26,

ys = —T7+y +3y2 = —26.
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Matrix factorization

@ Solve Uz = y:

1 1 0 3][m 8
0 -1 =1 =5 ||a| | -9
0 0 3 13| |as| | 26
0 0 0 —13 | | 24 —26

which implies that

T4 = 2,

xs = (26 —13z4)/3 =0,

ro = (=9+45bxy+x3)/(—1)=—1,
r1 = 8—3r4— 190 =3.

BAR /RO



Matrix factorization

Partial pivoting

At the k-th step, select pivoting al(j,? with
(k) _ (k)
’apk- | = kllgl%xn |az;; |

and perform (Ej) < (Ep). That is, choose a permutation matrix

I._1 O 0 0 0
0 0 0 1 0
Po=| 0 0 I,41 0 O
0 1 0 0 0
0 0 0 0 I,
so that
(k) ‘: (k)
‘(PkA )ik Joax (AY)ik
and

R7 /R0



Matrix factorization

Let P, ..., P._1 be the permutations chosen and My, ... M 4
denote the Gaussian transformations performed in the first

k — 1 steps. At the k-th step, a permutation matrix P is chosen
so that

(PuMj_y - My P A)i| = Jnax (Mj—_y - M1 P A .
As a consequence, |(;;j| < 1fori=1,...,n,j=1,...,7. Upon
completion, we obtain an upper triangular matrix

U= M, 1P,_1---MPA. (3)

Since any P is symmetric and P! P, = P? = I, we have

My 1Py 1 - Moo My Py - Py 1 Pyq - PEPPLA =T,
therefore,

Pyy-PlA= (My_1Pyy- - MyPyMi Py Pyy) UL
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Matrix factorization

In summary, Gaussian elimination with partial pivoting leads to
the LU factorization

PA = LU, (4)
where
P=P,, --P
is a permutation matrix, and
L = (My_1Py_1---MoyPyMPy---Py_y)
= Pyy---PM P MY Py ML
Since
PR
Ij_l 0 0 0 0 .
0 0 0 1 0 0
0 1 0 0 0 A
0 0 0 0 I :
f’rm 5Q /RO




Matrix factorization

it implies that for i < 7,
I =l =0,

Piti=[0 -+ 0 lig1; Loy

PoM{Py = Po(I + 61el)Py = I + 01t
-
PoMT Py Myt = (I + Gyel)(I + loed) = T+ fret + t9el,
-
Py (PoaM{'PoMy ") Py =1+ lref + loed

Therefore, L is unit lower triangular.
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Algorithm 5 (LU-factorization with Partial Pivoting)
Given a nonsingular A € R™*", this algorithm finds a permutation P,
and computes a unit lower triangular L. and an upper triangular U
such that PA = LU. A is overwritten by L and U, and P is not
formed. An integer array p is instead used for storing the row/column
indices.
p(l:n)=1:n
Fork=1,....n—1
m=k
Fori=k+1,.
If |[A(p(m), )\ < \A p(i), k)|, then m =i
End For
L= p(k); p(k) = p(m); p(m) = ¢
Fori=k+1,...,n
Alp(i), ) = Alp(i), B)/Alp(E),
Forj=k+1,.
A(p(i),j) = A(p(?),]) — A(p(3), k)A(p(k), )
End For
End For
End For RS




Matrix factorization

Since the Gaussian elimination with partial pivoting produces the
factorization (4), the linear system problem should comply accordingly

Ax = b=— PAx = Pb — LUz = Pb.

Example 9

Find an LU factorization of

0 1 -1 1
1 1 -1 2
A=14 1 1 9
1 2 0 2

o ( ) 4 (EQ), (E3 + E1> — (Eg) and (E4 — El) — (E4>:

11 -1 2 01 00 1 000
@_ |01 -1 1 |1 o000 | 0100
A 00 o 2|N 001 0| M 1010

01 10 00 0 1 -1 0 0 1
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Matrix factorization

1 1 -1 2 1 0 0 O 1 0 0 O
@_ |01 -1 1 |0 100 |10 1.0 0
4 00 2 -1 "2 1000 1[0 211 0
0 0 0 2 0 0 1 0 0 0 0 1
@ Permutation matrix P:
01 0 O
1 0 0 O
P=PP=149¢ 0 1
0 0 1 0
@ Unit lower triangular matrix L:
1 0 0 O
7 ip a1 | 0 1.0 0
L=PM "PM, = 111 0
-1 0 0 1
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N
=
S
2
°
]
8
x
i
=
©
=

@ The LU factorization of PA:

So
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Page 409: 3, 9
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Special types of matrices

Special types of matrices

Definition 10

A matrix A € R"*" is said to be strictly diagonally dominant if

n

jaiil > D lagl.

j=lji

Lemma 11

If A € R"*" js strictly diagonally dominant, then A is
nonsingular.

| A

Proof: Suppose A is singular. Then there exists z € R", x # 0
such that Az = 0. Let k& be the integer index such that

||

lzg| =

|lzk| = ax ;| =

AR /RO



Special types of matrices

Since Az = 0, for the fixed k&, we have

n

n
Zaijj =0 = appTr = — Z Q)T
j=1 j=1,j7#k
n

larkllzkl < D lagg|lz],
=Ltk

which implies

n n

£
|ak’k2| S Z |ak’] ’ ]‘ — Z |ak]|

J=Lj#k J=1j#k

But this contradicts the assumption that A is diagonally
dominant. Therefore A must be nonsingular. [ |
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Special types of matrices

Gaussian elimination without pivoting preserve the diagonal
dominance of a matrix.

Proof: Let A € R™"*™ be a diagonally dominant matrix and

A®) = [ag)] is the result of applying one step of Gaussian
elimination to A = A without any pivoting strategy.

After one step of Gaussian elimination, az(f) =0fori=2,...,n,
and the first row is unchanged. Therefore, the property

- 2
@D > > ]
j=2

is preserved, and all we need to show is that

n
2 2 .
|az(i)|> E \az(.j)|, for i=2,...,n.
Jj=2,j#i
AR /RO



Special types of matrices

Using the Gaussian elimination formula (2), we have

(1)
) W ar a an
|aii | = m) ﬁ) (> = |4 — ailau‘
> agi| — m|(11i|
|la11]
o
= |ai| = |ai| + |ai| - 21| laxq]
lai]
—aal = laal {22 | = o)
n |a/11| n
> Z |ai;| + — Z |ay;]
|a11]
J=2,5#i J=2,5#i
11
= Z laij| + Z az |‘a1j|
=2 j=2g#i
- ;1 - . (2)
> Y ag——ay|= Y e
ai J
j=2,5#i j=2,5i
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Special types of matrices

Thus A®@ is still diagonally dominant. Since the subsequent
steps of Gaussian elimination mimic the first, except for being
applied to submatrices of smaller size, it suffices to conclude
that Gaussian elimination without pivoting preserves the
diagonal dominance of a matrix. [ |

Theorem 13

Let A be strictly diagonally dominant. Then Gaussian
elimination can be performed on Ax = b to obtain its unique
solution without row or column interchanges.

Definition 14

A matrix A is positive definite if it is symmetric and 27 Az > 0
vV x # 0.
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Special types of matrices

Theorem 15

If A is ann x n positive definite matrix, then
(a) A has an inverse;
(b) a; >0, Vi=1,...,n;
(€) maxi<y j<n |ar;| < maxi<icn [aiil;

(d) (aij)? < aiiajj, Vi# 3.

Proof:
(a) If z satisfies Az = 0, then 27 Az = 0. Since A is
positive definite, this implies = = 0. Consequently,
Ax = 0 has only the zero solution, and A is
nonsingular.
(b) Since A is positive definite,

Qi = eiTAei > 0,

where ¢; is the i-th column of the n x n identify
matrix. 21780



Special types of matrices

(c) For k # j, define z = [x;] by
0, if i#j and i #k,
€T, = 1, if 1= j,
-1, if i=k.
Since x # 0,
0<alAx = ajj + Qpg — Qg — Q.
But AT = A, so
2ak; < ajj + agg. (5)

Now define z = [z;] by

. 0, ifi#j and j#k,
11, ifi=j ori=k.
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Special types of matrices

Then 2T Az > 0, so
—2ay; < ajj + agk. (6)
Equations (5) and (6) imply that for each & # 7,

Ak T g5 o s,

|lak;j| < 5 = max

SO

max |ag;| < max |a.
1<k,j<n 1<i<n

(d) For i # j, define = = [x] by
0, if k=#j and k #1,

=1 a, Iif k=1,
1, if k=,
where a represents an arbitrary real number.
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Special types of matrices

Since = # 0,
0<alAx = au‘a2 + Qaijoz +aj; = P(Oé), VaeR.

That is the quadratic polynomial P(«) has no real
roots. It implies that

4(1%- — 4aiiajj <0 and CL?j < QG - |

Definition 16 (Leading principal minor)
Let A be an n x n matrix. The upper left k£ x k submatrix,

denoted as
aix a2 --- Qg
a1 Q22 - Q2
Ak = )
a1 Qg2 - Qg

is called the leading k& x k principal submatrix, and the
determinant of A, det(Ay), is called the leading principal

MINAYr =1/20




Special types of matrices

A symmetric matrix A is positive definite if and only if each of its
leading principal submatrices has a positive determinant.

Theorem 18

The symmetric matrix A is positive definite if and only if
Gaussian elimination without row interchanges can be
performed on Ax = b with all pivot elements positive.

Corollary 19

The matrix A is positive definite if and only if A can be factored
in the form LDL™, where L is lower triangular with 1’s on its
diagonal and D is a diagonal matrix with positive diagonal
entries.
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Special types of matrices

Theorem 20

If all leading principal submatrices of A € R"*™ are nonsingular,
then A has an LU -factorization.

Proof: Proof by mathematical induction.

Q@ n =1, A; = [a11] is nonsingular, then ay; # 0. Let L = [1]
and U; = [a11]. Then A; = L1U;. The theorem holds.

© Assume that the leading principal submatrices A, ..., A
are nonsingular and A, has an LU-factorization
Ay = LUy, where Ly is unit lower triangular and Uy, is
upper triangular.

© Show that there exist an unit lower triangular matrix Ly 1
and an upper triangular matrix Uy such that
Agy1 = Lgg1Ugq1.
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Special types of matrices

Write
A Uk
Ak+1 = T
Wy Qk+1,k+1
where
a1,k+1 Ak4+1,1
az k+1 Ak+1,2
Vv = . and w, = .
Ak k+1 Ak+1,k

Since Ay is nonsingular, both L, and U, are nonsingular.
Therefore, Ly, = vi, has a unique solution y;, € R¥, and
U, = w[ has a unique solution z;, € R¥. Let

Lp 0 Uy Yk
Ly = and Ugii =
. [ Z 1 } FH 0 Ghi1kt1 — 24 Uk
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Special types of matrices

Then Ly, is unit lower triangular, Uy 1 is upper triangular, and

LU, L
Lpy1Ugr = [ ok Yk

T T T
2, Up 23 Yk + Qpg1 k1 — 23, Yk

[ Ay, Vg

=A
T k+1-
Wy Qk41,k+1 }

This proves the theorem. [ |
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Special types of matrices

If A is nonsingular and the LU factorization exists, then the LU
factorization is unique.

Proof: Suppose both
A= LUy and A= LoUs

are LU factorizations. Since A is nonsingular, L1, Uy, Lo, U are
all nonsingular, and

A=LU = LUy = Ly 'Ly = UpUy L.

Since L, and L, are unit lower triangular, it implies that L;lLl
is also unit lower triangular. On the other hand, since U; and U,
are upper triangular, UgUf1 is also upper triangular. Therefore,

Ly'Ly =T =0UsU; !
which implies that L., = Lo, and Uy = Us.
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Special types of matrices

If A € R™™ s positive definite, then all leading principal
submatrices of A are nonsingular.

Proof: For 1 < k < n, let
zp = [z1,..., 2]t €R* and = = [z1,...,24,0,...,0]7 € R,

where z1, ...,z € R are not all zero. Since A is positive
definite,

ngkzk =27 Az > 0,
where Ay, is the k£ x k leading principal submatrix of A. This
shows that A, are also positive definite, hence A are
nonsingular. [ ]
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Special types of matrices

The matrix A is positive definite if and only if

A =GGT, (7)

where G is lower triangular with positive diagonal entries.

Proof: “=” A is positive definite

= all leading principal submatrices of A are nonsingular

= A has the LU factorization A = LU, where L is unit lower
triangular and U is upper triangular.

Since A is symmetric,

LWU=A=AT=0"" — uv@hH)*'=r"v".

U(LT)~1is upper triangular and L=1U7 is lower triangular
= U(L")~! to be a diagonal matrix, say, U(L”)~! = D.
= U = DL”. Hence

A=LDL"T.
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Special types of matrices

Since A is positive definite,
tTAr >0 = 2"LDL"z = (L"2)"'D(LTz) > 0.
This means D is also positive definite, and hence d;; > 0. Thus
D'/2 is well-defined and we have
A=LDL" = LD'?D'V?2[T = GG™,

where G = LD'/2. Since the LU factorization is unique, G is
unique.

H<:ll

Since G is lower triangular with positive diagonal entries, G is

nonsingular. It implies that
Gla 40, Va#0.
Hence
2T Az = 27GGTz = ||GTz|3 >0, V2 #0
which implies that A is positive definite.
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Special types of matrices

The factorization (7) is referred to as the Cholesky factorization.
Derive an algorithm for computing the Cholesky factorization:

Let
Jg11 0 . 0
A= [aij] and G = g1 922
: : . 0
gn1 Gn2 - 9nn

Assume the first £ — 1 columns of G have been determined after k — 1
steps. By componentwise comparison with

gu 0 0 g11 921 - Gni
K : 0 go2 -+ gn2
g21 922 . .
aig] = | 77 77 ST TE N
: : " 0 : :
one has

k
E 2
Akl = gk]7
17=1
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Special types of matrices

which gives
k—1
2 2
Ikl = Qkk — Z Ikj-
j=1
Moreover,
k
azkzzgwgk]? i:k+17"'7n7
J=1

hence the k-th column of G can be computed by
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Algorithm 6 (Cholesky Factorization)

Given an n x n symmetric positive definite matrix A, this
algorithm computes the Cholesky factorization A = GG™ .
Initialize G = 0
Fork=1,.
\/A S Gk, )G (k. )
For = k: + 1.
666 = (4GB - 251 6, )6k, ) [t
End For
End For

In addition to n square root operations, there are approximately

- 1, 1, 5
S 2k -2+ 2k —1)(n— k)] = 0 + 50— on
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Special types of matrices

Band matrix

Definition 24

An n x n matrix A is called a band matrix if 3 p and g with 1 < p,q <n
such that

a;; =0 whenever p<j—i or ¢ <i—j.

The bandwidth of a band matrix is defined as w = p + ¢ — 1. That is

B a11 ... alp O ... O T
A= aq1 0
0 o o An—p+1,n
L0 oo O Gopegw o Qnn
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Definition 25

A square matrix A = [a;;] is said to be tridiagonal if
ap;; a2 0
a a
A= 21 22
An—1,n
0 An,n—1 An,n

If Gaussian elimination can be applied safely without pivoting. Then L
and U factors would have the form

1 U] U2 0
f1 1 .
L= _ _ and U = 122 ,
. - . - u 717
0 emnfl 1 N "

U nn

and the entries are computed by the simple algorithm which only
costs 3n flops.
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Special types of matrices

Algorithm 7 (Tridiagonal LU Factorization)

This algorithm computes the LU factorization for a tridiagonal
matrix without using pivoting strategy.

U(1,1) = A(1,1)
Fori=2,...,n
U(i—1,i) = A@G — 1,4)
L(i,i—1)=A(,i—1)/U(i —1,i—1)
U(i,i) = A(3,43) — L(3,5 — 1)U (i — 1,3)
End For

A tridiagonal linear system arises in many applications, such as
finite difference discretization to second order linear
boundary-value problem and the cubic spline approximations.
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Page 425: 2, 6, 12, 15, 17, 19, 20, 21
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