Iterative techniques in matrix algebra

Tsung-Ming Huang

Department of Mathematics National Taiwan Normal University, Taiwan

August 28, 2011

・ロト ・四ト ・ヨト ・ヨト

Outline

- 2 Eigenvalues and eigenvectors
- Iterative techniques for solving linear systems
- Error bounds and iterative refinement
- 5 The conjugate gradient method

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ・

Definition 1

 $\begin{aligned} \|\cdot\|: \mathbb{R}^n &\to \mathbb{R} \text{ is a vector norm if} \\ \textbf{(i)} \quad \|x\| \geq 0, \ \forall \ x \in \mathbb{R}^n, \\ \textbf{(ii)} \quad \|x\| = 0 \text{ if and only if } x = 0, \\ \textbf{(iii)} \quad \|\alpha x\| = |\alpha| \|x\| \ \forall \ \alpha \in \mathbb{R} \text{ and } x \in \mathbb{R}^n, \\ \textbf{(iv)} \quad \|x + y\| \leq \|x\| + \|y\| \ \forall \ x, y \in \mathbb{R}^n. \end{aligned}$

Definition 2

The ℓ_2 and ℓ_∞ norms for $x = [x_1, x_2, \cdots, x_n]^T$ are defined by

$$\|x\|_2 = (x^T x)^{1/2} = \left\{\sum_{i=1}^n x_i^2\right\}^{1/2}$$
 and $\|x\|_{\infty} = \max_{1 \le i \le n} |x_i|.$

The ℓ_2 norm is also called the Euclidean norm.

Theorem 3 (Cauchy-Bunyakovsky-Schwarz inequality)

For each
$$x = [x_1, x_2, \cdots, x_n]^T$$
 and $y = [y_1, y_2, \cdots, y_n]^T$ in \mathbb{R}^n ,

$$x^{T}y = \sum_{i=1}^{n} x_{i}y_{i} \leq \left\{\sum_{i=1}^{n} x_{i}^{2}\right\}^{1/2} \left\{\sum_{i=1}^{n} y_{i}^{2}\right\}^{1/2} = \|x\|_{2} \cdot \|y\|_{2}.$$

Proof: If x = 0 or y = 0, the result is immediate. Suppose $x \neq 0$ and $y \neq 0$. For each $\alpha \in \mathbb{R}$,

$$0 \le ||x - \alpha y||_2^2 = \sum_{i=1}^n (x_i - \alpha y_i)^2 = \sum_{i=1}^n x_i^2 - 2\alpha \sum_{i=1}^n x_i y_i + \alpha^2 \sum_{i=1}^n y_i^2,$$

and

$$2\alpha \sum_{i=1}^{n} x_i y_i \le \sum_{i=1}^{n} x_i^2 + \alpha^2 \sum_{i=1}^{n} y_i^2 = \|x\|_2^2 + \alpha^2 \|y\|_2^2.$$

(日)

Since $||x||_2 > 0$ and $||y||_2 > 0$, we can let

$$\alpha = \frac{\|x\|_2}{\|y\|_2}$$

to give

$$\left(2\frac{\|x\|_2}{\|y\|_2}\right)\left(\sum_{i=1}^n x_i y_i\right) \le \|x\|_2^2 + \frac{\|x\|_2^2}{\|y\|_2^2}\|y\|_2^2 = 2\|x\|_2^2.$$

Thus

$$x^T y = \sum_{i=1}^n x_i y_i \le ||x||_2 ||y||_2.$$

・ロト ・聞ト ・ヨト ・ヨト

For each $x, y \in \mathbb{R}^n$,

$$\begin{aligned} \|x+y\|_{\infty} &= \max_{1 \le i \le n} |x_i + y_i| \le \max_{1 \le i \le n} (|x_i| + |y_i|) \\ &\le \max_{1 \le i \le n} |x_i| + \max_{1 \le i \le n} |y_i| = \|x\|_{\infty} + \|y\|_{\infty} \end{aligned}$$

and

$$||x+y||_{2}^{2} = \sum_{i=1}^{n} (x_{i}+y_{i})^{2} = \sum_{i=1}^{2} x_{i}^{2} + 2\sum_{i=1}^{n} x_{i}y_{i} + \sum_{i=1}^{n} y_{i}^{2}$$

$$\leq ||x||_{2}^{2} + 2||x||_{2}||y||_{2} + ||y||_{2}^{2} = (||x||_{2} + ||y||_{2})^{2},$$

which gives

$$||x+y||_2 \le ||x||_2 + ||y||_2.$$

Definition 4

A sequence $\{x^{(k)} \in \mathbb{R}^n\}_{k=1}^{\infty}$ is convergent to x with respect to the norm $\|\cdot\|$ if $\forall \varepsilon > 0$, \exists an integer $N(\varepsilon)$ such that

$$||x^{(k)} - x|| < \varepsilon, \ \forall \ k \ge N(\varepsilon).$$

Theorem 5

 $\{x^{(k)}\in\mathbb{R}^n\}_{k=1}^\infty$ converges to x with respect to $\|\cdot\|_\infty$ if and only if

$$\lim_{k \to \infty} x_i^{(k)} = x_i, \ \forall \ i = 1, 2, \dots, n.$$

Proof: " \Rightarrow " Given any $\varepsilon > 0$, \exists an integer $N(\varepsilon)$ such that

$$\max_{1 \le i \le n} |x_i^{(k)} - x_i| = ||x^{(k)} - x||_{\infty} < \varepsilon, \ \forall \ k \ge N(\varepsilon).$$

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ・

This result implies that

$$|x_i^{(k)} - x_i| < \varepsilon, \ \forall \ i = 1, 2, \dots, n.$$

Hence

$$\lim_{k \to \infty} x_i^{(k)} = x_i, \ \forall \ i.$$

" \Leftarrow " For a given $\varepsilon > 0$, let $N_i(\varepsilon)$ represent an integer with

ł

$$|x_i^{(k)} - x_i| < \varepsilon$$
, whenever $k \ge N_i(\varepsilon)$.

Define

$$N(\varepsilon) = \max_{1 \le i \le n} N_i(\varepsilon).$$

If $k \ge N(\varepsilon)$, then

$$\max_{1 \le i \le n} |x_i^{(k)} - x_i| = ||x^{(k)} - x||_{\infty} < \varepsilon.$$

This implies that $\{x^{(k)}\}$ converges to x with respect to $\|\cdot\|_{\infty}$.

Theorem 6

For each $x \in \mathbb{R}^n$,

$$\|x\|_{\infty} \le \|x\|_2 \le \sqrt{n} \|x\|_{\infty}.$$

Proof: Let x_j be a coordinate of x such that

$$||x||_{\infty}^{2} = |x_{j}|^{2} \le \sum_{i=1}^{n} x_{i}^{2} = ||x||_{2}^{2},$$

so $\|x\|_{\infty} \leq \|x\|_2$ and

$$\|x\|_{2}^{2} = \sum_{i=1}^{n} x_{i}^{2} \le \sum_{i=1}^{n} x_{j}^{2} = nx_{j}^{2} = n\|x\|_{\infty}^{2},$$

so $\|x\|_2 \leq \sqrt{n} \|x\|_\infty$.

(a)

Definition 7

A matrix norm $\|\cdot\|$ on the set of all $n \times n$ matrices is a real-valued function satisfying for all $n \times n$ matrices A and B and all real number α :

(i)
$$||A|| \ge 0;$$

(ii) $||A|| = 0$ if and only if $A = 0$
(iii) $||\alpha A|| = |\alpha| ||A||;$
(iv) $||A + B|| \le ||A|| + ||B||;$
(v) $||AB|| \le ||A|| ||B||;$

Theorem 8

If $\|\cdot\|$ is a vector norm on \mathbb{R}^n , then

$$||A|| = \max_{||x||=1} ||Ax||$$

is a matrix norm.

For any $z \neq 0$, we have x = z/||z|| as a unit vector. Hence

$$||A|| = \max_{||x||=1} ||Ax|| = \max_{z \neq 0} \left| |A\left(\frac{z}{||z||}\right) \right|| = \max_{z \neq 0} \frac{||Az||}{||z||}.$$

Corollary 9

$$\|Az\| \le \|A\| \cdot \|z\|.$$

Theorem 10

If $A = [a_{ij}]$ is an $n \times n$ matrix, then

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|.$$

◆□ > ◆圖 > ◆臣 > ◆臣 > ─ 臣

11/87

Proof: Let x be an n-dimension vector with

$$1 = \|x\|_{\infty} = \max_{1 \le i \le n} |x_i|.$$

Then

$$\|Ax\|_{\infty} = \max_{1 \le i \le n} \left| \sum_{j=1}^{n} a_{ij} x_j \right|$$

$$\leq \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}| \max_{1 \le j \le n} |x_j| = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|.$$

Consequently,

$$||A||_{\infty} = \max_{||x||_{\infty}=1} ||Ax||_{\infty} \le \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|.$$

On the other hand, let p be an integer with

$$\sum_{1 \le i \le n}^n |a_{ij}| = \max_{1 \le i \le n} \sum_{n=1}^n |a_{ij}|,$$

御下 ・ ヨト ・ ヨト

and \boldsymbol{x} be the vector with

$$x_j = \begin{cases} 1, & \text{if } a_{pj} \ge 0, \\ -1, & \text{if } a_{pj} < 0. \end{cases}$$

Then

$$||x||_{\infty} = 1$$
 and $a_{pj}x_j = |a_{pj}|, \forall j = 1, 2, \dots, n,$

S0

$$\|Ax\|_{\infty} = \max_{1 \le i \le n} \left| \sum_{j=1}^{n} a_{ij} x_j \right| \ge \left| \sum_{j=1}^{n} a_{pj} x_j \right| = \left| \sum_{j=1}^{n} |a_{pj}| \right| = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|.$$

This result implies that

$$||A||_{\infty} = \max_{||x||_{\infty}=1} ||Ax||_{\infty} \ge \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|.$$

which gives

Eigenvalues and eigenvectors

Definition 11 (Characteristic polynomial)

If A is a square matrix, the characteristic polynomial of A is defined by

 $p(\lambda) = \det(A - \lambda I).$

Definition 12 (Eigenvalue and eigenvector)

If *p* is the characteristic polynomial of the matrix *A*, the zeros of *p* are eigenvalues of the matrix *A*. If λ is an eigenvalue of *A* and $x \neq 0$ satisfies $(A - \lambda I)x = 0$, then *x* is an eigenvector of *A* corresponding to the eigenvalue λ .

Definition 13 (Spectrum and Spectral Radius)

The set of all eigenvalues of a matrix A is called the spectrum of A. The spectral radius of A is

 $\rho(A) = \max\{|\lambda|; \lambda \text{ is an eigenvalue of } A\}.$

Theorem 14

If A is an $n \times n$ matrix, then

(i) $||A||_2 = \sqrt{\rho(A^T A)};$ (ii) $\rho(A) \le ||A||$ for any matrix norm.

Proof: Proof for the second part. Suppose λ is an eigenvalue of A and $x \neq 0$ is a corresponding eigenvector such that $Ax = \lambda x$ and ||x|| = 1. Then

$$|\lambda| = |\lambda| ||x|| = ||\lambda x|| = ||Ax|| \le ||A|| ||x|| = ||A||,$$

that is, $|\lambda| \leq ||A||$. Since λ is arbitrary, this implies that $\rho(A) = \max |\lambda| \leq ||A||$.

Theorem 15

For any *A* and any $\varepsilon > 0$, there exists a matrix norm $\| \cdot \|$ such that

$$\rho(A) < \|A\| < \rho(A) + \varepsilon.$$

Definition 16

We call an $n \times n$ matrix A convergent if

$$\lim_{k \to \infty} (A^k)_{ij} = 0 \ \forall \ i = 1, 2, \dots, n \text{ and } j = 1, 2, \dots, n.$$

Theorem 17

The following statements are equivalent.

- A is a convergent matrix;
- $\lim_{k \to \infty} \|A^k\| = 0 \text{ for some matrix norm; }$
- $\lim_{k \to \infty} \|A^k\| = 0 \text{ for all matrix norm;}$
- $\rho(A) < 1;$
- $int_{k\to\infty} A^k x = 0 \text{ for any } x.$

16/87

Iterative techniques for solving linear systems

- For small dimension of linear systems, it requires for direct techniques.
- For large systems, iterative techniques are efficient in terms of both computer storage and computation.

The basic idea of iterative techniques is to split the coefficient matrix \boldsymbol{A} into

A = M - (M - A),

for some matrix M, which is called the splitting matrix. Here we assume that A and M are both nonsingular. Then the original problem is rewritten in the equivalent form

$$Mx = (M - A)x + b.$$

< □ > < @ > < \arrow \arro

This suggests an iterative process

$$x^{(k)} = (I - M^{-1}A)x^{(k-1)} + M^{-1}b \equiv Tx^{(k-1)} + c,$$

where T is usually called the iteration matrix. The initial vector $x^{(0)}$ can be arbitrary or be chosen according to certain conditions.

Two criteria for choosing the splitting matrix M are

- x^(k) is easily computed. More precisely, the system Mx^(k) = y is easy to solve;
- the sequence $\{x^{(k)}\}$ converges rapidly to the exact solution.

Note that one way to achieve the second goal is to choose M so that M^{-1} approximate A^{-1} , In the following subsections, we will introduce some of the mostly commonly used classic iterative methods.

Jacobi Method

If we decompose the coefficient matrix A as

A = L + D + U,

where *D* is the diagonal part, *L* is the strictly lower triangular part, and *U* is the strictly upper triangular part, of *A*, and choose M = D, then we derive the iterative formulation for Jacobi method:

 $x^{(k)} = -D^{-1}(L+U)x^{(k-1)} + D^{-1}b.$

With this method, the iteration matrix $T_J = -D^{-1}(L+U)$ and $c = D^{-1}b$. Each component $x_i^{(k)}$ can be computed by

$$x_{i}^{(k)} = \left(b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(k-1)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k-1)}\right) \middle/ a_{ii}.$$

$$\begin{aligned} a_{11}x_1^{(k)} + a_{12}x_2^{(k-1)} + a_{13}x_3^{(k-1)} + \dots + a_{1n}x_n^{(k-1)} &= b_1 \\ a_{21}x_1^{(k-1)} + a_{22}x_2^{(k)} + a_{23}x_3^{(k-1)} + \dots + a_{2n}x_n^{(k-1)} &= b_2 \\ &\vdots \\ a_{n1}x_1^{(k-1)} + a_{n2}x_2^{(k-1)} + a_{n3}x_3^{(k-1)} + \dots + a_{nn}x_n^{(k)} &= b_n. \end{aligned}$$

Algorithm 1 (Jacobi Method)

End While

Given $x^{(0)}$, tolerance TOL, maximum number of iteration M. Set k = 1. While $k \le M$ and $||x - x^{(0)}||_2 \ge TOL$ Set k = k + 1, $x^{(0)} = x$. For i = 1, 2, ..., n $x_i = \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(0)} - \sum_{j=i+1}^n a_{ij} x_j^{(0)}\right) / a_{ii}$ End For

Example 18

Consider the linear system Ax = b given by

which has the unique solution $x = [1, 2, -1, 1]^T$.

Solving equation E_i for x_i , for i = 1, 2, 3, 4, we obtain

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Then Ax = b can be rewritten in the form x = Tx + c with

$$T = \begin{bmatrix} 0 & 1/10 & -1/5 & 0\\ 1/11 & 0 & 1/11 & -3/11\\ -1/5 & 1/10 & 0 & 1/10\\ 0 & -3/8 & 1/8 & 0 \end{bmatrix} \text{ and } c = \begin{bmatrix} 3/5\\ 25/11\\ -11/10\\ 15/8 \end{bmatrix}$$

and the iterative formulation for Jacobi method is

$$x^{(k)} = Tx^{(k-1)} + c$$
 for $k = 1, 2, \dots$

The numerical results of such iteration is list as follows:

k	x_1	x_2	x_3	x_4
0	0.0000	0.0000	0.0000	0.0000
1	0.6000	2.2727	-1.1000	1.8750
2	1.0473	1.7159	-0.8052	0.8852
3	0.9326	2.0533	-1.0493	1.1309
4	1.0152	1.9537	-0.9681	0.9738
5	0.9890	2.0114	-1.0103	1.0214
6	1.0032	1.9922	-0.9945	0.9944
7	0.9981	2.0023	-1.0020	1.0036
8	1.0006	1.9987	-0.9990	0.9989
9	0.9997	2.0004	-1.0004	1.0006
10	1.0001	1.9998	-0.9998	0.9998

Matlab code of Example

clear all; delete rslt.dat; diary rslt.dat; diary on; n = 4; xold = zeros(n,1); xnew = zeros(n,1); T = zeros(n,n); T(1,2) = 1/10; T(1,3) = -1/5; T(2,1) = 1/11;T(2,3) = 1/11; T(2,4) = -3/11; T(3,1) = -1/5;T(3,2) = 1/10; T(3,4) = 1/10; T(4,2) = -3/8; T(4,3) = 1/8; c(1,1) = 3/5; c(2,1) = 25/11; c(3,1) = -11/10; c(4,1) = 15/8;xnew = T * xold + c; k = 0: fprintf(' k x1 x2 x3 x4 $\langle n' \rangle$; while ($k \le 100 \& norm(xnew-xold) > 1.0d-14$) xold = xnew; xnew = T * xold + c; k = k + 1;fprintf('%3.0f ',k); for ii = 1:nfprintf('%5.4f ',xold(jj)); end $fprintf(' \ n');$ end

Gauss-Seidel Method

When computing $x_i^{(k)}$ for $i > 1, x_1^{(k)}, \ldots, x_{i-1}^{(k)}$ have already been computed and are likely to be better approximations to the exact x_1, \ldots, x_{i-1} than $x_1^{(k-1)}, \ldots, x_{i-1}^{(k-1)}$. It seems reasonable to compute $x_i^{(k)}$ using these most recently computed values. That is

$$\begin{array}{rcl} a_{11}x_1^{(k)} + a_{12}x_2^{(k-1)} + a_{13}x_3^{(k-1)} + \dots + a_{1n}x_n^{(k-1)} &=& b_1 \\ a_{21}x_1^{(k)} + a_{22}x_2^{(k)} + a_{23}x_3^{(k-1)} + \dots + a_{2n}x_n^{(k-1)} &=& b_2 \\ a_{31}x_1^{(k)} + a_{32}x_2^{(k)} + a_{33}x_3^{(k)} + \dots + a_{3n}x_n^{(k-1)} &=& b_3 \\ && \vdots \\ a_{n1}x_1^{(k-1)} + a_{n2}x_2^{(k-1)} + a_{n3}x_3^{(k-1)} + \dots + a_{nn}x_n^{(k)} &=& b_n \end{array}$$

This improvement induce the Gauss-Seidel method. The Gauss-Seidel method sets M = D + L and defines the iteration as

 $x^{(k)} = -(D+L)^{-1}Ux^{(k-1)} + (D+L)^{-1}b.$

・ロト ・雪 ・ ・ ヨ ・

That is, Gauss-Seidel method uses $T_G = -(D + L)^{-1}U$ as the iteration matrix. The formulation above can be rewritten as

$$x^{(k)} = -D^{-1} \left(L x^{(k)} + U x^{(k-1)} - b \right).$$

Hence each component $x_i^{(k)}$ can be computed by

$$x_i^{(k)} = \left(b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)} \right) \middle/ a_{ii}.$$

- For Jacobi method, only the components of $x^{(k-1)}$ are used to compute $x^{(k)}$. Hence $x_i^{(k)}$, i = 1, ..., n, can be computed in parallel at each iteration k.
- At each iteration of Gauss-Seidel method, since $x_i^{(k)}$ can not be computed until $x_1^{(k)}, \ldots, x_{i-1}^{(k)}$ are available, the method is not a parallel algorithm in nature.

Algorithm 2 (Gauss-Seidel Method)

Given $x^{(0)}$, tolerance TOL, maximum number of iteration M. Set k = 1. For i = 1, 2, ..., n $x_{i} = \left(b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(0)}\right) / a_{ii}$ End For While $k \leq M$ and $||x - x^{(0)}||_2 \geq TOL$ Set k = k + 1. $x^{(0)} = x$. For i = 1, 2, ..., n $x_{i} = \left(b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(0)}\right) / a_{ii}$ End For

End While

27/87

Example 19

Consider the linear system Ax = b given by

which has the unique solution $x = [1, 2, -1, 1]^T$.

Gauss-Seidel method gives the equation

$$\begin{array}{rcl} x_1^{(k)} & = & \frac{1}{10}x_2^{(k-1)} & - & \frac{1}{5}x_3^{(k-1)} & + & \frac{3}{5}, \\ x_2^{(k)} & = & \frac{1}{11}x_1^{(k)} & + & \frac{1}{10}x_2^{(k-1)} & - & \frac{3}{11}x_4^{(k-1)} & + & \frac{25}{11}, \\ x_3^{(k)} & = & -\frac{1}{5}x_1^{(k)} & + & \frac{1}{10}x_2^{(k)} & + & \frac{1}{10}x_4^{(k-1)} & - & \frac{11}{10}, \\ x_4^{(k)} & = & - & \frac{3}{8}x_2^{(k)} & + & \frac{1}{8}x_3^{(k)} & + & \frac{1}{8}x_3^{(k)} & + & \frac{1}{8}x_4^{(k)} \end{array}$$

The numerical results of such iteration is list as follows:

k	x_1	x_2	x_3	x_4
0	0.0000	0.0000	0.0000	0.0000
1	0.6000	2.3273	-0.9873	0.8789
2	1.0302	2.0369	-1.0145	0.9843
3	1.0066	2.0036	-1.0025	0.9984
4	1.0009	2.0003	-1.0003	0.9998
5	1.0001	2.0000	-1.0000	1.0000

- The results of Example appear to imply that the Gauss-Seidel method is superior to the Jacobi method.
- This is almost always true, but there are linear systems for which the Jacobi method converges and the Gauss-Seidel method does not.

<ロト < 回 > < 回 > < 回 > < 回 >

• See Exercises 17 and 18.

Matlab code of Example

```
clear all: delete rslt.dat: diary rslt.dat: diary on:
n = 4; xold = zeros(n,1); xnew = zeros(n,1); A = zeros(n,n);
A(1,1)=10; A(1,2)=-1; A(1,3)=2; A(2,1)=-1; A(2,2)=11; A(2,3)=-1; A(2,4)=3; A(3,1)=2; A(3,2)=-1; A(3
A(3,3)=10; A(3,4)=-1; A(4,2)=3; A(4,3)=-1; A(4,4)=8; b(1)=6; b(2)=25; b(3)=-11; b(4)=15; b(3)=-11; b(3)=-
for ii = 1:n
                           xnew(ii) = b(ii);
                           for ii = 1:ii-1
                                                      xnew(ii) = xnew(ii) - A(ii.ii) * xnew(ii);
                           end
                           for ii = ii+1:n
                                                      xnew(ii) = xnew(ii) - A(ii.ii) * xold(ii);
                           end
                           xnew(ii) = xnew(ii) / A(ii,ii);
end
                                                                                                                                                                                       x2
k = 0; fprintf(' k
                                                                                                                                 x1
                                                                                                                                                                                                                                            x3
                                                                                                                                                                                                                                                                                                  x4
                                                                                                                                                                                                                                                                                                                                                     \n'):
while ( k \le 100 \& norm(xnew-xold) > 1.0d-14 )
                           xold = xnew; k = k + 1;
                           for ii = 1:n
                                                      xnew(ii) = b(ii);
                                                      for ii = 1:ii-1
                                                                                 xnew(ii) = xnew(ii) - A(ii.ii) * xnew(ii);
                                                      end
                                                      for ii = ii+1:n
                                                                                 xnew(ii) = xnew(ii) - A(ii.ii) * xold(ii);
                                                        end
                                                      xnew(ii) = xnew(ii) / A(ii,ii);
                           end
                           fprintf('%3.0f '.k):
                           for jj = 1:n
                                                      fprintf('%5.4f ',xold(jj));
                           end
                           fprintf(' \ n');
end
```


Lemma 20 (20)

If
$$\rho(T) < 1$$
, then $(I - T)^{-1}$ exists and

$$(I-T)^{-1} = \sum_{i=0}^{\infty} T^i = I + T + T^2 + \cdots$$

Proof: Let λ be an eigenvalue of T, then $1 - \lambda$ is an eigenvalue of I - T. But $|\lambda| \le \rho(A) < 1$, so $1 - \lambda \ne 0$ and 0 is not an eigenvalue of I - T, which means (I - T) is nonsingular. Next we show that $(I - T)^{-1} = I + T + T^2 + \cdots$. Since

$$(I-T)\left(\sum_{i=0}^{m} T^{i}\right) = I - T^{m+1},$$

and $\rho(T) < 1$ implies $\|T^m\| \to 0$ as $m \to \infty,$ we have

$$(I-T)\left(\lim_{m\to\infty}\sum_{i=0}^{m}T^{i}\right) = (I-T)\left(\sum_{i=0}^{\infty}T^{i}\right) = I.$$

Theorem 21

For any $x^{(0)} \in \mathbb{R}^n$, the sequence produced by

$$x^{(k)} = Tx^{(k-1)} + c, \quad k = 1, 2, \dots,$$

converges to the unique solution of x = Tx + c if and only if

 $\rho(T) < 1.$

Proof: Suppose $\rho(T) < 1$. The sequence of vectors $x^{(k)}$ produced by the iterative formulation are

$$\begin{array}{rcl} x^{(1)} & = & Tx^{(0)} + c \\ x^{(2)} & = & Tx^{(1)} + c = T^2 x^{(0)} + (T+I)c \\ x^{(3)} & = & Tx^{(2)} + c = T^3 x^{(0)} + (T^2 + T + I)c \end{array}$$

In general

 $x^{(k)} = T^k x^{(0)} + (T^{k-1} + T^{k-2} + \dots T + I)c.$

(□) (圖) (E) (E)

Since
$$ho(T) < 1$$
, $\lim_{k \to \infty} T^k x^{(0)} = 0$ for any $x^{(0)} \in \mathbb{R}^n$. By Lemma 20,

$$(T^{k-1}+T^{k-2}+\cdots T+I)c\to (I-T)^{-1}c, \quad \text{as} \quad k\to\infty.$$

Therefore

$$\lim_{k \to \infty} x^{(k)} = \lim_{k \to \infty} T^k x^{(0)} + \left(\sum_{j=0}^{\infty} T^j\right) c = (I - T)^{-1} c.$$

Conversely, suppose $\{x^{(k)}\} \rightarrow x = (I - T)^{-1}c$. Since

$$\begin{aligned} x - x^{(k)} &= Tx + c - Tx^{(k-1)} - c = T(x - x^{(k-1)}) = T^2(x - x^{(k-2)}) \\ &= \cdots = T^k(x - x^{(0)}). \end{aligned}$$

Let $z = x - x^{(0)}$. Then

$$\lim_{k \to \infty} T^k z = \lim_{k \to \infty} (x - x^{(k)}) = 0.$$

It follows from theorem $\rho(T) < 1$.

Theorem 22

If ||T|| < 1, then the sequence $x^{(k)}$ converges to x for any initial $x^{(0)}$ and

$$\|x - x^{(k)}\| \le \|T\|^k \|x - x^{(0)}\|$$

$$\|x - x^{(k)}\| \le \frac{\|T\|^k}{1 - \|T\|} \|x^{(1)} - x^{(0)}\|$$

Proof: Since x = Tx + c and $x^{(k)} = Tx^{(k-1)} + c$,

$$\begin{aligned} x - x^{(k)} &= Tx + c - Tx^{(k-1)} - c \\ &= T(x - x^{(k-1)}) \\ &= T^2(x - x^{(k-2)}) = \dots = T^k(x - x^{(0)}). \end{aligned}$$

The first statement can then be derived

$$||x - x^{(k)}|| = ||T^k(x - x^{(0)})|| \le ||T||^k ||x - x^{(0)}||.$$

For the second result, we first show that

$$(n) \qquad (n-1) \qquad (1) \qquad (0) \qquad (1) \qquad (1$$

Since

$$\begin{aligned} x^{(n)} - x^{(n-1)} &= T x^{(n-1)} + c - T x^{(n-2)} - c \\ &= T (x^{(n-1)} - x^{(n-2)}) \\ &= T^2 (x^{(n-2)} - x^{(n-3)}) = \dots = T^{n-1} (x^{(1)} - x^{(0)}), \end{aligned}$$

we have

$$||x^{(n)} - x^{(n-1)}|| \le ||T||^{n-1} ||x^{(1)} - x^{(0)}||$$

Let $m \ge k$,

$$\begin{aligned} x^{(m)} - x^{(k)} \\ &= \left(x^{(m)} - x^{(m-1)}\right) + \left(x^{(m-1)} - x^{(m-2)}\right) + \dots + \left(x^{(k+1)} - x^{(k)}\right) \\ &= T^{m-1}\left(x^{(1)} - x^{(0)}\right) + T^{m-2}\left(x^{(1)} - x^{(0)}\right) + \dots + T^{k}\left(x^{(1)} - x^{(0)}\right) \\ &= \left(T^{m-1} + T^{m-2} + \dots T^{k}\right)\left(x^{(1)} - x^{(0)}\right), \end{aligned}$$

hence

$$\begin{aligned} \|x^{(m)} - x^{(k)}\| \\ &\leq \left(\|T\|^{m-1} + \|T\|^{m-2} + \dots + \|T\|^k \right) \|x^{(1)} - x^{(0)}\| \\ &= \|T\|^k \left(\|T\|^{m-k-1} + \|T\|^{m-k-2} + \dots + 1 \right) \|x^{(1)} - x^{(0)}\|. \end{aligned}$$

Since $\lim_{m\to\infty} x^{(m)} = x$,

$$\begin{aligned} &\|x - x^{(k)}\| \\ &= \lim_{m \to \infty} \|x^{(m)} - x^{(k)}\| \\ &\leq \lim_{m \to \infty} \|T\|^k \left(\|T\|^{m-k-1} + \|T\|^{m-k-2} + \dots + 1 \right) \|x^{(1)} - x^{(0)}\| \\ &= \|T\|^k \|x^{(1)} - x^{(0)}\| \lim_{m \to \infty} \left(\|T\|^{m-k-1} + \|T\|^{m-k-2} + \dots + 1 \right) \\ &= \|T\|^k \frac{1}{1 - \|T\|} \|x^{(1)} - x^{(0)}\|. \end{aligned}$$

36/87

This proves the second result

Theorem 23

If A is strictly diagonal dominant, then both the Jacobi and Gauss-Seidel methods converges for any initial vector $x^{(0)}$.

Proof: By assumption, A is strictly diagonal dominant, hence $a_{ii} \neq 0$ (otherwise A is singular) and

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|, \quad i = 1, 2, \dots, n.$$

For Jacobi method, the iteration matrix $T_J = -D^{-1}(L+U)$ has entries

$$[T_J]_{ij} = \begin{cases} -\frac{a_{ij}}{a_{ii}}, & i \neq j, \\ 0, & i = j. \end{cases}$$

Hence

$$||T_J||_{\infty} = \max_{1 \le i \le n} \sum_{j=1, j \ne i}^n \left| \frac{a_{ij}}{a_{ii}} \right| = \max_{1 \le i \le n} \frac{1}{|a_{ii}|} \sum_{j=1, j \ne i}^n |a_{ij}| < 1$$

and this implies that the Jacobi method converges.

For Gauss-Seidel method, the iteration matrix $T_G = -(D+L)^{-1}U$. Let λ be any eigenvalue of T_G and y, $||y||_{\infty} = 1$, is a corresponding eigenvector. Thus

$$T_G y = \lambda y \implies -Uy = \lambda (D+L)y.$$

Hence for $i = 1, \ldots, n$,

$$-\sum_{j=i+1}^{n} a_{ij}y_j = \lambda a_{ii}y_i + \lambda \sum_{j=1}^{i-1} a_{ij}y_j.$$

This gives

$$\lambda a_{ii}y_i = -\lambda \sum_{j=1}^{i-1} a_{ij}y_j - \sum_{j=i+1}^n a_{ij}y_j$$

and

$$|\lambda||a_{ii}||y_i| \le |\lambda| \sum_{j=1}^{i-1} |a_{ij}||y_j| + \sum_{j=i+1}^n |a_{ij}||y_j|.$$

Choose the index k such that $|y_k| = 1 \ge |y_j|$ (this index can always be found since $||y||_{\infty} = 1$). Then

$$|\lambda||a_{kk}| \le |\lambda| \sum_{j=1}^{k-1} |a_{kj}| + \sum_{j=k+1}^{n} |a_{kj}|$$

which gives

$$|\lambda| \le \frac{\sum_{j=k+1}^{n} |a_{kj}|}{|a_{kk}| - \sum_{j=1}^{k-1} |a_{kj}|} < \frac{\sum_{j=k+1}^{n} |a_{kj}|}{\sum_{j=k+1}^{n} |a_{kj}|} = 1$$

Since λ is arbitrary, $\rho(T_G) < 1$. This means the Gauss-Seidel method converges.

- The rate of convergence depends on the spectral radius of the matrix associated with the method.
- One way to select a procedure to accelerate convergence is to choose a method whose associated matrix has minimal spectral radius.

Successive over-relaxation (SOR) method

Definition 24

Suppose $\tilde{x} \in \mathbb{R}^n$ is an approximated solution of Ax = b. The residual vector r for \tilde{x} is $r = b - A\tilde{x}$.

Let the approximate solution $\mathbf{x}^{(k,i)}$ produced by Gauss-Seidel method be defined by

$$\mathbf{x}^{(k,i)} = \left[x_1^{(k)}, \dots, x_{i-1}^{(k)}, x_i^{(k-1)}, \dots, x_n^{(k-1)}\right]^T$$

and

$$r_i^{(k)} = \left[r_{1i}^{(k)}, r_{2i}^{(k)}, \dots, r_{ni}^{(k)}\right]^T = b - A\mathbf{x}^{(k,i)}$$

be the corresponding residual vector. Then the $m{\rm th}$ component of $r_i^{(k)}$ is

$$r_{mi}^{(k)} = b_m - \sum_{j=1}^{i-1} a_{mj} x_j^{(k)} - \sum_{j=i}^n a_{mj} x_j^{(k-1)},$$

or, equivalently,

$$r_{mi}^{(k)} = b_m - \sum_{j=1}^{i-1} a_{mj} x_j^{(k)} - \sum_{j=i+1}^n a_{mj} x_j^{(k-1)} - a_{mi} x_i^{(k-1)},$$

for each m = 1, 2, ..., n. In particular, the *i*th component of $r_i^{(k)}$ is

$$r_{ii}^{(k)} = b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)} - a_{ii} x_i^{(k-1)},$$

so

$$a_{ii}x_i^{(k-1)} + r_{ii}^{(k)} = b_i - \sum_{j=1}^{i-1} a_{ij}x_j^{(k)} - \sum_{j=i+1}^n a_{ij}x_j^{(k-1)}$$
$$= a_{ii}x_i^{(k)}.$$

Consequently, the Gauss-Seidel method can be characterized as choosing $x_i^{(k)}$ to satisfy

$$x_i^{(k)} = x_i^{(k-1)} + \frac{r_{ii}^{(k)}}{a_{ii}}.$$

Relaxation method is modified the Gauss-Seidel procedure to

$$\begin{aligned} x_{i}^{(k)} &= x_{i}^{(k-1)} + \omega \frac{r_{ii}^{(k)}}{a_{ii}} \\ &= x_{i}^{(k-1)} + \frac{\omega}{a_{ii}} \left[b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k-1)} - a_{ii} x_{i}^{(k-1)} \right] \\ &= (1 - \omega) x_{i}^{(k-1)} + \frac{\omega}{a_{ii}} \left[b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_{j}^{(k-1)} \right] \end{aligned}$$
(1) for certain choices of positive ω such that the norm of the

These methods are called for

- $\omega < 1$: under relaxation,
- $\omega = 1$: Gauss-Seidel method,
- $\omega > 1$: over relaxation.

Over-relaxation methods are called SOR (Successive over-relaxation). To determine the matrix of the SOR method, we rewrite (1) as

$$a_{ii}x_i^{(k)} + \omega \sum_{j=1}^{i-1} a_{ij}x_j^{(k)} = (1-\omega)a_{ii}x_i^{(k-1)} - \omega \sum_{j=i+1}^n a_{ij}x_j^{(k-1)} + \omega b_i,$$

so that if A = L + D + U, then we have

$$(D + \omega L)x^{(k)} = \left[(1 - \omega)D - \omega U\right]x^{(k-1)} + \omega b$$

or

$$\begin{aligned} x^{(k)} &= (D+\omega L)^{-1} \left[(1-\omega)D - \omega U \right] x^{(k-1)} + \omega (D+\omega L)^{-1} b \\ &\equiv T_{\omega} x^{(k-1)} + c_{\omega}. \end{aligned}$$

Example 25

The linear system Ax = b given by

has the solution $[3, 4, -5]^T$.

• Numerical results of Gauss-Seidel method with $x^{(0)} = [1, 1, 1]^T$:

k	x_1	x_2	x_3
0	1.0000000	1.0000000	1.0000000
1	5.2500000	3.8125000	-5.0468750
2	3.1406250	3.8828125	-5.0292969
3	3.0878906	3.9267578	-5.0183105
4	3.0549316	3.9542236	-5.0114441
5	3.0343323	3.9713898	-5.0071526
6	3.0214577	3.9821186	-5.0044703
7	3.0134110	3.9888241	-5.0027940

< ≣⇒

• Numerical results of SOR method with $\omega = 1.25$ and $x^{(0)} = [1, 1, 1]^T$:

k	x_1	x_2	x_3
0	1.0000000	1.0000000	1.0000000
1	6.3125000	3.5195313	-6.6501465
2	2.6223145	3.9585266	-4.6004238
3	3.1333027	4.0102646	-5.0966863
4	2.9570512	4.0074838	-4.9734897
5	3.0037211	4.0029250	-5.0057135
6	2.9963276	4.0009262	-4.9982822
7	3.0000498	4.0002586	-5.0003486

ヘロン ヘロン ヘロン ヘロン

• Numerical results of SOR method with $\omega = 1.6$ and $x^{(0)} = [1, 1, 1]^T$:

k	x_1	x_2	x_3
0	1.0000000	1.0000000	1.0000000
1	7.8000000	2.4400000	-9.2240000
2	1.9920000	4.4560000	-2.2832000
3	3.0576000	4.7440000	-6.3324800
4	2.0726400	4.1334400	-4.1471360
5	3.3962880	3.7855360	-5.5975040
6	3.0195840	3.8661760	-4.6950272
7	3.1488384	4.0236774	-5.1735127

ヘロン ヘロン ヘロン ヘロン

Matlab code of SOR

```
clear all; delete rslt.dat; diary rslt.dat; diary on;
n = 3; xold = zeros(n,1); xnew = zeros(n,1); A = zeros(n,n); DL = zeros(n,n); DU = zeros(n,n);
A(1,1)=4; A(1,2)=3; A(2,1)=3; A(2,2)=4; A(2,3)=-1; A(3,2)=-1; A(3,3)=4;
b(1,1)=24; b(2,1)=30; b(3,1)=-24; omega=1.25;
for ii = 1:n
     DL(ii,ii) = A(ii,ii);
     for ii = 1:ii-1
          DL(ii.ii) = omega * A(ii.ii):
     end
     DU(ii,ii) = (1-omega)*A(ii,ii);
     for ij = ii+1:n
          DU(ii,jj) = - omega * A(ii,jj);
    end
end
c = omega * (DL \setminus b); xnew = DL \setminus (DU * xold) + c;
k = 0; fprintf(' k
                        x1
                                  x2
                                            xЗ
                                                      \langle n' \rangle;
while (k \le 100 \& \text{norm}(\text{xnew-xold}) > 1.0d-14)
     xold = xnew; k = k + 1; xnew = DL \ (DU * xold) + c;
     fprintf('%3.0f ',k);
     for jj = 1:n
          fprintf('%5.4f '.xold(ii)):
     end
     fprintf(' \ n');
end
diary off
```

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

47/87

Theorem 26 (Kahan)

If $a_{ii} \neq 0$, for each i = 1, 2, ..., n, then $\rho(T_{\omega}) \geq |\omega - 1|$. This implies that the SOR method can converge only if $0 < \omega < 2$.

Theorem 27 (Ostrowski-Reich)

If *A* is positive definite and the relaxation parameter ω satisfying $0 < \omega < 2$, then the SOR iteration converges for any initial vector $x^{(0)}$.

Theorem 28

If *A* is positive definite and tridiagonal, then $\rho(T_G) = [\rho(T_J)]^2 < 1$ and the optimal choice of ω for the SOR iteration is

$$\omega = \frac{2}{1 + \sqrt{1 - [\rho(T_J)]^2}}.$$

With this choice of ω , $\rho(T_{\omega}) = \omega - 1$.

Example 29

The matrix

$$A = \begin{bmatrix} 4 & 3 & 0 \\ 3 & 4 & -1 \\ 0 & -1 & 4 \end{bmatrix},$$

given in previous example, is positive definite and tridiagonal.

Since

$$T_J = -D^{-1}(L+U) = \begin{bmatrix} \frac{1}{4} & 0 & 0\\ 0 & \frac{1}{4} & 0\\ 0 & 0 & \frac{1}{4} \end{bmatrix} \begin{bmatrix} 0 & -3 & 0\\ -3 & 0 & 1\\ 0 & 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & -0.75 & 0\\ -0.75 & 0 & 0.25\\ 0 & 0.25 & 0 \end{bmatrix},$$

we have

$$T_J - \lambda I = \begin{bmatrix} -\lambda & -0.75 & 0\\ -0.75 & -\lambda & 0.25\\ 0 & 0.25 & -\lambda \end{bmatrix},$$

SO

$$\det(T_J - \lambda I) = -\lambda(\lambda^2 - 0.625).$$

Thus,

$$\rho(T_J) = \sqrt{0.625}$$

and

$$\omega = \frac{2}{1 + \sqrt{1 - [\rho(T_J)]^2}} = \frac{2}{1 + \sqrt{1 - 0.625}} \approx 1.24.$$

This explains the rapid convergence obtained in previous example when using $\omega=0.125$

Symmetric Successive Over Relaxation (SSOR) Method

Let *A* be symmetric and $A = D + L + L^T$. The idea is in fact to implement the SOR formulation twice, one forward and one backward, at each iteration. That is, SSOR method defines

$$(D + \omega L)x^{(k-\frac{1}{2})} = [(1-\omega)D - \omega L^T]x^{(k-1)} + \omega b,$$
 (2)

$$(D + \omega L^T) x^{(k)} = [(1 - \omega)D - \omega L] x^{(k - \frac{1}{2})} + \omega b.$$
 (3)

Define

$$\begin{cases} M_{\omega} \colon = D + \omega L, \\ N_{\omega} \colon = (1 - \omega)D - \omega L^{T}. \end{cases}$$

Then from the iterations (2) and (3), it follows that

$$\begin{aligned} x^{(k)} &= \left(M_{\omega}^{-T} N_{\omega}^{T} M_{\omega}^{-1} N_{\omega} \right) x^{(k-1)} + \omega \left(M_{\omega}^{-T} N_{\omega}^{T} M_{\omega}^{-1} + M_{\omega}^{-T} \right) b \\ &\equiv T(\omega) x^{(k-1)} + M(\omega)^{-1} b. \end{aligned}$$

But

$$((1 - \omega)D - \omega L) (D + \omega L)^{-1} + I$$

= $(-\omega L - D - \omega D + 2D)(D + \omega L)^{-1} + I$
= $-I + (2 - \omega)D(D + \omega L)^{-1} + I$
= $(2 - \omega)D(D + \omega L)^{-1}$.

Thus

$$M(\omega)^{-1} = \omega \left(D + \omega L^T \right)^{-1} (2 - \omega) D(D + \omega L)^{-1},$$

then the splitting matrix is

$$M(\omega) = \frac{1}{\omega(2-\omega)} (D+\omega L) D^{-1} (D+\omega L^T).$$

The iteration matrix is

 $T(\omega) = (D + \omega L^T)^{-1} \left[(1 - \omega)D - \omega L \right] (D + \omega L)^{-1} \left[(1 - \omega)D - \omega L \right]$

Error bounds and iterative refinement

Example 30

The linear system Ax = b given by

$$\begin{bmatrix} 1 & 2 \\ 1.0001 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 3.0001 \end{bmatrix}$$

has the unique solution $x = [1, 1]^T$.

The poor approximation $\tilde{x} = [3, 0]^T$ has the residual vector

$$r = b - A\tilde{x} = \begin{bmatrix} 3\\3.0001 \end{bmatrix} - \begin{bmatrix} 1 & 2\\1.0001 & 2 \end{bmatrix} \begin{bmatrix} 3\\0 \end{bmatrix} = \begin{bmatrix} 0\\-0.0002 \end{bmatrix},$$

so $||r||_{\infty} = 0.0002$. Although the norm of the residual vector is small, the approximation $\tilde{x} = [3, 0]^T$ is obviously quite poor; in fact, $||x - \tilde{x}||_{\infty} = 2$.

The solution of above example represents the intersection of the lines

 $\ell_1: \quad x_1 + 2x_2 = 3 \quad \text{and} \quad \ell_2: \quad 1.0001x_1 + 2x_2 = 3.0001.$

 ℓ_1 and ℓ_2 are nearly parallel. The point (3,0) lies on ℓ_1 which implies that (3,0) also lies close to ℓ_2 , even though it differs significantly from the intersection point (1,1).

Theorem 31

Suppose that \tilde{x} is an approximate solution of Ax = b, A is nonsingular matrix and $r = b - A\tilde{x}$. Then

$$||x - \tilde{x}|| \le ||r|| \cdot ||A^{-1}|$$

and if $x \neq 0$ and $b \neq 0$,

$$\frac{\|x - \tilde{x}\|}{\|x\|} \le \|A\| \cdot \|A^{-1}\| \frac{\|r\|}{\|b\|}.$$

Proof: Since

$$r = b - A\tilde{x} = Ax - A\tilde{x} = A(x - \tilde{x})$$

and A is nonsingular, we have

$$||x - \tilde{x}|| = ||A^{-1}r|| \le ||A^{-1}|| \cdot ||r||.$$

Moreover, since b = Ax, we have

 $||b|| \le ||A|| \cdot ||x||.$

										4	
4	Þ	• 🗗	Þ	•	æ	Þ	•	æ	Þ	臣	55/87

(4)

It implies that

$$\frac{1}{\|x\|} \le \frac{\|A\|}{\|b\|}.$$

Combining Equations (4) and (5), we have

$$\frac{\|x - \tilde{x}\|}{\|x\|} \le \frac{\|A\| \cdot \|A^{-1}\|}{\|b\|} \|r\|.$$

Definition 32 (Condition number)

The condition number of nonsingular matrix A is

$$\kappa(A) = \|A\| \cdot \|A^{-1}\|.$$

For any nonsingular matrix A,

$$1 = \|I\| = \|A \cdot A^{-1}\| \le \|A\| \cdot \|A^{-1}\| = \kappa(A).$$

(5)

Definition 33

A matrix A is well-conditioned if $\kappa(A)$ is close to 1, and is ill-conditioned when $\kappa(A)$ is significantly greater than 1.

In previous example,

$$A = \left[\begin{array}{cc} 1 & 2\\ 1.0001 & 2 \end{array} \right]$$

Since

$$A^{-1} = \left[\begin{array}{cc} -10000 & 10000\\ 5000.5 & -5000 \end{array} \right],$$

we have

 $\kappa(A) = ||A||_{\infty} \cdot ||A^{-1}||_{\infty} = 3.0001 \times 20000 = 60002 \gg 1.$

A D > A P > A D > A D >

How to estimate the effective condition number in *t*-digit arithmetic without having to invert the matrix *A*?

• If the approximate solution \tilde{x} of Ax = b is being determined using *t*-digit arithmetic and Gaussian elimination, then

 $||r|| = ||b - A\tilde{x}|| \approx 10^{-t} ||A|| \cdot ||\tilde{x}||.$

- All the arithmetic operations in Gaussian elimination technique are performed using *t*-digit arithmetic, but the residual vector *r* are done in double-precision (i.e., 2*t*-digit) arithmetic.
- Use the Gaussian elimination method which has already been calculated to solve

$$Ay = r$$
.

Let \tilde{y} be the approximate solution.

Then

$$\tilde{y} \approx A^{-1}r = A^{-1}(b - A\tilde{x}) = x - \tilde{x}$$

and

$$x \approx \tilde{x} + \tilde{y}.$$

Moreover,

$$\begin{aligned} \|\tilde{y}\| &\approx \|x - \tilde{x}\| = \|A^{-1}r\| \\ &\leq \|A^{-1}\| \cdot \|r\| \approx \|A^{-1}\| (10^{-t}\|A\| \cdot \|\tilde{x}\|) = 10^{-t} \|\tilde{x}\| \kappa(A). \end{aligned}$$

It implies that

$$\kappa(A) \approx \frac{\|\tilde{y}\|}{\|\tilde{x}\|} 10^t.$$

Iterative refinement

In general, $\tilde{x} + \tilde{y}$ is a more accurate approximation to the solution of Ax = b than \tilde{x} .

Algorithm 3 (Iterative refinement)

```
Given tolerance TOL, maximum number of iteration M, number
of digits of precision t.
Solve Ax = b by using Gaussian elimination in t-digit arithmetic.
Set k = 1
while (k \le M)
Compute r = b - Ax in 2t-digit arithmetic.
Solve Ay = r by using Gaussian elimination in t-digit arithmetic.
If ||y||_{\infty} < TOL, then stop.
Set k = k + 1 and x = x + y.
End while
```


・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Example 34

The linear system given by

Γ	3.3330	15920	-10.333	$\begin{bmatrix} x_1 \end{bmatrix}$	1	15913
	2.2220	16.710	9.6120	x_2	=	28.544
L	1.5611	5.1791	1.6852	$\begin{bmatrix} x_3 \end{bmatrix}$		8.4254

has the exact solution $x = [1, 1, 1]^T$.

Using Gaussian elimination and five-digit rounding arithmetic leads successively to the augmented matrices

3.3330	15920	-10.333	15913
0	-10596	16.501	-10580
0	-7451.4	6.5250	-7444.9

and

$$\begin{bmatrix} 3.3330 & 15920 & -10.333 & 15913 \\ 0 & -10596 & 16.501 & -10580 \\ 0 & 0 & -5.0790 & -4.7000 \end{bmatrix}.$$

The approximate solution is

 $\tilde{x}^{(1)} = [1.2001, 0.99991, 0.92538]^T.$

The residual vector corresponding to \tilde{x} is computed in double precision to be

$$\begin{aligned} r^{(1)} &= b - A\tilde{x}^{(1)} \\ &= \begin{bmatrix} 15913\\ 28.544\\ 8.4254 \end{bmatrix} - \begin{bmatrix} 3.3330 & 15920 & -10.333\\ 2.2220 & 16.710 & 9.6120\\ 1.5611 & 5.1791 & 1.6852 \end{bmatrix} \begin{bmatrix} 1.2001\\ 0.99991\\ 0.92538 \end{bmatrix} \\ &= \begin{bmatrix} 15913\\ 28.544\\ 8.4254 \end{bmatrix} - \begin{bmatrix} 15913.00518\\ 28.26987086\\ 8.611560367 \end{bmatrix} = \begin{bmatrix} -0.00518\\ 0.27412914\\ -0.186160367 \end{bmatrix}. \end{aligned}$$

Hence the solution of $Ay = r^{(1)}$ to be

 $\tilde{y}^{(1)} = [-0.20008, 8.9987 \times 10^{-5}, 0.074607]^T$

and the new approximate solution $x^{(2)}$ is

 $x^{(2)} = x^{(1)} + \tilde{y}^{(1)} = [1.0000, 1.0000, 0.99999]^T.$

・ロット 御マ キョマ キョン

æ

Using the suggested stopping technique for the algorithm, we compute $r^{(2)}=b-A\tilde{x}^{(2)}$ and solve the system $Ay^{(2)}=r^{(2)},$ which gives

$$\tilde{y}^{(2)} = [1.5002 \times 10^{-9}, 2.0951 \times 10^{-10}, 1.0000 \times 10^{-5}]^T.$$

Since

$$\|\tilde{y}^{(2)}\|_{\infty} \le 10^{-5},$$

we conclude that

$$\tilde{x}^{(3)} = \tilde{x}^{(2)} + \tilde{y}^{(2)} = [1.0000, 1.0000, 1.0000]^T$$

is sufficiently accurate. In the linear system

$$Ax = b$$
,

A and b can be represented exactly. Realistically, the matrix A and vector b will be perturbed by δA and δb , respectively, causing the linear system

$$(A + \delta A)x = b + \delta b$$

to be solved in place of Ax = b.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Theorem 35

Suppose A is nonsingular and

$$\|\delta A\| < \frac{1}{\|A^{-1}\|}.$$

Then the solution \tilde{x} of $(A + \delta A)\tilde{x} = b + \delta b$ approximates the solution x of Ax = b with the error estimate

$$\frac{\|x-\tilde{x}\|}{\|x\|} \leq \frac{\kappa(A)}{1-\kappa(A)(\|\delta A\|/\|A\|)} \left(\frac{\|\delta b\|}{\|b\|} + \frac{\|\delta A\|}{\|A\|}\right).$$

- If *A* is well-conditioned, then small changes in *A* and *b* produce correspondingly small changes in the solution *x*.
- If *A* is ill-conditioned, then small changes in *A* and *b* may produce large changes in *x*.

(日)

The conjugate gradient method

Consider the linear systems

Ax = b

where A is large sparse and symmetric positive definite. Define the inner product notation

$$\langle x,y
angle = x^T y$$
 for any $x,y \in \mathbb{R}^n$.

Theorem 36

Let *A* be symmetric positive definite. Then x^* is the solution of Ax = b if and only if x^* minimizes

$$g(x) = \langle x, Ax \rangle - 2 \langle x, b \rangle$$
.

・ロト ・四ト ・ヨト ・ヨト

Proof:

$$\begin{array}{ll} \text{("}\Rightarrow\text{")} \mbox{ Rewrite } g(x) \mbox{ as} \\ g(x) &= & < x - x^*, A(x - x^*) > + < x, Ax^* > + < x^*, Ax > \\ & - < x^*, Ax^* > -2 < x, b > \\ &= & < x - x^*, A(x - x^*) > - < x^*, Ax^* > \\ & +2 < x, Ax^* > -2 < x, b > \\ &= & < x - x^*, A(x - x^*) > - < x^*, Ax^* > +2 < x, Ax^* - b > . \end{array}$$

Suppose that x^* is the solution of Ax = b, i.e., $Ax^* = b$. Then

$$g(x) = < x - x^*, A(x - x^*) > - < x^*, Ax^* >$$

which minimum occurs at $x = x^*$.

										2	
•	Þ	• 7	×.	•	÷.	Þ	•	æ	Þ	æ	66/87

(" \Leftarrow ") Fixed vectors x and v, for any $\alpha \in \mathbb{R}$,

$$f(\alpha) \equiv g(x + \alpha v)$$

$$= \quad < x + \alpha v, Ax + \alpha Av > -2 < x + \alpha v, b >$$

$$= \langle x, Ax \rangle + \alpha \langle v, Ax \rangle + \alpha \langle x, Av \rangle + \alpha^2 \langle v, Av \rangle$$

$$-2 < x, b > -2\alpha < v, b >$$

$$= < x, Ax > -2 < x, b > +2\alpha < v, Ax > -2\alpha < v, b > +\alpha^{2} < v, Ax = q(x) + 2\alpha < v, Ax - b > +\alpha^{2} < v, Av > .$$

Because *f* is a quadratic function of α and $\langle v, Av \rangle$ is positive, *f* has a minimal value when $f'(\alpha) = 0$. Since

$$f'(\alpha) = 2 < v, Ax - b > +2\alpha < v, Av >,$$

the minimum occurs at

$$\hat{\alpha} = -\frac{\langle v, Ax - b \rangle}{\langle v, Av \rangle} = \frac{\langle v, b - Ax \rangle}{\langle v, Av \rangle}.$$

and

$$g(x + \hat{\alpha}v) = f(\hat{\alpha}) = g(x) - 2\frac{\langle v, b - Ax \rangle}{\langle v, Av \rangle} \langle v, b - Ax \rangle$$
$$+ \left(\frac{\langle v, b - Ax \rangle}{\langle v, Av \rangle}\right)^2 \langle v, Av \rangle$$
$$= g(x) - \frac{\langle v, b - Ax \rangle^2}{\langle v, Av \rangle}.$$

So, for any nonzero vector v, we have

$$g(x + \hat{\alpha}v) < g(x) \quad \text{if} \quad \langle v, b - Ax \rangle \neq 0 \tag{6}$$

and

$$g(x + \hat{\alpha}v) = g(x) \quad \text{if} \quad \langle v, b - Ax \rangle = 0.$$

Suppose that x^* is a vector that minimizes g. Then

 $g(x^* + \hat{\alpha}v) \ge g(x^*)$ for any v.

(7)

From (6), (7) and (8), we have

$$\langle v, b - Ax^* \rangle = 0$$
 for any v ,

which implies that
$$Ax^* = b$$
.
Let

$$r = b - Ax.$$

Then

$$\alpha = \frac{\langle v, b - Ax \rangle}{\langle v, Av \rangle} = \frac{\langle v, r \rangle}{\langle v, Av \rangle}.$$

If $r \neq 0$ and if v and r are not orthogonal, then

$$g(x + \alpha v) < g(x)$$

which implies that $x + \alpha v$ is closer to x^* than is x.

Let $x^{(0)}$ be an initial approximation to x^* and $v^{(1)} \neq 0$ be an initial search direction. For k = 1, 2, 3, ..., we compute

$$\alpha_k = \frac{\langle v^{(k)}, b - Ax^{(k-1)} \rangle}{\langle v^{(k)}, Av^{(k)} \rangle},$$

$$x^{(k)} = x^{(k-1)} + \alpha_k v^{(k)}$$

and choose a new search direction $v^{(k+1)}$.

Question: How to choose $\{v^{(k)}\}$ such that $\{x^{(k)}\}$ converges rapidly to x^* ?

Let $\Phi : \mathbb{R}^n \to \mathbb{R}$ be a differential function on x. Then it holds

$$\frac{\Phi(x+\varepsilon p) - \Phi(x)}{\varepsilon} = \nabla \Phi(x)^T p + O(\varepsilon).$$

The right hand side takes minimum at

$$p = -\frac{\nabla \Phi(x)}{\|\nabla \Phi(x)\|}$$
 (i.e., the largest descent)

for all p with ||p|| = 1 (neglect $O(\varepsilon)$).

・ロ・・ 日本・ キャット・

Denote
$$x = [x_1, x_2, ..., x_n]^T$$
. Then

$$g(x) = \langle x, Ax \rangle - 2 \langle x, b \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j - 2 \sum_{i=1}^{n} x_i b_i.$$

It follows that

$$\frac{\partial g}{\partial x_k}(x) = 2\sum_{i=1}^n a_{ki}x_i - 2b_k, \text{ for } k = 1, 2, \dots, n.$$

Therefore, the gradient of g is

$$\nabla g(x) = \left[\frac{\partial g}{\partial x_1}(x), \frac{\partial g}{\partial x_2}, \cdots, \frac{\partial g}{\partial x_n}(x)\right]^T = 2(Ax - b) = -2r.$$

ヘロト ヘロト ヘヨト ヘヨト

71/87

æ.

Steepest descent method (gradient method)

Given an initial
$$x_0 \neq 0$$
.
For $k = 1, 2, ...$
 $r_{k-1} = b - Ax_{k-1}$
If $r_{k-1} = 0$, then stop;
else $\alpha_k = \frac{r_{k-1}^T r_{k-1}}{r_{k-1}^T Ar_{k-1}}$, $x_k = x_{k-1} + \alpha_k r_{k-1}$
End for

Theorem 37

If x_k , x_{k-1} are two approximations of the steepest descent method for solving Ax = b and $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n > 0$ are the eigenvalues of A, then it holds:

$$\|x_k - x^*\|_A \le \left(\frac{\lambda_1 - \lambda_n}{\lambda_1 + \lambda_n}\right) \|x_{k-1} - x^*\|_A,$$

where $||x||_A = \sqrt{x^T A x}$. Thus the gradient method is convergent.

72/87

- If the condition number of $A \ (= \lambda_1 / \lambda_n)$ is large, then $\frac{\lambda_1 \lambda_n}{\lambda_1 + \lambda_n} \approx 1$. The gradient method converges very slowly. Hence this method is not recommendable.
- It is favorable to choose that the search directions {v⁽ⁱ⁾} as mutually *A*-conjugate, where *A* is symmetric positive definite.

Definition 38

Two vectors p and q are called A-conjugate (A-orthogonal), if $p^T A q = 0$.

・ロット (雪) (山) (山)

Lemma 39

Let $v_1, \ldots, v_n \neq 0$ be pairwisely *A*-conjugate. Then they are linearly independent.

Proof: From

$$0 = \sum_{j=1}^{n} c_j v_j$$

follows that

$$0 = (v_k)^T A\left(\sum_{j=1}^n c_j v_j\right) = \sum_{j=1}^n c_j (v_k)^T A v_j = c_k (v_k)^T A v_k,$$

so $c_k = 0$, for $k = 1, ..., n$.

(a)

Theorem 40

Let A be symm. positive definite and $v_1, \ldots, v_n \in \mathbb{R}^n \setminus \{0\}$ be pairwisely A-orthogonal. Give x_0 and let $r_0 = b - Ax_0$. For $k = 1, \ldots, n$, let

 $\alpha_k = \frac{\langle v_k, b - Ax_{k-1} \rangle}{\langle v_k, Av_k \rangle}$ and $x_k = x_{k-1} + \alpha_k v_k$.

Then $Ax_n = b$ and

$$< b - Ax_k, v_j >= 0$$
, for each $j = 1, 2, \dots, k - 1$.

Proof: Since, for each $k = 1, 2, \ldots, n$,

$$x_k = x_{k-1} + \alpha_k v_k,$$

we have

$$Ax_{n} = Ax_{n-1} + \alpha_{n}Av_{n} = (Ax_{n-2} + \alpha_{n-1}Av_{n-1}) + \alpha_{n}Av_{n} = \cdots$$

= $Ax_{0} + \alpha_{1}Av_{1} + \alpha_{2}Av_{2} + \cdots + \alpha_{n}Av_{n}$.

It implies that

$$< Ax_n - b, v_k >$$

$$= < Ax_0 - b, v_k > +\alpha_1 < Av_1, v_k > + \dots + \alpha_n < Av_n, v_k >$$

$$= < Ax_0 - b, v_k > +\alpha_1 < v_1, Av_k > + \dots + \alpha_n < v_n, Av_k >$$

$$= < Ax_0 - b, v_k > +\alpha_k < v_k, Av_k >$$

$$= < Ax_0 - b, v_k > + \frac{< v_k, b - Ax_{k-1} >}{< v_k, Av_k >} < v_k, Av_k >$$

$$= < Ax_0 - b, v_k > + < v_k, b - Ax_{k-1} >$$

$$= < Ax_0 - b, v_k > + < v_k, b - Ax_{k-1} >$$

$$= < Ax_0 - b, v_k > + < v_k, b - Ax_1 + \dots - Ax_{k-2} + Ax_{k-2} - Ax_{k-1} >$$

$$= < Ax_0 - b, v_k > + < v_k, b - Ax_0 > + < v_k, Ax_0 - Ax_1 >$$

$$+ \dots + < v_k, Ax_{k-2} - Ax_{k-1} >$$

$$= < v_k, Ax_0 - Ax_1 > + \dots + < v_k, Ax_{k-2} - Ax_{k-1} > .$$

For any *i*

$$x_i = x_{i-1} + \alpha_i v_i$$
 and $Ax_i = Ax_{i-1} + \alpha_i Av_i$,

we have

$$Ax_{i-1} - Ax_i = -\alpha_i Av_i.$$

Thus, for $k = 1, \ldots, n$,

$$< Ax_n - b, v_k >$$

= $-\alpha_1 < v_k, Av_1 > \dots - \alpha_{k-1} < v_k, Av_{k-1} >= 0$

which implies that $Ax_n = b$. Suppose that

$$\langle r_{k-1}, v_j \rangle = 0$$
 for $j = 1, 2, \dots, k-1$. (9)

By the result

$$r_k = b - Ax_k = b - A(x_{k-1} + \alpha_k v_k) = r_{k-1} - \alpha_k Av_k$$

< ≣⇒

it follows that

$$\begin{array}{lll} < r_k, v_k > & = & < r_{k-1}, v_k > -\alpha_k < Av_k, v_k > \\ & = & < r_{k-1}, v_k > -\frac{< v_k, b - Ax_{k-1} >}{< v_k, Av_k >} < Av_k, v_k > \\ & = & 0. \end{array}$$

From assumption (9) and A-orthogonality, for $j = 1, \ldots, k-1$

$$< r_k, v_j > = < r_{k-1}, v_j > -\alpha_k < Av_k, v_j > = 0$$

which is completed the proof by the mathematic induction. Method of conjugate directions:

Let A be symmetric positive definite, $b, x_0 \in \mathbb{R}^n$. Given $v_1, \ldots, v_n \in \mathbb{R}^n \setminus \{0\}$ pairwisely A-orthogonal.

$$r_{0} = b - Ax_{0},$$

For $k = 1, \dots, n,$
$$\alpha_{k} = \frac{\langle v_{k}, r_{k-1} \rangle}{\langle v_{k}, Av_{k} \rangle}, \ x_{k} = x_{k-1} + \alpha_{k}v_{k},$$

$$r_{k} = r_{k-1} - \alpha_{k}Av_{k} = b - Ax_{k}.$$

Practical Implementation

- In *k*-th step a direction v_k which is *A*-orthogonal to v_1, \ldots, v_{k-1} must be determined.
- It allows for orthogonalization of r_k against v₁,..., v_k.
- Let $r_k \neq 0$, g(x) decreases strictly in the direction $-r_k$. For $\varepsilon > 0$ small, we have $g(x_k \varepsilon r_k) < g(x_k)$.

If $r_{k-1} = b - Ax_{k-1} \neq 0$, then we use r_{k-1} to generate v_k by

$$v_k = r_{k-1} + \beta_{k-1} v_{k-1}.$$
 (10)

・ロト ・聞 ト ・ヨト ・ヨト

Choose β_{k-1} such that

$$0 = \langle v_{k-1}, Av_k \rangle = \langle v_{k-1}, Ar_{k-1} + \beta_{k-1}Av_{k-1} \rangle$$

= $\langle v_{k-1}, Ar_{k-1} \rangle + \beta_{k-1} \langle v_{k-1}, Av_{k-1} \rangle$.

That is

$$\beta_{k-1} = -\frac{\langle v_{k-1}, Ar_{k-1} \rangle}{\langle v_{k-1}, Av_{k-1} \rangle}.$$
(11)

Theorem 41

Let v_k and β_{k-1} be defined in (10) and (11), respectively. Then r_0, \ldots, r_{k-1} are mutually orthogonal and

$$\langle v_k, Av_i \rangle = 0$$
, for $i = 1, 2, \dots, k - 1$.

That is $\{v_1, \ldots, v_k\}$ is an *A*-orthogonal set.

Having chosen v_k , we compute

$$\alpha_{k} = \frac{\langle v_{k}, r_{k-1} \rangle}{\langle v_{k}, Av_{k} \rangle} = \frac{\langle r_{k-1} + \beta_{k-1}v_{k-1}, r_{k-1} \rangle}{\langle v_{k}, Av_{k} \rangle}$$

$$= \frac{\langle r_{k-1}, r_{k-1} \rangle}{\langle v_{k}, Av_{k} \rangle} + \beta_{k-1} \frac{\langle v_{k-1}, r_{k-1} \rangle}{\langle v_{k}, Av_{k} \rangle}$$

$$= \frac{\langle r_{k-1}, r_{k-1} \rangle}{\langle v_{k}, Av_{k} \rangle}.$$
(12)

Since

$$r_k = r_{k-1} - \alpha_k A v_k,$$

we have

$$< r_k, r_k > = < r_{k-1}, r_k > -\alpha_k < Av_k, r_k > = -\alpha_k < r_k, Av_k > .$$

Further, from (12),

$$\langle r_{k-1}, r_{k-1} \rangle = \alpha_k \langle v_k, Av_k \rangle,$$

so

$$\beta_{k} = -\frac{\langle v_{k}, Ar_{k} \rangle}{\langle v_{k}, Av_{k} \rangle} = -\frac{\langle r_{k}, Av_{k} \rangle}{\langle v_{k}, Av_{k} \rangle}$$

$$= \frac{(1/\alpha_{k}) \langle r_{k}, r_{k} \rangle}{(1/\alpha_{k}) \langle r_{k-1}, r_{k-1} \rangle} = \frac{\langle r_{k}, r_{k} \rangle}{\langle r_{k-1}, r_{k-1} \rangle}.$$

Algorithm 4 (Conjugate Gradient method (CG-method))

Let *A* be s.p.d.,
$$b \in \mathbb{R}^n$$
, choose $x_0 \in \mathbb{R}^n$, $r_0 = b - Ax_0 = v_0$.
If $r_0 = 0$, then $N = 0$ stop, otherwise for $k = 0, 1, ...$
(a). $\alpha_k = \frac{\langle r_k, r_k \rangle}{\langle v_k, Av_k \rangle}$,
(b). $x_{k+1} = x_k + \alpha_k v_k$,
(c). $r_{k+1} = r_k - \alpha_k Av_k$,
(d). If $r_{k+1} = 0$, let $N = k + 1$, stop.
(e). $\beta_k = \frac{\langle r_{k+1}, r_{k+1} \rangle}{\langle r_k, r_k \rangle}$,
(f). $v_{k+1} = r_{k+1} + \beta_k v_k$.

- Theoretically, the exact solution is obtained in *n* steps.
- If A is well-conditioned, then approximate solution is obtained in about √n steps.
- If *A* is ill-conditioned, then the number of iterations may be greater than *n*.

Select a nonsingular matrix C so that

$$\tilde{A} = C^{-1}AC^{-T}$$

is better conditioned. Consider the linear system

$$\tilde{A}\tilde{x} = \tilde{b},$$

where

$$\tilde{x} = C^T x$$
 and $\tilde{b} = C^{-1} b$.

Then

$$\tilde{A}\tilde{x} = (C^{-1}AC^{-T})(C^Tx) = C^{-1}Ax.$$

Thus,

$$Ax = b \Leftrightarrow \tilde{A}\tilde{x} = \tilde{b}$$
 and $x = C^{-T}\tilde{x}$.

Since

$$\tilde{x}_k = C^T x_k,$$

we have

$$\tilde{r}_{k} = \tilde{b} - \tilde{A}\tilde{x}_{k} = C^{-1}b - (C^{-1}AC^{-T})C^{T}x_{k}
= C^{-1}(b - Ax_{k}) = C^{-1}r_{k}.$$

Let

$$\tilde{v}_k = C^T v_k$$
 and $w_k = C^{-1} r_k$.

Then

$$\begin{split} \tilde{\beta}_k &= \frac{<\tilde{r}_k, \tilde{r}_k>}{<\tilde{r}_{k-1}, \tilde{r}_{k-1}>} = \frac{}{} \\ &= \frac{}{}. \end{split}$$

Thus,

$$\begin{split} \tilde{\alpha}_k &= \frac{\langle \tilde{r}_{k-1}, \tilde{r}_{k-1} \rangle}{\langle \tilde{v}_k, \tilde{A} \tilde{v}_k \rangle} = \frac{\langle C^{-1} r_{k-1}, C^{-1} r_{k-1} \rangle}{\langle C^T v_k, C^{-1} A C^{-T} C^T v_k \rangle} \\ &= \frac{\langle w_{k-1}, w_{k-1} \rangle}{\langle C^T v_k, C^{-1} A v_k \rangle} \end{split}$$

and, since

$$< C^{T}v_{k}, C^{-1}Av_{k} > = (v_{k})^{T}CC^{-1}Av_{k} = (v_{k})^{T}Av_{k}$$

= $< v_{k}, Av_{k} >,$

we have

$$\tilde{\alpha}_k = \frac{\langle w_{k-1}, w_{k-1} \rangle}{\langle v_k, Av_k \rangle}.$$

Further,

$$\tilde{x}_k = \tilde{x}_{k-1} + \tilde{\alpha}_k \tilde{v}_k$$
, so $C^T x_k = C^T x_{k-1} + \tilde{\alpha}_k C^T v_k$

and

Continuing,

$$\tilde{r}_k = \tilde{r}_{k-1} - \tilde{\alpha}_k \tilde{A} \tilde{v}_k,$$

so

 $C^{-1}r_k = C^{-1}r_{k-1} - \tilde{\alpha}_k C^{-1}AC^{-T}C^T v_k$

and

$$r_k = r_{k-1} - \tilde{\alpha}_k A v_k.$$

Finally,

$$\tilde{v}_{k+1} = \tilde{r}_k + \tilde{\beta}_k \tilde{v}_k$$
 and $C^T v_{k+1} = C^{-1} r_k + \tilde{\beta}_k C^T v_k$,

so

$$v_{k+1} = C^{-T}C^{-1}r_k + \tilde{\beta}_k v_k = C^{-T}w_k + \tilde{\beta}_k v_k.$$

Algorithm 5 (Preconditioned CG-method (PCG-method))

Choose *C* and
$$x_0$$
.
Set $r_0 = b - Ax_0$, solve $Cw_0 = r_0$ and $C^Tv_1 = w_0$.
If $r_0 = 0$, then $N = 0$ stop, otherwise for $k = 1, 2, ...$
(a). $\alpha_k = \langle w_{k-1}, w_{k-1} \rangle / \langle v_k, Av_k \rangle$,
(b). $x_k = x_{k-1} + \alpha_k v_k$,
(c). $r_k = r_{k-1} - \alpha_k Av_k$,
(d). If $r_k = 0$, let $N = k + 1$, stop.
Otherwise, solve $Cw_k = r_k$ and $C^Tz_k = w_k$,
(e). $\beta_k = \langle w_k, w_k \rangle / \langle w_{k-1}, w_{k-1} \rangle$,
(f). $v_{k+1} = z_k + \beta_k v_k$.

