Iterative techniques in matrix algebra

Tsung-Ming Huang

Department of Mathematics
National Taiwan Normal University, Taiwan

August 28, 2011
Outline

1. Norms of vectors and matrices
2. Eigenvalues and eigenvectors
3. Iterative techniques for solving linear systems
4. Error bounds and iterative refinement
5. The conjugate gradient method
Definition 1

∥·∥ : \mathbb{R}^n \rightarrow \mathbb{R} is a vector norm if

(i) \|x\| \geq 0, \forall x \in \mathbb{R}^n,
(ii) \|x\| = 0 if and only if x = 0,
(iii) \|\alpha x\| = |\alpha|\|x\| \forall \alpha \in \mathbb{R} and x \in \mathbb{R}^n,
(iv) \|x + y\| \leq \|x\| + \|y\| \forall x, y \in \mathbb{R}^n.

Definition 2

The \ell_2 and \ell_\infty norms for \(x = [x_1, x_2, \cdots, x_n]^T \) are defined by

\[
\|x\|_2 = (x^T x)^{1/2} = \left\{ \sum_{i=1}^{n} x_i^2 \right\}^{1/2}
\]

and \(\|x\|_\infty = \max_{1 \leq i \leq n} |x_i| \).

The \ell_2 norm is also called the Euclidean norm.
Theorem 3 (Cauchy-Bunyakovsky-Schwarz inequality)

For each \(x = [x_1, x_2, \cdots, x_n]^T \) and \(y = [y_1, y_2, \cdots, y_n]^T \) in \(\mathbb{R}^n \),

\[
x^T y = \sum_{i=1}^{n} x_i y_i \leq \left\{ \sum_{i=1}^{n} x_i^2 \right\}^{1/2} \left\{ \sum_{i=1}^{n} y_i^2 \right\}^{1/2} = \|x\|_2 \cdot \|y\|_2.
\]

Proof: If \(x = 0 \) or \(y = 0 \), the result is immediate.
Suppose \(x \neq 0 \) and \(y \neq 0 \). For each \(\alpha \in \mathbb{R} \),

\[
0 \leq \|x - \alpha y\|_2^2 = \sum_{i=1}^{n} (x_i - \alpha y_i)^2 \leq \sum_{i=1}^{n} x_i^2 - 2\alpha \sum_{i=1}^{n} x_i y_i + \alpha^2 \sum_{i=1}^{n} y_i^2,
\]

and

\[
2\alpha \sum_{i=1}^{n} x_i y_i \leq \sum_{i=1}^{n} x_i^2 + \alpha^2 \sum_{i=1}^{n} y_i^2 = \|x\|_2^2 + \alpha^2 \|y\|_2^2.
\]
Since $\|x\|_2 > 0$ and $\|y\|_2 > 0$, we can let

$$\alpha = \frac{\|x\|_2}{\|y\|_2}$$

to give

$$\left(2 \frac{\|x\|_2}{\|y\|_2}\right) \left(\sum_{i=1}^{n} x_i y_i\right) \leq \|x\|_2^2 + \frac{\|x\|_2^2}{\|y\|_2^2} \|y\|_2^2 = 2\|x\|_2^2.$$

Thus

$$x^T y = \sum_{i=1}^{n} x_i y_i \leq \|x\|_2 \|y\|_2.$$
For each $x, y \in \mathbb{R}^n$,

$$\|x + y\|_\infty = \max_{1 \leq i \leq n} |x_i + y_i| \leq \max_{1 \leq i \leq n} (|x_i| + |y_i|) \leq \max_{1 \leq i \leq n} |x_i| + \max_{1 \leq i \leq n} |y_i| = \|x\|_\infty + \|y\|_\infty$$

and

$$\|x + y\|_2^2 = \sum_{i=1}^{n} (x_i + y_i)^2 = \sum_{i=1}^{2} x_i^2 + 2 \sum_{i=1}^{n} x_i y_i + \sum_{i=1}^{n} y_i^2 \leq \|x\|_2^2 + 2 \|x\|_2 \|y\|_2 + \|y\|_2^2 = (\|x\|_2 + \|y\|_2)^2,$$

which gives

$$\|x + y\|_2 \leq \|x\|_2 + \|y\|_2.$$
Definition 4

A sequence \(\{ x^{(k)} \in \mathbb{R}^n \}_{k=1}^{\infty} \) is convergent to \(x \) with respect to the norm \(\| \cdot \| \) if \(\forall \, \varepsilon > 0, \exists \) an integer \(N(\varepsilon) \) such that

\[
\| x^{(k)} - x \| < \varepsilon, \, \forall \, k \geq N(\varepsilon).
\]

Theorem 5

\(\{ x^{(k)} \in \mathbb{R}^n \}_{k=1}^{\infty} \) converges to \(x \) with respect to \(\| \cdot \|_{\infty} \) if and only if

\[
\lim_{k \to \infty} x_i^{(k)} = x_i, \, \forall \, i = 1, 2, \ldots, n.
\]

Proof: “\(\Rightarrow \)” Given any \(\varepsilon > 0, \exists \) an integer \(N(\varepsilon) \) such that

\[
\max_{1 \leq i \leq n} | x_i^{(k)} - x_i | = \| x^{(k)} - x \|_{\infty} < \varepsilon, \, \forall \, k \geq N(\varepsilon).
\]
This result implies that

$$|x_i^{(k)} - x_i| < \varepsilon, \ \forall \ i = 1, 2, \ldots, n.$$

Hence

$$\lim_{k \to \infty} x_i^{(k)} = x_i, \ \forall \ i.$$

“⇐” For a given $$\varepsilon > 0$$, let $$N_i(\varepsilon)$$ represent an integer with

$$|x_i^{(k)} - x_i| < \varepsilon, \ \text{whenever} \ k \geq N_i(\varepsilon).$$

Define

$$N(\varepsilon) = \max_{1 \leq i \leq n} N_i(\varepsilon).$$

If $$k \geq N(\varepsilon)$$, then

$$\max_{1 \leq i \leq n} |x_i^{(k)} - x_i| = \|x^{(k)} - x\|_\infty < \varepsilon.$$

This implies that $$\{x^{(k)}\}$$ converges to $$x$$ with respect to $$\| \cdot \|_\infty$$.

Theorem 6

For each $x \in \mathbb{R}^n$,

$$
\|x\|_\infty \leq \|x\|_2 \leq \sqrt{n \|x\|_\infty}.
$$

Proof: Let x_j be a coordinate of x such that

$$
\|x\|_\infty^2 = |x_j|^2 \leq \sum_{i=1}^{n} x_i^2 = \|x\|_2^2,
$$

so $\|x\|_\infty \leq \|x\|_2$ and

$$
\|x\|_2^2 = \sum_{i=1}^{n} x_i^2 \leq \sum_{i=1}^{n} x_j^2 = n x_j^2 = n \|x\|_\infty^2,
$$

so $\|x\|_2 \leq \sqrt{n \|x\|_\infty}$.

Definition 7

A matrix norm $\| \cdot \|$ on the set of all $n \times n$ matrices is a real-valued function satisfying for all $n \times n$ matrices A and B and all real number α:

(i) $\| A \| \geq 0$;

(ii) $\| A \| = 0$ if and only if $A = 0$;

(iii) $\| \alpha A \| = |\alpha| \| A \|$;

(iv) $\| A + B \| \leq \| A \| + \| B \|$;

(v) $\| AB \| \leq \| A \| \| B \|$;

Theorem 8

If $\| \cdot \|$ is a vector norm on \mathbb{R}^n, then

$$\| A \| = \max_{\| x \| = 1} \| Ax \|$$

is a matrix norm.
For any \(z \neq 0 \), we have \(x = z / \| z \| \) as a unit vector. Hence

\[
\| A \| = \max_{\| x \| = 1} \| Ax \| = \max_{z \neq 0} \left\| A \left(\frac{z}{\| z \|} \right) \right\| = \max_{z \neq 0} \frac{\| Az \|}{\| z \|}.
\]

Corollary 9

\[
\| Az \| \leq \| A \| \cdot \| z \|.
\]

Theorem 10

If \(A = [a_{ij}] \) is an \(n \times n \) matrix, then

\[
\| A \|_{\infty} = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}|.
\]
\textbf{Proof:} Let x be an n-dimension vector with
\[1 = \|x\|_{\infty} = \max_{1 \leq i \leq n} |x_i|. \]

Then
\[
\|Ax\|_{\infty} = \max_{1 \leq i \leq n} \left| \sum_{j=1}^{n} a_{ij} x_j \right|
\]
\[\leq \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}| \max_{1 \leq j \leq n} |x_j| = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}|. \]

Consequently,
\[
\|A\|_{\infty} = \max_{\|x\|_{\infty}=1} \|Ax\|_{\infty} \leq \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}|.
\]

On the other hand, let p be an integer with
\[
\sum_{j=1}^{n} |a_{pj}| = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}|.
\]
and \(x \) be the vector with

\[
x_j = \begin{cases}
1, & \text{if } a_{pj} \geq 0, \\
-1, & \text{if } a_{pj} < 0.
\end{cases}
\]

Then

\[
\|x\|_\infty = 1 \quad \text{and} \quad a_{pj}x_j = |a_{pj}|, \quad \forall \ j = 1, 2, \ldots, n,
\]

so

\[
\|Ax\|_\infty = \max_{1 \leq i \leq n} \left| \sum_{j=1}^{n} a_{ij}x_j \right| \geq \left| \sum_{j=1}^{n} a_{pj}x_j \right| = \left| \sum_{j=1}^{n} |a_{pj}| \right| = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}|.
\]

This result implies that

\[
\|A\|_\infty = \max_{\|x\|_\infty = 1} \|Ax\|_\infty \geq \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}|.
\]

which gives

\[
\|A\|_\infty = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}|.
\]
Definition 11 (Characteristic polynomial)

If A is a square matrix, the characteristic polynomial of A is defined by

$$p(\lambda) = \det(A - \lambda I).$$

Definition 12 (Eigenvalue and eigenvector)

If p is the characteristic polynomial of the matrix A, the zeros of p are eigenvalues of the matrix A. If λ is an eigenvalue of A and $x \neq 0$ satisfies $(A - \lambda I)x = 0$, then x is an eigenvector of A corresponding to the eigenvalue λ.

Definition 13 (Spectrum and Spectral Radius)

The set of all eigenvalues of a matrix A is called the spectrum of A. The spectral radius of A is

$$\rho(A) = \max\{|\lambda|; \lambda \text{ is an eigenvalue of } A\}.$$
Theorem 14

If A is an $n \times n$ matrix, then

(i) $\|A\|_2 = \sqrt{\rho(A^T A)}$;

(ii) $\rho(A) \leq \|A\|$ for any matrix norm.

Proof: Proof for the second part. Suppose λ is an eigenvalue of A and $x \neq 0$ is a corresponding eigenvector such that $Ax = \lambda x$ and $\|x\| = 1$. Then

$$|\lambda| = \|\lambda\|\|x\| = \|\lambda x\| = \|Ax\| \leq \|A\|\|x\| = \|A\|,$$

that is, $|\lambda| \leq \|A\|$. Since λ is arbitrary, this implies that $\rho(A) = \max |\lambda| \leq \|A\|$.

Theorem 15

For any A and any $\varepsilon > 0$, there exists a matrix norm $\| \cdot \|$ such that

$$\rho(A) < \|A\| < \rho(A) + \varepsilon.$$
Definition 16

We call an $n \times n$ matrix A convergent if

$$\lim_{k \to \infty} (A^k)_{ij} = 0 \quad \forall \quad i = 1, 2, \ldots, n \quad \text{and} \quad j = 1, 2, \ldots, n.$$

Theorem 17

The following statements are equivalent.

1. A is a convergent matrix;
2. $\lim_{k \to \infty} \|A^k\| = 0$ for some matrix norm;
3. $\lim_{k \to \infty} \|A^k\| = 0$ for all matrix norm;
4. $\rho(A) < 1$;
5. $\lim_{k \to \infty} A^k x = 0$ for any x.

Iterative techniques for solving linear systems

- For small dimension of linear systems, it requires for direct techniques.
- For large systems, iterative techniques are efficient in terms of both computer storage and computation.

The basic idea of iterative techniques is to split the coefficient matrix A into

$$A = M - (M - A),$$

for some matrix M, which is called the splitting matrix. Here we assume that A and M are both nonsingular. Then the original problem is rewritten in the equivalent form

$$Mx = (M - A)x + b.$$
This suggests an iterative process

\[x^{(k)} = (I - M^{-1}A)x^{(k-1)} + M^{-1}b \equiv Tx^{(k-1)} + c, \]

where \(T \) is usually called the iteration matrix. The initial vector \(x^{(0)} \) can be arbitrary or be chosen according to certain conditions.

Two criteria for choosing the splitting matrix \(M \) are

- \(x^{(k)} \) is easily computed. More precisely, the system \(Mx^{(k)} = y \) is easy to solve;
- the sequence \(\{x^{(k)}\} \) converges rapidly to the exact solution.

Note that one way to achieve the second goal is to choose \(M \) so that \(M^{-1} \) approximate \(A^{-1} \).

In the following subsections, we will introduce some of the mostly commonly used classic iterative methods.
Jacobi Method

If we decompose the coefficient matrix A as

$$A = L + D + U,$$

where D is the diagonal part, L is the strictly lower triangular part, and U is the strictly upper triangular part, of A, and choose $M = D$, then we derive the iterative formulation for Jacobi method:

$$x^{(k)} = -D^{-1}(L + U)x^{(k-1)} + D^{-1}b.$$

With this method, the iteration matrix $T_J = -D^{-1}(L + U)$ and $c = D^{-1}b$.

Each component $x^{(k)}_i$ can be computed by

$$x^{(k)}_i = \left(b_i - \sum_{j=1}^{i-1} a_{ij} x^{(k-1)}_j - \sum_{j=i+1}^{n} a_{ij} x^{(k-1)}_j \right) / a_{ii}.$$
\[\begin{align*}
a_{11}x_1^{(k)} + a_{12}x_2^{(k-1)} + a_{13}x_3^{(k-1)} + \cdots + a_{1n}x_n^{(k-1)} &= b_1 \\
a_{21}x_1^{(k-1)} + a_{22}x_2^{(k)} + a_{23}x_3^{(k-1)} + \cdots + a_{2n}x_n^{(k-1)} &= b_2 \\
& \vdots \\
a_{n1}x_1^{(k-1)} + a_{n2}x_2^{(k-1)} + a_{n3}x_3^{(k-1)} + \cdots + a_{nn}x_n^{(k)} &= b_n.
\end{align*}\]

Algorithm 1 (Jacobi Method)

Given \(x^{(0)}\), tolerance \(TOL\), maximum number of iteration \(M\).
Set \(k = 1\).
While \(k \leq M\) and \(\|x - x^{(0)}\|_2 \geq TOL\)
Set \(k = k + 1, x^{(0)} = x\).
For \(i = 1, 2, \ldots, n\)
\[x_i = \left(b_i - \sum_{j=1}^{i-1} a_{ij}x_j^{(0)} - \sum_{j=i+1}^{n} a_{ij}x_j^{(0)} \right) / a_{ii} \]
End For
End While
Example 18

Consider the linear system $Ax = b$ given by

\[
E_1 : \quad 10x_1 - x_2 + 2x_3 = 6,
\]
\[
E_2 : \quad -x_1 + 11x_2 - x_3 + 3x_4 = 25,
\]
\[
E_3 : \quad 2x_1 - x_2 + 10x_3 - x_4 = -11,
\]
\[
E_4 : \quad 3x_2 - x_3 + 8x_4 = 15
\]

which has the unique solution $x = [1, 2, -1, 1]^T$.

Solving equation E_i for x_i, for $i = 1, 2, 3, 4$, we obtain

\[
x_1 = \frac{1}{10}x_2 - \frac{1}{5}x_3 + \frac{3}{5},
\]
\[
x_2 = \frac{1}{11}x_1 + \frac{1}{11}x_3 - \frac{3}{11}x_4 + \frac{25}{11},
\]
\[
x_3 = -\frac{1}{5}x_1 + \frac{1}{10}x_2 + \frac{1}{10}x_4 - \frac{11}{10},
\]
\[
x_4 = -\frac{3}{8}x_2 + \frac{1}{8}x_3 + \frac{15}{8}.
\]
Then \(Ax = b \) can be rewritten in the form \(x = Tx + c \) with

\[
T = \begin{bmatrix}
0 & 1/10 & -1/5 & 0 \\
1/11 & 0 & 1/11 & -3/11 \\
-1/5 & 1/10 & 0 & 1/10 \\
0 & -3/8 & 1/8 & 0 \\
\end{bmatrix}
\quad \text{and} \quad
c = \begin{bmatrix}
3/5 \\
25/11 \\
-11/10 \\
15/8 \\
\end{bmatrix}
\]

and the iterative formulation for Jacobi method is

\[
x^{(k)} = Tx^{(k-1)} + c \quad \text{for} \quad k = 1, 2, \ldots.
\]

The numerical results of such iteration is list as follows:
<table>
<thead>
<tr>
<th>k</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1</td>
<td>0.6000</td>
<td>2.2727</td>
<td>-1.1000</td>
<td>1.8750</td>
</tr>
<tr>
<td>2</td>
<td>1.0473</td>
<td>1.7159</td>
<td>-0.8052</td>
<td>0.8852</td>
</tr>
<tr>
<td>3</td>
<td>0.9326</td>
<td>2.0533</td>
<td>-1.0493</td>
<td>1.1309</td>
</tr>
<tr>
<td>4</td>
<td>1.0152</td>
<td>1.9537</td>
<td>-0.9681</td>
<td>0.9738</td>
</tr>
<tr>
<td>5</td>
<td>0.9890</td>
<td>2.0114</td>
<td>-1.0103</td>
<td>1.0214</td>
</tr>
<tr>
<td>6</td>
<td>1.0032</td>
<td>1.9922</td>
<td>-0.9945</td>
<td>0.9944</td>
</tr>
<tr>
<td>7</td>
<td>0.9981</td>
<td>2.0023</td>
<td>-1.0020</td>
<td>1.0036</td>
</tr>
<tr>
<td>8</td>
<td>1.0006</td>
<td>1.9987</td>
<td>-0.9990</td>
<td>0.9989</td>
</tr>
<tr>
<td>9</td>
<td>0.9997</td>
<td>2.0004</td>
<td>-1.0004</td>
<td>1.0006</td>
</tr>
<tr>
<td>10</td>
<td>1.0001</td>
<td>1.9998</td>
<td>-0.9998</td>
<td>0.9998</td>
</tr>
</tbody>
</table>
Matlab code of Example

clear all; delete rslt.dat; diary rslt.dat; diary on;
n = 4; xold = zeros(n,1); xnew = zeros(n,1); T = zeros(n,n);
T(1,2) = 1/10; T(1,3) = -1/5; T(2,1) = 1/11;
T(2,3) = 1/11; T(2,4) = -3/11; T(3,1) = -1/5;
T(3,2) = 1/10; T(3,4) = 1/10; T(4,2) = -3/8; T(4,3) = 1/8;
c(1,1) = 3/5; c(2,1) = 25/11; c(3,1) = -11/10; c(4,1) = 15/8;
xnew = T * xold + c; k = 0;
fprintf(' k x1 x2 x3 x4
');
while (k <= 100 & norm(xnew-xold) > 1.0d-14)
 xold = xnew; xnew = T * xold + c; k = k + 1;
 fprintf('%3.0f ',k);
 for jj = 1:n
 fprintf('%5.4f ',xold(jj));
 end
 fprintf('
');
end
Gauss-Seidel Method

When computing $x_i^{(k)}$ for $i > 1$, $x_1^{(k)}$, \ldots, $x_{i-1}^{(k)}$ have already been computed and are likely to be better approximations to the exact $x_1^{(k-1)}$, \ldots, $x_{i-1}^{(k-1)}$. It seems reasonable to compute $x_i^{(k)}$ using these most recently computed values. That is

\[
\begin{align*}
\begin{aligned}
 a_{11}x_1^{(k)} + a_{12}x_2^{(k-1)} + a_{13}x_3^{(k-1)} + \cdots + a_{1n}x_n^{(k-1)} &= b_1 \\
 a_{21}x_1^{(k)} + a_{22}x_2^{(k)} + a_{23}x_3^{(k-1)} + \cdots + a_{2n}x_n^{(k-1)} &= b_2 \\
 a_{31}x_1^{(k)} + a_{32}x_2^{(k)} + a_{33}x_3^{(k)} + \cdots + a_{3n}x_n^{(k-1)} &= b_3 \\
 \vdots \\
 a_{n1}x_1^{(k-1)} + a_{n2}x_2^{(k-1)} + a_{n3}x_3^{(k-1)} + \cdots + a_{nn}x_n^{(k)} &= b_n.
\end{aligned}
\end{align*}
\]

This improvement induce the Gauss-Seidel method. The Gauss-Seidel method sets $M = D + L$ and defines the iteration as

\[
x^{(k)} = -(D + L)^{-1}Ux^{(k-1)} + (D + L)^{-1}b.
\]
That is, Gauss-Seidel method uses $TG = -(D + L)^{-1}U$ as the iteration matrix. The formulation above can be rewritten as

$$x^{(k)} = -D^{-1} \left(Lx^{(k)} + Ux^{(k-1)} - b \right).$$

Hence each component $x_i^{(k)}$ can be computed by

$$x_i^{(k)} = \left(b_i - \sum_{j=1}^{i-1} a_{ij}x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij}x_j^{(k-1)} \right) / a_{ii}.$$

- For Jacobi method, only the components of $x^{(k-1)}$ are used to compute $x^{(k)}$. Hence $x_i^{(k)}$, $i = 1, \ldots, n$, can be computed in parallel at each iteration k.

- At each iteration of Gauss-Seidel method, since $x_i^{(k)}$ cannot be computed until $x_1^{(k)}, \ldots, x_{i-1}^{(k)}$ are available, the method is not a parallel algorithm in nature.
Algorithm 2 (Gauss-Seidel Method)

Given $x^{(0)}$, tolerance TOL, maximum number of iteration M.
Set $k = 1$.
For $i = 1, 2, \ldots, n$

$$x_i = \left(b_i - \sum_{j=1}^{i-1} a_{ij}x_j - \sum_{j=i+1}^{n} a_{ij}x_j^{(0)} \right) / a_{ii}$$
End For
While $k \leq M$ and $\|x - x^{(0)}\|_2 \geq TOL$
Set $k = k + 1$, $x^{(0)} = x$.
For $i = 1, 2, \ldots, n$

$$x_i = \left(b_i - \sum_{j=1}^{i-1} a_{ij}x_j - \sum_{j=i+1}^{n} a_{ij}x_j^{(0)} \right) / a_{ii}$$
End For
End While
Example 19

Consider the linear system $Ax = b$ given by

- $E_1 : \quad 10x_1 - x_2 + 2x_3 = 6$,
- $E_2 : \quad -x_1 + 11x_2 - x_3 + 3x_4 = 25$,
- $E_3 : \quad 2x_1 - x_2 + 10x_3 - x_4 = -11$,
- $E_4 : \quad 3x_2 - x_3 + 8x_4 = 15$

which has the unique solution $x = [1, 2, -1, 1]^T$.

Gauss-Seidel method gives the equation

\[
\begin{align*}
x^{(k)}_1 &= x^{(k)}_2 - \frac{1}{10} x^{(k-1)}_2 - \frac{1}{5} x^{(k-1)}_3 + \frac{3}{5}, \\
x^{(k)}_2 &= \frac{1}{11} x^{(k)}_1 + \frac{1}{11} x^{(k-1)}_3 - \frac{3}{11} x^{(k-1)}_4 + \frac{25}{11}, \\
x^{(k)}_3 &= -\frac{1}{5} x^{(k)}_1 + \frac{1}{10} x^{(k)}_2 + \frac{3}{10} x^{(k)}_4, \\
x^{(k)}_4 &= -\frac{3}{8} x^{(k)}_2 + \frac{1}{8} x^{(k)}_3 + \frac{15}{8}.
\end{align*}
\]
The numerical results of such iteration is list as follows:

<table>
<thead>
<tr>
<th>k</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1</td>
<td>0.6000</td>
<td>2.3273</td>
<td>-0.9873</td>
<td>0.8789</td>
</tr>
<tr>
<td>2</td>
<td>1.0302</td>
<td>2.0369</td>
<td>-1.0145</td>
<td>0.9843</td>
</tr>
<tr>
<td>3</td>
<td>1.0066</td>
<td>2.0036</td>
<td>-1.0025</td>
<td>0.9984</td>
</tr>
<tr>
<td>4</td>
<td>1.0009</td>
<td>2.0003</td>
<td>-1.0003</td>
<td>0.9998</td>
</tr>
<tr>
<td>5</td>
<td>1.0001</td>
<td>2.0000</td>
<td>-1.0000</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

- The results of Example appear to imply that the Gauss-Seidel method is superior to the Jacobi method.
- This is almost always true, but there are linear systems for which the Jacobi method converges and the Gauss-Seidel method does not.
- See Exercises 17 and 18.
Matlab code of Example

clear all; delete rslt.dat; diary rslt.dat; diary on;
n = 4; xold = zeros(n,1); xnew = zeros(n,1); A = zeros(n,n);
A(1,1)=10; A(1,2)=-1; A(1,3)=2; A(2,1)=-1; A(2,2)=11; A(2,3)=-1; A(2,4)=3; A(3,1)=2; A(3,2)=-1;
A(3,3)=10; A(3,4)=-1; A(4,2)=3; A(4,3)=-1; A(4,4)=8; b(1)=6; b(2)=25; b(3)=-11; b(4)=15;
for ii = 1:n
 xnew(ii) = b(ii);
 for jj = 1:ii-1
 xnew(ii) = xnew(ii) - A(ii,jj) * xnew(jj);
 end
 for jj = ii+1:n
 xnew(ii) = xnew(ii) - A(ii,jj) * xold(jj);
 end
 xnew(ii) = xnew(ii) / A(ii,ii);
end
k = 0; fprintf(' k x1 x2 x3 x4
');
while (k <= 100 & norm(xnew-xold) > 1.0d-14)
xold = xnew; k = k + 1;
for ii = 1:n
 xnew(ii) = b(ii);
 for jj = 1:ii-1
 xnew(ii) = xnew(ii) - A(ii,jj) * xnew(jj);
 end
 for jj = ii+1:n
 xnew(ii) = xnew(ii) - A(ii,jj) * xold(jj);
 end
 xnew(ii) = xnew(ii) / A(ii,ii);
end
fprintf('%3.0f ',k);
for jj = 1:n
 fprintf('%5.4f ',xold(jj));
end
fprintf('n');
diary off
Lemma 20 (20)

If $\rho(T) < 1$, then $(I - T)^{-1}$ exists and

$$(I - T)^{-1} = \sum_{i=0}^{\infty} T^i = I + T + T^2 + \cdots.$$

Proof: Let λ be an eigenvalue of T, then $1 - \lambda$ is an eigenvalue of $I - T$. But $|\lambda| \leq \rho(A) < 1$, so $1 - \lambda \neq 0$ and 0 is not an eigenvalue of $I - T$, which means $(I - T)$ is nonsingular. Next we show that $(I - T)^{-1} = I + T + T^2 + \cdots$. Since

$$(I - T) \left(\sum_{i=0}^{m} T^i \right) = I - T^{m+1},$$

and $\rho(T) < 1$ implies $\|T^m\| \to 0$ as $m \to \infty$, we have

$$(I - T) \left(\lim_{m \to \infty} \sum_{i=0}^{m} T^i \right) = (I - T) \left(\sum_{i=0}^{\infty} T^i \right) = I.$$
Theorem 21

For any \(x^{(0)} \in \mathbb{R}^n \), the sequence produced by

\[
x^{(k)} = Tx^{(k-1)} + c, \quad k = 1, 2, \ldots,
\]

converges to the unique solution of \(x = Tx + c \) if and only if

\[
\rho(T) < 1.
\]

Proof: Suppose \(\rho(T) < 1 \). The sequence of vectors \(x^{(k)} \) produced by the iterative formulation are

\[
\begin{align*}
x^{(1)} &= Tx^{(0)} + c \\
x^{(2)} &= Tx^{(1)} + c = T^2x^{(0)} + (T + I)c \\
x^{(3)} &= Tx^{(2)} + c = T^3x^{(0)} + (T^2 + T + I)c \\
& \vdots
\end{align*}
\]

In general

\[
x^{(k)} = T^k x^{(0)} + (T^{k-1} + T^{k-2} + \cdots + T + I)c.
\]
Since $\rho(T) < 1$, $\lim_{k \to \infty} T^k x^{(0)} = 0$ for any $x^{(0)} \in \mathbb{R}^n$. By Lemma 20,

$$(T^{k-1} + T^{k-2} + \cdots T + I)c \to (I - T)^{-1}c, \quad \text{as} \quad k \to \infty.$$

Therefore

$$\lim_{k \to \infty} x^{(k)} = \lim_{k \to \infty} T^k x^{(0)} + \left(\sum_{j=0}^{\infty} T^j \right) c = (I - T)^{-1} c.$$

Conversely, suppose $\{x^{(k)}\} \to x = (I - T)^{-1} c$. Since

$$x - x^{(k)} = T x + c - T x^{(k-1)} - c = T (x - x^{(k-1)}) = T^2 (x - x^{(k-2)}) = \cdots = T^k (x - x^{(0)}).$$

Let $z = x - x^{(0)}$. Then

$$\lim_{k \to \infty} T^k z = \lim_{k \to \infty} (x - x^{(k)}) = 0.$$

It follows from theorem $\rho(T) < 1$.
Theorem 22

If $\|T\| < 1$, then the sequence $x^{(k)}$ converges to x for any initial $x^{(0)}$ and

1. $\|x - x^{(k)}\| \leq \|T\|^k \|x - x^{(0)}\|

2. $\|x - x^{(k)}\| \leq \frac{\|T\|^k}{1 - \|T\|} \|x^{(1)} - x^{(0)}\|.$

Proof: Since $x =Tx + c$ and $x^{(k)} = Tx^{(k-1)} + c,$

$$x - x^{(k)} = Tx + c - T x^{(k-1)} - c = T(x - x^{(k-1)}) = T^2(x - x^{(k-2)}) = \cdots \cdots = T^k(x - x^{(0)}).$$

The first statement can then be derived

$$\|x - x^{(k)}\| = \|T^k(x - x^{(0)})\| \leq \|T\|^k \|x - x^{(0)}\|.$$

For the second result, we first show that

$$\|x^{(n)} - x^{(n-1)}\| \leq \|T\|^{n-1} \|x^{(1)} - x^{(0)}\| \quad \text{for any} \quad n \geq 1.$$
Since

\[x^{(n)} - x^{(n-1)} = T x^{(n-1)} + c - T x^{(n-2)} - c \]
\[= T (x^{(n-1)} - x^{(n-2)}) \]
\[= T^2 (x^{(n-2)} - x^{(n-3)}) = \ldots \ldots = T^{n-1} (x^{(1)} - x^{(0)}) , \]

we have

\[\| x^{(n)} - x^{(n-1)} \| \leq \| T \|^n \| x^{(1)} - x^{(0)} \| . \]

Let \(m \geq k \),

\[x^{(m)} - x^{(k)} \]
\[= \left(x^{(m)} - x^{(m-1)} \right) + \left(x^{(m-1)} - x^{(m-2)} \right) + \ldots + \left(x^{(k+1)} - x^{(k)} \right) \]
\[= T^{m-1} (x^{(1)} - x^{(0)}) + T^{m-2} (x^{(1)} - x^{(0)}) + \ldots + T^k (x^{(1)} - x^{(0)}) \]
\[= \left(T^{m-1} + T^{m-2} + \ldots T^k \right) (x^{(1)} - x^{(0)}) , \]
hence
\[\|x^{(m)} - x^{(k)}\| \]
\[\leq \left(\|T\|^{m-1} + \|T\|^{m-2} + \cdots + \|T\|^k \right) \|x^{(1)} - x^{(0)}\| \]
\[= \|T\|^k \left(\|T\|^{m-k-1} + \|T\|^{m-k-2} + \cdots + 1 \right) \|x^{(1)} - x^{(0)}\|. \]

Since \(\lim_{m \to \infty} x^{(m)} = x \),
\[\|x - x^{(k)}\| \]
\[= \lim_{m \to \infty} \|x^{(m)} - x^{(k)}\| \]
\[\leq \lim_{m \to \infty} \|T\|^k \left(\|T\|^{m-k-1} + \|T\|^{m-k-2} + \cdots + 1 \right) \|x^{(1)} - x^{(0)}\| \]
\[= \|T\|^k \|x^{(1)} - x^{(0)}\| \lim_{m \to \infty} \left(\|T\|^{m-k-1} + \|T\|^{m-k-2} + \cdots + 1 \right) \]
\[= \|T\|^k \frac{1}{1 - \|T\|} \|x^{(1)} - x^{(0)}\|. \]

This proves the second result.
Theorem 23

If A is strictly diagonal dominant, then both the Jacobi and Gauss-Seidel methods converges for any initial vector $x^{(0)}$.

Proof: By assumption, A is strictly diagonal dominant, hence $a_{ii} \neq 0$ (otherwise A is singular) and

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|, \quad i = 1, 2, \ldots, n.$$

For Jacobi method, the iteration matrix $T_J = -D^{-1}(L + U)$ has entries

$$[T_J]_{ij} = \begin{cases} -\frac{a_{ij}}{a_{ii}}, & i \neq j, \\ 0, & i = j. \end{cases}$$

Hence

$$\|T_J\|_{\infty} = \max_{1 \leq i \leq n} \sum_{j=1, j \neq i}^{n} \left| \frac{a_{ij}}{a_{ii}} \right| = \max_{1 \leq i \leq n} \frac{1}{|a_{ii}|} \sum_{j=1, j \neq i}^{n} |a_{ij}| < 1,$$

and this implies that the Jacobi method converges.
For Gauss-Seidel method, the iteration matrix

\[T_G = -(D + L)^{-1}U. \]

Let \(\lambda \) be any eigenvalue of \(T_G \) and \(y, \parallel y \parallel_\infty = 1 \), is a corresponding eigenvector. Thus

\[T_G y = \lambda y \quad \implies \quad -U y = \lambda (D + L)y. \]

Hence for \(i = 1, \ldots, n \),

\[
- \sum_{j=i+1}^{n} a_{ij} y_j = \lambda a_{ii} y_i + \lambda \sum_{j=1}^{i-1} a_{ij} y_j.
\]

This gives

\[
\lambda a_{ii} y_i = -\lambda \sum_{j=1}^{i-1} a_{ij} y_j - \sum_{j=i+1}^{n} a_{ij} y_j
\]

and

\[
|\lambda| |a_{ii}| |y_i| \leq |\lambda| \sum_{j=1}^{i-1} |a_{ij}| |y_j| + \sum_{j=i+1}^{n} |a_{ij}| |y_j|.
\]
Choose the index \(k \) such that \(|y_k| = 1 \geq |y_j|\) (this index can always be found since \(\|y\|_{\infty} = 1 \)). Then

\[
|\lambda| |a_{kk}| \leq |\lambda| \sum_{j=1}^{k-1} |a_{kj}| + \sum_{j=k+1}^{n} |a_{kj}|
\]

which gives

\[
|\lambda| \leq \frac{\sum_{j=k+1}^{n} |a_{kj}|}{|a_{kk}| - \sum_{j=1}^{k-1} |a_{kj}|} < \frac{\sum_{j=k+1}^{n} |a_{kj}|}{\sum_{j=k+1}^{n} |a_{kj}|} = 1
\]

Since \(\lambda \) is arbitrary, \(\rho(T_G) < 1 \). This means the Gauss-Seidel method converges.

- The rate of convergence depends on the spectral radius of the matrix associated with the method.
- One way to select a procedure to accelerate convergence is to choose a method whose associated matrix has minimal spectral radius.
Successive over-relaxation (SOR) method

Definition 24

Suppose \(\tilde{x} \in \mathbb{R}^n \) is an approximated solution of \(Ax = b \). The residual vector \(r \) for \(\tilde{x} \) is \(r = b - A\tilde{x} \).

Let the approximate solution \(x^{(k,i)} \) produced by Gauss-Seidel method be defined by

\[
x^{(k,i)} = \begin{bmatrix} x^{(k)}_1, \ldots, x^{(k)}_{i-1}, x^{(k)}_i, \ldots, x^{(k-1)}_n \end{bmatrix}^T
\]

and

\[
r^{(k)}_i = \begin{bmatrix} r^{(k)}_{1i}, r^{(k)}_{2i}, \ldots, r^{(k)}_{ni} \end{bmatrix}^T = b - Ax^{(k,i)}
\]

be the corresponding residual vector. Then the \(m \)th component of \(r^{(k)}_i \) is

\[
r^{(k)}_{mi} = b_m - \sum_{j=1}^{i-1} a_{mj} x^{(k)}_j - \sum_{j=i}^{n} a_{mj} x^{(k-1)}_j,
\]
or, equivalently,

\[r_{mi}^{(k)} = b_m - \sum_{j=1}^{i-1} a_{mj} x_j^{(k)} - \sum_{j=i+1}^{n} a_{mj} x_j^{(k-1)} - a_{mi} x_i^{(k-1)}, \]

for each \(m = 1, 2, \ldots, n \).

In particular, the \(i \)th component of \(r_i^{(k)} \) is

\[r_{ii}^{(k)} = b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)} - a_{ii} x_i^{(k-1)}, \]

so

\[a_{ii} x_i^{(k-1)} + r_{ii}^{(k)} = b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)} \]

\[= a_{ii} x_i^{(k)}. \]
Consequently, the Gauss-Seidel method can be characterized as choosing $x_i^{(k)}$ to satisfy

$$x_i^{(k)} = x_i^{(k-1)} + \frac{r_{ii}^{(k)}}{a_{ii}}.$$

Relaxation method is modified the Gauss-Seidel procedure to

$$x_i^{(k)} = x_i^{(k-1)} + \omega \frac{r_{ii}^{(k)}}{a_{ii}}$$

$$= x_i^{(k-1)} + \frac{\omega}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)} - a_{ii} x_i^{(k-1)} \right]$$

$$= (1 - \omega) x_i^{(k-1)} + \frac{\omega}{a_{ii}} \left[b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k-1)} \right]$$

(1)

for certain choices of positive ω such that the norm of the residual vector is reduced and the convergence is significantly faster.
These methods are called for
\[\omega < 1: \text{ under relaxation,} \]
\[\omega = 1: \text{ Gauss-Seidel method,} \]
\[\omega > 1: \text{ over relaxation.} \]

Over-relaxation methods are called SOR (Successive over-relaxation). To determine the matrix of the SOR method, we rewrite (1) as

\[a_{ii}x_i^{(k)} + \omega \sum_{j=1}^{i-1} a_{ij}x_j^{(k)} = (1 - \omega)a_{ii}x_i^{(k-1)} - \omega \sum_{j=i+1}^{n} a_{ij}x_j^{(k-1)} + \omega b_i, \]

so that if \(A = L + D + U \), then we have

\[(D + \omega L)x^{(k)} = [(1 - \omega)D - \omega U]x^{(k-1)} + \omega b \]

or

\[x^{(k)} = (D + \omega L)^{-1} [(1 - \omega)D - \omega U]x^{(k-1)} + \omega (D + \omega L)^{-1}b \]

\[\equiv T_\omega x^{(k-1)} + c_\omega. \]
Example 25

The linear system $Ax = b$ given by

\begin{align*}
4x_1 + 3x_2 &= 24, \\
3x_1 + 4x_2 - x_3 &= 30, \\
-x_2 + 4x_3 &= -24,
\end{align*}

has the solution $[3, 4, -5]^T$.

- Numerical results of Gauss-Seidel method with $x^{(0)} = [1, 1, 1]^T$:

<table>
<thead>
<tr>
<th>k</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0000000</td>
</tr>
<tr>
<td>1</td>
<td>5.2500000</td>
<td>3.8125000</td>
<td>-5.0468750</td>
</tr>
<tr>
<td>2</td>
<td>3.1406250</td>
<td>3.8828125</td>
<td>-5.0292969</td>
</tr>
<tr>
<td>3</td>
<td>3.0878906</td>
<td>3.9267578</td>
<td>-5.0183105</td>
</tr>
<tr>
<td>4</td>
<td>3.0549316</td>
<td>3.9542236</td>
<td>-5.0114441</td>
</tr>
<tr>
<td>5</td>
<td>3.0343323</td>
<td>3.9713898</td>
<td>-5.0071526</td>
</tr>
<tr>
<td>6</td>
<td>3.0214577</td>
<td>3.9821186</td>
<td>-5.0044703</td>
</tr>
<tr>
<td>7</td>
<td>3.0134110</td>
<td>3.9888241</td>
<td>-5.0027940</td>
</tr>
</tbody>
</table>
Numerical results of SOR method with $\omega = 1.25$ and $x^{(0)} = [1, 1, 1]^T$:

<table>
<thead>
<tr>
<th>k</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0000000</td>
</tr>
<tr>
<td>1</td>
<td>6.3125000</td>
<td>3.5195313</td>
<td>-6.6501465</td>
</tr>
<tr>
<td>2</td>
<td>2.6223145</td>
<td>3.9585266</td>
<td>-4.6004238</td>
</tr>
<tr>
<td>3</td>
<td>3.1333027</td>
<td>4.0102646</td>
<td>-5.0966863</td>
</tr>
<tr>
<td>4</td>
<td>2.9570512</td>
<td>4.0074838</td>
<td>-4.9734897</td>
</tr>
<tr>
<td>5</td>
<td>3.0037211</td>
<td>4.0029250</td>
<td>-5.0057135</td>
</tr>
<tr>
<td>6</td>
<td>2.9963276</td>
<td>4.0009262</td>
<td>-4.9982822</td>
</tr>
<tr>
<td>7</td>
<td>3.0000498</td>
<td>4.0002586</td>
<td>-5.0003486</td>
</tr>
</tbody>
</table>
Numerical results of SOR method with $\omega = 1.6$ and $x^{(0)} = [1, 1, 1]^T$:

<table>
<thead>
<tr>
<th>k</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0000000</td>
<td>1.0000000</td>
<td>1.0000000</td>
</tr>
<tr>
<td>1</td>
<td>7.8000000</td>
<td>2.4400000</td>
<td>-9.2240000</td>
</tr>
<tr>
<td>2</td>
<td>1.9920000</td>
<td>4.4560000</td>
<td>-2.2832000</td>
</tr>
<tr>
<td>3</td>
<td>3.0576000</td>
<td>4.7440000</td>
<td>-6.3324800</td>
</tr>
<tr>
<td>4</td>
<td>2.0726400</td>
<td>4.1334400</td>
<td>-4.1471360</td>
</tr>
<tr>
<td>5</td>
<td>3.3962880</td>
<td>3.7855360</td>
<td>-5.5975040</td>
</tr>
<tr>
<td>6</td>
<td>3.0195840</td>
<td>3.8661760</td>
<td>-4.6950272</td>
</tr>
<tr>
<td>7</td>
<td>3.1488384</td>
<td>4.0236774</td>
<td>-5.1735127</td>
</tr>
</tbody>
</table>
Matlab code of SOR

clear all; delete rslt.dat; diary rslt.dat; diary on;
n = 3; xold = zeros(n,1); xnew = zeros(n,1); A = zeros(n,n); DL = zeros(n,n); DU = zeros(n,n);
A(1,1)=4; A(1,2)=3; A(2,1)=3; A(2,2)=4; A(2,3)=-1; A(3,2)=-1; A(3,3)=4;
b(1,1)=24; b(2,1)=30; b(3,1)=-24; omega=1.25;

for ii = 1:n
 DL(ii,ii) = A(ii,ii);
 for jj = 1:ii-1
 DL(ii,jj) = omega * A(ii,jj);
 end
 DU(ii,ii) = (1-omega)*A(ii,ii);
 for jj = ii+1:n
 DU(ii,jj) = -omega * A(ii,jj);
 end
end

c = omega * (DL \ b); xnew = DL \ (DU * xold) + c;
k = 0; fprintf(' k x1 x2 x3
');
while (k <= 100 & norm(xnew-xold) > 1.0d-14)
 xold = xnew; k = k + 1; xnew = DL \ (DU * xold) + c;
 fprintf('%3.0f ',k);
 for jj = 1:n
 fprintf('%5.4f ',xold(jj));
 end
 fprintf('
');
end

diary off
Theorem 26 (Kahan)

If \(a_{ii} \neq 0 \), for each \(i = 1, 2, \ldots, n \), then \(\rho(T_\omega) \geq |\omega - 1| \). This implies that the SOR method can converge only if \(0 < \omega < 2 \).

Theorem 27 (Ostrowski-Reich)

If \(A \) is positive definite and the relaxation parameter \(\omega \) satisfying \(0 < \omega < 2 \), then the SOR iteration converges for any initial vector \(x^{(0)} \).

Theorem 28

If \(A \) is positive definite and tridiagonal, then \(\rho(T_G) = [\rho(T_J)]^2 < 1 \) and the optimal choice of \(\omega \) for the SOR iteration is

\[
\omega = \frac{2}{1 + \sqrt{1 - [\rho(T_J)]^2}}.
\]

With this choice of \(\omega \), \(\rho(T_\omega) = \omega - 1 \).
Example 29

The matrix

\[
A = \begin{bmatrix}
4 & 3 & 0 \\
3 & 4 & -1 \\
0 & -1 & 4 \\
\end{bmatrix},
\]

given in previous example, is positive definite and tridiagonal.

Since

\[
T_J = -D^{-1}(L + U) = \begin{bmatrix}
\frac{1}{4} & 0 & 0 \\
0 & \frac{1}{4} & 0 \\
0 & 0 & \frac{1}{4} \\
\end{bmatrix} \begin{bmatrix}
0 & -3 & 0 \\
-3 & 0 & 1 \\
0 & 1 & 0 \\
\end{bmatrix}
\]

\[
= \begin{bmatrix}
0 & -0.75 & 0 \\
-0.75 & 0 & 0.25 \\
0 & 0.25 & 0 \\
\end{bmatrix},
\]
we have

\[T_J - \lambda I = \begin{bmatrix} -\lambda & -0.75 & 0 \\ -0.75 & -\lambda & 0.25 \\ 0 & 0.25 & -\lambda \end{bmatrix}, \]

so

\[\det(T_J - \lambda I) = -\lambda(\lambda^2 - 0.625). \]

Thus,

\[\rho(T_J) = \sqrt{0.625} \]

and

\[\omega = \frac{2}{1 + \sqrt{1 - [\rho(T_J)]^2}} = \frac{2}{1 + \sqrt{1 - 0.625}} \approx 1.24. \]

This explains the rapid convergence obtained in previous example when using \(\omega = 0.125 \).
Symmetric Successive Over Relaxation (SSOR) Method

Let A be symmetric and $A = D + L + L^T$. The idea is in fact to implement the SOR formulation twice, one forward and one backward, at each iteration. That is, SSOR method defines

$$\begin{align*}
(D + \omega L)x^{(k-\frac{1}{2})} &= [(1 - \omega)D - \omega L^T]x^{(k-1)} + \omega b, \
(D + \omega L^T)x^{(k)} &= [(1 - \omega)D - \omega L]x^{(k-\frac{1}{2})} + \omega b.
\end{align*}$$

Define

$$\begin{align*}
M_\omega &:= D + \omega L, \\
N_\omega &:= (1 - \omega)D - \omega L^T.
\end{align*}$$

Then from the iterations (2) and (3), it follows that

$$\begin{align*}
x^{(k)} &= (M_\omega^{-T}N_\omega^TN_\omega^{-1}N_\omega)x^{(k-1)} + \omega (M_\omega^{-T}N_\omega^T M_\omega^{-1} + M_\omega^{-T})b, \\
&\equiv T(\omega)x^{(k-1)} + M(\omega)^{-1}b.
\end{align*}$$
But

\[
((1 - \omega)D - \omega L) (D + \omega L)^{-1} + I
= (-\omega L - D - \omega D + 2D)(D + \omega L)^{-1} + I
= -I + (2 - \omega)D(D + \omega L)^{-1} + I
= (2 - \omega)D(D + \omega L)^{-1}.
\]

Thus

\[
M(\omega)^{-1} = \omega \left(D + \omega L^T \right)^{-1} (2 - \omega)D(D + \omega L)^{-1},
\]

then the splitting matrix is

\[
M(\omega) = \frac{1}{\omega(2 - \omega)}(D + \omega L)D^{-1} \left(D + \omega L^T \right).
\]

The iteration matrix is

\[
T(\omega) = (D + \omega L^T)^{-1} \left[(1 - \omega)D - \omega L \right] (D + \omega L)^{-1} \left[(1 - \omega)D - \omega L^T \right].
\]
Error bounds and iterative refinement

Example 30

The linear system $Ax = b$ given by

$$
\begin{bmatrix}
1 & 2 \\
1.0001 & 2
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} =
\begin{bmatrix}
3 \\
3.0001
\end{bmatrix}
$$

has the unique solution $x = [1, 1]^T$.

The poor approximation $\tilde{x} = [3, 0]^T$ has the residual vector

$$
r = b - A\tilde{x} =
\begin{bmatrix}
3 \\
3.0001
\end{bmatrix} -
\begin{bmatrix}
1 & 2 \\
1.0001 & 2
\end{bmatrix}
\begin{bmatrix}
3 \\
0
\end{bmatrix} =
\begin{bmatrix}
0 \\
-0.0002
\end{bmatrix},
$$

so $\|r\|_\infty = 0.0002$. Although the norm of the residual vector is small, the approximation $\tilde{x} = [3, 0]^T$ is obviously quite poor; in fact, $\|x - \tilde{x}\|_\infty = 2$.
The solution of above example represents the intersection of the lines

\[\ell_1 : x_1 + 2x_2 = 3 \quad \text{and} \quad \ell_2 : 1.0001x_1 + 2x_2 = 3.0001. \]

\(\ell_1 \) and \(\ell_2 \) are nearly parallel. The point \((3, 0)\) lies on \(\ell_1 \) which implies that \((3, 0)\) also lies close to \(\ell_2 \), even though it differs significantly from the intersection point \((1, 1)\).
Theorem 31

Suppose that \tilde{x} is an approximate solution of $Ax = b$, A is nonsingular matrix and $r = b - A\tilde{x}$. Then

$$\|x - \tilde{x}\| \leq \|r\| \cdot \|A^{-1}\|$$

and if $x \neq 0$ and $b \neq 0$,

$$\frac{\|x - \tilde{x}\|}{\|x\|} \leq \|A\| \cdot \|A^{-1}\| \frac{\|r\|}{\|b\|}.$$

Proof: Since

$$r = b - A\tilde{x} = Ax - A\tilde{x} = A(x - \tilde{x})$$

and A is nonsingular, we have

$$\|x - \tilde{x}\| = \|A^{-1}r\| \leq \|A^{-1}\| \cdot \|r\|. \quad (4)$$

Moreover, since $b = Ax$, we have

$$\|b\| \leq \|A\| \cdot \|x\|. $$
It implies that

\[\frac{1}{\|x\|} \leq \frac{\|A\|}{\|b\|}. \quad (5) \]

Combining Equations (4) and (5), we have

\[\frac{\|x - \tilde{x}\|}{\|x\|} \leq \frac{\|A\| \cdot \|A^{-1}\|}{\|b\|} \|r\|. \]

Definition 32 (Condition number)

The condition number of nonsingular matrix \(A \) is

\[\kappa(A) = \|A\| \cdot \|A^{-1}\|. \]

For any nonsingular matrix \(A \),

\[1 = \|I\| = \|A \cdot A^{-1}\| \leq \|A\| \cdot \|A^{-1}\| = \kappa(A). \]
Definition 33

A matrix A is **well-conditioned** if $\kappa(A)$ is close to 1, and is **ill-conditioned** when $\kappa(A)$ is significantly greater than 1.

In previous example,

$$A = \begin{bmatrix} 1 & 2 \\ 1.0001 & 2 \end{bmatrix}.$$

Since

$$A^{-1} = \begin{bmatrix} -10000 & 10000 \\ 5000.5 & -5000 \end{bmatrix},$$

we have

$$\kappa(A) = \| A \|_\infty \cdot \| A^{-1} \|_\infty = 3.0001 \times 20000 = 60002 \gg 1.$$
How to estimate the effective condition number in t-digit arithmetic without having to invert the matrix A?

- If the approximate solution \tilde{x} of $Ax = b$ is being determined using t-digit arithmetic and Gaussian elimination, then

$$\|r\| = \|b - A\tilde{x}\| \approx 10^{-t}\|A\| \cdot \|\tilde{x}\|.$$

- All the arithmetic operations in Gaussian elimination technique are performed using t-digit arithmetic, but the residual vector r are done in double-precision (i.e., $2t$-digit) arithmetic.

- Use the Gaussian elimination method which has already been calculated to solve

$$Ay = r.$$

Let \tilde{y} be the approximate solution.
Then
\[\tilde{y} \approx A^{-1}r = A^{-1}(b - A\tilde{x}) = x - \tilde{x} \]
and
\[x \approx \tilde{x} + \tilde{y}. \]

Moreover,
\[
\|\tilde{y}\| \approx \|x - \tilde{x}\| = \|A^{-1}r\| \\
\leq \|A^{-1}\| \cdot \|r\| \approx \|A^{-1}\|(10^{-t}\|A\| \cdot \|\tilde{x}\|) = 10^{-t}\|\tilde{x}\|\kappa(A). \\
\]

It implies that
\[\kappa(A) \approx \frac{\|\tilde{y}\|}{\|\tilde{x}\|} 10^t. \]

Iterative refinement

In general, \(\tilde{x} + \tilde{y} \) is a more accurate approximation to the solution of \(Ax = b \) than \(\tilde{x} \).
Algorithm 3 (Iterative refinement)

Given tolerance TOL, maximum number of iteration M, number of digits of precision t.

Solve $Ax = b$ by using Gaussian elimination in t-digit arithmetic.

Set $k = 1$

while ($k \leq M$)

 Compute $r = b - Ax$ in $2t$-digit arithmetic.

 Solve $Ay = r$ by using Gaussian elimination in t-digit arithmetic.

 If $\|y\|_\infty < TOL$, then stop.

 Set $k = k + 1$ and $x = x + y$.

End while
Example 34

The linear system given by

\[
\begin{bmatrix}
3.3330 & 15920 & -10.333 \\
2.2220 & 16.710 & 9.6120 \\
1.5611 & 5.1791 & 1.6852
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
15913 \\
28.544 \\
8.4254
\end{bmatrix}
\]

has the exact solution \(x = [1, 1, 1]^T \).

Using Gaussian elimination and five-digit rounding arithmetic leads successively to the augmented matrices

\[
\begin{bmatrix}
3.3330 & 15920 & -10.333 & 15913 \\
0 & -10596 & 16.501 & -10580 \\
0 & -7451.4 & 6.5250 & -7444.9
\end{bmatrix}
\]

and

\[
\begin{bmatrix}
3.3330 & 15920 & -10.333 & 15913 \\
0 & -10596 & 16.501 & -10580 \\
0 & 0 & -5.0790 & -4.7000
\end{bmatrix}
\]
The approximate solution is

\[\tilde{x}^{(1)} = [1.2001, 0.99991, 0.92538]^T. \]

The residual vector corresponding to \(\tilde{x} \) is computed in double precision to be

\[
\begin{align*}
r^{(1)} & = b - A\tilde{x}^{(1)} \\
& = \begin{bmatrix}
15913 \\
28.544 \\
8.4254
\end{bmatrix} - \begin{bmatrix}
3.3330 & 15920 & -10.333 \\
2.2220 & 16.710 & 9.6120 \\
1.5611 & 5.1791 & 1.6852
\end{bmatrix} \begin{bmatrix}
1.2001 \\
0.99991 \\
0.92538
\end{bmatrix} \\
& = \begin{bmatrix}
15913 \\
28.544 \\
8.4254
\end{bmatrix} - \begin{bmatrix}
15913.00518 \\
28.26987086 \\
8.611560367
\end{bmatrix} \\
& = \begin{bmatrix}
-0.00518 \\
0.27412914 \\
-0.186160367
\end{bmatrix}.
\end{align*}
\]

Hence the solution of \(Ay = r^{(1)} \) to be

\[\tilde{y}^{(1)} = [-0.20008, 8.9987 \times 10^{-5}, 0.074607]^T \]

and the new approximate solution \(x^{(2)} \) is

\[x^{(2)} = x^{(1)} + \tilde{y}^{(1)} = [1.0000, 1.0000, 0.99999]^T. \]
Using the suggested stopping technique for the algorithm, we compute $r^{(2)} = b - A\tilde{x}^{(2)}$ and solve the system $Ay^{(2)} = r^{(2)}$, which gives

$$\tilde{y}^{(2)} = [1.5002 \times 10^{-9}, 2.0951 \times 10^{-10}, 1.0000 \times 10^{-5}]^T.$$

Since

$$\|\tilde{y}^{(2)}\|_\infty \leq 10^{-5},$$

we conclude that

$$\tilde{x}^{(3)} = \tilde{x}^{(2)} + \tilde{y}^{(2)} = [1.0000, 1.0000, 1.0000]^T$$

is sufficiently accurate.

In the linear system

$$Ax = b,$$

A and b can be represented exactly. Realistically, the matrix A and vector b will be perturbed by δA and δb, respectively, causing the linear system

$$(A + \delta A)x = b + \delta b$$

to be solved in place of $Ax = b$.
Theorem 35
Suppose A is nonsingular and
\[\| \delta A \| < \frac{1}{\| A^{-1} \|} . \]
Then the solution \tilde{x} of $(A + \delta A)\tilde{x} = b + \delta b$ approximates the solution x of $Ax = b$ with the error estimate
\[\frac{\| x - \tilde{x} \|}{\| x \|} \leq \frac{\kappa(A)}{1 - \kappa(A)(\| \delta A \|/\| A \|)} \left(\frac{\| \delta b \|}{\| b \|} + \frac{\| \delta A \|}{\| A \|} \right) . \]

- If A is well-conditioned, then small changes in A and b produce correspondingly small changes in the solution x.
- If A is ill-conditioned, then small changes in A and b may produce large changes in x.
The conjugate gradient method

Consider the linear systems

\[Ax = b \]

where \(A \) is large sparse and symmetric positive definite. Define the inner product notation

\[\langle x, y \rangle = x^T y \text{ for any } x, y \in \mathbb{R}^n. \]

Theorem 36

Let \(A \) be symmetric positive definite. Then \(x^* \) is the solution of \(Ax = b \) if and only if \(x^* \) minimizes

\[g(x) = \langle x, Ax \rangle - 2 \langle x, b \rangle. \]
Proof:

(“⇒”) Rewrite $g(x)$ as

\[
g(x) = \langle x - x^*, A(x - x^*) \rangle + \langle x, Ax^* \rangle + \langle x^*, Ax \rangle \\
- \langle x^*, Ax^* \rangle - 2 \langle x, b \rangle \\
= \langle x - x^*, A(x - x^*) \rangle - \langle x^*, Ax^* \rangle \\
+ 2 \langle x, Ax^* \rangle - 2 \langle x, b \rangle \\
= \langle x - x^*, A(x - x^*) \rangle - \langle x^*, Ax^* \rangle + 2 \langle x, Ax^* - b \rangle.
\]

Suppose that x^* is the solution of $Ax = b$, i.e., $Ax^* = b$. Then

\[
g(x) = \langle x - x^*, A(x - x^*) \rangle - \langle x^*, Ax^* \rangle
\]

which minimum occurs at $x = x^*$.
("\Leftarrow") Fixed vectors \(x \) and \(v \), for any \(\alpha \in \mathbb{R} \),

\[
f(\alpha) \equiv g(x + \alpha v)
\]

\[
= \langle x + \alpha v, Ax + \alpha Av \rangle - 2 \langle x + \alpha v, b \rangle
\]

\[
= \langle x, Ax \rangle + \alpha \langle v, Ax \rangle + \alpha \langle x, Av \rangle + \alpha^2 \langle v, Av \rangle - 2 \langle x, b \rangle - 2\alpha \langle v, b \rangle
\]

\[
= \langle x, Ax \rangle - 2 \langle x, b \rangle + 2\alpha \langle v, Ax \rangle - 2\alpha \langle v, b \rangle + \alpha^2 \langle v, Av \rangle
\]

\[
= g(x) + 2\alpha \langle v, Ax - b \rangle + \alpha^2 \langle v, Av \rangle.
\]

Because \(f \) is a quadratic function of \(\alpha \) and \(\langle v, Av \rangle \) is positive, \(f \) has a minimal value when \(f'(\alpha) = 0 \). Since

\[
f'(\alpha) = 2 \langle v, Ax - b \rangle + 2\alpha \langle v, Av \rangle,
\]

the minimum occurs at

\[
\hat{\alpha} = -\frac{\langle v, Ax - b \rangle}{\langle v, Av \rangle} = \frac{\langle v, b - Ax \rangle}{\langle v, Av \rangle}.
\]
and

$$g(x + \hat{\alpha}v) = f(\hat{\alpha}) = g(x) - 2 \frac{\langle v, b - Ax \rangle}{\langle v, Av \rangle} \langle v, b - Ax \rangle$$

$$+ \left(\frac{\langle v, b - Ax \rangle}{\langle v, Av \rangle} \right)^2 \langle v, Av \rangle$$

$$= g(x) - \frac{\langle v, b - Ax \rangle^2}{\langle v, Av \rangle}.$$

So, for any nonzero vector v, we have

$$g(x + \hat{\alpha}v) < g(x) \text{ if } \langle v, b - Ax \rangle \neq 0 \quad (6)$$

and

$$g(x + \hat{\alpha}v) = g(x) \text{ if } \langle v, b - Ax \rangle = 0. \quad (7)$$

Suppose that x^* is a vector that minimizes g. Then

$$g(x^* + \hat{\alpha}v) \geq g(x^*) \text{ for any } v. \quad (8)$$
From (6), (7) and (8), we have

\[< v, b - Ax^* > = 0 \quad \text{for any} \quad v, \]

which implies that \(Ax^* = b. \)

Let

\[r = b - Ax. \]

Then

\[\alpha = \frac{< v, b - Ax >}{< v, Av >} = \frac{< v, r >}{< v, Av >}. \]

If \(r \neq 0 \) and if \(v \) and \(r \) are not orthogonal, then

\[g(x + \alpha v) < g(x) \]

which implies that \(x + \alpha v \) is closer to \(x^* \) than is \(x. \)
Let \(x^{(0)} \) be an initial approximation to \(x^* \) and \(v^{(1)} \neq 0 \) be an initial search direction. For \(k = 1, 2, 3, \ldots, \) we compute

\[
\alpha_k = \frac{\langle v^{(k)}, b - Ax^{(k-1)} \rangle}{\langle v^{(k)}, Av^{(k)} \rangle},
\]

\[
x^{(k)} = x^{(k-1)} + \alpha_k v^{(k)}
\]

and choose a new search direction \(v^{(k+1)} \).

Question: How to choose \(\{v^{(k)}\} \) such that \(\{x^{(k)}\} \) converges rapidly to \(x^* \)?

Let \(\Phi : \mathbb{R}^n \to \mathbb{R} \) be a differential function on \(x \). Then it holds

\[
\frac{\Phi(x + \varepsilon p) - \Phi(x)}{\varepsilon} = \nabla \Phi(x)^T p + O(\varepsilon).
\]

The right hand side takes minimum at

\[
p = -\frac{\nabla \Phi(x)}{\|\nabla \Phi(x)\|} \quad \text{(i.e., the largest descent)}
\]

for all \(p \) with \(\|p\| = 1 \) (neglect \(O(\varepsilon) \)).
Denote $x = [x_1, x_2, \ldots, x_n]^T$. Then

$$g(x) = \langle x, Ax \rangle - 2 \langle x, b \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j - 2 \sum_{i=1}^{n} x_i b_i.$$

It follows that

$$\frac{\partial g}{\partial x_k}(x) = 2 \sum_{i=1}^{n} a_{ki} x_i - 2b_k, \text{ for } k = 1, 2, \ldots, n.$$

Therefore, the gradient of g is

$$\nabla g(x) = \left[\frac{\partial g}{\partial x_1}(x), \frac{\partial g}{\partial x_2}(x), \ldots, \frac{\partial g}{\partial x_n}(x) \right]^T = 2(Ax - b) = -2r.$$
Steepest descent method (gradient method)

Given an initial $x_0 \neq 0$.
For $k = 1, 2, \ldots$

$$r_{k-1} = b - Ax_{k-1}$$

If $r_{k-1} = 0$, then stop;
else $\alpha_k = \frac{r_{k-1}^T r_k}{r_{k-1}^T Ar_{k-1}}$, $x_k = x_{k-1} + \alpha_k r_{k-1}$.
End for

Theorem 37

If x_k, x_{k-1} are two approximations of the steepest descent method for solving $Ax = b$ and $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n > 0$ are the eigenvalues of A, then it holds:

$$\|x_k - x^*\|_A \leq \left(\frac{\lambda_1 - \lambda_n}{\lambda_1 + \lambda_n}\right) \|x_{k-1} - x^*\|_A,$$

where $\|x\|_A = \sqrt{x^T Ax}$. Thus the gradient method is convergent.
If the condition number of $A (\lambda_1 / \lambda_n)$ is large, then
\[\frac{\lambda_1 - \lambda_n}{\lambda_1 + \lambda_n} \approx 1. \]
The gradient method converges very slowly. Hence this method is not recommendable.

It is favorable to choose that the search directions $\{v^{(i)}\}$ as mutually A-conjugate, where A is symmetric positive definite.

Definition 38

Two vectors p and q are called A-conjugate (A-orthogonal), if $p^T A q = 0$.
Lemma 39

Let \(v_1, \ldots, v_n \neq 0 \) be pairwisely \(A\)-conjugate. Then they are linearly independent.

Proof: From

\[
0 = \sum_{j=1}^{n} c_j v_j
\]

follows that

\[
0 = (v_k)^T A \left(\sum_{j=1}^{n} c_j v_j \right) = \sum_{j=1}^{n} c_j (v_k)^T A v_j = c_k (v_k)^T A v_k,
\]

so \(c_k = 0 \), for \(k = 1, \ldots, n \).
Theorem 40

Let A be symm. positive definite and $v_1, \ldots, v_n \in \mathbb{R}^n \setminus \{0\}$ be pairwisely A-orthogonal. Give x_0 and let $r_0 = b - Ax_0$. For $k = 1, \ldots, n$, let

$$\alpha_k = \frac{\langle v_k, b - Ax_{k-1} \rangle}{\langle v_k, Av_k \rangle} \quad \text{and} \quad x_k = x_{k-1} + \alpha_k v_k.$$

Then $Ax_n = b$ and

$$\langle b - Ax_k, v_j \rangle \geq 0, \quad \text{for each} \quad j = 1, 2, \ldots, k - 1.$$

Proof: Since, for each $k = 1, 2, \ldots, n$,

$$x_k = x_{k-1} + \alpha_k v_k,$$

we have

$$Ax_n = Ax_{n-1} + \alpha_n Av_n = (Ax_{n-2} + \alpha_{n-1} Av_{n-1}) + \alpha_n Av_n = \cdots$$

$$= Ax_0 + \alpha_1 Av_1 + \alpha_2 Av_2 + \cdots + \alpha_n Av_n.$$
It implies that

\[
< Ax_n - b, v_k > \\
= < Ax_0 - b, v_k > + \alpha_1 < Av_1, v_k > + \cdots + \alpha_n < Av_n, v_k > \\
= < Ax_0 - b, v_k > + \alpha_1 < v_1, Av_k > + \cdots + \alpha_n < v_n, Av_k > \\
= < Ax_0 - b, v_k > + \alpha_k < v_k, Av_k > \\
= < Ax_0 - b, v_k > + \frac{< v_k, b - Ax_{k-1} >}{< v_k, Av_k >} < v_k, Av_k > \\
= < Ax_0 - b, v_k > + < v_k, b - Ax_{k-1} > \\
= < Ax_0 - b, v_k > \\
+ < v_k, b - Ax_0 + Ax_0 - Ax_1 + \cdots - Ax_{k-2} + Ax_{k-2} - Ax_{k-1} > \\
= < Ax_0 - b, v_k > + < v_k, b - Ax_0 > + < v_k, Ax_0 - Ax_1 > \\
+ \cdots + < v_k, Ax_{k-2} - Ax_{k-1} > \\
= < v_k, Ax_0 - Ax_1 > + \cdots + < v_k, Ax_{k-2} - Ax_{k-1} > .
\]
For any i

$$x_i = x_{i-1} + \alpha_i v_i \quad \text{and} \quad Ax_i = Ax_{i-1} + \alpha_i Av_i,$$

we have

$$Ax_{i-1} - Ax_i = -\alpha_i Av_i.$$

Thus, for $k = 1, \ldots, n$,

$$< Ax_n - b, v_k > = -\alpha_1 < v_k, Av_1 > - \cdots - \alpha_{k-1} < v_k, Av_{k-1} > = 0$$

which implies that $Ax_n = b$.

Suppose that

$$< r_{k-1}, v_j >= 0 \quad \text{for} \quad j = 1, 2, \ldots, k - 1. \quad (9)$$

By the result

$$r_k = b - Ax_k = b - A(x_{k-1} + \alpha_k v_k) = r_{k-1} - \alpha_k Av_k$$
it follows that

\[< r_k, v_k > = < r_{k-1}, v_k > - \alpha_k < Av_k, v_k > \]

\[= < r_{k-1}, v_k > - \frac{< v_k, b - Ax_{k-1} >}{< v_k, Av_k >} < Av_k, v_k > \]

\[= 0. \]

From assumption (9) and \(A \)-orthogonality, for \(j = 1, \ldots, k - 1 \)

\[< r_k, v_j > = < r_{k-1}, v_j > - \alpha_k < Av_k, v_j > = 0 \]

which is completed the proof by the mathematic induction.

\[\square \]

Method of conjugate directions:

Let \(A \) be symmetric positive definite, \(b, x_0 \in \mathbb{R}^n \). Given

\(v_1, \ldots, v_n \in \mathbb{R}^n \backslash \{0\} \) pairwisely \(A \)-orthogonal.

\[r_0 = b - Ax_0, \]

For \(k = 1, \ldots, n, \)

\[\alpha_k = \frac{< v_k, r_{k-1} >}{< v_k, Av_k >}, \]

\[x_k = x_{k-1} + \alpha_k v_k, \]

\[r_k = r_{k-1} - \alpha_k Av_k = b - Ax_k. \]
Practical Implementation

- In k-th step a direction v_k which is A-orthogonal to v_1, \ldots, v_{k-1} must be determined.
- It allows for orthogonalization of r_k against v_1, \ldots, v_k.
- Let $r_k \neq 0$, $g(x)$ decreases strictly in the direction $-r_k$. For $\varepsilon > 0$ small, we have $g(x_k - \varepsilon r_k) < g(x_k)$.

If $r_{k-1} = b - Ax_{k-1} \neq 0$, then we use r_{k-1} to generate v_k by

$$v_k = r_{k-1} + \beta_{k-1} v_{k-1}. \quad (10)$$

Choose β_{k-1} such that

$$0 = < v_{k-1}, Av_k > = < v_{k-1}, Ar_{k-1} + \beta_{k-1} Av_{k-1} >$$

$$= < v_{k-1}, Ar_{k-1} > + \beta_{k-1} < v_{k-1}, Av_{k-1} > .$$
That is

\[\beta_{k-1} = -\frac{\langle v_{k-1}, Ar_{k-1} \rangle}{\langle v_{k-1}, Av_{k-1} \rangle}. \]

(11)

Theorem 41

Let \(v_k \) and \(\beta_{k-1} \) be defined in (10) and (11), respectively. Then \(r_0, \ldots, r_{k-1} \) are mutually orthogonal and

\[\langle v_k, Av_i \rangle = 0, \quad \text{for } i = 1, 2, \ldots, k-1. \]

That is \(\{v_1, \ldots, v_k\} \) is an A-orthogonal set.

Having chosen \(v_k \), we compute

\[
\alpha_k = \frac{\langle v_k, r_{k-1} \rangle}{\langle v_k, Av_k \rangle} = \frac{\langle r_{k-1} + \beta_{k-1}v_{k-1}, r_{k-1} \rangle}{\langle v_k, Av_k \rangle} = \frac{\langle r_{k-1}, r_{k-1} \rangle + \beta_{k-1} \langle v_{k-1}, r_{k-1} \rangle}{\langle v_k, Av_k \rangle} = \frac{\langle r_{k-1}, r_{k-1} \rangle}{\langle v_k, Av_k \rangle}.
\]

(12)
Since

\[r_k = r_{k-1} - \alpha_k A v_k, \]

we have

\[\langle r_k, r_k \rangle = \langle r_{k-1}, r_k \rangle - \alpha_k \langle A v_k, r_k \rangle = -\alpha_k \langle r_k, A v_k \rangle. \]

Further, from (12),

\[\langle r_{k-1}, r_{k-1} \rangle = \alpha_k \langle v_k, A v_k \rangle, \]

so

\[\beta_k = -\frac{\langle v_k, A r_k \rangle}{\langle v_k, A v_k \rangle} = -\frac{\langle r_k, A v_k \rangle}{\langle v_k, A v_k \rangle} = \frac{(1/\alpha_k) \langle r_k, r_k \rangle}{(1/\alpha_k) \langle r_{k-1}, r_{k-1} \rangle} = \frac{\langle r_k, r_k \rangle}{\langle r_{k-1}, r_{k-1} \rangle}. \]
Algorithm 4 (Conjugate Gradient method (CG-method))

Let A be s.p.d., $b \in \mathbb{R}^n$, choose $x_0 \in \mathbb{R}^n$, $r_0 = b - Ax_0 = v_0$. If $r_0 = 0$, then $N = 0$ stop, otherwise for $k = 0, 1, \ldots$

(a). $\alpha_k = \frac{\langle r_k, r_k \rangle}{\langle v_k, Av_k \rangle}$,

(b). $x_{k+1} = x_k + \alpha_k v_k$,

(c). $r_{k+1} = r_k - \alpha_k Av_k$,

(d). If $r_{k+1} = 0$, let $N = k + 1$, stop.

(e). $\beta_k = \frac{\langle r_{k+1}, r_{k+1} \rangle}{\langle r_k, r_k \rangle}$,

(f). $v_{k+1} = r_{k+1} + \beta_k v_k$.

- Theoretically, the exact solution is obtained in n steps.
- If A is well-conditioned, then approximate solution is obtained in about \sqrt{n} steps.
- If A is ill-conditioned, then the number of iterations may be greater than n.
Select a nonsingular matrix C so that
\[\tilde{A} = C^{-1}AC^{-T} \]
is better conditioned.
Consider the linear system
\[\tilde{A}\tilde{x} = \tilde{b}, \]
where
\[\tilde{x} = C^Tx \quad \text{and} \quad \tilde{b} = C^{-1}b. \]
Then
\[\tilde{A}\tilde{x} = (C^{-1}AC^{-T})(C^Tx) = C^{-1}Ax. \]
Thus,
\[Ax = b \iff \tilde{A}\tilde{x} = \tilde{b} \quad \text{and} \quad x = C^{-T}\tilde{x}. \]
Since
\[\tilde{x}_k = C^T x_k, \]
we have
\[\tilde{r}_k = \tilde{b} - \tilde{A}\tilde{x}_k = C^{-1}b - (C^{-1}AC^{-T}) C^T x_k \]
\[= C^{-1}(b - Ax_k) = C^{-1}r_k. \]

Let
\[\tilde{v}_k = C^T v_k \quad \text{and} \quad w_k = C^{-1}r_k. \]

Then
\[\tilde{\beta}_k = \frac{\langle \tilde{r}_k, \tilde{r}_k \rangle}{\langle \tilde{r}_{k-1}, \tilde{r}_{k-1} \rangle} = \frac{\langle C^{-1}r_k, C^{-1}r_k \rangle}{\langle C^{-1}r_{k-1}, C^{-1}r_{k-1} \rangle} \]
\[= \frac{\langle w_k, w_k \rangle}{\langle w_{k-1}, w_{k-1} \rangle}. \]
Thus,
\[
\tilde{\alpha}_k = \frac{\langle \tilde{r}_{k-1}, \tilde{r}_{k-1} \rangle}{\langle \tilde{v}_k, \tilde{A} \tilde{v}_k \rangle} = \frac{\langle C^{-1}r_{k-1}, C^{-1}r_{k-1} \rangle}{\langle C^T v_k, C^{-1} AC^{-T} CT v_k \rangle}
\]
\[
= \frac{\langle w_{k-1}, w_{k-1} \rangle}{\langle C^T v_k, C^{-1} Av_k \rangle}
\]
and, since
\[
\langle C^T v_k, C^{-1} Av_k \rangle = (v_k)^T CC^{-1} Av_k = (v_k)^T Av_k
\]
\[
= \langle v_k, Av_k \rangle,
\]
we have
\[
\tilde{\alpha}_k = \frac{\langle w_{k-1}, w_{k-1} \rangle}{\langle v_k, Av_k \rangle}.
\]
Further,
\[
\tilde{x}_k = \tilde{x}_{k-1} + \tilde{\alpha}_k \tilde{v}_k, \quad \text{so} \quad C^T x_k = C^T x_{k-1} + \tilde{\alpha}_k C^T v_k
\]
and
\[
x_k = x_{k-1} + \tilde{\alpha}_k v_k.
\]
Continuing,

\[\tilde{r}_k = \tilde{r}_{k-1} - \tilde{\alpha}_k \tilde{A} \tilde{v}_k, \]

so

\[C^{-1} r_k = C^{-1} r_{k-1} - \tilde{\alpha}_k C^{-1} AC^{-T} C^T v_k \]

and

\[r_k = r_{k-1} - \tilde{\alpha}_k A v_k. \]

Finally,

\[\tilde{v}_{k+1} = \tilde{r}_k + \tilde{\beta}_k \tilde{v}_k \quad \text{and} \quad C^T v_{k+1} = C^{-1} r_k + \tilde{\beta}_k C^T v_k, \]

so

\[v_{k+1} = C^{-T} C^{-1} r_k + \tilde{\beta}_k v_k = C^{-T} w_k + \tilde{\beta}_k v_k. \]
Algorithm 5 (Preconditioned CG-method (PCG-method))

Choose C and x_0.

Set $r_0 = b - Ax_0$, solve $Cw_0 = r_0$ and $C^Tv_1 = w_0$.

If $r_0 = 0$, then $N = 0$ stop, otherwise for $k = 1, 2, \ldots$

(a). $\alpha_k = < w_{k-1}, w_{k-1} > / < v_k, Av_k >$,
(b). $x_k = x_{k-1} + \alpha_k v_k$,
(c). $r_k = r_{k-1} - \alpha_k Av_k$,
(d). If $r_k = 0$, let $N = k + 1$, stop.

Otherwise, solve $Cw_k = r_k$ and $C^Tz_k = w_k$,
(e). $\beta_k = < w_k, w_k > / < w_{k-1}, w_{k-1} >$,
(f). $v_{k+1} = z_k + \beta_k v_k$.
