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Definition 1

|- |l : R™ — R is a vector norm if
@) ||=z|| >0, Vz eR",
(ii) ||z|| = 0if and only if x = 0,
(iii) ||oaz| = |a|||z|| ¥ « € R and z € R",
(iv) [lz +yll <[l + llyll V 2,y € R™.

Definition 2

The ¢, and /., norms for z = [z1,22,--- ,z,]” are defined by

1/2
1/2 — )
|z]l2 = {Zx } and ||z]lc = lré%my.

The ¢5 norm is also called the Euclidean norm.




Theorem 3 (Cauchy-Bunyakovsky-Schwarz inequality)

Foreach x = [x1,x9,- - ,xn]T andy = [y1,y2, - ,yn]T inR™,

n n /2 ¢ p 1/2
aly =73 i < {Zw?} {ny} = [|zl2 - [lyll2-
=1 =1 =1

Proof: If x = 0 or y = 0, the result is immediate.
Suppose = # 0 and y # 0. For each «a € R,

n n

n n
0<lz—ayll =) (2 —aw)® =Y af —2a) wwi+a®) v,
i=1 i=1

=1 i=1

and

n n n
20wy < Y a2 402>y =l + o[yl
=1 =1 =1



Since ||z]]2 > 0 and ||y||2 > 0, we can let

ol
ol
to give
(2212) (3w ) < et + L2 = 2o
1J1 —_ - )
lyll2 ) \ = lyll3
Thus

n
aly = Zﬂ?zyz < llzll2llyll2-

=1



For each z,y € R",

HfU + yHoo = 1r£a<X ‘$z + yll < 1I£1ax (|xz| + |yz|)
< , 1
< max leif + max [yl = [lzlloc + [lylloc

and

n
lz+yl3 = ) (i +w)? Zw +2szyz+zy@
=1

Hﬂb+ﬂ@h%h+ﬂﬁb=ﬂ@h+HWﬁ,

IN

which gives

[+ yll2 < flzfl2 + llyll2-



Definition 4

A sequence {z(*®) € R™}22 , is convergent to x with respect to
the norm || - || if ¥V € > 0, 3 an integer N (¢) such that

|z® —z|| <e, Vk > N(e).

Theorem 5

{z®) € R"}2° | converges to x with respect to || - || if and only
if

lim x(k):xi, Vi=1,2,...,n

k—o0

Proof: “=" Given any ¢ > 0, 3 an integer N(¢) such that

max \:c — il = 2™ — 2]|oo <&, VK> N(e).
1<i<n



This result implies that
|x§k> —zi|<e, Vi=1,2,...,n.
Hence
(k)

lim x." = z;, V1.
k—oo ° ’

“<” For a given ¢ > 0, let NV;(¢) represent an integer with

]a;gk) —z;| <e, whenever k> N;(e).

Define
N(e) = max. N;(¢).
If £ > N(e), then
max ’.%Z(-k) — ;] = |z® — 2] <.

1<i<n

This implies that {z(*)} converges to = with respect to || - |[o. W
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Theorem 6
For each z € R"™,

[2]lo0 < llzll2 < vl co-

Proof: Let z; be a coordinate of = such that
n
213 = | * < Y aF = |13,
i=1
80 [[z]lec < [l]]2 and
n n
lzl3 = af <) aF =na? =nllz|Z,
i=1 i=1

80 [lz]l2 < v/nl[co- u



Definition 7

A matrix norm || - || on the set of all n x n matrices is a
real-valued function satisfying for all » x n matrices A and B
and all real number «:

(@) [|All = 0;
(ii) ||A| =0if and only if A = 0;
(iii) [|aAll = ||| All;
(iv) [[A+ B[ < || All + [IBIl;
(v) [1AB| < I AllBII;

Theorem 8
If|| - || is a vector norm on R™, then

|4l = max || Az

is a matrix norm.
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For any z # 0, we have x = z/||z|| as a unit vector. Hence

(nZu) H 0 ||||Az|j|||

41 = s, | Ax] = max
1

Corollary 9

[ Az]| < || Al - [|=]]-

Theorem 10
If A = [a;;] is ann x n matrix, then

[A[loo = max Z |aij|-

1<2 <n

191 /K7



Proof: Let x be an n-dimension vector with

1= [z]lcc = max [z;].
1<i<n
Then
n
[Az]le = max Zaiﬂj
7j=1
n n
<  max Z\aij\ max |z;| = max Z|ai7|'
1<i<n 4 1<j<n 1<i<n 4
7=1 7j=1
Consequently,
n
Alloo = Az||oo < > lail.
14lloo = max [l Az]lo0 < lrg%jd |aij]

On the other hand, let p be an integer with

n n
Z ’apj’ = 1@?2%72 ’aij‘j 19 /87



and z be the vector with
z; :{ 1, ifay; >0,

-1, ifay; <O.
Then
[2]loc =1 and apja; = lap;], Vj=1,2,...,n,
SO
n n
|Az]loo = max Zazm > apiwg| = | lapl| = max Zrawr.
j j=1 =1

This result |mplles that

Al = max [[Aslo > max Z ai]

ll/loo

which gives

n
||A||OO = Imax Y |ai]'|‘ | 14787



Eigenvalues and eigenvectors

Eigenvalues and eigenvectors

Definition 11 (Characteristic polynomial)

If Ais a square matrix, the characteristic polynomial of A is defined by

p(\) = det(A — AI).

Definition 12 (Eigenvalue and eigenvector)

If p is the characteristic polynomial of the matrix A, the zeros of p are
eigenvalues of the matrix A. If A is an eigenvalue of A and z # 0
satisfies (A — A\I)z = 0, then z is an eigenvector of A corresponding
to the eigenvalue .

Definition 13 (Spectrum and Spectral Radius)

The set of all eigenvalues of a matrix A is called the spectrum of A.
The spectral radius of A is

p(A) = max{|\|; A is an eigenvalue ofA}.
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Eigenvalues and eigenvectors

Theorem 14

If A is ann x n matrix, then

(@) [|All2 = v/ p(ATA);

(i) p(A) < ||A|| for any matrix norm.

Proof: Proof for the second part. Suppose A is an eigenvalue of
A and z # 0 is a corresponding eigenvector such that Ax = Az
and ||z|| = 1. Then

Al = [Al]] = [[Az]l = [[Az]| < [[Allllz]] = (Al

that is, |A| < ||AJ|. Since X is arbitrary, this implies that
p(A) = max [A] < [|Al] u

For any A and any = > 0, there exists a matrix norm || - || such
that

o(A) < ||A|l < p(A) + €. PYNe



Eigenvalues and eigenvectors

Definition 16

We call an n x n matrix A convergent if

lim (A%);; =0Vi=1,2,....,n and j=1,2,...,n.

k—oo

Theorem 17
The following statements are equivalent.

@ A is a convergent matrix;
Q ;}im |A¥|| = 0 for some matrix norm;
o0

(5] Jim | A¥|| = 0 for all matrix norm;

Q p(4) <L
Q klirn AFg =0 for any x.

—00
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Iterative methods

Iterative techniques for solving linear systems

@ For small dimension of linear systems, it requires for direct
techniques.

@ For large systems, iterative techniques are efficient in
terms of both computer storage and computation.

The basic idea of iterative techniques is to split the coefficient
matrix A into

A=M— (M- A),

for some matrix M, which is called the splitting matrix. Here we
assume that A and M are both nonsingular. Then the original
problem is rewritten in the equivalent form

Mz = (M — A)x +b.

17 /K7



Iterative methods

This suggests an iterative process
e®) = (1 = M A)z* Y 4 Mo =T 4 ¢,

where T'is usually called the iteration matrix. The initial vector
z(9) can be arbitrary or be chosen according to certain
conditions.

Two criteria for choosing the splitting matrix M are

e () is easily computed. More precisely, the system
Mz®) =y is easy to solve;

@ the sequence {z(*)} converges rapidly to the exact
solution.

Note that one way to achieve the second goal is to choose M
so that M —! approximate A1,

In the following subsections, we will introduce some of the
mostly commonly used classic iterative methods.

1R/Kk7



Iterative methods

Jacobi Method

If we decompose the coefficient matrix A as
A=L+D+U,

where D is the diagonal part, L is the strictly lower triangular
part, and U is the strictly upper triangular part, of A, and
choose M = D, then we derive the iterative formulation for
Jacobi method:

k) = -D YL+ U);L'U‘“*l) + D 1b.
With this method, the iteration matrix 7; = —D~ (L + U) and

c= D71
Each component x§k> can be computed by

i—1 n
arz(k) = bi_zaijxg'k_l) - Z aijxg'k_l) /aii'
j=1 J=itl

19 /Kk7



Iterative methods

an1e® + 12280 4 aggn D 4o g ama®D = by
a21xgk71) + agrl) + a23xé’€*1) T+t ageFY =
am:ﬁgk_l) + apatFD Jranw:())k—l) ota,e® = b

Algorithm 1 (Jacobi Method)

Given 29, tolerance TOL, maximum number of iteration M.
Setk=1.
While k < M and ||z — 2|, > TOL

Setk=k+1,20 =g

Fori=1,2,...,n

i— 0 n 0
T; = (bi = ijll aijzn§ ) Zj:i-}—l aijxg- )) /Gn’

End For
End While o0 /27




Iterative methods

Example 18

Consider the linear system Az = b given by

Ei: 10z — To + 2x3 = 0,
Ey: —xz1 + 1lxyg — T3 + 3x4 = 25,
Es: 2z — zo + 1023 — x4 = -—11,
Ey: 3ry — T3 + 8xry = 15

which has the unique solution = = [1,2, —1, 1]7.

Solving equation FE; for x;, for i = 1,2, 3,4, we obtain

x = 1/10z2 — 1/bx3 +  3/5,
vy = 1/1la + 1/llzy — 3/1lzy + 25/11,
xg = —1/bx1 + 1/10x9 + 1/10z4 — 11/10,

T4 = —  3/8zy + 1/8x3 + 15/8.
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Iterative methods

Then Ax = b can be rewritten in the form « = Tz + ¢ with

0 1/10 -1/5 0 3/5
|y 0 111 —3/m | esm
T=1 15 110 "0 110 39e=| 10
0 —3/8 1/8 0 15/8

and the iterative formulation for Jacobi method is
2®) = T2* 1 4L ¢ for k= 1,2,....

The numerical results of such iteration is list as follows:

09 Q7



Iterative methods

T T2 T3 T4

0.0000 0.0000 0.0000 0.0000
0.6000 2.2727 -1.1000 1.8750
1.0473 1.7159 -0.8052 0.8852
0.9326 2.0533 -1.0493 1.1309
1.0152 1.9537 -0.9681 0.9738
0.9890 2.0114 -1.0103 1.0214
1.0032 1.9922 -0.9945 0.9944
0.9981 2.0023 -1.0020 1.0036
1.0006 1.9987 -0.9990 0.9989
0.9997 2.0004 -1.0004 1.0006
10 1.0001 1.9998 -0.9998 0.9998

O©Coo~NOOTA~,WN—=O X
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Iterative methods

Matlab code of Example

clear all; delete rslt.dat; diary rslt.dat; diary on;
n = 4; xold = zeros(n,1); xnew = zeros(n,1); T = zeros(n,n);

T(1,2) = 1/10; T(1,3) = -1/5; T(2,1) = 1/11;
T(2,3) = 1/11; T(2,4) = -3/11; T(3,1) = -1/5;
T(3,2) = 1/10; T(3,4) = 1/10; T(4,2) = -3/8; T(4,3) = 1/8;

c(1,1) = 3/5; c(2,1) = 25/11; ¢(3,1) =-11/10; c(4,1) = 15/8;
xnew =T *xold + ¢c; k=0;
forintfC kK~ x1 x2 x3 x4 \n);
while ( k <= 100 & norm(xnew-xold) > 1.0d-14 )
xold = xnew; xnew =T *xold + c; k =k + 1;
fprintf('%3.0f ’,k);
forjj=1:n
fprintf('%5.4f ’,xold(jj));
end
fprintf(C’\n’);
end

DA/ RT7



Iterative methods

Gauss-Seidel Method

When computing xﬁk) fori > 1, x(lk), NN fk)l have already been

computed and are likely to be better approximations to the exact
(k—1) (k—1)

Z1,...,2;—1 than z; ,...,x;_, . It seems reasonable to compute
(k) using these most recently computed values.
That is
aul + algxékfl) + algxékfl) e+ alngc(k b b1
(L21.L( ) 4 a9 1< ) 4 as x(k_l) + ot a%m%’“ b = by
0313’(1 ) 4 0327‘( )+ ags Tgsk) +-o+agpay Y = b3
anl“L(lk Y + an2x g Y +an Lé Y + e+ armlL'SIk) = by.

This improvement induce the Gauss-Seidel method.
The Gauss-Seidel method sets A/ = D + L and defines the iteration
as

™) = (D + L)"W2*Y (D + L) '.
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Iterative methods

That is, Gauss-Seidel method uses 7; = — (D + L) 'U as the
iteration matrix. The formulation above can be rewritten as

2® = _p-1 (LI(M +Uz*D b) .

Hence each component 2*) can be computed by

i

i—1 n
m?ék;) =|b *Zfliﬁfjm - Z (lij-”?g‘kil) /a“

Jj=1 J=i+l

@ For Jacobi method, only the components of z(*~1) are
used to compute z*). Hence )i = 1,...,n, can be
computed in parallel at each iteration .

@ At each iteration of Gauss-Seidel method, since xgk) can

not be computed until xgk), . ,xgﬁ)l are available, the
method is not a parallel algorithm in nature.

296 / R7



Iterative methods

Algorithm 2 (Gauss-Seidel Method)

Given 29, tolerance TOL, maximum number of iteration M.
Setk=1.
Fori=1,2,...,n

i—1 n 0

T = (bz' = 2oj=1 G = Xjmi az‘jx§- )) /az‘i
End For
While k& < M and ||z — 29|, > TOL

Setk=k+1,20 =z

Fori=1,2,...,n

i—1 n 0
T; = (bi - Zj:l Qjj Ty — Zj:iJrl az‘jx; )) /aii

End For
End While

27 /R7



Iterative methods

Example 19

Consider the linear system Az = b given by

Ei: 10z — ro + 2x3 = 6,
Ey: —xz1 + 1lxyg — T3 + 3x4 = 25,
FEs: 2z — zo + 1023 — x4 = -—11,
Ey 3Ty — T3 + 8xry = 15

which has the unique solution = = [1,2, —1, 1]7.

Gauss-Seidel method gives the equation

k k—1 k—1
mék; W LI 1% x%“; T
5 T L ut y W
" e T N L) Tt
Ty = - gLy gL NP



Iterative methods

The numerical results of such iteration is list as follows:

k T1 T9 T3 T4

0 0.0000 0.0000 0.0000 0.0000
1 0.6000 2.3273 -0.9873 0.8789
2 1.0302 2.0369 -1.0145 0.9843
3 1.0066 2.0036 -1.0025 0.9984
4 1.0009 2.0003 -1.0003 0.9998
5 1.0001 2.0000 -1.0000 1.0000

@ The results of Example appear to imply that the
Gauss-Seidel method is superior to the Jacobi method.

@ This is almost always true, but there are linear systems for
which the Jacobi method converges and the Gauss-Seidel
method does not.

@ See Exercises 17 and 18.
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Iterative methods

Matlab code of Example

clear all; delete rslt.dat; diary rslt.dat; diary on;

n = 4; xold = zeros(n,1); xnew = zeros(n,1); A = zeros(n,n);
A(1,1)=10; A(1,2)=-1; A(1,3)=2; A(2,1)=-1; A(2,2)=11; A(2,3)=-1; A(2,4)=3; A(3,1)=2; A(3,2)=-1;
A(3,3)=10; A(3,4)=-1; A(4,2)=3; A(4,3)=-1; A(4,4)=8; b(1)=6; b(2)=25; b(3)=-11; b(4)=15;

forii=1:n
xnew(ii) = bii);
for jj = 1:ii-1
xnew(ii) = xnew(ii) - A(ii,jj) * xnew(jj);
end
for jj = ii+1:n
xnew(ii) = xnew(ii) - A(ii,jj) * xold(jj);
end
xnew(ii) = xnew(ii) / A(ii,ii);
end
k = 0; fprintf(’ k x1 x2 x3 x4 \n’);

while (k <= 100 & norm(xnew-xold) > 1.0d-14)
xold = xnew; k =k + 1;
forii=1:n
xnew(ii) = b(ii);
for jj = 1:ii-1
xnew(ii) = xnew(ii) - A(ii,jj) * xnew(jj);
end
for jj = ii+1:n
xnew(ii) = xnew(ii) - A(ii,jj) * xold(jj);
end
xnew(ii) = xnew(ii) / A(ii,ii);
end
fprintf(’%3.0f * k);
forjj=1:n
fprintf('%5.4f *,xold(jj));
end
fprintf("\n’);
end nd 8y




Iterative methods

Lemma 20 (20)

If p(T) < 1, then (I — T)~ ! exists and

(I-T)" ZT’—I+T+T2
=0

Proof: Let X be an eigenvalue of T', then 1 — X is an eigenvalue
of I —T.But |\ <p(A)<1,s01—-X#0and0isnotan
eigenvalue of I — 7', which means (I-T)is nonsingular.

Next we show that (I —T)~! =1+ T +T?+---. Since

—T) <Z Ti) — [T,
i=0

and p(T) < 1 implies ||T™|| — 0 as m — oo, we have

(I-T) (nyglooi:ri):(f—T) (iT):I. n

24 /R7



Iterative methods

Theorem 21

For any z(©) ¢ R" , the sequence produced by
) =Tz 4o k=1,2,...,

converges to the unique solution of x = Tz + c if and only if

p(T) < 1.

Proof: Suppose p(T) < 1. The sequence of vectors z(¥) produced by
the iterative formulation are

V= Tz 4
@ = T 4 =720 4 (T + 1)
@ = Ta® 4 =730 (T2 + T+ I)e

In general
e =Tke©) L (Tht L TR2 T 4 ]

95 /97



Iterative methods

Since p(T) < 1, limy_.o, T%2(9) = 0 for any z(®) € R™. By
Lemma 20,

(T 4+ T2 4. T+ e T -T)"'c, as k— .
Therefore

lim 2" = lim 7%2© T'e=(1-T)"'e
Jim 2 Jim T2 + j;o c=( ) e

—00

Conversely, suppose {z*)} — 2 = (I — T)'c. Since

z—2® = To4+ce—Ta*F Y —c=T(x—2* ) =72z — 2-72)
= o =TFx—2O).

Let z =z — z(9). Then

lim 7%z = lim (z — 2®)) = 0.
k—o0 k—o0

It follows from theorem p(T") < 1. [ |

2 /97



Iterative methods

If|T|| < 1, then the sequence =*) converges to « for any initial
2" and

Q [z — 2| < Tz - 2|

. |
Q |z —z®| < I HHTHHx(l - 3.

Proof: Since z = Tx + cand z¥) = Tz~ 1 ¢,

z—2® = Tote-TzFD ¢
= T(x—a2*Y)
= Tz -zt =...... = Th(z — z0).
The first statement can then be derived
|z — g;(k)H — HTk(:p _ fC(O))H < ||THkH95 - x(o)”'

For the second result, we first show that

A (on 1\ ., ey 1. (1) N\ .,1 » - N 24 /87



Iterative methods

Since

g™ — z(n=1 Tz e -T2 ¢

= T2z — 3y =L =7 (2 — 20,
we have
|2 — 2"V < 7|2 = 2.
Let m > k,
2m) _ (k)

- (x<m> _ x(m—n) n (x<m—1> _ x(mﬂ)) TR <x<k+1> _ x(k)>
- pm-1 (xu) _ x<o>> L pme2 (x(n _ x<o>) gk (xu) _ 20

— (Tm,l L2 .Tk) (x(l) _ J,,,<o>) 7 /

25 /R7



Iterative methods

hence
|2 — 2R

< (I TR e TR ) - 2O

=TI (T TR 1) e = 2O

Since lim,, oo (™ =z,

lz — 2™

= lim [2™ —2®)|

< dim 7Y (7Y T 1) e - 2O
m—0oQ
= HTHkHa:(l)—x(O)H lim (HTHmfkfl_|_HT||mfk72_’_”'+1)
m—0o0

1
— |z = 2O
e

Thic Arnaviae tha earnnAd raciilt Bl 2¢ /R

= |TII*



Iterative methods

If A is strictly diagonal dominant, then both the Jacobi and
Gauss-Seidel methods converges for any initial vector (%),

Proof: By assumption, A is strictly diagonal dominant, hence a;; # 0
(otherwise A is singular) and

n

|aii| > Z ‘aij|, 1=1,2,...,n.
J=1,j#i

For Jacobi method, the iteration matrix Ty = —D~!(L + U) has

entries
—Sid (N
[TJ]ij:{ Gt
0, 1= 7.
Hence
n Qs 1 n
]
Tl = i, 2 |G| = By 2 Jewl <

Jj=1,5#i j=1,j#i

and this implies that the Jacobi method converges.

27 /R7



Iterative methods

For Gauss-Seidel method, the iteration matrix
Te = —(D + L)~'U. Let X be any eigenvalue of Ti; and v,
llyll«c = 1, is a corresponding eigenvector. Thus

Tey=Xy =— —-Uy=AD+ L)y.

Hence fori=1,...,n,
- Z QY5 = Aaiiyi + )\Zazjy]
Jj=i+1
This gives

i—1 n
Aaiyi = =AY aiy; — Y iy
j=1

j=i+1
and
[ Allais||lyi| < [Al Z |aij|ly;| + Z |agj|ly;l.

Jj=t+1
28 /8



Iterative methods

Choose the index k such that |y;| =1 > |y;| (this index can
always be found since ||y||- = 1). Then

[Alark| < WZ\%\ + Z |ak;]

j=k+1
which gives
Z?:k+1 ’akj’ Z?:kJrl ‘akj’ -
lark| — Z;:l lar;] 2 jeit okl

Since X is arbitrary, p(T¢) < 1. This means the Gauss-Seidel
method converges. [ |

Al <

@ The rate of convergence depends on the spectral radius of
the matrix associated with the method.

@ One way to select a procedure to accelerate convergence
is to choose a method whose associated matrix has
minimal spectral radius.

20/R7



Iterative methods

Successive over-relaxation (SOR) method

Definition 24

Suppose & € R™ is an approximated solution of Az = b. The residual
vector r for z is r = b — AzZ.

Let the approximate solution x(*:) produced by Gauss-Seidel method
be defined by

4 T
xFD) = [x(lk), e 7xl(li)1, xz(-k_l), e 7%(11@71)}

and
T .
0 _ [Tw *) r“ﬂ — b — Ax(kD)

100728 Ty

be the corresponding residual vector. Then the mth component of
(k)
r;"is

i—1 n
(k) _ (k) (k—1)
Jj=1 J=1

a0/ K7



Iterative methods

or, equivalently,

i—1 n
(k) _ E : (k) E: . (k=1) (k1)
Tmi = bm — AmgTj = — Am;j ~ Omily ’
j=1 j=it+1

foreachm =1,2,...,n.
In particular, the ith component of rgk) is

(k) < (%) - (k=1) (

k k k—1 k—1)

T b E aij; g Qi agzr; 7,
j=1 j=i+1

SO

i1 n
an‘xgk_l) + Tgf) = b — Zaijxg-k) — Z aijx§k_1)
J=1 j=i+1
(k)

= Q4T

a1 /R7



Iterative methods

Consequently, the Gauss-Seidel method can be characterized
as choosing x§k> to satisfy

(k) (k—1) r(k)
z =2 + 2.

7 %

A4
Relaxation method is modified the Gauss-Seidel procedure to
(k)
xgk) = xl(k_l) ol
27

i—1 n

k—1 w k k—1 k—1

= Y 4+ — | b — ai'x(- ) _ al-'x(- ) _ aiizv( )

% Qi J g 7 5 7
v j=1 j=i+1

1—1 n
(k—1 w k k-1
= (1—w)aV+ w | Zaij$§~ - Z aizl V| (1)
j=1 j=i+1
for certain choices of positive w such that the norm of the
residual vector is reduced and the convergence is significantly

factar A9 /8%



Iterative methods

These methods are called for

w < 1: under relaxation,

w = 1: Gauss-Seidel method,

w > 1: over relaxation.
Over-relaxation methods are called SOR (Successive
over-relaxation). To determine the matrix of the SOR method,
we rewrite (1) as

1—1 n
aua:gk) +w Z aijxg-k) = (1 — w)aiixgk_l) —w Z aingk_l) + wbi,
j=1 J=itl
sothatif A= L+ D + U, then we have
(D +wL)z®™ = [1 —w)D —wU] 2% Y 4 wb
or
2 = (D4+wL) ™1 —w)D —wU] 2% 4 w(D+wL)™ '
= wa<k71) + cy.
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Iterative methods

The linear system Ax = b given by

4r1 + 3z = 24,
3r1 + 4wy — r3 = 30,
= i) —+ 41133 = 724,

has the solution [3, 4, —5]7".

@ Numerical results of Gauss-Seidel method with 2(*) = [1,1,1]7:

k I T2 I3

0 1.0000000 1.0000000 1.0000000

1 5.2500000 3.8125000 -5.0468750

2 3.1406250 3.8828125 -5.0292969

3 3.0878906 3.9267578 -5.0183105

4 3.0549316 3.9542236 -5.0114441

5 3.0343323 3.9713898 -5.0071526

6 3.0214577 3.9821186 -5.0044703

7 3.0134110 3.9888241 -5.0027940 hYS



@ =11,1,1)":

k I T2 I3

0 1.0000000 1.0000000 1.0000000
1 6.3125000 3.5195313 -6.6501465
2 2.6223145 3.9585266 -4.6004238
3 3.1333027 4.0102646 -5.0966863
4 29570512 4.0074838 -4.9734897
5 38.0037211 4.0029250 -5.0057135
6 2.9963276 4.0009262 -4.9982822
7 3.0000498 4.0002586 -5.0003486

Iterative methods

@ Numerical results of SOR method with w = 1.25 and
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2O =[1,1,1)":

k I T2 I3

0 1.0000000 1.0000000 1.0000000
1 7.8000000 2.4400000 -9.2240000
2 1.9920000 4.4560000 -2.2832000
3 3.0576000 4.7440000 -6.3324800
4 2.0726400 4.1334400 -4.1471360
5 3.3962880 3.7855360 -5.5975040
6 3.0195840 3.8661760 -4.6950272
7 3.1488384 4.0236774 -5.1735127

Iterative methods

@ Numerical results of SOR method with w = 1.6 and
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Matlab code of SOR

clear all; delete rslt.dat; diary rslt.dat; diary on;

n = 3; xold = zeros(n,1); xnew = zeros(n,1); A = zeros(n,n); DL = zeros(n,n); DU = zeros(n,n);
A(1,1)=4; A(1,2)=3; A(2,1)=3; A(2,2)=4; A(2,3)=-1; A(3,2)=-1; A(3,3)=4;

b(1,1)=24; b(2,1)=30; b(3,1)=-24; omega=1.25;

forii=1:n
DL(ii,ii) = A(ii,ii);
for jj = 1:ii-1
DL{(ii,jj) = omega * A(ii,jj);
end
DU(ii,ii) = (1-omega)*A(ii,ii);
for jj = ii+1:n
DU(ii,jj) = - omega * A(ii,jj);
end
end
c=omega* (DL \ b); xnew =DL \ (DU *xold ) + c;
k = 0; fprintf(’ k x1 x2 x3 \n’);

while (k <= 100 & norm(xnew-xold) > 1.0d-14)
xold = xnew; k =k + 1; xnew = DL \ ( DU * xold ) + c;
fprintf('%3.0f ’ k);
forjj=1:n
fprintf('%5.4f * xold(jj));
end
fprintf("\n’);
end

diary off
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Iterative methods

Theorem 26 (Kahan)

Ifa; #0, foreachi =1,2,...,n, then p(T,) > |w — 1|. This implies
that the SOR method can converge only if0 < w < 2.

Theorem 27 (Ostrowski-Reich)

If A is positive definite and the relaxation parameter w satisfying
0 < w < 2, then the SOR iteration converges for any initial vector z(%).

Theorem 28

If A is positive definite and tridiagonal, then p(T¢) = [p(T;)]> < 1 and
the optimal choice of w for the SOR iteration is

2
1+ 4/1 = [p(Ts))?

w =

With this choice of w, p(T,,) = w — 1.
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Iterative methods

Example 29

The matrix
4 3 0
A=1|3 4 -1 |,
0 -1 4

given in previous example, is positive definite and tridiagonal.

Since
: 0 0 -3 0
T; = -D Y L+U)=10 0 -3 01
0 1 0 10

= —0.75 0 0.25

0
1
1
0
0 —0.75 0
0 025 0
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Iterative methods

we have
-2 —0.75 0
Ty— X =] —0.75 - 0.25 |,
0 0.25 —A
so
det(T; — M) = —\(A\% — 0.625).
Thus,
p(Ty) = v0.625
and

2 2
1++/1—[p(T)2 1+v1-0625

This explains the rapid convergence obtained in previous
example when using w = 0.125
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Symmetric Successive Over Relaxation (SSOR)
Method

Let A be symmetricand A= D + L+ L. The idea is in fact to
implement the SOR formulation twice, one forward and one
backward, at each iteration. That is, SSOR method defines

(D+wL)z®3) = [(1—w)D—wLl ] a®D +wh, (2
D+ wLDz® = 1—w)D —wL] 23 + wb.
( Tz [( ) Jzk—2) 3)

Define
M,: =D+ wlL,
N,: =(1—w)D —wL™.

Then from the iterations (2) and (3), it follows that
e® = (MZTNIMIIN) 2D 4w (MZTNI M + M T) b
= T(w)z* D 4+ M(w)™ b
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Iterative methods

But
(1 -=w)D —wL)(D+wL)™ +1
= (~wL—D—wD+2D)(D+wL) ™ +1
= T4+ 2-wDD+wL) ' +1
= (2-w)D(D +wL)™.
Thus

M) =w(D+wLl") ™ (2—w)D(D+wL)™},
then the splitting matrix is

1

Miw) = w2 —-w)

(D+wL)D™' (D +wL").

The iteration matrix is

T(w) = (D+wLl") ™ [1-w)D - wL](D+wL) ' [(1 -w)D —WE).
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Error bounds and iterative refinement

Error bounds and iterative refinement

Example 30

The linear system Ax = b given by

1 2 X1 . 3
1.0001 2 xo | | 3.0001

has the unique solution z = [1,1].

The poor approximation & = [3,0]” has the residual vector

s 3 1. ro2)[3]_ 0
B ~ | 3.0001 1.0001 2 || 0 |~ | —0.0002 |’

SO ||7]|co = 0.0002. Although the norm of the residual vector is
small, the approximation z = [3,0]” is obviously quite poor; in
fact, ||z — Z||coc = 2. [ ]
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Error bounds and iterative refinement

The solution of above example represents the intersection of
the lines

f1: x1+2x2=3 and ¥4o: 1.0001z; + 29 = 3.0001.

/1 and ¢, are nearly parallel. The point (3,0) lies on ¢; which
implies that (3, 0) also lies close to /5, even though it differs
significantly from the intersection point (1, 1).

. ; N
LG —o‘ooa)\,z' 4
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Error bounds and iterative refinement

Theorem 31

Suppose that % is an approximate solution of Ax = b, A is nonsingular
matrix andr = b — Az. Then

lz =&l < Il - A7
and ifx # 0 and b # 0,

[l — ]|

]

Il
< 1Al A= e
[

Proof: Since
r=b— A% = Ax — At = A(x — &)
and A is nonsingular, we have
lz =&l = [|A7 (| < A7 - Il (4)
Moreover, since b = Az, we have
1ol < (1AL -
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Error bounds and iterative refinement

It implies that
1 _ 4]
T < : (5)
]| = [[oll
Combining Equations (4) and (5), we have
=2 _ (Al A7
< r|.
2] e
[ |

Definition 32 (Condition number)

The condition number of nonsingular matrix A is

k(A) = | A]l - [|IA7Y].

For any nonsingular matrix A,

L= 1] = [[A- AT < (AL [A7H] = K(A).
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Error bounds and iterative refinement

Definition 33
A matrix A is well-conditioned if x(A) is close to 1, and is
ill-conditioned when x(A) is significantly greater than 1.

In previous example,

A= [ 1.0%)01 ﬂ
Since
Al [ —10000 10000 ]
5000.5 —5000 |’
we have

K(A) = [|[Allos - A oo = 3.0001 x 20000 = 60002 > 1.
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Error bounds and iterative refinement

How to estimate the effective condition number in ¢-digit
arithmetic without having to invert the matrix A?

@ If the approximate solution & of Az = b is being determined
using t-digit arithmetic and Gaussian elimination, then

Irll = llb — Azl = 107" A] - ||

@ All the arithmetic operations in Gaussian elimination
technique are performed using ¢-digit arithmetic, but the

residual vector r are done in double-precision (i.e., 2¢-digit)
arithmetic.

@ Use the Gaussian elimination method which has already
been calculated to solve

Ay =r.

Let i be the approximate solution.
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Error bounds and iterative refinement

Then
gAY =AYb AD) =27
and
TRIT+Y
Moreover,
7]~ llz—z| =[A""7]
< AT (el = AT 0T AL 2]) = 107 2lk(A).
It implies that

lterative refinement

In general, & + y is @ more accurate approximation to the
solution of Az = b than z.
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Error bounds and iterative refinement

Algorithm 3 (lterative refinement)

Given tolerance T'O L, maximum number of iteration M, number
of digits of precision t.
Solve Az = b by using Gaussian elimination in ¢-digit arithmetic.
Setk=1
while (k < M)
Compute r = b — Az in 2t-digit arithmetic.
Solve Ay = r by using Gaussian elimination in ¢-digit arithme
If ly||lcoc < TOL, then stop.
Setk=k+1landxz=z+y.
End while

C.

—
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Error bounds and iterative refinement

Example 34

The linear system given by

3.3330 15920 —10.333 1 15913
2.2220 16.710 9.6120 Ty | = | 28.544
1.5611 5.1791 1.6852 T3 8.4254

has the exact solution = = [1,1,1]7.

Using Gaussian elimination and five-digit rounding arithmetic leads
successively to the augmented matrices

[ 3.3330 15920 —10.333 | 15913
0 —10596 16.501 | —10580
0 —7451.4  6.5250 | —7444.9

and

[3.3330 15920 —10.333 15913
0 —10596 16.501  —10580
0 0 —5.0790 —4.7000
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Error bounds and iterative refinement

The approximate solution is
£ =[1.2001,0.99991, 0.92538] 7.

The residual vector corresponding to & is computed in double
precision to be

rD = Az
15913 1 [ 3.3330 15920 —10.333 1.2001
= | 28544 | — | 22220 16.710  9.6120 0.99991
| 84254 | | 15611 51791  1.6852 0.92538
(15913 1 [ 15913.00518 —0.00518
= | 28544 | — | 28.26987086 | = | 0.27412914
| 84254 | | 8.611560367 —0.186160367

Hence the solution of Ay = (1 to be
M = [—0.20008, 8.9987 x 107°,0.074607]
and the new approximate solution z(? is
@ = 2 4+ 51 = 11,0000, 1.0000, 0.99999] 7.
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Error bounds and iterative refinement

Using the suggested stopping technique for the algorithm, we
compute r?) = b — Az(®) and solve the system Ay = r(2) which
gives

7 = [1.5002 x 1079, 2.0951 x 107°,1.0000 x 10~°]7.
Since
15 oo < 1077,
we conclude that
2@ = 5@ 4 §® = [1.0000, 1.0000, 1.0000]”

is sufficiently accurate. ]
In the linear system

Ax = b,

A and b can be represented exactly. Realistically, the matrix A and
vector b will be perturbed by § A and 6b, respectively, causing the
linear system

(A+6A)z =b+6b

to be <olved in place of Ar — b %0



Error bounds and iterative refinement

Theorem 35

Suppose A is nonsingular and

1
0Al <
[6Al A

Then the solution & of (A + 0A)x = b+ 6b approximates the
solution x of Ax = b with the error estimate

|l — 2| r(A) 160l |, [[oAl
[l = 1= (A)BAI/TAT ( I >

@ If A is well-conditioned, then small changes in A and b
produce correspondingly small changes in the solution .

@ If Ais ill-conditioned, then small changes in A and b may
produce large changes in z.
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CG method

The conjugate gradient method

Consider the linear systems
Axr=b>

where A is large sparse and symmetric positive definite. Define
the inner product notation

<z,y>=axly forany z,y e R".

Theorem 36

Let A be symmetric positive definite. Then z* is the solution of
Az = b if and only if x* minimizes

g(z) =<z, Az > -2 <x,b>.
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CG method

(“=") Rewrite g(z) as

g(z) = <z—a"Alx—2") >+ <z, Az" >+ <a2", Az >
— <z Ax" > -2 <z,b>
= <z—2"A(lx—2%) > — <a2", A" >
+2 <z, Az* > -2 <x,b>
= <z—2"Alx—2%) > — <2 Az > +2 <z, Az" —b>.

Suppose that z* is the solution of Az = b, i.e., Az* = b. Then
g(z) =<z —2" Alx — ") > — < z*, Az™ >
which minimum occurs at x = z*.
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CG method

(“<") Fixed vectors = and v, for any o € R,

f(@) = glo + av)

= <z+av, Az +aAv > -2 < x+av,b>

= <z Az >+a<v, Az > +a <z, Av > +a? < v, Av >
—2<z,b>2a<v,b>

= <z, Ar>-2<z,b>+420<v, Az > —2a <v,b>+a’ <v, A

= g@)+2a<v, Az —b> 4o’ < v, Av > .

Because f is a quadratic function of a and < v, Av > is
positive, f has a minimal value when f’(a) = 0. Since

fl(a)=2<v,Ax — b > +2a < v, Av >,

the minimum occurs at
<v,Ar—b> <v,b—Ax >

& = —
<w,Av > <w,Av >
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CG method

and
<v,b— Az >
w) = f(@) = g(z) — 200" AT > Y
g(z + aw) f(a) =g(x) o Avs <v,b—Ax >
<<v,b—A:€>)2
+|———— | <v,Av>
<wv,Av >
_ (x)_<v,b—Ax>2
-9 <v,Av>

So, for any nonzero vector v, we have

glx+av) < g(z) if <v,b—Ax>#0 (6)
and

g(x 4+ av) =g(z) if <v,b—Ax >=0. (7)
Suppose that z* is a vector that minimizes g. Then

g(z* + av) > g(x*) forany v. (8)
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CG method

From (6), (7) and (8), we have
<wv,b— Ax* >=0 forany v,

which implies that Az* = 0. [ |
Let

r=>b— Ax.

Then

_ <vb—Ar>  <wvr>
o <v,Av> < Av >’

If » £ 0 and if v and r are not orthogonal, then
9(x + av) < g(x)

which implies that « + awv is closer to z* than is x.
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CG method

Let (9 be an initial approximation to z* and v(!) + 0 be an
initial search direction. For k = 1,2, 3, ..., we compute
< o®p— Agkl) >
W= vR) Ap(F) > 7
ORISR

and choose a new search direction v(**1).

Question: How to choose {v(*)} such that {z(*)} converges

rapidly to x*?

Let ® : R® — R be a differential function on z. Then it holds
O(z +ep) — ()

. =Vo(x)Tp+O(e).
The right hand side takes minimum at
Ve((z) .
p= (i.e., the largest descent)
Ve

for all p with ||p|| = 1 (neglect O(¢)).
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CG method

Denote = = [x1, 29, ..., 2,)T. Then
n n n

g(z) =<z, Ax > -2 < x,b>= ZZaijmimj — Zinbi.
=1 j=1 i=1

It follows that

dg

n
—(z) =2 o — 2bg, for k=1,2,...,n.
axk(x) ;akxz k n

Therefore, the gradient of g is

dg , . dg ag , 1"
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CG method

Steepest descent method (gradient method)

Given an initial 2y # 0.
Fork=1,2,...
Th—1=b— Axp_
If r,_1 =0, then stop;

T
Th_1Thk—1
else ap = m, Tk = T—1 + QTE_1-

End for

Theorem 37

If xi, x,—1 are two approximations of the steepest descent method for
solving Az =band Ay > Ay > --- > X\, > 0 are the eigenvalues of A,
then it holds:

A1 — A\
loe — 2%l < [ 522 ) Nzke1 — 2% 4,
/\1+)\n

where ||z||a = VT Axz. Thus the gradient method is convergent.
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CG method

@ If the condition number of A (= A\1/)\,) is large, then
)\1_)\77, ~

The gradient method converges very slowly. Hence this
method is not recommendable.

@ It is favorable to choose that the search directions {v(V} as
mutually A-conjugate, where A is symmetric positive
definite.

Definition 38

Two vectors p and q are called A-conjugate (A-orthogonal), if
-
pt Ag = 0.
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CG method

Letwv,...,v, # 0 be pairwisely A-conjugate. Then they are
linearly independent.

Proof: From
n
0 = Z Cj?}j
j=1

follows that

0= (vp)’A (Z cjvj> = Z cj(vr)T Avj = e (vp)T Avy,

j=1 j=1

soc,=0,fork=1,...,n. |
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CG method

Theorem 40

Let A be symm. positive definite and vy, . .., v, € R"\{0} be
pairwisely A-orthogonal. Give xy and letry = b — Axq. For
k=1,...,n,let

< Vg, b — Axp_1 >

a = and xp = rp_1 + apug.
< Vg, Avg, >

Then Ax,, = b and

<b— Axp,v; >=0, foreach j=1,2,... k—1.

Proof: Since, foreach k =1,2,...,n,
Tk = Tk—1 + OV,
we have
Az, = Az,_1+ anAv, = (Azp_o+ apn_1Av,—1) + anAv, = - -+
= Axg+ a1Avy + agAvg + - - - + a, Avy,.
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CG method

It implies that

< Az, — b, v >
= < Axg—0bu > +ay < Av,vp >+ + a < Avg, v >
= < Axg—0bu > Fay <vi,Avg >+ 4 an < vy, Avg >
= < Axg—b,vp > Fag < v, Avy >
< Uk, b— Axp_q >
< vy, Avg, >
= < Axg—bup >+ <uvp,b— Arp_1 >
= <Al’0—b,vk>
+ <wvp,b— Axg+ Axg — Ax1 + -+ — Axp_o + Axp_o — Axp_1 >
= < Axg—0byvp >+ <vp,b— Axg > + < v, Axrg — Ax1 >
4o < v, Axp_g — Axp_q >
= <, Arg— Axy >+ -+ <wvp, Axp_o — Azl 1 > .

= < Axg—0bvp >+ < vy, Avy, >
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CG method

For any i
T, =xi—1 +ov; and  Ax; = Ax;_1 + o Av;,
we have
Ax;_ 1 — Ax; = —oy Av;.
Thus, fork=1,...,n,

< Az, —byv, >

= —op <wvp,Avp > —--— a1 < v, Avg_1 >=0
which implies that Az,, = b.
Suppose that
<Tp—1,v; >=0 for j=1,2,... k-1 (9)

By the result

rp=0— Axp =b— A(xg_1 + apvg) = rg—1 — axAvg
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CG method

it follows that

< TR,V > = < Tp_1,Uk > —ap < Avg, v >
<wvp,b— Axp_1 >
= < Th_1,V > — < Avg, v >
k=1, Tk < vy, Avg, > ’
= 0.

From assumption (9) and A-orthogonality, for j =1,....k—1
< T,V >=<Tk-1,V; > —af < Avk,vj >=0

which is completed the proof by the mathematic induction. &
Method of conjugate directions:

Let A be symmetric positive definite, b, g € R™. Given

v1,. .., v, € R™"\{0} pairwisely A-orthogonal.

To = b — Aﬂ?o,
Fork=1,...,n,
<Vg,Tl—1> _
Ak = = Avys » Tk = Th—1 T QKU

T = 7T1._1 — aIcA/U’(* =} — A$k -8 /87



CG method

Practical Implementation

@ In k-th step a direction v, which is A-orthogonal to
v1,...,Us—1 Must be determined.

@ It allows for orthogonalization of r; against vy, ..., vg.

@ Letry # 0, g(z) decreases strictly in the direction —r;. For
e > 0 small, we have g(zy — erg) < g(zk).

If rp_1 =b— Axr_1 # 0, then we use r;_; to generate vy, by
Vg = Tk—1 + Bp—1Vk—1. (10)
Choose f;,_1 such that

0 = <1, Avg >=< V1, Arp—1 + Bp—1Avgp_1 >
= <1, Ark—1 > +Pk-1 < Vg1, Avg_1 > .
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CG method

That is
< V-1, Arg_1 >
< g1, Avg_1 >’

Br-1=— (11)

Theorem 41

Let vy and (1 be defined in (10) and (11), respectively. Then
ro,...,Tk_1 are mutually orthogonal and

<wvg,Av; >=0, for i=1,2,...,k—1.

7

That is {v1,...,v} is an A-orthogonal set.

Having chosen v, we compute

< Uk, Th—1 > < Tho1 + Br—1Vk—1,Th—1 >
ar = =
< Uk,AUk > < Uk,AUk >
<Tk—1,Tk—1 > < Vg—1,Tk—1 >
e R
<Uk7AUk > <vk,Avk >
< Th—1,Tk—1 >

— . Aay, ~ an /Y




CG method

Since
Tk = Tp—1 — QpAuvg,
we have
KTy Tl >=< Th_1,TE > —0f < Avg, 1 >= —ay, < 13, Avg > .
Further, from (12),

< Tpo1,Th—1 >= o < Vg, Avg >,

SO
B, = < g, Arp > < T, Avp >
k < Uk,AUk > N < vk,Avk >
(Vag) <rp,me > <7, >

(/o) < rp—1,mh—1 > < The1, Th—1 >
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CG method

Algorithm 4 (Conjugate Gradient method (CG-method))

Let A be s.p.d., b € R", choose zy € R", rg = b — Axg = vg.
If ro = 0, then N = 0 stop, otherwise for £ = 0,1, ...

(@). ar = <<vzk£zljk>>’

(b). zp41 = 2 + gV,

(C) T4l =Tk — OzkAUk,

(d). f rpiqy =0,let N =k + 1, stop.
(e). B

(

— <Tk41,Tk+1>
f). vit1 = rr41 + Brog.

<rg,r>

@ Theoretically, the exact solution is obtained in n steps.

@ If A is well-conditioned, then approximate solution is
obtained in about \/n steps.

@ If Ais ill-conditioned, then the number of iterations may be
greater than n.
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CG method

Select a nonsingular matrix C' so that
A=c7tAacT

is better conditioned.
Consider the linear system

A7 =1,
where
i=CTx and b=C"'b
Then
Az = (C7rACTT)(CTe) = C 1 Az
Thus,
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CG method

Since
z, = CTay,
we have
i o= b—Aip=C"— (CrACTT) CTxy,
= C7Yb— Axp) =C 7y
Let
Vg = CTUk and wy = C’_lrk.
Then
B _ < Tk, Tk > _ < C’_lrk,C_lrk >
ko= < The1,Tk—1 > < Cil’r’k_l,cfl’r’k_l >
< Wk, Wg >

< Wg—1, Wg—1 >
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Thus,

~ < fkfl,fkfl > < C_lkal,C_lkal >

« = — = —

F < Op Ay > < CTu, C-TAC-TCTyy, >
. < Wg—1, Wg—1 >
< CTUk, CilAvk >
and, since
_ — T
< CTy,, C A, > = (vk)T CC Y Avy, = (vp)" Avy,
= < g, Avg >,
we have
G = < Wg—1, Wg—1 >
k < vy, Avg >

Further,

~ ~ L T ~ AT
Tp = Tp—1 + QVg, SO CT.CEk =C" xp_1 + a,C* g
and

T = Th_1 + dk'l)k. ar Ry



CG method

Continuing,

= et — aAby,
o)

C7lr =C 7y — @pC T ACTTC Ty,

and

e = TEh_1 — QR AUE.
Finally,

g1 = 7+ Bt and CTogyy = C 1y, + 31.CT g,

o)

vpr1 = OOy + Bror = O~ Ty, + Brog.
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CG method

Algorithm 5 (Preconditioned CG-method (PCG-method))

Choose C and .
Set rg = b — Az, solve Cwy = o and CTv; = wy.
If ro =0, then N = 0 stop, otherwise for k =1,2,...
(a). o =< Wg—1, Wk—1 > / < vy, Avg >,
b). zx = Tp_1 + oy,
T = Tp—1 — ag Ay,
=0, let N =k + 1, stop.
Otherwise, solve Cw;, = r;, and C7 2z, = wy,,
(). Br =< wg, w, > / < Wg—1, W—1 >,
(). vit1 = 2 + Brok.

(
()
(d)
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