Iterative techniques in matrix algebra

Tsung-Ming Huang

Department of Mathematics
National Taiwan Normal University, Taiwan
December 15, 2014

Outline

(1) Norms of vectors and matrices

Eigenvalues and eigenvectors

Outline

(1) Norms of vectors and matrices
(2) Eigenvalues and eigenvectors

Relaxation Techniques for Solving Linear Systems

Outline

(1) Norms of vectors and matrices
(2) Eigenvalues and eigenvectors

3 The Jacobi and Gauss-Siedel Iterative Techniques

Relaxation Techniques for Solving Linear Systems

Error bounds and iterative refinement

Outline

(1) Norms of vectors and matrices
(2) Eigenvalues and eigenvectors

3 The Jacobi and Gauss-Siedel Iterative Techniques
4 Relaxation Techniques for Solving Linear Systems

Error bounds and iterative refinement

The conjugate gradient method

Outline

(1) Norms of vectors and matrices
(2) Eigenvalues and eigenvectors

3 The Jacobi and Gauss-Siedel Iterative Techniques
4 Relaxation Techniques for Solving Linear Systems

5 Error bounds and iterative refinement

Outline

(1) Norms of vectors and matrices
(2) Eigenvalues and eigenvectors
(3) The Jacobi and Gauss-Siedel Iterative Techniques

4 Relaxation Techniques for Solving Linear Systems

5 Error bounds and iterative refinement
(6) The conjugate gradient method

Definition 1

$\|\cdot\|: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a vector norm if
(i) $\|x\| \geq 0, \forall x \in \mathbb{R}^{n}$,
(ii) $\|x\|=0$ if and only if $x=0$,
(iii) $\|\alpha x|=|\alpha|| \mid x\| \forall \alpha \in \mathbb{R}$ and $x \in \mathbb{R}^{n}$,
(iv) $\|x+y\| \leq\|x\|+\|y\| \forall x, y \in \mathbb{R}^{n}$.

Definition 2

The ℓ_{2} and ℓ_{∞} norms for $x=$
are defined by

The ℓ_{2} norm is also called the Euclidean norm

Definition 1

$\|\cdot\|: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a vector norm if
(i) $\|x\| \geq 0, \forall x \in \mathbb{R}^{n}$,
(ii) $\|x\|=0$ if and only if $x=0$,
(iii) $\left\|\alpha x\left|=|\alpha|\|x\| \forall \alpha \in \mathbb{R}\right.\right.$ and $x \in \mathbb{R}^{n}$,
(iv) $\|x+y\| \leq\|x\|+\|y\| \forall x, y \in \mathbb{R}^{n}$.

Definition 2

The ℓ_{2} and ℓ_{∞} norms for $x=\left[x_{1}, x_{2}, \cdots, x_{n}\right]^{T}$ are defined by

$$
\|x\|_{2}=\left(x^{T} x\right)^{1 / 2}=\left\{\sum_{i=1}^{n} x_{i}^{2}\right\}^{1 / 2} \quad \text { and } \quad\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right| .
$$

The ℓ_{2} norm is also called the Euclidean norm.

Theorem 3 (Cauchy-Bunyakovsky-Schwarz inequality)

For each $x=\left[x_{1}, x_{2}, \cdots, x_{n}\right]^{T}$ and $y=\left[y_{1}, y_{2}, \cdots, y_{n}\right]^{T}$ in \mathbb{R}^{n},

$$
x^{T} y=\sum_{i=1}^{n} x_{i} y_{i} \leq\left\{\sum_{i=1}^{n} x_{i}^{2}\right\}^{1 / 2}\left\{\sum_{i=1}^{n} y_{i}^{2}\right\}^{1 / 2}=\|x\|_{2} \cdot\|y\|_{2}
$$

Proof: If $x=0$ or $y=0$, the result is immediate.
Suppose $x \neq 0$ and $y \neq 0$. For each $\alpha \in \mathbb{R}$,

Theorem 3 (Cauchy-Bunyakovsky-Schwarz inequality)

For each $x=\left[x_{1}, x_{2}, \cdots, x_{n}\right]^{T}$ and $y=\left[y_{1}, y_{2}, \cdots, y_{n}\right]^{T}$ in \mathbb{R}^{n},

$$
x^{T} y=\sum_{i=1}^{n} x_{i} y_{i} \leq\left\{\sum_{i=1}^{n} x_{i}^{2}\right\}^{1 / 2}\left\{\sum_{i=1}^{n} y_{i}^{2}\right\}^{1 / 2}=\|x\|_{2} \cdot\|y\|_{2}
$$

Proof: If $x=0$ or $y=0$, the result is immediate.

Theorem 3 (Cauchy-Bunyakovsky-Schwarz inequality)

For each $x=\left[x_{1}, x_{2}, \cdots, x_{n}\right]^{T}$ and $y=\left[y_{1}, y_{2}, \cdots, y_{n}\right]^{T}$ in \mathbb{R}^{n},

$$
x^{T} y=\sum_{i=1}^{n} x_{i} y_{i} \leq\left\{\sum_{i=1}^{n} x_{i}^{2}\right\}^{1 / 2}\left\{\sum_{i=1}^{n} y_{i}^{2}\right\}^{1 / 2}=\|x\|_{2} \cdot\|y\|_{2}
$$

Proof: If $x=0$ or $y=0$, the result is immediate.
Suppose $x \neq 0$ and $y \neq 0$. For each $\alpha \in \mathbb{R}$,
$0 \leq\|x-\alpha y\|_{2}^{2}=\sum_{i=1}^{n}\left(x_{i}-\alpha y_{i}\right)^{2}=\sum_{i=1}^{n} x_{i}^{2}-2 \alpha \sum_{i=1}^{n} x_{i} y_{i}+\alpha^{2} \sum_{i=1}^{n} y_{i}^{2}$,

Theorem 3 (Cauchy-Bunyakovsky-Schwarz inequality)

For each $x=\left[x_{1}, x_{2}, \cdots, x_{n}\right]^{T}$ and $y=\left[y_{1}, y_{2}, \cdots, y_{n}\right]^{T}$ in \mathbb{R}^{n},

$$
x^{T} y=\sum_{i=1}^{n} x_{i} y_{i} \leq\left\{\sum_{i=1}^{n} x_{i}^{2}\right\}^{1 / 2}\left\{\sum_{i=1}^{n} y_{i}^{2}\right\}^{1 / 2}=\|x\|_{2} \cdot\|y\|_{2} .
$$

Proof: If $x=0$ or $y=0$, the result is immediate.
Suppose $x \neq 0$ and $y \neq 0$. For each $\alpha \in \mathbb{R}$,

$$
0 \leq\|x-\alpha y\|_{2}^{2}=\sum_{i=1}^{n}\left(x_{i}-\alpha y_{i}\right)^{2}=\sum_{i=1}^{n} x_{i}^{2}-2 \alpha \sum_{i=1}^{n} x_{i} y_{i}+\alpha^{2} \sum_{i=1}^{n} y_{i}^{2},
$$

and

$$
2 \alpha \sum_{i=1}^{n} x_{i} y_{i} \leq \sum_{i=1}^{n} x_{i}^{2}+\alpha^{2} \sum_{i=1}^{n} y_{i}^{2}=\|x\|_{2}^{2}+\alpha^{2}\|y\|_{2}^{2} .
$$

Since $\|x\|_{2}>0$ and $\|y\|_{2}>0$, we can let

$$
\alpha=\frac{\|x\|_{2}}{\|y\|_{2}}
$$

to give

$$
\left(2 \frac{\|x\|_{2}}{\|y\|_{2}}\right)\left(\sum_{i=1}^{n} x_{i} y_{i}\right) \leq\|x\|_{2}^{2}+\frac{\|x\|_{2}^{2}}{\|y\|_{2}^{2}}\|y\|_{2}^{2}=2\|x\|_{2}^{2}
$$

Since $\|x\|_{2}>0$ and $\|y\|_{2}>0$, we can let

$$
\alpha=\frac{\|x\|_{2}}{\|y\|_{2}}
$$

to give

$$
\left(2 \frac{\|x\|_{2}}{\|y\|_{2}}\right)\left(\sum_{i=1}^{n} x_{i} y_{i}\right) \leq\|x\|_{2}^{2}+\frac{\|x\|_{2}^{2}}{\|y\|_{2}^{2}}\|y\|_{2}^{2}=2\|x\|_{2}^{2}
$$

Thus

$$
x^{T} y=\sum_{i=1}^{n} x_{i} y_{i} \leq\|x\|_{2}\|y\|_{2}
$$

For each $x, y \in \mathbb{R}^{n}$,

$$
\begin{aligned}
\|x+y\|_{\infty} & =\max _{1 \leq i \leq n}\left|x_{i}+y_{i}\right| \leq \max _{1 \leq i \leq n}\left(\left|x_{i}\right|+\left|y_{i}\right|\right) \\
& \leq \max _{1 \leq i \leq n}\left|x_{i}\right|+\max _{1 \leq i \leq n}\left|y_{i}\right|=\|x\|_{\infty}+\|y\|_{\infty}
\end{aligned}
$$

which gives

For each $x, y \in \mathbb{R}^{n}$,

$$
\begin{aligned}
\|x+y\|_{\infty} & =\max _{1 \leq i \leq n}\left|x_{i}+y_{i}\right| \leq \max _{1 \leq i \leq n}\left(\left|x_{i}\right|+\left|y_{i}\right|\right) \\
& \leq \max _{1 \leq i \leq n}\left|x_{i}\right|+\max _{1 \leq i \leq n}\left|y_{i}\right|=\|x\|_{\infty}+\|y\|_{\infty}
\end{aligned}
$$

and

$$
\begin{aligned}
\|x+y\|_{2}^{2} & =\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)^{2}=\sum_{i=1}^{2} x_{i}^{2}+2 \sum_{i=1}^{n} x_{i} y_{i}+\sum_{i=1}^{n} y_{i}^{2} \\
& \leq\|x\|_{2}^{2}+2\|x\|_{2}\|y\|_{2}+\|y\|_{2}^{2}=\left(\|x\|_{2}+\|y\|_{2}\right)^{2}
\end{aligned}
$$

For each $x, y \in \mathbb{R}^{n}$,

$$
\begin{aligned}
\|x+y\|_{\infty} & =\max _{1 \leq i \leq n}\left|x_{i}+y_{i}\right| \leq \max _{1 \leq i \leq n}\left(\left|x_{i}\right|+\left|y_{i}\right|\right) \\
& \leq \max _{1 \leq i \leq n}\left|x_{i}\right|+\max _{1 \leq i \leq n}\left|y_{i}\right|=\|x\|_{\infty}+\|y\|_{\infty}
\end{aligned}
$$

and

$$
\begin{aligned}
\|x+y\|_{2}^{2} & =\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)^{2}=\sum_{i=1}^{2} x_{i}^{2}+2 \sum_{i=1}^{n} x_{i} y_{i}+\sum_{i=1}^{n} y_{i}^{2} \\
& \leq\|x\|_{2}^{2}+2\|x\|_{2}\|y\|_{2}+\|y\|_{2}^{2}=\left(\|x\|_{2}+\|y\|_{2}\right)^{2}
\end{aligned}
$$

which gives

$$
\|x+y\|_{2} \leq\|x\|_{2}+\|y\|_{2} .
$$

Definition 4

A sequence $\left\{x^{(k)} \in \mathbb{R}^{n}\right\}_{k=1}^{\infty}$ is convergent to x with respect to the norm $\|\cdot\|$ if $\forall \varepsilon>0, \exists$ an integer $N(\varepsilon)$ such that

$$
\left\|x^{(k)}-x\right\|<\varepsilon, \forall k \geq N(\varepsilon) .
$$

Definition 4

A sequence $\left\{x^{(k)} \in \mathbb{R}^{n}\right\}_{k=1}^{\infty}$ is convergent to x with respect to the norm $\|\cdot\|$ if $\forall \varepsilon>0, \exists$ an integer $N(\varepsilon)$ such that

$$
\left\|x^{(k)}-x\right\|<\varepsilon, \forall k \geq N(\varepsilon) .
$$

Theorem 5

$\left\{x^{(k)} \in \mathbb{R}^{n}\right\}_{k=1}^{\infty}$ converges to x with respect to $\|\cdot\|_{\infty}$ if and only if

$$
\lim _{k \rightarrow \infty} x_{i}^{(k)}=x_{i}, \forall i=1,2, \ldots, n
$$

Definition 4

A sequence $\left\{x^{(k)} \in \mathbb{R}^{n}\right\}_{k=1}^{\infty}$ is convergent to x with respect to the norm $\|\cdot\|$ if $\forall \varepsilon>0, \exists$ an integer $N(\varepsilon)$ such that

$$
\left\|x^{(k)}-x\right\|<\varepsilon, \forall k \geq N(\varepsilon) .
$$

Theorem 5

$\left\{x^{(k)} \in \mathbb{R}^{n}\right\}_{k=1}^{\infty}$ converges to x with respect to $\|\cdot\|_{\infty}$ if and only if

$$
\lim _{k \rightarrow \infty} x_{i}^{(k)}=x_{i}, \forall i=1,2, \ldots, n
$$

Proof: " \Rightarrow " Given any $\varepsilon>0, \exists$ an integer $N(\varepsilon)$ such that

$$
\max _{1 \leq i \leq n}\left|x_{i}^{(k)}-x_{i}\right|=\left\|x^{(k)}-x\right\|_{\infty}<\varepsilon, \forall k \geq N(\varepsilon) .
$$

This result implies that

$$
\left|x_{i}^{(k)}-x_{i}\right|<\varepsilon, \forall i=1,2, \ldots, n
$$

This result implies that

$$
\left|x_{i}^{(k)}-x_{i}\right|<\varepsilon, \forall i=1,2, \ldots, n .
$$

Hence

$$
\lim _{k \rightarrow \infty} x_{i}^{(k)}=x_{i}, \forall i
$$

This result implies that

$$
\left|x_{i}^{(k)}-x_{i}\right|<\varepsilon, \forall i=1,2, \ldots, n
$$

Hence

$$
\lim _{k \rightarrow \infty} x_{i}^{(k)}=x_{i}, \forall i
$$

" \Leftarrow " For a given $\varepsilon>0$, let $N_{i}(\varepsilon)$ represent an integer with

$$
\left|x_{i}^{(k)}-x_{i}\right|<\varepsilon, \text { whenever } k \geq N_{i}(\varepsilon) .
$$

This result implies that

$$
\left|x_{i}^{(k)}-x_{i}\right|<\varepsilon, \forall i=1,2, \ldots, n
$$

Hence

$$
\lim _{k \rightarrow \infty} x_{i}^{(k)}=x_{i}, \forall i
$$

" \Leftarrow " For a given $\varepsilon>0$, let $N_{i}(\varepsilon)$ represent an integer with

$$
\left|x_{i}^{(k)}-x_{i}\right|<\varepsilon, \text { whenever } k \geq N_{i}(\varepsilon) .
$$

Define

$$
N(\varepsilon)=\max _{1 \leq i \leq n} N_{i}(\varepsilon) .
$$

This result implies that

$$
\left|x_{i}^{(k)}-x_{i}\right|<\varepsilon, \forall i=1,2, \ldots, n
$$

Hence

$$
\lim _{k \rightarrow \infty} x_{i}^{(k)}=x_{i}, \forall i
$$

" \Leftarrow " For a given $\varepsilon>0$, let $N_{i}(\varepsilon)$ represent an integer with

$$
\left|x_{i}^{(k)}-x_{i}\right|<\varepsilon, \text { whenever } k \geq N_{i}(\varepsilon) .
$$

Define

$$
N(\varepsilon)=\max _{1 \leq i \leq n} N_{i}(\varepsilon) .
$$

If $k \geq N(\varepsilon)$, then

$$
\max _{1 \leq i \leq n}\left|x_{i}^{(k)}-x_{i}\right|=\left\|x^{(k)}-x\right\|_{\infty}<\varepsilon .
$$

This result implies that

$$
\left|x_{i}^{(k)}-x_{i}\right|<\varepsilon, \forall i=1,2, \ldots, n
$$

Hence

$$
\lim _{k \rightarrow \infty} x_{i}^{(k)}=x_{i}, \forall i
$$

" \Leftarrow " For a given $\varepsilon>0$, let $N_{i}(\varepsilon)$ represent an integer with

$$
\left|x_{i}^{(k)}-x_{i}\right|<\varepsilon, \text { whenever } k \geq N_{i}(\varepsilon) .
$$

Define

$$
N(\varepsilon)=\max _{1 \leq i \leq n} N_{i}(\varepsilon) .
$$

If $k \geq N(\varepsilon)$, then

$$
\max _{1 \leq i \leq n}\left|x_{i}^{(k)}-x_{i}\right|=\left\|x^{(k)}-x\right\|_{\infty}<\varepsilon .
$$

This implies that $\left\{x^{(k)}\right\}$ converges to x with respect to $\|\cdot\| \|_{\infty}$.

Theorem 6

For each $x \in \mathbb{R}^{n}$,

$$
\|x\|_{\infty} \leq\|x\|_{2} \leq \sqrt{n}\|x\|_{\infty} .
$$

Proof: Let x_{j} be a coordinate of x such that
so $\|x\|_{\infty} \leq\|x\|_{2}$ and

Theorem 6

For each $x \in \mathbb{R}^{n}$,

$$
\|x\|_{\infty} \leq\|x\|_{2} \leq \sqrt{n}\|x\|_{\infty} .
$$

Proof: Let x_{j} be a coordinate of x such that

$$
\|x\|_{\infty}^{2}=\left|x_{j}\right|^{2} \leq \sum_{i=1}^{n} x_{i}^{2}=\|x\|_{2}^{2}
$$

Theorem 6

For each $x \in \mathbb{R}^{n}$,

$$
\|x\|_{\infty} \leq\|x\|_{2} \leq \sqrt{n}\|x\|_{\infty} .
$$

Proof: Let x_{j} be a coordinate of x such that

$$
\|x\|_{\infty}^{2}=\left|x_{j}\right|^{2} \leq \sum_{i=1}^{n} x_{i}^{2}=\|x\|_{2}^{2}
$$

so $\|x\|_{\infty} \leq\|x\|_{2}$ and

$$
\|x\|_{2}^{2}=\sum_{i=1}^{n} x_{i}^{2} \leq \sum_{i=1}^{n} x_{j}^{2}=n x_{j}^{2}=n\|x\|_{\infty}^{2},
$$

Theorem 6

For each $x \in \mathbb{R}^{n}$,

$$
\|x\|_{\infty} \leq\|x\|_{2} \leq \sqrt{n}\|x\|_{\infty} .
$$

Proof: Let x_{j} be a coordinate of x such that

$$
\|x\|_{\infty}^{2}=\left|x_{j}\right|^{2} \leq \sum_{i=1}^{n} x_{i}^{2}=\|x\|_{2}^{2}
$$

so $\|x\|_{\infty} \leq\|x\|_{2}$ and

$$
\|x\|_{2}^{2}=\sum_{i=1}^{n} x_{i}^{2} \leq \sum_{i=1}^{n} x_{j}^{2}=n x_{j}^{2}=n\|x\|_{\infty}^{2},
$$

so $\|x\|_{2} \leq \sqrt{n}\|x\|_{\infty}$.

Definition 7

A matrix norm $\|\cdot\|$ on the set of all $n \times n$ matrices is a real-valued function satisfying for all $n \times n$ matrices A and B and all real number α :
(i) $\|A\| \geq 0$;
(ii) $\|A\|=0$ if and only if $A=0$;
(iii) $\|\alpha A\|=|\alpha|\|A\|$;
(iv) $\|A+B\| \leq\|A\|+\|B\|$;
(v) $\|A B\| \leq\|A\|\|B\|$;

Definition 7

A matrix norm $\|\cdot\|$ on the set of all $n \times n$ matrices is a real-valued function satisfying for all $n \times n$ matrices A and B and all real number α :
(i) $\|A\| \geq 0$;
(ii) $\|A\|=0$ if and only if $A=0$;
(iii) $\|\alpha A\|=|\alpha|\|A\|$;
(iv) $\|A+B\| \leq\|A\|+\|B\|$;
(v) $\|A B\| \leq\|A\|\|B\|$;

Theorem 8

If $\|\cdot\|$ is a vector norm on \mathbb{R}^{n}, then

$$
\|A\|=\max _{\|x\|=1}\|A x\|
$$

is a matrix norm.

For any $z \neq 0$, we have $x=z /\|z\|$ as a unit vector.

For any $z \neq 0$, we have $x=z /\|z\|$ as a unit vector. Hence

$$
\|A\|=\max _{\|x\|=1}\|A x\|=\max _{z \neq 0}\left\|A\left(\frac{z}{\|z\|}\right)\right\|=\max _{z \neq 0} \frac{\|A z\|}{\|z\|} .
$$

For any $z \neq 0$, we have $x=z /\|z\|$ as a unit vector. Hence

$$
\|A\|=\max _{\|x\|=1}\|A x\|=\max _{z \neq 0}\left\|A\left(\frac{z}{\|z\|}\right)\right\|=\max _{z \neq 0} \frac{\|A z\|}{\|z\|} .
$$

Corollary 9

$$
\|A z\| \leq\|A\| \cdot\|z\| .
$$

For any $z \neq 0$, we have $x=z /\|z\|$ as a unit vector. Hence

$$
\|A\|=\max _{\|x\|=1}\|A x\|=\max _{z \neq 0}\left\|A\left(\frac{z}{\|z\|}\right)\right\|=\max _{z \neq 0} \frac{\|A z\|}{\|z\|} .
$$

Corollary 9

$$
\|A z\| \leq\|A\| \cdot\|z\| .
$$

Theorem 10

If $A=\left[a_{i j}\right]$ is an $n \times n$ matrix, then

$$
\|A\|_{\infty}=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right| .
$$

Proof: Let x be an n-dimension vector with

$$
1=\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|
$$

Proof: Let x be an n-dimension vector with

$$
1=\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|
$$

Then

$$
\begin{aligned}
\|A x\|_{\infty} & =\max _{1 \leq i \leq n} \sum_{j=1}^{n} a_{i j} x_{j} \mid \\
& \leq \max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right| \max _{1 \leq j \leq n}\left|x_{j}\right|=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right|
\end{aligned}
$$

Proof: Let x be an n-dimension vector with

$$
1=\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|
$$

Then

$$
\begin{aligned}
\|A x\|_{\infty} & =\max _{1 \leq i \leq n}\left|\sum_{j=1}^{n} a_{i j} x_{j}\right| \\
& \leq \max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right| \max _{1 \leq j \leq n}\left|x_{j}\right|=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right|
\end{aligned}
$$

Consequently,

$$
\|A\|_{\infty}=\max _{\|x\|_{\infty}=1}\|A x\|_{\infty} \leq \max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right|
$$

On the other hand, let p be an integer with

Proof: Let x be an n-dimension vector with

$$
1=\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|
$$

Then

$$
\begin{aligned}
\|A x\|_{\infty} & =\max _{1 \leq i \leq n}\left|\sum_{j=1}^{n} a_{i j} x_{j}\right| \\
& \leq \max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right| \max _{1 \leq j \leq n}\left|x_{j}\right|=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right|
\end{aligned}
$$

Consequently,

$$
\|A\|_{\infty}=\max _{\|x\|_{\infty}=1}\|A x\|_{\infty} \leq \max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right|
$$

On the other hand, let p be an integer with

$$
\sum^{n}\left|a_{p j}\right|=\max _{1<i<n} \sum^{n}\left|a_{i j}\right|
$$

and x be the vector with

$$
x_{j}=\left\{\begin{aligned}
1, & \text { if } a_{p j} \geq 0, \\
-1, & \text { if } a_{p j}<0 .
\end{aligned}\right.
$$

and x be the vector with

$$
x_{j}=\left\{\begin{aligned}
1, & \text { if } a_{p j} \geq 0 \\
-1, & \text { if } a_{p j}<0
\end{aligned}\right.
$$

Then

$$
\|x\|_{\infty}=1 \text { and } a_{p j} x_{j}=\left|a_{p j}\right|, \forall j=1,2, \ldots, n
$$

This result implies that

and x be the vector with

$$
x_{j}=\left\{\begin{aligned}
1, & \text { if } a_{p j} \geq 0, \\
-1, & \text { if } a_{p j}<0 .
\end{aligned}\right.
$$

Then

$$
\|x\|_{\infty}=1 \text { and } a_{p j} x_{j}=\left|a_{p j}\right|, \forall j=1,2, \ldots, n
$$

so
$\|A x\|_{\infty}=\max _{1 \leq i \leq n}\left|\sum_{j=1}^{n} a_{i j} x_{j}\right| \geq\left|\sum_{j=1}^{n} a_{p j} x_{j}\right|=\left|\sum_{j=1}^{n}\right| a_{p j}| |=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right|$.
This result implies that
and x be the vector with

$$
x_{j}=\left\{\begin{aligned}
1, & \text { if } a_{p j} \geq 0 \\
-1, & \text { if } a_{p j}<0
\end{aligned}\right.
$$

Then

$$
\|x\|_{\infty}=1 \text { and } a_{p j} x_{j}=\left|a_{p j}\right|, \forall j=1,2, \ldots, n
$$

so

$$
\|A x\|_{\infty}=\max _{1 \leq i \leq n}\left|\sum_{j=1}^{n} a_{i j} x_{j}\right| \geq\left|\sum_{j=1}^{n} a_{p j} x_{j}\right|=\left|\sum_{j=1}^{n}\right| a_{p j}| |=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right| .
$$

This result implies that

$$
\|A\|_{\infty}=\max _{\|x\|_{\infty}=1}\|A x\|_{\infty} \geq \max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right| .
$$

and x be the vector with

$$
x_{j}=\left\{\begin{aligned}
1, & \text { if } a_{p j} \geq 0 \\
-1, & \text { if } a_{p j}<0
\end{aligned}\right.
$$

Then

$$
\|x\|_{\infty}=1 \text { and } a_{p j} x_{j}=\left|a_{p j}\right|, \forall j=1,2, \ldots, n
$$

SO

$$
\|A x\|_{\infty}=\max _{1 \leq i \leq n}\left|\sum_{j=1}^{n} a_{i j} x_{j}\right| \geq\left|\sum_{j=1}^{n} a_{p j} x_{j}\right|=\left|\sum_{j=1}^{n}\right| a_{p j}| |=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right| .
$$

This result implies that

$$
\|A\|_{\infty}=\max _{\|x\|_{\infty}=1}\|A x\|_{\infty} \geq \max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right|
$$

which gives

$$
\|A\|_{\infty}=\max \sum^{n}\left|a_{i j}\right|
$$

Exercise

Page 441: 5, 9, 10, 11

Eigenvalues and eigenvectors

Definition 11 (Characteristic polynomial)

If A is a square matrix, the characteristic polynomial of A is defined by

$$
p(\lambda)=\operatorname{det}(A-\lambda I) .
$$

The set of all eigenvalues of a matrix A is called the spectrum of
\qquad

Eigenvalues and eigenvectors

Definition 11 (Characteristic polynomial)

If A is a square matrix, the characteristic polynomial of A is defined by

$$
p(\lambda)=\operatorname{det}(A-\lambda I) .
$$

Definition 12 (Eigenvalue and eigenvector)

If p is the characteristic polynomial of the matrix A, the zeros of p are eigenvalues of the matrix A. If λ is an eigenvalue of A and $x \neq 0$ satisfies $(A-\lambda I) x=0$, then x is an eigenvector of A corresponding to the eigenvalue λ.

Eigenvalues and eigenvectors

Definition 11 (Characteristic polynomial)

If A is a square matrix, the characteristic polynomial of A is defined by

$$
p(\lambda)=\operatorname{det}(A-\lambda I) .
$$

Definition 12 (Eigenvalue and eigenvector)

If p is the characteristic polynomial of the matrix A, the zeros of p are eigenvalues of the matrix A. If λ is an eigenvalue of A and $x \neq 0$ satisfies $(A-\lambda I) x=0$, then x is an eigenvector of A corresponding to the eigenvalue λ.

Definition 13 (Spectrum and Spectral Radius)

The set of all eigenvalues of a matrix A is called the spectrum of A. The spectral radius of A is

$$
\rho(A)=\max \{|\lambda| ; \lambda \text { is an eigenvalue of } A\} .
$$

Theorem 14

If A is an $n \times n$ matrix, then

$$
\begin{aligned}
& \text { (i) }\|A\|_{2}=\sqrt{\rho\left(A^{T} A\right)} \text {; } \\
& \text { (ii) } \rho(A) \leq\|A\| \text { for any matrix norm. }
\end{aligned}
$$

Proof: Proof for the second part. Suppose λ is an eigenvalue of A and $x \neq 0$ is a corresponding eigenvector such that

Theorem 14

If A is an $n \times n$ matrix, then

$$
\begin{aligned}
& \text { (i) }\|A\|_{2}=\sqrt{\rho\left(A^{T} A\right)} \text {; } \\
& \text { (ii) } \rho(A) \leq\|A\| \text { for any matrix norm. }
\end{aligned}
$$

Proof: Proof for the second part.

\square Then

Theorem 14

If A is an $n \times n$ matrix, then

$$
\begin{aligned}
& \text { (i) }\|A\|_{2}=\sqrt{\rho\left(A^{T} A\right)} \text {; } \\
& \text { (ii) } \rho(A) \leq\|A\| \text { for any matrix norm. }
\end{aligned}
$$

Proof: Proof for the second part. Suppose λ is an eigenvalue of A and $x \neq 0$ is a corresponding eigenvector such that $A x=\lambda x$ and $\|x\|=1$.

Theorem 14

If A is an $n \times n$ matrix, then

$$
\begin{aligned}
& \text { (i) }\|A\|_{2}=\sqrt{\rho\left(A^{T} A\right)} \text {; } \\
& \text { (ii) } \rho(A) \leq\|A\| \text { for any matrix norm. }
\end{aligned}
$$

Proof: Proof for the second part. Suppose λ is an eigenvalue of A and $x \neq 0$ is a corresponding eigenvector such that $A x=\lambda x$ and $\|x\|=1$. Then

$$
|\lambda|=|\lambda|\|x\|=\|\lambda x\|=\|A x\| \leq\|A\|\|x\|=\|A\| \text {, }
$$

Theorem 14

If A is an $n \times n$ matrix, then

$$
\begin{aligned}
& \text { (i) }\|A\|_{2}=\sqrt{\rho\left(A^{T} A\right)} \text {; } \\
& \text { (ii) } \rho(A) \leq\|A\| \text { for any matrix norm. }
\end{aligned}
$$

Proof: Proof for the second part. Suppose λ is an eigenvalue of A and $x \neq 0$ is a corresponding eigenvector such that $A x=\lambda x$ and $\|x\|=1$. Then

$$
|\lambda|=|\lambda|\|x\|=\|\lambda x\|=\|A x\| \leq\|A\|\|x\|=\|A\|,
$$

that is, $|\lambda| \leq\|A\|$.
\qquad

Theorem 14

If A is an $n \times n$ matrix, then

$$
\begin{aligned}
& \text { (i) }\|A\|_{2}=\sqrt{\rho\left(A^{T} A\right)} \text {; } \\
& \text { (ii) } \rho(A) \leq\|A\| \text { for any matrix norm. }
\end{aligned}
$$

Proof: Proof for the second part. Suppose λ is an eigenvalue of A and $x \neq 0$ is a corresponding eigenvector such that $A x=\lambda x$ and $\|x\|=1$. Then

$$
|\lambda|=|\lambda|\|x\|=\|\lambda x\|=\|A x\| \leq\|A\|\|x\|=\|A\|,
$$

that is, $|\lambda| \leq\|A\|$. Since λ is arbitrary, this implies that $\rho(A)=\max |\lambda| \leq\|A\|$.

Theorem 14

If A is an $n \times n$ matrix, then
(i) $\|A\|_{2}=\sqrt{\rho\left(A^{T} A\right)}$;
(ii) $\rho(A) \leq\|A\|$ for any matrix norm.

Proof: Proof for the second part. Suppose λ is an eigenvalue of A and $x \neq 0$ is a corresponding eigenvector such that $A x=\lambda x$ and $\|x\|=1$. Then

$$
|\lambda|=|\lambda|\|x\|=\|\lambda x\|=\|A x\| \leq\|A\|\|x\|=\|A\|,
$$

that is, $|\lambda| \leq\|A\|$. Since λ is arbitrary, this implies that $\rho(A)=\max |\lambda| \leq\|A\|$.

Theorem 15

For any A and any $\varepsilon>0$, there exists a matrix norm $\|\cdot\|$ such that

$$
\rho(A)<\|A\|<\rho(A)+\varepsilon .
$$

Definition 16

We call an $n \times n$ matrix A convergent if

$$
\lim _{k \rightarrow \infty}\left(A^{k}\right)_{i j}=0 \forall i=1,2, \ldots, n \text { and } j=1,2, \ldots, n
$$

Theorem 17

The following statements are equivalent.is a convergent matrix
$\lim _{k \rightarrow \infty}\left\|A^{k}\right\|=0$ for some matrix norm;$\lim \left\|A^{k}\right\|=0$ for all matrix norm

Definition 16

We call an $n \times n$ matrix A convergent if

$$
\lim _{k \rightarrow \infty}\left(A^{k}\right)_{i j}=0 \forall i=1,2, \ldots, n \text { and } j=1,2, \ldots, n
$$

Theorem 17

The following statements are equivalent.
(1) A is a convergent matrix;

Definition 16

We call an $n \times n$ matrix A convergent if

$$
\lim _{k \rightarrow \infty}\left(A^{k}\right)_{i j}=0 \forall i=1,2, \ldots, n \text { and } j=1,2, \ldots, n
$$

Theorem 17

The following statements are equivalent.
(1) A is a convergent matrix;
(2) $\lim _{k \rightarrow \infty}\left\|A^{k}\right\|=0$ for some matrix norm;

Definition 16

We call an $n \times n$ matrix A convergent if

$$
\lim _{k \rightarrow \infty}\left(A^{k}\right)_{i j}=0 \forall i=1,2, \ldots, n \text { and } j=1,2, \ldots, n
$$

Theorem 17

The following statements are equivalent.
(1) A is a convergent matrix;
(2) $\lim _{k \rightarrow \infty}\left\|A^{k}\right\|=0$ for some matrix norm;
(3) $\lim _{k \rightarrow \infty}\left\|A^{k}\right\|=0$ for all matrix norm;
\qquad
\square

Definition 16

We call an $n \times n$ matrix A convergent if

$$
\lim _{k \rightarrow \infty}\left(A^{k}\right)_{i j}=0 \forall i=1,2, \ldots, n \text { and } j=1,2, \ldots, n
$$

Theorem 17

The following statements are equivalent.
(1) A is a convergent matrix;
(2) $\lim _{k \rightarrow \infty}\left\|A^{k}\right\|=0$ for some matrix norm;
(3) $\lim _{k \rightarrow \infty}\left\|A^{k}\right\|=0$ for all matrix norm;
(9) $\rho(A)<1$;

Definition 16

We call an $n \times n$ matrix A convergent if

$$
\lim _{k \rightarrow \infty}\left(A^{k}\right)_{i j}=0 \forall i=1,2, \ldots, n \text { and } j=1,2, \ldots, n
$$

Theorem 17

The following statements are equivalent.
(1) A is a convergent matrix;
(2) $\lim _{k \rightarrow \infty}\left\|A^{k}\right\|=0$ for some matrix norm;
(3) $\lim _{k \rightarrow \infty}\left\|A^{k}\right\|=0$ for all matrix norm;
(1) $\rho(A)<1$;
($\lim A^{k} x=0$ for any x. $k \rightarrow \infty$

Exercise

Page 449: 11, 12, 18, 19

Jacobi and Gauss-Siedel Iterative Techniques

For small dimension of linear systems, it requires for direct techniaues
 For large systems, iterative techniques are efficient in terms of both computer storage and computation

Jacobi and Gauss-Siedel Iterative Techniques

- For small dimension of linear systems, it requires for direct techniques.

The basic idea of iterative techniques is to split the coefficient
for some matrix M, which is called the splitting matrix

Jacobi and Gauss-Siedel Iterative Techniques

- For small dimension of linear systems, it requires for direct techniques.
- For large systems, iterative techniques are efficient in terms of both computer storage and computation.

The basic idea of iterative techniques is to split the coefficient
for some matrix M, which is called the splitting matrix. Here we

Jacobi and Gauss-Siedel Iterative Techniques

- For small dimension of linear systems, it requires for direct techniques.
- For large systems, iterative techniques are efficient in terms of both computer storage and computation.

The basic idea of iterative techniques is to split the coefficient matrix A into

$$
A=M-(M-A),
$$

for some matrix M, which is called the splitting matrix.

Jacobi and Gauss-Siedel Iterative Techniques

- For small dimension of linear systems, it requires for direct techniques.
- For large systems, iterative techniques are efficient in terms of both computer storage and computation.

The basic idea of iterative techniques is to split the coefficient matrix A into

$$
A=M-(M-A),
$$

for some matrix M, which is called the splitting matrix. Here we assume that A and M are both nonsingular.
problem
is rewritten in the equivalent form

Jacobi and Gauss-Siedel Iterative Techniques

- For small dimension of linear systems, it requires for direct techniques.
- For large systems, iterative techniques are efficient in terms of both computer storage and computation.

The basic idea of iterative techniques is to split the coefficient matrix A into

$$
A=M-(M-A),
$$

for some matrix M, which is called the splitting matrix. Here we assume that A and M are both nonsingular. Then the original problem is rewritten in the equivalent form

$$
M x=(M-A) x+b
$$

This suggests an iterative process

$$
x^{(k)}=\left(I-M^{-1} A\right) x^{(k-1)}+M^{-1} b \equiv T x^{(k-1)}+c
$$

This suggests an iterative process

$$
x^{(k)}=\left(I-M^{-1} A\right) x^{(k-1)}+M^{-1} b \equiv T x^{(k-1)}+c
$$

where T is usually called the iteration matrix.

This suggests an iterative process

$$
x^{(k)}=\left(I-M^{-1} A\right) x^{(k-1)}+M^{-1} b \equiv T x^{(k-1)}+c
$$

where T is usually called the iteration matrix. The initial vector $x^{(0)}$ can be arbitrary or be chosen according to certain conditions.
is easily computed. More precisely, the system

This suggests an iterative process

$$
x^{(k)}=\left(I-M^{-1} A\right) x^{(k-1)}+M^{-1} b \equiv T x^{(k-1)}+c
$$

where T is usually called the iteration matrix. The initial vector $x^{(0)}$ can be arbitrary or be chosen according to certain conditions.
Two criteria for choosing the splitting matrix M are
solution

This suggests an iterative process

$$
x^{(k)}=\left(I-M^{-1} A\right) x^{(k-1)}+M^{-1} b \equiv T x^{(k-1)}+c
$$

where T is usually called the iteration matrix. The initial vector $x^{(0)}$ can be arbitrary or be chosen according to certain conditions.
Two criteria for choosing the splitting matrix M are

- $x^{(k)}$ is easily computed. More precisely, the system $M x^{(k)}=y$ is easy to solve;
\qquad
\qquad

This suggests an iterative process

$$
x^{(k)}=\left(I-M^{-1} A\right) x^{(k-1)}+M^{-1} b \equiv T x^{(k-1)}+c
$$

where T is usually called the iteration matrix. The initial vector
$x^{(0)}$ can be arbitrary or be chosen according to certain conditions.
Two criteria for choosing the splitting matrix M are

- $x^{(k)}$ is easily computed. More precisely, the system $M x^{(k)}=y$ is easy to solve;
- the sequence $\left\{x^{(k)}\right\}$ converges rapidly to the exact solution.
\qquad
\qquad

This suggests an iterative process

$$
x^{(k)}=\left(I-M^{-1} A\right) x^{(k-1)}+M^{-1} b \equiv T x^{(k-1)}+c,
$$

where T is usually called the iteration matrix. The initial vector
$x^{(0)}$ can be arbitrary or be chosen according to certain conditions.
Two criteria for choosing the splitting matrix M are

- $x^{(k)}$ is easily computed. More precisely, the system $M x^{(k)}=y$ is easy to solve;
- the sequence $\left\{x^{(k)}\right\}$ converges rapidly to the exact solution.

Note that one way to achieve the second goal is to choose M so that M^{-1} approximate A^{-1}.
\qquad

This suggests an iterative process

$$
x^{(k)}=\left(I-M^{-1} A\right) x^{(k-1)}+M^{-1} b \equiv T x^{(k-1)}+c,
$$

where T is usually called the iteration matrix. The initial vector
$x^{(0)}$ can be arbitrary or be chosen according to certain conditions.
Two criteria for choosing the splitting matrix M are

- $x^{(k)}$ is easily computed. More precisely, the system $M x^{(k)}=y$ is easy to solve;
- the sequence $\left\{x^{(k)}\right\}$ converges rapidly to the exact solution.

Note that one way to achieve the second goal is to choose M so that M^{-1} approximate A^{-1}.
In the following subsections, we will introduce some of the mostly commonly used classic iterative methods.

Jacobi Method

If we decompose the coefficient matrix A as

$$
A=L+D+U,
$$

where D is the diadonal part

Jacobi Method

If we decompose the coefficient matrix A as

$$
A=L+D+U
$$

where D is the diagonal part, L is the strictly lower triangular part, and U is the strictly upper triangular part, of A,
\qquad

Jacobi Method

If we decompose the coefficient matrix A as

$$
A=L+D+U,
$$

where D is the diagonal part, L is the strictly lower triangular part, and U is the strictly upper triangular part, of A, and choose $M=D$, then we derive the iterative formulation for Jacobi method:

$$
x^{(k)}=-D^{-1}(L+U) x^{(k-1)}+D^{-1} b .
$$

With this method, the iteration matrix

Jacobi Method

If we decompose the coefficient matrix A as

$$
A=L+D+U
$$

where D is the diagonal part, L is the strictly lower triangular part, and U is the strictly upper triangular part, of A, and choose $M=D$, then we derive the iterative formulation for Jacobi method:

$$
x^{(k)}=-D^{-1}(L+U) x^{(k-1)}+D^{-1} b .
$$

With this method, the iteration matrix $T_{J}=-D^{-1}(L+U)$ and $c=D^{-1} b$. \square can be computed by

Jacobi Method

If we decompose the coefficient matrix A as

$$
A=L+D+U,
$$

where D is the diagonal part, L is the strictly lower triangular part, and U is the strictly upper triangular part, of A, and choose $M=D$, then we derive the iterative formulation for Jacobi method:

$$
x^{(k)}=-D^{-1}(L+U) x^{(k-1)}+D^{-1} b .
$$

With this method, the iteration matrix $T_{J}=-D^{-1}(L+U)$ and $c=D^{-1} b$. Each component $x_{i}^{(k)}$ can be computed by

$$
x_{i}^{(k)}=\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k-1)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}\right) / a_{i i}
$$

$$
\begin{aligned}
& a_{11} x_{1}^{(k)}+a_{12} x_{2}^{(k-1)}+a_{13} x_{3}^{(k-1)}+\cdots+a_{1 n} x_{n}^{(k-1)}=b_{1} \\
& a_{21} x_{1}^{(k-1)}+a_{22} x_{2}^{(k)}+a_{23} x_{3}^{(k-1)}+\cdots+a_{2 n} x_{n}^{(k-1)}=b_{2} \\
& \\
& a_{n 1} x_{1}^{(k-1)}+a_{n 2} x_{2}^{(k-1)}+a_{n 3} x_{3}^{(k-1)}+\cdots+a_{n n} x_{n}^{(k)}=b_{n}
\end{aligned}
$$

Agorithm 1 (Jacobi Method)

Given $x^{(0)}$, tolerance $T O L$, maximum Set $k=1$. While $k \leq M$ and $\left\|x-x^{(0)}\right\|_{2} \geq T O L$

End For

$$
\begin{array}{ll}
a_{11} x_{1}^{(k)}+a_{12} x_{2}^{(k-1)}+a_{13} x_{3}^{(k-1)}+\cdots+a_{1 n} x_{n}^{(k-1)} & =b_{1} \\
a_{21} x_{1}^{(k-1)}+a_{22} x_{2}^{(k)}+a_{23} x_{3}^{(k-1)}+\cdots+a_{2 n} x_{n}^{(k-1)} & =b_{2} \\
& \vdots \\
a_{n 1} x_{1}^{(k-1)}+a_{n 2} x_{2}^{(k-1)}+a_{n 3} x_{3}^{(k-1)}+\cdots+a_{n n} x_{n}^{(k)} & =b_{n}
\end{array}
$$

Algorithm 1 (Jacobi Method)

Given $x^{(0)}$, tolerance $T O L$, maximum number of iteration M. Set $k=1$.
While $k \leq M$ and $\left\|x-x^{(0)}\right\|_{2} \geq T O L$
Set $k=k+1, x^{(0)}=x$.
For $i=1,2, \ldots, n$

$$
x_{i}=\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(0)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(0)}\right) / a_{i i}
$$

End For

End While

Example 18

Consider the linear system $A x=b$ given by

$$
\begin{array}{lrl}
E_{1}: & 10 x_{1}-x_{2}+2 x_{3} & = \\
E_{2}: & -x_{1}+11 x_{2}-1 x_{3}+3 x_{4}= & 65, \\
E_{3}: & 2 x_{1}-r x_{2}+10 x_{3}-x_{4}= & -11, \\
E_{4}: & 3 x_{2}-1 x_{3}+8 x_{4}= & 15
\end{array}
$$

which has the unique solution $x=[1,2,-1,1]^{T}$.

$$
\text { Solving equation } E_{i} \text { for } x_{i} \text {, for } i=1,2,3,4 \text {, we obtain }
$$

Example 18

Consider the linear system $A x=b$ given by

$$
\begin{array}{lrl}
E_{1}: & 10 x_{1}-x_{2}+2 x_{3} & = \\
E_{2}: & -x_{1}+11 x_{2}-1 x_{3}+3 x_{4}= & 65, \\
E_{3}: & 2 x_{1}- & x_{2}+10 x_{3}-x_{4}= \\
E_{4}: & 3 x_{2}-11, \\
E_{3}+8 x_{4}= & 15
\end{array}
$$

which has the unique solution $x=[1,2,-1,1]^{T}$.
Solving equation E_{i} for x_{i}, for $i=1,2,3,4$, we obtain

$$
\begin{aligned}
& x_{1}=1 / 10 x_{2}-1 / 5 x_{3}+3 / 5, \\
& x_{2}=1 / 11 x_{1}+1 / 11 x_{3}-3 / 11 x_{4}+25 / 11, \\
& x_{3}=-1 / 5 x_{1}+1 / 10 x_{2}+1 / 10 x_{4}-11 / 10, \\
& x_{4}=-3 / 8 x_{2}+1 / 8 x_{3}+15 / 8 .
\end{aligned}
$$

Then $A x=b$ can be rewritten in the form $x=T x+c$ with
$T=\left[\begin{array}{rrrr}0 & 1 / 10 & -1 / 5 & 0 \\ 1 / 11 & 0 & 1 / 11 & -3 / 11 \\ -1 / 5 & 1 / 10 & 0 & 1 / 10 \\ 0 & -3 / 8 & 1 / 8 & 0\end{array}\right] \quad$ and $c=\left[\begin{array}{r}3 / 5 \\ 25 / 11 \\ -11 / 10 \\ 15 / 8\end{array}\right]$
and the iterative formulation for Jacobi method is

The numerical results of such iteration is list as follows:

Then $A x=b$ can be rewritten in the form $x=T x+c$ with
$T=\left[\begin{array}{rrrr}0 & 1 / 10 & -1 / 5 & 0 \\ 1 / 11 & 0 & 1 / 11 & -3 / 11 \\ -1 / 5 & 1 / 10 & 0 & 1 / 10 \\ 0 & -3 / 8 & 1 / 8 & 0\end{array}\right] \quad$ and $c=\left[\begin{array}{r}3 / 5 \\ 25 / 11 \\ -11 / 10 \\ 15 / 8\end{array}\right]$
and the iterative formulation for Jacobi method is

$$
x^{(k)}=T x^{(k-1)}+c \text { for } k=1,2, \ldots .
$$

The numerical results of such iteration is list as follows:

Then $A x=b$ can be rewritten in the form $x=T x+c$ with
$T=\left[\begin{array}{rrrr}0 & 1 / 10 & -1 / 5 & 0 \\ 1 / 11 & 0 & 1 / 11 & -3 / 11 \\ -1 / 5 & 1 / 10 & 0 & 1 / 10 \\ 0 & -3 / 8 & 1 / 8 & 0\end{array}\right]$ and $c=\left[\begin{array}{r}3 / 5 \\ 25 / 11 \\ -11 / 10 \\ 15 / 8\end{array}\right]$
and the iterative formulation for Jacobi method is

$$
x^{(k)}=T x^{(k-1)}+c \text { for } k=1,2, \ldots
$$

The numerical results of such iteration is list as follows:

k	x_{1}	x_{2}	x_{3}	x_{4}
0	0.0000	0.0000	0.0000	0.0000
1	0.6000	2.2727	-1.1000	1.8750
2	1.0473	1.7159	-0.8052	0.8852
3	0.9326	2.0533	-1.0493	1.1309
4	1.0152	1.9537	-0.9681	0.9738
5	0.9890	2.0114	-1.0103	1.0214
6	1.0032	1.9922	-0.9945	0.9944
7	0.9981	2.0023	-1.0020	1.0036
8	1.0006	1.9987	-0.9990	0.9989
9	0.9997	2.0004	-1.0004	1.0006
10	1.0001	1.9998	-0.9998	0.9998

Matlab code of Example

clear all; delete rslt.dat; diary rslt.dat; diary on;
$\mathrm{n}=4 ;$ xold $=$ zeros($\mathrm{n}, 1$); xnew $=$ zeros($\mathrm{n}, 1$); $\mathrm{T}=$ zeros($\mathrm{n}, \mathrm{n})$;
$\mathrm{T}(1,2)=1 / 10 ; \mathrm{T}(1,3)=-1 / 5 ; \mathrm{T}(2,1)=1 / 11$;
$\mathrm{T}(2,3)=1 / 11 ; \mathrm{T}(2,4)=-3 / 11 ; \mathrm{T}(3,1)=-1 / 5 ;$
$\mathrm{T}(3,2)=1 / 10 ; \mathrm{T}(3,4)=1 / 10 ; \mathrm{T}(4,2)=-3 / 8 ; \mathrm{T}(4,3)=1 / 8$;
$c(1,1)=3 / 5 ; c(2,1)=25 / 11 ; c(3,1)=-11 / 10 ; c(4,1)=15 / 8$;
xnew $=\mathrm{T}^{*}$ xold $+\mathrm{c} ; \mathrm{k}=0$;
fprintf(' $k \quad x 1 \quad$ x2 $x 3 \quad$ x4 4 ');
while ($\mathrm{k}<=100 \&$ norm (xnew-xold) $>1.0 \mathrm{~d}-14$)
xold $=$ xnew; xnew $=T$ * xold $+c ; k=k+1$; fprintf('\%3.0f ',k);
for $\mathrm{jj}=1: \mathrm{n}$
fprintf('\%5.4f ',xold(jj));
end
fprintf('\n');
end

Gauss-Seidel Method

When computing $x_{i}^{(k)}$ for $i>1, x_{1}^{(k)}, \ldots, x_{i-1}^{(k)}$ have already been computed
using these most recently computed values.

Gauss-Seidel Method

When computing $x_{i}^{(k)}$ for $i>1, x_{1}^{(k)}, \ldots, x_{i-1}^{(k)}$ have already been computed and are likely to be better approximations to the exact x_{1}, \ldots, x_{i-1} than $x_{1}^{(k-1)}, \ldots, x_{i-1}^{(k-1)}$.

Gauss-Seidel Method

When computing $x_{i}^{(k)}$ for $i>1, x_{1}^{(k)}, \ldots, x_{i-1}^{(k)}$ have already been computed and are likely to be better approximations to the exact x_{1}, \ldots, x_{i-1} than $x_{1}^{(k-1)}, \ldots, x_{i-1}^{(k-1)}$. It seems reasonable to compute $x_{i}^{(k)}$ using these most recently computed values.

Gauss-Seidel Method

When computing $x_{i}^{(k)}$ for $i>1, x_{1}^{(k)}, \ldots, x_{i-1}^{(k)}$ have already been computed and are likely to be better approximations to the exact x_{1}, \ldots, x_{i-1} than $x_{1}^{(k-1)}, \ldots, x_{i-1}^{(k-1)}$. It seems reasonable to compute $x_{i}^{(k)}$ using these most recently computed values. That is

$$
\begin{array}{ll}
a_{11} x_{1}^{(k)}+a_{12} x_{2}^{(k-1)}+a_{13} x_{3}^{(k-1)}+\cdots+a_{1 n} x_{n}^{(k-1)} & =b_{1} \\
a_{21} x_{1}^{(k)}+a_{22} x_{2}^{(k)}+a_{23} x_{3}^{(k-1)}+\cdots+a_{2 n} x_{n}^{(k-1)} & =b_{2} \\
a_{31} x_{1}^{(k)}+a_{32} x_{2}^{(k)}+a_{33} x_{3}^{(k)}+\cdots+a_{3 n} x_{n}^{(k-1)} & =b_{3} \\
& \vdots \\
a_{n 1} x_{1}^{(k)}+a_{n 2} x_{2}^{(k)}+a_{n 3} x_{3}^{(k)}+\cdots+a_{n n} x_{n}^{(k)} & =b_{n} .
\end{array}
$$

and defines the iteration

Gauss-Seidel Method

When computing $x_{i}^{(k)}$ for $i>1, x_{1}^{(k)}, \ldots, x_{i-1}^{(k)}$ have already been computed and are likely to be better approximations to the exact x_{1}, \ldots, x_{i-1} than $x_{1}^{(k-1)}, \ldots, x_{i-1}^{(k-1)}$. It seems reasonable to compute $x_{i}^{(k)}$ using these most recently computed values. That is

$$
\begin{array}{ll}
a_{11} x_{1}^{(k)}+a_{12} x_{2}^{(k-1)}+a_{13} x_{3}^{(k-1)}+\cdots+a_{1 n} x_{n}^{(k-1)} & =b_{1} \\
a_{21} x_{1}^{(k)}+a_{22} x_{2}^{(k)}+a_{23} x_{3}^{(k-1)}+\cdots+a_{2 n} x_{n}^{(k-1)} & =b_{2} \\
a_{31} x_{1}^{(k)}+a_{32} x_{2}^{(k)}+a_{33} x_{3}^{(k)}+\cdots+a_{3 n} x_{n}^{(k-1)} & =b_{3} \\
& \vdots \\
a_{n 1} x_{1}^{(k)}+a_{n 2} x_{2}^{(k)}+a_{n 3} x_{3}^{(k)}+\cdots+a_{n n} x_{n}^{(k)} & =b_{n} .
\end{array}
$$

This improvement induce the Gauss-Seidel method.

Gauss-Seidel Method

When computing $x_{i}^{(k)}$ for $i>1, x_{1}^{(k)}, \ldots, x_{i-1}^{(k)}$ have already been computed and are likely to be better approximations to the exact x_{1}, \ldots, x_{i-1} than $x_{1}^{(k-1)}, \ldots, x_{i-1}^{(k-1)}$. It seems reasonable to compute $x_{i}^{(k)}$ using these most recently computed values. That is

$$
\begin{array}{ll}
a_{11} x_{1}^{(k)}+a_{12} x_{2}^{(k-1)}+a_{13} x_{3}^{(k-1)}+\cdots+a_{1 n} x_{n}^{(k-1)} & =b_{1} \\
a_{21} x_{1}^{(k)}+a_{22} x_{2}^{(k)}+a_{23} x_{3}^{(k-1)}+\cdots+a_{2 n} x_{n}^{(k-1)} & =b_{2} \\
a_{31} x_{1}^{(k)}+a_{32} x_{2}^{(k)}+a_{33} x_{3}^{(k)}+\cdots+a_{3 n} x_{n}^{(k-1)} & =b_{3} \\
& \vdots \\
a_{n 1} x_{1}^{(k)}+a_{n 2} x_{2}^{(k)}+a_{n 3} x_{3}^{(k)}+\cdots+a_{n n} x_{n}^{(k)} & =b_{n} .
\end{array}
$$

This improvement induce the Gauss-Seidel method.
The Gauss-Seidel method sets $M=D+L$ and defines the iteration as

$$
x^{(k)}=-(D+L)^{-1} U x^{(k-1)}+(D+L)^{-1} b .
$$

That is, Gauss-Seidel method uses $T_{G}=-(D+L)^{-1} U$ as the iteration matrix.

That is, Gauss-Seidel method uses $T_{G}=-(D+L)^{-1} U$ as the iteration matrix. The formulation above can be rewritten as

$$
x^{(k)}=-D^{-1}\left(L x^{(k)}+U x^{(k-1)}-b\right) .
$$

That is, Gauss-Seidel method uses $T_{G}=-(D+L)^{-1} U$ as the iteration matrix. The formulation above can be rewritten as

$$
x^{(k)}=-D^{-1}\left(L x^{(k)}+U x^{(k-1)}-b\right) .
$$

Hence each component $x_{i}^{(k)}$ can be computed by

$$
x_{i}^{(k)}=\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}\right) / a_{i i} .
$$

That is, Gauss-Seidel method uses $T_{G}=-(D+L)^{-1} U$ as the iteration matrix. The formulation above can be rewritten as

$$
x^{(k)}=-D^{-1}\left(L x^{(k)}+U x^{(k-1)}-b\right) .
$$

Hence each component $x_{i}^{(k)}$ can be computed by

$$
x_{i}^{(k)}=\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}\right) / a_{i i} .
$$

- For Jacobi method, only the components of $x^{(k-1)}$ are used to compute $x^{(k)}$. Hence $x_{i}^{(k)}, i=1, \ldots, n$, can be computed in parallel at each iteration k.
\qquad
\qquad

That is, Gauss-Seidel method uses $T_{G}=-(D+L)^{-1} U$ as the iteration matrix. The formulation above can be rewritten as

$$
x^{(k)}=-D^{-1}\left(L x^{(k)}+U x^{(k-1)}-b\right) .
$$

Hence each component $x_{i}^{(k)}$ can be computed by

$$
x_{i}^{(k)}=\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}\right) / a_{i i} .
$$

- For Jacobi method, only the components of $x^{(k-1)}$ are used to compute $x^{(k)}$. Hence $x_{i}^{(k)}, i=1, \ldots, n$, can be computed in parallel at each iteration k.
- At each iteration of Gauss-Seidel method, since $x_{i}^{(k)}$ can not be computed until $x_{1}^{(k)}, \ldots, x_{i-1}^{(k)}$ are available, the method is not a parallel algorithm in nature.

Algorithm 2 (Gauss-Seidel Method)

Given $x^{(0)}$, tolerance $T O L$, maximum number of iteration M. Set $k=1$.
For $i=1,2, \ldots, n$

$$
x_{i}=\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(0)}\right) / a_{i i}
$$

End For

While $k \leq M$ and $\left\|x-x^{(0)}\right\|_{2} \geq T O L$
Set $k=k+1, x^{(0)}=x$.
For $i=1,2, \ldots, n$

$$
x_{i}=\left(b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(0)}\right) / a_{i i}
$$

End For

End While

Example 19

Consider the linear system $A x=b$ given by

$$
\begin{array}{lrlllll}
E_{1}: & 10 x_{1} & -x_{2}+2 x_{3} & & 6, \\
E_{2}: & -x_{1} & +11 x_{2} & -x_{3}+3 x_{4} & = & 25, \\
E_{3}: & 2 x_{1} & -x_{2}+10 x_{3}-x_{4} & = & -11, \\
E_{4}: & & 3 x_{2} & -x_{3}+8 x_{4} & =15
\end{array}
$$

which has the unique solution $x=[1,2,-1,1]^{T}$.

Gauss-Seidel method gives the equation

Example 19

Consider the linear system $A x=b$ given by

$$
\begin{array}{lrlllll}
E_{1}: & 10 x_{1} & -x_{2}+2 x_{3} & & 6, \\
E_{2}: & -x_{1} & +11 x_{2} & -x_{3}+3 x_{4} & = & 25, \\
E_{3}: & 2 x_{1} & -x_{2}+10 x_{3}-x_{4} & = & -11, \\
E_{4}: & & 3 x_{2} & -x_{3}+8 x_{4} & =15
\end{array}
$$

which has the unique solution $x=[1,2,-1,1]^{T}$.
Gauss-Seidel method gives the equation

$$
\left.\begin{array}{rlllllll}
x_{1}^{(k)} & = & & \frac{1}{10} x_{2}^{(k-1)} & -\frac{1}{5} x_{3}^{(k-1)} & & & \frac{3}{5}, \\
x_{2}^{(k)} & = & \frac{1}{11} x_{1}^{(k)} & & & +\frac{1}{11} x_{3}^{(k-1)} & -\frac{3}{11} x_{4}^{(k-1)} & +\frac{25}{11}, \\
x_{3}^{(k)} & = & -\frac{1}{5} x_{1}^{(k)} & + & \frac{1}{10} x_{2}^{(k)} & & & +\frac{1}{10} x_{4}^{(k-1)}
\end{array}\right)-\frac{11}{10},
$$

The numerical results of such iteration is list as follows:

	x_{1}	x_{2}	x_{3}	x_{4}
0	0.0000	0.0000	0.0000	0.0000
1	0.6000	2.3273	-0.9873	0.8789
2	1.0302	2.0369	-1.0145	0.9843
3	1.0066	2.0036	-1.0025	0.9984
4	1.0009	2.0003	-1.0003	0.9998
5	1.0001	2.0000	-1.0000	1.0000

The numerical results of such iteration is list as follows:

	x_{1}	x_{2}	x_{3}	x_{4}
0	0.0000	0.0000	0.0000	0.0000
1	0.6000	2.3273	-0.9873	0.8789
2	1.0302	2.0369	-1.0145	0.9843
3	1.0066	2.0036	-1.0025	0.9984
4	1.0009	2.0003	-1.0003	0.9998
5	1.0001	2.0000	-1.0000	1.0000

- The results of Example appear to imply that the Gauss-Seidel method is superior to the Jacobi method.
\qquad
\square

The numerical results of such iteration is list as follows:

k	x_{1}	x_{2}	x_{3}	x_{4}
0	0.0000	0.0000	0.0000	0.0000
1	0.6000	2.3273	-0.9873	0.8789
2	1.0302	2.0369	-1.0145	0.9843
3	1.0066	2.0036	-1.0025	0.9984
4	1.0009	2.0003	-1.0003	0.9998
5	1.0001	2.0000	-1.0000	1.0000

- The results of Example appear to imply that the Gauss-Seidel method is superior to the Jacobi method.
- This is almost always true, but there are linear systems for which the Jacobi method converges and the Gauss-Seidel method does not.

The numerical results of such iteration is list as follows:

k	x_{1}	x_{2}	x_{3}	x_{4}
0	0.0000	0.0000	0.0000	0.0000
1	0.6000	2.3273	-0.9873	0.8789
2	1.0302	2.0369	-1.0145	0.9843
3	1.0066	2.0036	-1.0025	0.9984
4	1.0009	2.0003	-1.0003	0.9998
5	1.0001	2.0000	-1.0000	1.0000

- The results of Example appear to imply that the Gauss-Seidel method is superior to the Jacobi method.
- This is almost always true, but there are linear systems for which the Jacobi method converges and the Gauss-Seidel method does not.
- See Exercises 17 and 18 (8th edition).

Matlab code of Example

```
clear all; delete rslt.dat; diary rslt.dat; diary on;
n=4; xold = zeros(n,1); xnew = zeros(n,1);A = zeros(n,n);
A(1,1)=10;A(1,2)=-1;A(1,3)=2;A(2,1)=-1;A(2,2)=11;A(2,3)=-1;A(2,4)=3;A(3,1)=2;A(3,2)=-1;
A(3,3)=10;A(3,4)=-1;A(4,2)=3;A(4,3)=-1;A(4,4)=8;b(1)=6;b(2)=25;b(3)=-11;b(4)=15;
for ii = 1:n
    xnew(ii) = b(ii);
    for jj = 1:ii-1
        xnew(ii) = xnew(ii) - A(ii,jj) * xnew(jj);
    end
    for jj = ii+1:n
        xnew(ii) = xnew(ii) - A(ii,jj) * xold(jj);
    end
    xnew(ii) = xnew(ii) / A(ii,ii);
end
k=0; fprintf(' k x1 x2 x3 x4 \n');
while ( }k<=100&\mathrm{ norm(xnew-xold) > 1.0d-14 )
    xold = xnew; k=k + 1;
    for ii = 1:n
        xnew(ii) = b(ii);
        for jj = 1:ii-1
            xnew(ii) = xnew(ii) - A(ii,jj) * xnew(jj);
        end
        for jj = ii+1:n
            xnew(ii) = xnew(ii) - A(ii,jj) * xold(jj);
        end
        xnew(ii) = xnew(ii) / A(ii,ii);
    end
    fprintf('%3.0f ',k);
    for jj = 1:n
        fprintf('%5.4f ',xold(jj));
    end
    fprintf('\n');
```

end

Lemma 20

If $\rho(T)<1$, then $(I-T)^{-1}$ exists and

$$
(I-T)^{-1}=\sum_{i=0}^{\infty} T^{i}=I+T+T^{2}+\cdots .
$$

Proof: Let λ be an eigenvalue of T, then $1-\lambda$ is an eigenvalue of $I-T$. But $|\lambda|<\rho(A)<1$, so $1-\lambda \neq 0$ and 0 is not an eigenvalue of $I-T$

Lemma 20

If $\rho(T)<1$, then $(I-T)^{-1}$ exists and

$$
(I-T)^{-1}=\sum_{i=0}^{\infty} T^{i}=I+T+T^{2}+\cdots
$$

Proof: Let λ be an eigenvalue of T, then $1-\lambda$ is an eigenvalue of $I-T$.
eigenvalue of $I-T$, which means $(I-T)$ is nonsingular.

Lemma 20

If $\rho(T)<1$, then $(I-T)^{-1}$ exists and

$$
(I-T)^{-1}=\sum_{i=0}^{\infty} T^{i}=I+T+T^{2}+\cdots
$$

Proof: Let λ be an eigenvalue of T, then $1-\lambda$ is an eigenvalue of $I-T$. But $|\lambda| \leq \rho(A)<1$, so $1-\lambda \neq 0$ and 0 is not an eigenvalue of $I-T$,

Lemma 20

If $\rho(T)<1$, then $(I-T)^{-1}$ exists and

$$
(I-T)^{-1}=\sum_{i=0}^{\infty} T^{i}=I+T+T^{2}+\cdots
$$

Proof: Let λ be an eigenvalue of T, then $1-\lambda$ is an eigenvalue of $I-T$. But $|\lambda| \leq \rho(A)<1$, so $1-\lambda \neq 0$ and 0 is not an eigenvalue of $I-T$, which means $(I-T)$ is nonsingular.

Lemma 20

If $\rho(T)<1$, then $(I-T)^{-1}$ exists and

$$
(I-T)^{-1}=\sum_{i=0}^{\infty} T^{i}=I+T+T^{2}+\cdots
$$

Proof: Let λ be an eigenvalue of T, then $1-\lambda$ is an eigenvalue of $I-T$. But $|\lambda| \leq \rho(A)<1$, so $1-\lambda \neq 0$ and 0 is not an eigenvalue of $I-T$, which means $(I-T)$ is nonsingular. Next we show that $(I-T)^{-1}=I+T+T^{2}+\cdots$.

Lemma 20

If $\rho(T)<1$, then $(I-T)^{-1}$ exists and

$$
(I-T)^{-1}=\sum_{i=0}^{\infty} T^{i}=I+T+T^{2}+\cdots
$$

Proof: Let λ be an eigenvalue of T, then $1-\lambda$ is an eigenvalue of $I-T$. But $|\lambda| \leq \rho(A)<1$, so $1-\lambda \neq 0$ and 0 is not an eigenvalue of $I-T$, which means $(I-T)$ is nonsingular. Next we show that $(I-T)^{-1}=I+T+T^{2}+\cdots$. Since

$$
(I-T)\left(\sum_{i=0}^{m} T^{i}\right)=I-T^{m+1}
$$

and $\rho(T)<1$ implies

Lemma 20

If $\rho(T)<1$, then $(I-T)^{-1}$ exists and

$$
(I-T)^{-1}=\sum_{i=0}^{\infty} T^{i}=I+T+T^{2}+\cdots
$$

Proof: Let λ be an eigenvalue of T, then $1-\lambda$ is an eigenvalue of $I-T$. But $|\lambda| \leq \rho(A)<1$, so $1-\lambda \neq 0$ and 0 is not an eigenvalue of $I-T$, which means $(I-T)$ is nonsingular. Next we show that $(I-T)^{-1}=I+T+T^{2}+\cdots$. Since

$$
(I-T)\left(\sum_{i=0}^{m} T^{i}\right)=I-T^{m+1}
$$

and $\rho(T)<1$ implies $\left\|T^{m}\right\| \rightarrow 0$ as $m \rightarrow \infty$,

Lemma 20

If $\rho(T)<1$, then $(I-T)^{-1}$ exists and

$$
(I-T)^{-1}=\sum_{i=0}^{\infty} T^{i}=I+T+T^{2}+\cdots
$$

Proof: Let λ be an eigenvalue of T, then $1-\lambda$ is an eigenvalue of $I-T$. But $|\lambda| \leq \rho(A)<1$, so $1-\lambda \neq 0$ and 0 is not an eigenvalue of $I-T$, which means $(I-T)$ is nonsingular. Next we show that $(I-T)^{-1}=I+T+T^{2}+\cdots$. Since

$$
(I-T)\left(\sum_{i=0}^{m} T^{i}\right)=I-T^{m+1}
$$

and $\rho(T)<1$ implies $\left\|T^{m}\right\| \rightarrow 0$ as $m \rightarrow \infty$, we have

$$
(I-T)\left(\lim _{m \rightarrow \infty} \sum_{i=0}^{m} T^{i}\right)=(I-T)\left(\sum_{i=0}^{\infty} T^{i}\right)=I
$$

Theorem 21

For any $x^{(0)} \in \mathbb{R}^{n}$, the sequence produced by

$$
x^{(k)}=T x^{(k-1)}+c, \quad k=1,2, \ldots,
$$

converges to the unique solution of $x=T x+c$ if and only if

$$
\rho(T)<1 .
$$

Proof: Suppose $\rho(T)<1$. The sequence of vectors

 the iterative formulation are
Theorem 21

For any $x^{(0)} \in \mathbb{R}^{n}$, the sequence produced by

$$
x^{(k)}=T x^{(k-1)}+c, \quad k=1,2, \ldots,
$$

converges to the unique solution of $x=T x+c$ if and only if

$$
\rho(T)<1 .
$$

Proof: Suppose $\rho(T)<1$.

Theorem 21

For any $x^{(0)} \in \mathbb{R}^{n}$, the sequence produced by

$$
x^{(k)}=T x^{(k-1)}+c, \quad k=1,2, \ldots,
$$

converges to the unique solution of $x=T x+c$ if and only if

$$
\rho(T)<1 .
$$

Proof: Suppose $\rho(T)<1$. The sequence of vectors $x^{(k)}$ produced by the iterative formulation are

$$
\begin{aligned}
& x^{(1)}=T x^{(0)}+c \\
& x^{(2)}=T x^{(1)}+c=T^{2} x^{(0)}+(T+I) c \\
& x^{(3)}=T x^{(2)}+c=T^{3} x^{(0)}+\left(T^{2}+T+I\right) c
\end{aligned}
$$

Theorem 21

For any $x^{(0)} \in \mathbb{R}^{n}$, the sequence produced by

$$
x^{(k)}=T x^{(k-1)}+c, \quad k=1,2, \ldots,
$$

converges to the unique solution of $x=T x+c$ if and only if

$$
\rho(T)<1 .
$$

Proof: Suppose $\rho(T)<1$. The sequence of vectors $x^{(k)}$ produced by the iterative formulation are

$$
\begin{aligned}
x^{(1)} & =T x^{(0)}+c \\
x^{(2)} & =T x^{(1)}+c=T^{2} x^{(0)}+(T+I) c \\
x^{(3)} & =T x^{(2)}+c=T^{3} x^{(0)}+\left(T^{2}+T+I\right) c \\
& \vdots
\end{aligned}
$$

In general

$$
x^{(k)}=T^{k} x^{(0)}+\left(T^{k-1}+T^{k-2}+\cdots+T+I\right) c .
$$

Since $\rho(T)<1, \lim _{k \rightarrow \infty} T^{k} x^{(0)}=0$ for any $x^{(0)} \in \mathbb{R}^{n}$.

Since $\rho(T)<1, \lim _{k \rightarrow \infty} T^{k} x^{(0)}=0$ for any $x^{(0)} \in \mathbb{R}^{n}$. By Lemma 20,

$$
\left(T^{k-1}+T^{k-2}+\cdots+T+I\right) c \rightarrow(I-T)^{-1} c, \quad \text { as } \quad k \rightarrow \infty .
$$

Since $\rho(T)<1, \lim _{k \rightarrow \infty} T^{k} x^{(0)}=0$ for any $x^{(0)} \in \mathbb{R}^{n}$. By Lemma 20,

$$
\left(T^{k-1}+T^{k-2}+\cdots+T+I\right) c \rightarrow(I-T)^{-1} c, \quad \text { as } \quad k \rightarrow \infty .
$$

Therefore

$$
\lim _{k \rightarrow \infty} x^{(k)}=\lim _{k \rightarrow \infty} T^{k} x^{(0)}+\left(\sum_{j=0}^{\infty} T^{j}\right) c=(I-T)^{-1} c .
$$

Since $\rho(T)<1, \lim _{k \rightarrow \infty} T^{k} x^{(0)}=0$ for any $x^{(0)} \in \mathbb{R}^{n}$. By Lemma 20,

$$
\left(T^{k-1}+T^{k-2}+\cdots+T+I\right) c \rightarrow(I-T)^{-1} c, \quad \text { as } \quad k \rightarrow \infty .
$$

Therefore

$$
\lim _{k \rightarrow \infty} x^{(k)}=\lim _{k \rightarrow \infty} T^{k} x^{(0)}+\left(\sum_{j=0}^{\infty} T^{j}\right) c=(I-T)^{-1} c .
$$

Conversely, suppose $\left\{x^{(k)}\right\} \rightarrow x=(I-T)^{-1} c$.

Since $\rho(T)<1, \lim _{k \rightarrow \infty} T^{k} x^{(0)}=0$ for any $x^{(0)} \in \mathbb{R}^{n}$. By Lemma 20,

$$
\left(T^{k-1}+T^{k-2}+\cdots+T+I\right) c \rightarrow(I-T)^{-1} c, \quad \text { as } \quad k \rightarrow \infty .
$$

Therefore

$$
\lim _{k \rightarrow \infty} x^{(k)}=\lim _{k \rightarrow \infty} T^{k} x^{(0)}+\left(\sum_{j=0}^{\infty} T^{j}\right) c=(I-T)^{-1} c .
$$

Conversely, suppose $\left\{x^{(k)}\right\} \rightarrow x=(I-T)^{-1} c$. Since

$$
\begin{aligned}
x-x^{(k)} & =T x+c-T x^{(k-1)}-c=T\left(x-x^{(k-1)}\right)=T^{2}\left(x-x^{(k-2)}\right) \\
& =\cdots=T^{k}\left(x-x^{(0)}\right)
\end{aligned}
$$

Since $\rho(T)<1, \lim _{k \rightarrow \infty} T^{k} x^{(0)}=0$ for any $x^{(0)} \in \mathbb{R}^{n}$. By Lemma 20,

$$
\left(T^{k-1}+T^{k-2}+\cdots+T+I\right) c \rightarrow(I-T)^{-1} c, \quad \text { as } \quad k \rightarrow \infty .
$$

Therefore

$$
\lim _{k \rightarrow \infty} x^{(k)}=\lim _{k \rightarrow \infty} T^{k} x^{(0)}+\left(\sum_{j=0}^{\infty} T^{j}\right) c=(I-T)^{-1} c .
$$

Conversely, suppose $\left\{x^{(k)}\right\} \rightarrow x=(I-T)^{-1} c$. Since

$$
\begin{aligned}
x-x^{(k)} & =T x+c-T x^{(k-1)}-c=T\left(x-x^{(k-1)}\right)=T^{2}\left(x-x^{(k-2)}\right) \\
& =\cdots=T^{k}\left(x-x^{(0)}\right)
\end{aligned}
$$

Let $z=x-x^{(0)}$.

Since $\rho(T)<1, \lim _{k \rightarrow \infty} T^{k} x^{(0)}=0$ for any $x^{(0)} \in \mathbb{R}^{n}$. By Lemma 20,

$$
\left(T^{k-1}+T^{k-2}+\cdots+T+I\right) c \rightarrow(I-T)^{-1} c, \quad \text { as } \quad k \rightarrow \infty .
$$

Therefore

$$
\lim _{k \rightarrow \infty} x^{(k)}=\lim _{k \rightarrow \infty} T^{k} x^{(0)}+\left(\sum_{j=0}^{\infty} T^{j}\right) c=(I-T)^{-1} c .
$$

Conversely, suppose $\left\{x^{(k)}\right\} \rightarrow x=(I-T)^{-1} c$. Since

$$
\begin{aligned}
x-x^{(k)} & =T x+c-T x^{(k-1)}-c=T\left(x-x^{(k-1)}\right)=T^{2}\left(x-x^{(k-2)}\right) \\
& =\cdots=T^{k}\left(x-x^{(0)}\right) .
\end{aligned}
$$

Let $z=x-x^{(0)}$. Then

$$
\lim _{k \rightarrow \infty} T^{k} z=\lim _{k \rightarrow \infty}\left(x-x^{(k)}\right)=0
$$

It follows from theorem $\rho(T)<1$.

Theorem 22

If $\|T\|<1$, then the sequence $x^{(k)}$ converges to x for any initial $x^{(0)}$ and
(1) $\left\|x-x^{(k)}\right\| \leq\|T\|^{k}\left\|x-x^{(0)}\right\|$
(2) $\left\|x-x^{(k)}\right\| \leq \frac{\|T\|^{k}}{1-\|T\|}\left\|x^{(1)}-x^{(0)}\right\|$.

Proof: Since

Theorem 22

If $\|T\|<1$, then the sequence $x^{(k)}$ converges to x for any initial $x^{(0)}$ and
(1) $\left\|x-x^{(k)}\right\| \leq\|T\|^{k}\left\|x-x^{(0)}\right\|$
(2) $\left\|x-x^{(k)}\right\| \leq \frac{\|T\|^{k}}{1-\|T\|}\left\|x^{(1)}-x^{(0)}\right\|$.

Proof: Since $x=T x+c$ and $x^{(k)}=T x^{(k-1)}+c$,

Theorem 22

If $\|T\|<1$, then the sequence $x^{(k)}$ converges to x for any initial $x^{(0)}$ and
(1) $\left\|x-x^{(k)}\right\| \leq\|T\|^{k}\left\|x-x^{(0)}\right\|$
(2) $\left\|x-x^{(k)}\right\| \leq \frac{\|T\|^{k}}{1-\|T\|}\left\|x^{(1)}-x^{(0)}\right\|$.

Proof: Since $x=T x+c$ and $x^{(k)}=T x^{(k-1)}+c$,

$$
\begin{aligned}
x-x^{(k)} & =T x+c-T x^{(k-1)}-c \\
& =T\left(x-x^{(k-1)}\right) \\
& =T^{2}\left(x-x^{(k-2)}\right)=\cdots=T^{k}\left(x-x^{(0)}\right) .
\end{aligned}
$$

The first statement can then be derived

For the second result, we first show that

Theorem 22

If $\|T\|<1$, then the sequence $x^{(k)}$ converges to x for any initial $x^{(0)}$ and
(1) $\left\|x-x^{(k)}\right\| \leq\|T\|^{k}\left\|x-x^{(0)}\right\|$
(2) $\left\|x-x^{(k)}\right\| \leq \frac{\|T\|^{k}}{1-\|T\|}\left\|x^{(1)}-x^{(0)}\right\|$.

Proof: Since $x=T x+c$ and $x^{(k)}=T x^{(k-1)}+c$,

$$
\begin{aligned}
x-x^{(k)} & =T x+c-T x^{(k-1)}-c \\
& =T\left(x-x^{(k-1)}\right) \\
& =T^{2}\left(x-x^{(k-2)}\right)=\cdots=T^{k}\left(x-x^{(0)}\right) .
\end{aligned}
$$

The first statement can then be derived

$$
\left\|x-x^{(k)}\right\|=\left\|T^{k}\left(x-x^{(0)}\right)\right\| \leq\|T\|^{k}\left\|x-x^{(0)}\right\| .
$$

For the second result, we first show that

Theorem 22

If $\|T\|<1$, then the sequence $x^{(k)}$ converges to x for any initial
$x^{(0)}$ and
(1) $\left\|x-x^{(k)}\right\| \leq\|T\|^{k}\left\|x-x^{(0)}\right\|$
(2) $\left\|x-x^{(k)}\right\| \leq \frac{\|T\|^{k}}{1-\|T\|}\left\|x^{(1)}-x^{(0)}\right\|$.

Proof: Since $x=T x+c$ and $x^{(k)}=T x^{(k-1)}+c$,

$$
\begin{aligned}
x-x^{(k)} & =T x+c-T x^{(k-1)}-c \\
& =T\left(x-x^{(k-1)}\right) \\
& =T^{2}\left(x-x^{(k-2)}\right)=\cdots=T^{k}\left(x-x^{(0)}\right) .
\end{aligned}
$$

The first statement can then be derived

$$
\left\|x-x^{(k)}\right\|=\left\|T^{k}\left(x-x^{(0)}\right)\right\| \leq\|T\|^{k}\left\|x-x^{(0)}\right\| .
$$

For the second result, we first show that

$$
\left\|x^{(n)}-x^{(n-1)}\right\| \leq\|T\|^{n-1}\left\|x^{(1)}-x^{(0)}\right\| \text { for any } n \geq 1
$$

Since

$$
\begin{aligned}
x^{(n)}-x^{(n-1)} & =T x^{(n-1)}+c-T x^{(n-2)}-c \\
& =T\left(x^{(n-1)}-x^{(n-2)}\right) \\
& =T^{2}\left(x^{(n-2)}-x^{(n-3)}\right)=\cdots=T^{n-1}\left(x^{(1)}-x^{(0)}\right)
\end{aligned}
$$

Since

$$
\begin{aligned}
x^{(n)}-x^{(n-1)} & =T x^{(n-1)}+c-T x^{(n-2)}-c \\
& =T\left(x^{(n-1)}-x^{(n-2)}\right) \\
& =T^{2}\left(x^{(n-2)}-x^{(n-3)}\right)=\cdots=T^{n-1}\left(x^{(1)}-x^{(0)}\right)
\end{aligned}
$$

we have

$$
\left\|x^{(n)}-x^{(n-1)}\right\| \leq\|T\|^{n-1}\left\|x^{(1)}-x^{(0)}\right\|
$$

Since

$$
\begin{aligned}
x^{(n)}-x^{(n-1)} & =T x^{(n-1)}+c-T x^{(n-2)}-c \\
& =T\left(x^{(n-1)}-x^{(n-2)}\right) \\
& =T^{2}\left(x^{(n-2)}-x^{(n-3)}\right)=\cdots=T^{n-1}\left(x^{(1)}-x^{(0)}\right)
\end{aligned}
$$

we have

$$
\left\|x^{(n)}-x^{(n-1)}\right\| \leq\|T\|^{n-1}\left\|x^{(1)}-x^{(0)}\right\|
$$

Let $m \geq k$,

$$
\begin{aligned}
& x^{(m)}-x^{(k)} \\
= & \left(x^{(m)}-x^{(m-1)}\right)+\left(x^{(m-1)}-x^{(m-2)}\right)+\cdots+\left(x^{(k+1)}-x^{(k)}\right) \\
= & T^{m-1}\left(x^{(1)}-x^{(0)}\right)+T^{m-2}\left(x^{(1)}-x^{(0)}\right)+\cdots+T^{k}\left(x^{(1)}-x^{(0)}\right) \\
= & \left(T^{m-1}+T^{m-2}+\cdots+T^{k}\right)\left(x^{(1)}-x^{(0)}\right)
\end{aligned}
$$

hence

$$
\begin{aligned}
& \left\|x^{(m)}-x^{(k)}\right\| \\
\leq & \left(\|T\|^{m-1}+\|T\|^{m-2}+\cdots+\|T\|^{k}\right)\left\|x^{(1)}-x^{(0)}\right\| \\
= & \|T\|^{k}\left(\|T\|^{m-k-1}+\|T\|^{m-k-2}+\cdots+1\right)\left\|x^{(1)}-x^{(0)}\right\| .
\end{aligned}
$$

hence

$$
\begin{aligned}
& \left\|x^{(m)}-x^{(k)}\right\| \\
\leq & \left(\|T\|^{m-1}+\|T\|^{m-2}+\cdots+\|T\|^{k}\right)\left\|x^{(1)}-x^{(0)}\right\| \\
= & \|T\|^{k}\left(\|T\|^{m-k-1}+\|T\|^{m-k-2}+\cdots+1\right)\left\|x^{(1)}-x^{(0)}\right\|
\end{aligned}
$$

Since $\lim _{m \rightarrow \infty} x^{(m)}=x$,

hence

$$
\begin{aligned}
& \left\|x^{(m)}-x^{(k)}\right\| \\
\leq & \left(\|T\|^{m-1}+\|T\|^{m-2}+\cdots+\|T\|^{k}\right)\left\|x^{(1)}-x^{(0)}\right\| \\
= & \|T\|^{k}\left(\|T\|^{m-k-1}+\|T\|^{m-k-2}+\cdots+1\right)\left\|x^{(1)}-x^{(0)}\right\| .
\end{aligned}
$$

Since $\lim _{m \rightarrow \infty} x^{(m)}=x$,

$$
\begin{aligned}
& \left\|x-x^{(k)}\right\| \\
= & \lim _{m \rightarrow \infty}\left\|x^{(m)}-x^{(k)}\right\| \\
\leq & \lim _{m \rightarrow \infty}\|T\|^{k}\left(\|T\|^{m-k-1}+\|T\|^{m-k-2}+\cdots+1\right)\left\|x^{(1)}-x^{(0)}\right\| \\
= & \|T\|^{k}\left\|x^{(1)}-x^{(0)}\right\| \lim _{m \rightarrow \infty}\left(\|T\|^{m-k-1}+\|T\|^{m-k-2}+\cdots+1\right) \\
= & \|T\|^{k} \frac{1}{1-\|T\|}\left\|x^{(1)}-x^{(0)}\right\| .
\end{aligned}
$$

hence

$$
\begin{aligned}
& \left\|x^{(m)}-x^{(k)}\right\| \\
\leq & \left(\|T\|^{m-1}+\|T\|^{m-2}+\cdots+\|T\|^{k}\right)\left\|x^{(1)}-x^{(0)}\right\| \\
= & \|T\|^{k}\left(\|T\|^{m-k-1}+\|T\|^{m-k-2}+\cdots+1\right)\left\|x^{(1)}-x^{(0)}\right\|
\end{aligned}
$$

Since $\lim _{m \rightarrow \infty} x^{(m)}=x$,

$$
\begin{aligned}
& \left\|x-x^{(k)}\right\| \\
= & \lim _{m \rightarrow \infty}\left\|x^{(m)}-x^{(k)}\right\| \\
\leq & \lim _{m \rightarrow \infty}\|T\|^{k}\left(\|T\|^{m-k-1}+\|T\|^{m-k-2}+\cdots+1\right)\left\|x^{(1)}-x^{(0)}\right\| \\
= & \|T\|^{k}\left\|x^{(1)}-x^{(0)}\right\| \lim _{m \rightarrow \infty}\left(\|T\|^{m-k-1}+\|T\|^{m-k-2}+\cdots+1\right) \\
= & \|T\|^{k} \frac{1}{1-\|T\|}\left\|x^{(1)}-x^{(0)}\right\| .
\end{aligned}
$$

This proves the second result.

Theorem 23

If A is strictly diagonal dominant, then both the Jacobi and Gauss-Seidel methods converges for any initial vector $x^{(0)}$.

Theorem 23

If A is strictly diagonal dominant, then both the Jacobi and Gauss-Seidel methods converges for any initial vector $x^{(0)}$.

Proof: By assumption, A is strictly diagonal dominant, hence $a_{i i} \neq 0$ (otherwise A is singular)

For Jacobi method, the iteration matrix T_{J} entries

Theorem 23

If A is strictly diagonal dominant, then both the Jacobi and Gauss-Seidel methods converges for any initial vector $x^{(0)}$.

Proof: By assumption, A is strictly diagonal dominant, hence $a_{i i} \neq 0$ (otherwise A is singular) and

$$
\left|a_{i i}\right|>\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|, \quad i=1,2, \ldots, n .
$$

For Jacobi method, the iteration matrix ?
entries

Hence

Theorem 23

If A is strictly diagonal dominant, then both the Jacobi and Gauss-Seidel methods converges for any initial vector $x^{(0)}$.

Proof: By assumption, A is strictly diagonal dominant, hence $a_{i i} \neq 0$ (otherwise A is singular) and

$$
\left|a_{i i}\right|>\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|, \quad i=1,2, \ldots, n .
$$

For Jacobi method, the iteration matrix $T_{J}=-D^{-1}(L+U)$ has entries

$$
\left[T_{J J}\right]_{i j}= \begin{cases}-\frac{a_{i j}}{a_{i i}}, & i \neq j, \\ 0, & i=j .\end{cases}
$$

Theorem 23

If A is strictly diagonal dominant, then both the Jacobi and Gauss-Seidel methods converges for any initial vector $x^{(0)}$.

Proof: By assumption, A is strictly diagonal dominant, hence $a_{i i} \neq 0$ (otherwise A is singular) and

$$
\left|a_{i i}\right|>\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|, \quad i=1,2, \ldots, n .
$$

For Jacobi method, the iteration matrix $T_{J}=-D^{-1}(L+U)$ has entries

$$
\left[T_{J}\right]_{i j}= \begin{cases}-\frac{a_{i j}}{a_{i i}}, & i \neq j, \\ 0, & i=j\end{cases}
$$

Hence

$$
\left\|T_{J}\right\|_{\infty}=\max _{1 \leq i \leq n} \sum_{j=1, j \neq i}^{n}\left|\frac{a_{i j}}{a_{i i}}\right|=\max _{1 \leq i \leq n} \frac{1}{\left|a_{i i}\right|} \sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|<1,
$$

Theorem 23

If A is strictly diagonal dominant, then both the Jacobi and Gauss-Seidel methods converges for any initial vector $x^{(0)}$.

Proof: By assumption, A is strictly diagonal dominant, hence $a_{i i} \neq 0$ (otherwise A is singular) and

$$
\left|a_{i i}\right|>\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|, \quad i=1,2, \ldots, n .
$$

For Jacobi method, the iteration matrix $T_{J}=-D^{-1}(L+U)$ has entries

$$
\left[T_{J}\right]_{i j}= \begin{cases}-\frac{a_{i j}}{a_{i i}}, & i \neq j, \\ 0, & i=j\end{cases}
$$

Hence

$$
\left\|T_{J}\right\|_{\infty}=\max _{1 \leq i \leq n} \sum_{j=1, j \neq i}^{n}\left|\frac{a_{i j}}{a_{i i}}\right|=\max _{1 \leq i \leq n} \frac{1}{\left|a_{i i}\right|} \sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|<1,
$$

and this implies that the Jacobi method converges.

For Gauss-Seidel method, the iteration matrix $T_{G}=-(D+L)^{-1} U$.

For Gauss-Seidel method, the iteration matrix
$T_{G}=-(D+L)^{-1} U$. Let λ be any eigenvalue of T_{G} and y, $\|y\|_{\infty}=1$, is a corresponding eigenvector.

For Gauss-Seidel method, the iteration matrix
$T_{G}=-(D+L)^{-1} U$. Let λ be any eigenvalue of T_{G} and y, $\|y\|_{\infty}=1$, is a corresponding eigenvector. Thus

$$
T_{G} y=\lambda y \quad \Longrightarrow \quad-U y=\lambda(D+L) y
$$

For Gauss-Seidel method, the iteration matrix
$T_{G}=-(D+L)^{-1} U$. Let λ be any eigenvalue of T_{G} and y, $\|y\|_{\infty}=1$, is a corresponding eigenvector. Thus

$$
T_{G} y=\lambda y \quad \Longrightarrow \quad-U y=\lambda(D+L) y .
$$

Hence for $i=1, \ldots, n$,

$$
-\sum_{j=i+1}^{n} a_{i j} y_{j}=\lambda a_{i i} y_{i}+\lambda \sum_{j=1}^{i-1} a_{i j} y_{j} .
$$

For Gauss-Seidel method, the iteration matrix
$T_{G}=-(D+L)^{-1} U$. Let λ be any eigenvalue of T_{G} and y, $\|y\|_{\infty}=1$, is a corresponding eigenvector. Thus

$$
T_{G} y=\lambda y \quad \Longrightarrow \quad-U y=\lambda(D+L) y .
$$

Hence for $i=1, \ldots, n$,

$$
-\sum_{j=i+1}^{n} a_{i j} y_{j}=\lambda a_{i i} y_{i}+\lambda \sum_{j=1}^{i-1} a_{i j} y_{j} .
$$

This gives

$$
\lambda a_{i i} y_{i}=-\lambda \sum_{j=1}^{i-1} a_{i j} y_{j}-\sum_{j=i+1}^{n} a_{i j} y_{j}
$$

For Gauss-Seidel method, the iteration matrix
$T_{G}=-(D+L)^{-1} U$. Let λ be any eigenvalue of T_{G} and y, $\|y\|_{\infty}=1$, is a corresponding eigenvector. Thus

$$
T_{G} y=\lambda y \quad \Longrightarrow \quad-U y=\lambda(D+L) y .
$$

Hence for $i=1, \ldots, n$,

$$
-\sum_{j=i+1}^{n} a_{i j} y_{j}=\lambda a_{i i} y_{i}+\lambda \sum_{j=1}^{i-1} a_{i j} y_{j} .
$$

This gives

$$
\lambda a_{i i} y_{i}=-\lambda \sum_{j=1}^{i-1} a_{i j} y_{j}-\sum_{j=i+1}^{n} a_{i j} y_{j}
$$

and

$$
|\lambda|\left|a_{i i}\right|\left|y_{i}\right| \leq|\lambda| \sum_{j=1}^{i-1}\left|a_{i j}\right|\left|y_{j}\right|+\sum_{j=i+1}^{n}\left|a_{i j}\right|\left|y_{j}\right| .
$$

Choose the index k such that $\left|y_{k}\right|=1 \geq\left|y_{j}\right|$ (this index can always be found since $\|y\|_{\infty}=1$). Then

Choose the index k such that $\left|y_{k}\right|=1 \geq\left|y_{j}\right|$ (this index can always be found since $\|y\|_{\infty}=1$). Then

$$
|\lambda|\left|a_{k k}\right| \leq|\lambda| \sum_{j=1}^{k-1}\left|a_{k j}\right|+\sum_{j=k+1}^{n}\left|a_{k j}\right|
$$

Choose the index k such that $\left|y_{k}\right|=1 \geq\left|y_{j}\right|$ (this index can always be found since $\|y\|_{\infty}=1$). Then

$$
|\lambda|\left|a_{k k}\right| \leq|\lambda| \sum_{j=1}^{k-1}\left|a_{k j}\right|+\sum_{j=k+1}^{n}\left|a_{k j}\right|
$$

which gives

$$
|\lambda| \leq \frac{\sum_{j=k+1}^{n}\left|a_{k j}\right|}{\left|a_{k k}\right|-\sum_{j=1}^{k-1}\left|a_{k j}\right|}<\frac{\sum_{j=k+1}^{n}\left|a_{k j}\right|}{\sum_{j=k+1}^{n}\left|a_{k j}\right|}=1
$$

smen isabitan
nenoc comeres

Choose the index k such that $\left|y_{k}\right|=1 \geq\left|y_{j}\right|$ (this index can always be found since $\|y\|_{\infty}=1$). Then

$$
|\lambda|\left|a_{k k}\right| \leq|\lambda| \sum_{j=1}^{k-1}\left|a_{k j}\right|+\sum_{j=k+1}^{n}\left|a_{k j}\right|
$$

which gives

$$
|\lambda| \leq \frac{\sum_{j=k+1}^{n}\left|a_{k j}\right|}{\left|a_{k k}\right|-\sum_{j=1}^{k-1}\left|a_{k j}\right|}<\frac{\sum_{j=k+1}^{n}\left|a_{k j}\right|}{\sum_{j=k+1}^{n}\left|a_{k j}\right|}=1
$$

Since λ is arbitrary, $\rho\left(T_{G}\right)<1$.

Choose the index k such that $\left|y_{k}\right|=1 \geq\left|y_{j}\right|$ (this index can always be found since $\|y\|_{\infty}=1$). Then

$$
|\lambda|\left|a_{k k}\right| \leq|\lambda| \sum_{j=1}^{k-1}\left|a_{k j}\right|+\sum_{j=k+1}^{n}\left|a_{k j}\right|
$$

which gives

$$
|\lambda| \leq \frac{\sum_{j=k+1}^{n}\left|a_{k j}\right|}{\left|a_{k k}\right|-\sum_{j=1}^{k-1}\left|a_{k j}\right|}<\frac{\sum_{j=k+1}^{n}\left|a_{k j}\right|}{\sum_{j=k+1}^{n}\left|a_{k j}\right|}=1
$$

Since λ is arbitrary, $\rho\left(T_{G}\right)<1$. This means the Gauss-Seidel method converges.
> the matrix associated with the method.

One way to select a nrocedire to accelerate convergence
is to choose a method whose associated matrix has
minimal spectral radius.

Choose the index k such that $\left|y_{k}\right|=1 \geq\left|y_{j}\right|$ (this index can always be found since $\|y\|_{\infty}=1$). Then

$$
|\lambda|\left|a_{k k}\right| \leq|\lambda| \sum_{j=1}^{k-1}\left|a_{k j}\right|+\sum_{j=k+1}^{n}\left|a_{k j}\right|
$$

which gives

$$
|\lambda| \leq \frac{\sum_{j=k+1}^{n}\left|a_{k j}\right|}{\left|a_{k k}\right|-\sum_{j=1}^{k-1}\left|a_{k j}\right|}<\frac{\sum_{j=k+1}^{n}\left|a_{k j}\right|}{\sum_{j=k+1}^{n}\left|a_{k j}\right|}=1
$$

Since λ is arbitrary, $\rho\left(T_{G}\right)<1$. This means the Gauss-Seidel method converges.

- The rate of convergence depends on the spectral radius of the matrix associated with the method.
\qquad
\qquad

Choose the index k such that $\left|y_{k}\right|=1 \geq\left|y_{j}\right|$ (this index can always be found since $\|y\|_{\infty}=1$). Then

$$
|\lambda|\left|a_{k k}\right| \leq|\lambda| \sum_{j=1}^{k-1}\left|a_{k j}\right|+\sum_{j=k+1}^{n}\left|a_{k j}\right|
$$

which gives

$$
|\lambda| \leq \frac{\sum_{j=k+1}^{n}\left|a_{k j}\right|}{\left|a_{k k}\right|-\sum_{j=1}^{k-1}\left|a_{k j}\right|}<\frac{\sum_{j=k+1}^{n}\left|a_{k j}\right|}{\sum_{j=k+1}^{n}\left|a_{k j}\right|}=1
$$

Since λ is arbitrary, $\rho\left(T_{G}\right)<1$. This means the Gauss-Seidel method converges.

- The rate of convergence depends on the spectral radius of the matrix associated with the method.
- One way to select a procedure to accelerate convergence is to choose a method whose associated matrix has minimal spectral radius.

Exercise

Page 459: 9, 10, 11

Relaxation Techniques for Solving Linear Systems

Definition 24

Suppose $\tilde{x} \in \mathbb{R}^{n}$ is an approximated solution of $A x=b$. The residual vector r for \tilde{x} is $r=b-A \tilde{x}$.

Let the approximate solution $\mathrm{x}^{(k, i)}$ produced by Gauss-Seidel method be defined by

Relaxation Techniques for Solving Linear Systems

Definition 24

Suppose $\tilde{x} \in \mathbb{R}^{n}$ is an approximated solution of $A x=b$. The residual vector r for \tilde{x} is $r=b-A \tilde{x}$.

Let the approximate solution $\mathbf{x}^{(k, i)}$ produced by Gauss-Seidel method be defined by

$$
\mathbf{x}^{(k, i)}=\left[x_{1}^{(k)}, \ldots, x_{i-1}^{(k)}, x_{i}^{(k-1)}, \ldots, x_{n}^{(k-1)}\right]^{T}
$$

be the corresponding residual vector. Then the m th component of

Relaxation Techniques for Solving Linear Systems

Definition 24

Suppose $\tilde{x} \in \mathbb{R}^{n}$ is an approximated solution of $A x=b$. The residual vector r for \tilde{x} is $r=b-A \tilde{x}$.

Let the approximate solution $\mathbf{x}^{(k, i)}$ produced by Gauss-Seidel method be defined by

$$
\mathbf{x}^{(k, i)}=\left[x_{1}^{(k)}, \ldots, x_{i-1}^{(k)}, x_{i}^{(k-1)}, \ldots, x_{n}^{(k-1)}\right]^{T}
$$

and

$$
r_{i}^{(k)}=\left[r_{1 i}^{(k)}, r_{2 i}^{(k)}, \ldots, r_{n i}^{(k)}\right]^{T}=b-A \mathbf{x}^{(k, i)}
$$

be the corresponding residual vector.

Relaxation Techniques for Solving Linear Systems

Definition 24

Suppose $\tilde{x} \in \mathbb{R}^{n}$ is an approximated solution of $A x=b$. The residual vector r for \tilde{x} is $r=b-A \tilde{x}$.

Let the approximate solution $\mathbf{x}^{(k, i)}$ produced by Gauss-Seidel method be defined by

$$
\mathbf{x}^{(k, i)}=\left[x_{1}^{(k)}, \ldots, x_{i-1}^{(k)}, x_{i}^{(k-1)}, \ldots, x_{n}^{(k-1)}\right]^{T}
$$

and

$$
r_{i}^{(k)}=\left[r_{1 i}^{(k)}, r_{2 i}^{(k)}, \ldots, r_{n i}^{(k)}\right]^{T}=b-A \mathbf{x}^{(k, i)}
$$

be the corresponding residual vector. Then the m th component of $r_{i}^{(k)}$ is

$$
r_{m i}^{(k)}=b_{m}-\sum_{j=1}^{i-1} a_{m j} x_{j}^{(k)}-\sum_{j=i}^{n} a_{m j} x_{j}^{(k-1)}
$$

or, equivalently,

$$
r_{m i}^{(k)}=b_{m}-\sum_{j=1}^{i-1} a_{m j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{m j} x_{j}^{(k-1)}-a_{m i} x_{i}^{(k-1)}
$$

for each $m=1,2, \ldots, n$.
or, equivalently,

$$
r_{m i}^{(k)}=b_{m}-\sum_{j=1}^{i-1} a_{m j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{m j} x_{j}^{(k-1)}-a_{m i} x_{i}^{(k-1)}
$$

for each $m=1,2, \ldots, n$.
In particular, the i th component of $r_{i}^{(k)}$ is

$$
r_{i i}^{(k)}=b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}-a_{i i} x_{i}^{(k-1)}
$$

or, equivalently,

$$
r_{m i}^{(k)}=b_{m}-\sum_{j=1}^{i-1} a_{m j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{m j} x_{j}^{(k-1)}-a_{m i} x_{i}^{(k-1)}
$$

for each $m=1,2, \ldots, n$.
In particular, the i th component of $r_{i}^{(k)}$ is

$$
r_{i i}^{(k)}=b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}-a_{i i} x_{i}^{(k-1)}
$$

so

$$
\begin{aligned}
a_{i i} x_{i}^{(k-1)}+r_{i i}^{(k)} & =b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)} \\
& =a_{i i} x_{i}^{(k)}
\end{aligned}
$$

Consequently, the Gauss-Seidel method can be characterized as choosing $x_{i}^{(k)}$ to satisfy

$$
x_{i}^{(k)}=x_{i}^{(k-1)}+\frac{r_{i i}^{(k)}}{a_{i i}}
$$

Consequently, the Gauss-Seidel method can be characterized as choosing $x_{i}^{(k)}$ to satisfy

$$
x_{i}^{(k)}=x_{i}^{(k-1)}+\frac{r_{i i}^{(k)}}{a_{i i}}
$$

Relaxation method is modified the Gauss-Seidel procedure to

$$
\begin{align*}
x_{i}^{(k)} & =x_{i}^{(k-1)}+\omega \frac{r_{i i}^{(k)}}{a_{i i}} \\
& =x_{i}^{(k-1)}+\frac{\omega}{a_{i i}}\left[b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}-a_{i i} x_{i}^{(k-1)}\right] \\
& =(1-\omega) x_{i}^{(k-1)}+\frac{\omega}{a_{i i}}\left[b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}\right] \tag{1}
\end{align*}
$$

for certain choices of positive ω

Consequently, the Gauss-Seidel method can be characterized as choosing $x_{i}^{(k)}$ to satisfy

$$
x_{i}^{(k)}=x_{i}^{(k-1)}+\frac{r_{i i}^{(k)}}{a_{i i}}
$$

Relaxation method is modified the Gauss-Seidel procedure to

$$
\begin{align*}
x_{i}^{(k)} & =x_{i}^{(k-1)}+\omega \frac{r_{i i}^{(k)}}{a_{i i}} \\
& =x_{i}^{(k-1)}+\frac{\omega}{a_{i i}}\left[b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}-a_{i i} x_{i}^{(k-1)}\right] \\
& =(1-\omega) x_{i}^{(k-1)}+\frac{\omega}{a_{i i}}\left[b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}\right] \tag{1}
\end{align*}
$$

for certain choices of positive ω such that the norm of the residual vector is reduced and the convergence is significantly faster

These methods are called for

$\omega<1$: under relaxation,
$\omega=1$: Gauss-Seidel method,
$\omega>1$: over relaxation.
Over-relaxation methods are called SOR (Successive over-relaxation). To determine the matrix of the SOR method we rewrite (1) as

These methods are called for
$\omega<1$: under relaxation,
$\omega=1$: Gauss-Seidel method,
$\omega>1$: over relaxation.
Over-relaxation methods are called SOR (Successive over-relaxation).
so that if $A=L+D+U$, then we have

These methods are called for
$\omega<1$: under relaxation,
$\omega=1$: Gauss-Seidel method,
$\omega>1$: over relaxation.
Over-relaxation methods are called SOR (Successive over-relaxation). To determine the matrix of the SOR method, we rewrite (1) as
$a_{i i} x_{i}^{(k)}+\omega \sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}=(1-\omega) a_{i i} x_{i}^{(k-1)}-\omega \sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}+\omega b_{i}$,
so that if $A=L+D+U$, then we have

These methods are called for
$\omega<1$: under relaxation,
$\omega=1$: Gauss-Seidel method,
$\omega>1$: over relaxation.
Over-relaxation methods are called SOR (Successive over-relaxation). To determine the matrix of the SOR method, we rewrite (1) as
$a_{i i} x_{i}^{(k)}+\omega \sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}=(1-\omega) a_{i i} x_{i}^{(k-1)}-\omega \sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}+\omega b_{i}$,
so that if $A=L+D+U$, then we have

$$
(D+\omega L) x^{(k)}=[(1-\omega) D-\omega U] x^{(k-1)}+\omega b
$$

These methods are called for
$\omega<1$: under relaxation,
$\omega=1$: Gauss-Seidel method,
$\omega>1$: over relaxation.
Over-relaxation methods are called SOR (Successive over-relaxation). To determine the matrix of the SOR method, we rewrite (1) as
$a_{i i} x_{i}^{(k)}+\omega \sum_{j=1}^{i-1} a_{i j} x_{j}^{(k)}=(1-\omega) a_{i i} x_{i}^{(k-1)}-\omega \sum_{j=i+1}^{n} a_{i j} x_{j}^{(k-1)}+\omega b_{i}$,
so that if $A=L+D+U$, then we have

$$
(D+\omega L) x^{(k)}=[(1-\omega) D-\omega U] x^{(k-1)}+\omega b
$$

or

$$
\begin{aligned}
x^{(k)} & =(D+\omega L)^{-1}[(1-\omega) D-\omega U] x^{(k-1)}+\omega(D+\omega L)^{-1} b \\
& \equiv T_{\omega} x^{(k-1)}+c_{\omega} .
\end{aligned}
$$

Example 25

The linear system $A x=b$ given by

$$
\begin{aligned}
4 x_{1}+3 x_{2} & =24 \\
3 x_{1}+4 x_{2}-x_{3} & =30 \\
-x_{2}+4 x_{3} & =-24
\end{aligned}
$$

has the solution $[3,4,-5]^{T}$.

- Numerical results of Gauss-Seidel method with $x^{(0)}=[1,1,1]^{T}$:

k	x_{1}	x_{2}	x_{3}
0	1.0000000	1.0000000	1.0000000
1	5.2500000	3.8125000	-5.0468750
2	3.1406250	3.8828125	-5.0292969
3	3.0878906	3.9267578	-5.0183105
4	3.0549316	3.9542236	-5.0114441
5	3.0343323	3.9713898	-5.0071526
6	3.0214577	3.9821186	-5.0044703
7	3.0134110	3.9888241	-5.0027940

- Numerical results of SOR method with $\omega=1.25$ and $x^{(0)}=[1,1,1]^{T}$:

k	x_{1}	x_{2}	x_{3}
0	1.0000000	1.0000000	1.0000000
1	6.3125000	3.5195313	-6.6501465
2	2.6223145	3.9585266	-4.6004238
3	3.1333027	4.0102646	-5.0966863
4	2.9570512	4.0074838	-4.9734897
5	3.0037211	4.0029250	-5.0057135
6	2.9963276	4.0009262	-4.9982822
7	3.0000498	4.0002586	-5.0003486

- Numerical results of SOR method with $\omega=1.6$ and $x^{(0)}=[1,1,1]^{T}$:

k	x_{1}	x_{2}	x_{3}
0	1.0000000	1.0000000	1.0000000
1	7.8000000	2.4400000	-9.2240000
2	1.9920000	4.4560000	-2.2832000
3	3.0576000	4.7440000	-6.3324800
4	2.0726400	4.1334400	-4.1471360
5	3.3962880	3.7855360	-5.5975040
6	3.0195840	3.8661760	-4.6950272
7	3.1488384	4.0236774	-5.1735127

Matlab code of SOR

clear all; delete rslt.dat; diary rslt.dat; diary on;
$\mathrm{n}=3$; xold = zeros(n,1); xnew = zeros(n,1); $\mathrm{A}=\operatorname{zeros}(\mathrm{n}, \mathrm{n}) ; \mathrm{DL}=\operatorname{zeros}(\mathrm{n}, \mathrm{n}) ; \mathrm{DU}=\operatorname{zeros}(\mathrm{n}, \mathrm{n})$;
$A(1,1)=4 ; A(1,2)=3 ; A(2,1)=3 ; A(2,2)=4 ; A(2,3)=-1 ; A(3,2)=-1 ; A(3,3)=4$;
$b(1,1)=24 ; b(2,1)=30 ; b(3,1)=-24 ;$ omega=1.25;
for $\mathrm{ii}=1$: n
DL(ii,ii) = A(ii,ii);
for $j \mathrm{j}=1: \mathrm{ii}-1$
DL(ii,jj) = omega * A(ii,jj);
end
DU(ii,ii) $=(1 \text {-omega })^{*} A(i i, i i)$;
for $\mathrm{jj}=\mathrm{ii}+1: \mathrm{n}$
$D U(i i, j j)=-$ omega * $A(i i, j j)$;
end
end
$\mathrm{c}=$ omega * (DL $\backslash \mathrm{b})$; xnew $=\mathrm{DL} \backslash$ (DU * xold $)+\mathrm{c}$;
k = 0; fprintf(' k x1 x2 x3 n ');
while ($k<=100$ \& norm(xnew-xold) $>1.0 \mathrm{~d}-14$)
xold $=$ xnew $; k=k+1$; xnew $=\mathrm{DL} \backslash(D U$ * xold $)+c$;
fprintf('\%3.0f ',k);
for $\mathrm{jj}=1: \mathrm{n}$
fprintf('\%5.4f ',xold(jj));
end
fprintf(' $\backslash \mathrm{n}$ ');
end
diary off

Theorem 26 (Kahan)

If $a_{i i} \neq 0$, for each $i=1,2, \ldots, n$, then $\rho\left(T_{\omega}\right) \geq|\omega-1|$. This implies that the SOR method can converge only if $0<\omega<2$.

Theorem 28
If Δ is nositive d efinite and tridiagonal, then
the optimal choice of ω for the SOR iteration is

Theorem 26 (Kahan)

If $a_{i i} \neq 0$, for each $i=1,2, \ldots, n$, then $\rho\left(T_{\omega}\right) \geq|\omega-1|$. This implies that the SOR method can converge only if $0<\omega<2$.

Theorem 27 (Ostrowski-Reich)

If A is positive definite and the relaxation parameter ω satisfying $0<\omega<2$, then the SOR iteration converges for any initial vector $x^{(0)}$.

With this choice of

Theorem 26 (Kahan)

If $a_{i i} \neq 0$, for each $i=1,2, \ldots, n$, then $\rho\left(T_{\omega}\right) \geq|\omega-1|$. This implies that the SOR method can converge only if $0<\omega<2$.

Theorem 27 (Ostrowski-Reich)

If A is positive definite and the relaxation parameter ω satisfying $0<\omega<2$, then the SOR iteration converges for any initial vector $x^{(0)}$.

Theorem 28

If A is positive definite and tridiagonal, then $\rho\left(T_{G}\right)=\left[\rho\left(T_{J}\right)\right]^{2}<1$ and the optimal choice of ω for the SOR iteration is

$$
\omega=\frac{2}{1+\sqrt{1-\left[\rho\left(T_{J}\right)\right]^{2}}}
$$

With this choice of $\omega, \rho\left(T_{\omega}\right)=\omega-1$.

Example 29

The matrix

$$
A=\left[\begin{array}{rrr}
4 & 3 & 0 \\
3 & 4 & -1 \\
0 & -1 & 4
\end{array}\right],
$$

given in previous example, is positive definite and tridiagonal.
Since

$$
\begin{aligned}
T_{J} & =-D^{-1}(L+U)=\left[\begin{array}{lll}
\frac{1}{4} & 0 & 0 \\
0 & \frac{1}{4} & 0 \\
0 & 0 & \frac{1}{4}
\end{array}\right]\left[\begin{array}{rrr}
0 & -3 & 0 \\
-3 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \\
& =\left[\begin{array}{rrr}
0 & -0.75 & 0 \\
-0.75 & 0 & 0.25 \\
0 & 0.25 & 0
\end{array}\right],
\end{aligned}
$$

we have

$$
T_{J}-\lambda I=\left[\begin{array}{rrr}
-\lambda & -0.75 & 0 \\
-0.75 & -\lambda & 0.25 \\
0 & 0.25 & -\lambda
\end{array}\right],
$$

we have

$$
T_{J}-\lambda I=\left[\begin{array}{rrr}
-\lambda & -0.75 & 0 \\
-0.75 & -\lambda & 0.25 \\
0 & 0.25 & -\lambda
\end{array}\right],
$$

SO

$$
\operatorname{det}\left(T_{J}-\lambda I\right)=-\lambda\left(\lambda^{2}-0.625\right)
$$

we have

$$
T_{J}-\lambda I=\left[\begin{array}{rrr}
-\lambda & -0.75 & 0 \\
-0.75 & -\lambda & 0.25 \\
0 & 0.25 & -\lambda
\end{array}\right],
$$

so

$$
\operatorname{det}\left(T_{J}-\lambda I\right)=-\lambda\left(\lambda^{2}-0.625\right)
$$

Thus,

$$
\rho\left(T_{J}\right)=\sqrt{0.625}
$$

we have

$$
T_{J}-\lambda I=\left[\begin{array}{rrr}
-\lambda & -0.75 & 0 \\
-0.75 & -\lambda & 0.25 \\
0 & 0.25 & -\lambda
\end{array}\right],
$$

SO

$$
\operatorname{det}\left(T_{J}-\lambda I\right)=-\lambda\left(\lambda^{2}-0.625\right)
$$

Thus,

$$
\rho\left(T_{J}\right)=\sqrt{0.625}
$$

and

$$
\omega=\frac{2}{1+\sqrt{1-\left[\rho\left(T_{J}\right)\right]^{2}}}=\frac{2}{1+\sqrt{1-0.625}} \approx 1.24
$$

we have

$$
T_{J}-\lambda I=\left[\begin{array}{rrr}
-\lambda & -0.75 & 0 \\
-0.75 & -\lambda & 0.25 \\
0 & 0.25 & -\lambda
\end{array}\right],
$$

so

$$
\operatorname{det}\left(T_{J}-\lambda I\right)=-\lambda\left(\lambda^{2}-0.625\right)
$$

Thus,

$$
\rho\left(T_{J}\right)=\sqrt{0.625}
$$

and

$$
\omega=\frac{2}{1+\sqrt{1-\left[\rho\left(T_{J}\right)\right]^{2}}}=\frac{2}{1+\sqrt{1-0.625}} \approx 1.24
$$

This explains the rapid convergence obtained in previous example when using $\omega=0.125$

Symmetric Successive Over Relaxation (SSOR) Method

Let A be symmetric and $A=D+L+L^{T}$.
backward, at each iteration. That is, SSOR method defines

Symmetric Successive Over Relaxation (SSOR) Method

Let A be symmetric and $A=D+L+L^{T}$. The idea is in fact to implement the SOR formulation twice, one forward and one backward, at each iteration.

Symmetric Successive Over Relaxation (SSOR) Method

Let A be symmetric and $A=D+L+L^{T}$. The idea is in fact to implement the SOR formulation twice, one forward and one backward, at each iteration. That is, SSOR method defines

$$
\begin{align*}
(D+\omega L) x^{\left(k-\frac{1}{2}\right)} & =\left[(1-\omega) D-\omega L^{T}\right] x^{(k-1)}+\omega b, \tag{2}\\
\left(D+\omega L^{T}\right) x^{(k)} & =[(1-\omega) D-\omega L] x^{\left(k-\frac{1}{2}\right)}+\omega b . \tag{3}
\end{align*}
$$

Then from the iterations (2) and (3), it follows that

Symmetric Successive Over Relaxation (SSOR) Method

Let A be symmetric and $A=D+L+L^{T}$. The idea is in fact to implement the SOR formulation twice, one forward and one backward, at each iteration. That is, SSOR method defines

$$
\begin{align*}
(D+\omega L) x^{\left(k-\frac{1}{2}\right)} & =\left[(1-\omega) D-\omega L^{T}\right] x^{(k-1)}+\omega b, \tag{2}\\
\left(D+\omega L^{T}\right) x^{(k)} & =[(1-\omega) D-\omega L] x^{\left(k-\frac{1}{2}\right)}+\omega b . \tag{3}
\end{align*}
$$

Define

$$
\left\{\begin{array}{l}
M_{\omega}:=D+\omega L \\
N_{\omega}:=(1-\omega) D-\omega L^{T} .
\end{array}\right.
$$

Then from the iterations (2) and (3), it follows that

Symmetric Successive Over Relaxation (SSOR) Method

Let A be symmetric and $A=D+L+L^{T}$. The idea is in fact to implement the SOR formulation twice, one forward and one backward, at each iteration. That is, SSOR method defines

$$
\begin{align*}
(D+\omega L) x^{\left(k-\frac{1}{2}\right)} & =\left[(1-\omega) D-\omega L^{T}\right] x^{(k-1)}+\omega b \tag{2}\\
\left(D+\omega L^{T}\right) x^{(k)} & =[(1-\omega) D-\omega L] x^{\left(k-\frac{1}{2}\right)}+\omega b . \tag{3}
\end{align*}
$$

Define

$$
\left\{\begin{array}{l}
M_{\omega}:=D+\omega L \\
N_{\omega}:=(1-\omega) D-\omega L^{T} .
\end{array}\right.
$$

Then from the iterations (2) and (3), it follows that

$$
\begin{aligned}
x^{(k)} & =\left(M_{\omega}^{-T} N_{\omega}^{T} M_{\omega}^{-1} N_{\omega}\right) x^{(k-1)}+\omega\left(M_{\omega}^{-T} N_{\omega}^{T} M_{\omega}^{-1}+M_{\omega}^{-T}\right) b \\
& \equiv T(\omega) x^{(k-1)}+M(\omega)^{-1} b
\end{aligned}
$$

But

$$
\begin{aligned}
& ((1-\omega) D-\omega L)(D+\omega L)^{-1}+I \\
& =(-\omega L-D-\omega D+2 D)(D+\omega L)^{-1}+I \\
& =-I+(2-\omega) D(D+\omega L)^{-1}+I \\
& =(2-\omega) D(D+\omega L)^{-1} .
\end{aligned}
$$

then the splitting matrix is

But

$$
\begin{aligned}
& ((1-\omega) D-\omega L)(D+\omega L)^{-1}+I \\
& =(-\omega L-D-\omega D+2 D)(D+\omega L)^{-1}+I \\
& =-I+(2-\omega) D(D+\omega L)^{-1}+I \\
& =(2-\omega) D(D+\omega L)^{-1} .
\end{aligned}
$$

Thus

$$
M(\omega)^{-1}=\omega\left(D+\omega L^{T}\right)^{-1}(2-\omega) D(D+\omega L)^{-1}
$$

But

$$
\begin{aligned}
& ((1-\omega) D-\omega L)(D+\omega L)^{-1}+I \\
& =(-\omega L-D-\omega D+2 D)(D+\omega L)^{-1}+I \\
& =-I+(2-\omega) D(D+\omega L)^{-1}+I \\
& =(2-\omega) D(D+\omega L)^{-1} .
\end{aligned}
$$

Thus

$$
M(\omega)^{-1}=\omega\left(D+\omega L^{T}\right)^{-1}(2-\omega) D(D+\omega L)^{-1}
$$

then the splitting matrix is

$$
M(\omega)=\frac{1}{\omega(2-\omega)}(D+\omega L) D^{-1}\left(D+\omega L^{T}\right)
$$

But

$$
\begin{aligned}
& ((1-\omega) D-\omega L)(D+\omega L)^{-1}+I \\
& =(-\omega L-D-\omega D+2 D)(D+\omega L)^{-1}+I \\
& =-I+(2-\omega) D(D+\omega L)^{-1}+I \\
& =(2-\omega) D(D+\omega L)^{-1} .
\end{aligned}
$$

Thus

$$
M(\omega)^{-1}=\omega\left(D+\omega L^{T}\right)^{-1}(2-\omega) D(D+\omega L)^{-1}
$$

then the splitting matrix is

$$
M(\omega)=\frac{1}{\omega(2-\omega)}(D+\omega L) D^{-1}\left(D+\omega L^{T}\right)
$$

The iteration matrix is

$$
T(\omega)=\left(D+\omega L^{T}\right)^{-1}[(1-\omega) D-\omega L](D+\omega L)^{-1}\left[(1-\omega) D-\omega L^{T}\right]
$$

Exercise

Page 467: 2, 8

Error bounds and iterative refinement

Example 30

The linear system $A x=b$ given by

$$
\left[\begin{array}{cc}
1 & 2 \\
1.0001 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
3 \\
3.0001
\end{array}\right]
$$

has the unique solution $x=[1,1]^{T}$.
The poor approximation $\tilde{x}=[3,0]^{T}$ has the residual vector

Error bounds and iterative refinement

Example 30

The linear system $A x=b$ given by

$$
\left[\begin{array}{cc}
1 & 2 \\
1.0001 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
3 \\
3.0001
\end{array}\right]
$$

has the unique solution $x=[1,1]^{T}$.
The poor approximation $\tilde{x}=[3,0]^{T}$ has the residual vector
$r=b-A \tilde{x}=\left[\begin{array}{c}3 \\ 3.0001\end{array}\right]-\left[\begin{array}{cc}1 & 2 \\ 1.0001 & 2\end{array}\right]\left[\begin{array}{l}3 \\ 0\end{array}\right]=\left[\begin{array}{c}0 \\ -0.0002\end{array}\right]$,
so $\|r\|_{\infty}=0.0002$. Although the norm of the residual vector is small, the annraximation $\tilde{x}=\lceil 3,0\rangle T$ is obviously quite noor

Error bounds and iterative refinement

Example 30

The linear system $A x=b$ given by

$$
\left[\begin{array}{cc}
1 & 2 \\
1.0001 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
3 \\
3.0001
\end{array}\right]
$$

has the unique solution $x=[1,1]^{T}$.
The poor approximation $\tilde{x}=[3,0]^{T}$ has the residual vector
$r=b-A \tilde{x}=\left[\begin{array}{c}3 \\ 3.0001\end{array}\right]-\left[\begin{array}{cc}1 & 2 \\ 1.0001 & 2\end{array}\right]\left[\begin{array}{l}3 \\ 0\end{array}\right]=\left[\begin{array}{c}0 \\ -0.0002\end{array}\right]$,
so $\|r\|_{\infty}=0.0002$. Athough the norm of the residual vector is small, the aporoximation $\tilde{x}=[3,0]^{-1}$ is obviously quite poor; in

Error bounds and iterative refinement

Example 30

The linear system $A x=b$ given by

$$
\left[\begin{array}{cc}
1 & 2 \\
1.0001 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
3 \\
3.0001
\end{array}\right]
$$

has the unique solution $x=[1,1]^{T}$.
The poor approximation $\tilde{x}=[3,0]^{T}$ has the residual vector
$r=b-A \tilde{x}=\left[\begin{array}{c}3 \\ 3.0001\end{array}\right]-\left[\begin{array}{cc}1 & 2 \\ 1.0001 & 2\end{array}\right]\left[\begin{array}{l}3 \\ 0\end{array}\right]=\left[\begin{array}{c}0 \\ -0.0002\end{array}\right]$,
so $\|r\|_{\infty}=0.0002$. Although the norm of the residual vector is small, the approximation $\tilde{x}=[3,0]^{T}$ is obviously quite poor;

Error bounds and iterative refinement

Example 30

The linear system $A x=b$ given by

$$
\left[\begin{array}{cc}
1 & 2 \\
1.0001 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
3 \\
3.0001
\end{array}\right]
$$

has the unique solution $x=[1,1]^{T}$.
The poor approximation $\tilde{x}=[3,0]^{T}$ has the residual vector
$r=b-A \tilde{x}=\left[\begin{array}{c}3 \\ 3.0001\end{array}\right]-\left[\begin{array}{cc}1 & 2 \\ 1.0001 & 2\end{array}\right]\left[\begin{array}{l}3 \\ 0\end{array}\right]=\left[\begin{array}{c}0 \\ -0.0002\end{array}\right]$,
so $\|r\|_{\infty}=0.0002$. Although the norm of the residual vector is small, the approximation $\tilde{x}=[3,0]^{T}$ is obviously quite poor; in fact, $\|x-\tilde{x}\|_{\infty}=2$.

The solution of above example represents the intersection of the lines
$\ell_{1}: \quad x_{1}+2 x_{2}=3 \quad$ and $\quad \ell_{2}: \quad 1.0001 x_{1}+2 x_{2}=3.0001$. ℓ_{1} and ℓ_{2} are nearly parallel. The point $(3,0)$ lies on ℓ_{1} which implies that $(3,0)$ also lies close to ℓ_{2}, even though it differs significantly from the intersection point $(1,1)$

The solution of above example represents the intersection of the lines
$\ell_{1}: \quad x_{1}+2 x_{2}=3 \quad$ and $\quad \ell_{2}: \quad 1.0001 x_{1}+2 x_{2}=3.0001$.
ℓ_{1} and ℓ_{2} are nearly parallel.
implies that $(3,0)$ also lies close to ℓ_{2}, even though it differs
significantly from the intersection point $(1,1)$

The solution of above example represents the intersection of the lines
$\ell_{1}: x_{1}+2 x_{2}=3$ and $\ell_{2}: \quad 1.0001 x_{1}+2 x_{2}=3.0001$.
ℓ_{1} and ℓ_{2} are nearly parallel. The point $(3,0)$ lies on ℓ_{1} which implies that $(3,0)$ also lies close to ℓ_{2}, even though it differs significantly from the intersection point $(1,1)$.

Theorem 31

Suppose that \tilde{x} is an approximate solution of $A x=b, A$ is nonsingular matrix and $r=b-A \tilde{x}$.

Theorem 31

Suppose that \tilde{x} is an approximate solution of $A x=b, A$ is nonsingular matrix and $r=b-A \tilde{x}$. Then

$$
\|x-\tilde{x}\| \leq\|r\| \cdot\left\|A^{-1}\right\|
$$

Theorem 31

Suppose that \tilde{x} is an approximate solution of $A x=b, A$ is nonsingular matrix and $r=b-A \tilde{x}$. Then

$$
\|x-\tilde{x}\| \leq\|r\| \cdot\left\|A^{-1}\right\|
$$

and if $x \neq 0$ and $b \neq 0$,

$$
\frac{\|x-\tilde{x}\|}{\|x\|} \leq\|A\| \cdot\left\|A^{-1}\right\| \frac{\|r\|}{\|b\|} .
$$

Theorem 31

Suppose that \tilde{x} is an approximate solution of $A x=b, A$ is nonsingular matrix and $r=b-A \tilde{x}$. Then

$$
\|x-\tilde{x}\| \leq\|r\| \cdot\left\|A^{-1}\right\|
$$

and if $x \neq 0$ and $b \neq 0$,

$$
\frac{\|x-\tilde{x}\|}{\|x\|} \leq\|A\| \cdot\left\|A^{-1}\right\| \frac{\|r\|}{\|b\|} .
$$

Proof: Since

$$
r=b-A \tilde{x}=A x-A \tilde{x}=A(x-\tilde{x})
$$

and A is nonsingular,

Theorem 31

Suppose that \tilde{x} is an approximate solution of $A x=b, A$ is nonsingular matrix and $r=b-A \tilde{x}$. Then

$$
\|x-\tilde{x}\| \leq\|r\| \cdot\left\|A^{-1}\right\|
$$

and if $x \neq 0$ and $b \neq 0$,

$$
\frac{\|x-\tilde{x}\|}{\|x\|} \leq\|A\| \cdot\left\|A^{-1}\right\| \frac{\|r\|}{\|b\|} .
$$

Proof: Since

$$
r=b-A \tilde{x}=A x-A \tilde{x}=A(x-\tilde{x})
$$

and A is nonsingular, we have

$$
\begin{equation*}
\|x-\tilde{x}\|=\left\|A^{-1} r\right\| \leq\left\|A^{-1}\right\| \cdot\|r\| . \tag{4}
\end{equation*}
$$

Moreover, since $b=A x$, we have

Theorem 31

Suppose that \tilde{x} is an approximate solution of $A x=b, A$ is nonsingular matrix and $r=b-A \tilde{x}$. Then

$$
\|x-\tilde{x}\| \leq\|r\| \cdot\left\|A^{-1}\right\|
$$

and if $x \neq 0$ and $b \neq 0$,

$$
\frac{\|x-\tilde{x}\|}{\|x\|} \leq\|A\| \cdot\left\|A^{-1}\right\| \frac{\|r\|}{\|b\|} .
$$

Proof: Since

$$
r=b-A \tilde{x}=A x-A \tilde{x}=A(x-\tilde{x})
$$

and A is nonsingular, we have

$$
\begin{equation*}
\|x-\tilde{x}\|=\left\|A^{-1} r\right\| \leq\left\|A^{-1}\right\| \cdot\|r\| . \tag{4}
\end{equation*}
$$

Moreover, since $b=A x$,

Theorem 31

Suppose that \tilde{x} is an approximate solution of $A x=b, A$ is nonsingular matrix and $r=b-A \tilde{x}$. Then

$$
\|x-\tilde{x}\| \leq\|r\| \cdot\left\|A^{-1}\right\|
$$

and if $x \neq 0$ and $b \neq 0$,

$$
\frac{\|x-\tilde{x}\|}{\|x\|} \leq\|A\| \cdot\left\|A^{-1}\right\| \frac{\|r\|}{\|b\|} .
$$

Proof: Since

$$
r=b-A \tilde{x}=A x-A \tilde{x}=A(x-\tilde{x})
$$

and A is nonsingular, we have

$$
\begin{equation*}
\|x-\tilde{x}\|=\left\|A^{-1} r\right\| \leq\left\|A^{-1}\right\| \cdot\|r\| . \tag{4}
\end{equation*}
$$

Moreover, since $b=A x$, we have

$$
\|b\| \leq\|A\| \cdot\|x\| .
$$

It implies that

$$
\begin{equation*}
\frac{1}{\|x\|} \leq \frac{\|A\|}{\|b\|} . \tag{5}
\end{equation*}
$$

Definition 32 (Condition number)

It implies that

$$
\begin{equation*}
\frac{1}{\|x\|} \leq \frac{\|A\|}{\|b\|} . \tag{5}
\end{equation*}
$$

Combining Equations (4) and (5), we have

$$
\frac{\|x-\tilde{x}\|}{\|x\|} \leq \frac{\|A\| \cdot\left\|A^{-1}\right\|}{\|b\|}\|r\| .
$$

For any nonsingular matrix A

It implies that

$$
\begin{equation*}
\frac{1}{\|x\|} \leq \frac{\|A\|}{\|b\|} . \tag{5}
\end{equation*}
$$

Combining Equations (4) and (5), we have

$$
\frac{\|x-\tilde{x}\|}{\|x\|} \leq \frac{\|A\| \cdot\left\|A^{-1}\right\|}{\|b\|}\|r\| .
$$

Definition 32 (Condition number)

The condition number of nonsingular matrix A is

$$
\kappa(A)=\|A\| \cdot\left\|A^{-1}\right\| .
$$

For any nonsingular matrix A

It implies that

$$
\begin{equation*}
\frac{1}{\|x\|} \leq \frac{\|A\|}{\|b\|} . \tag{5}
\end{equation*}
$$

Combining Equations (4) and (5), we have

$$
\frac{\|x-\tilde{x}\|}{\|x\|} \leq \frac{\|A\| \cdot\left\|A^{-1}\right\|}{\|b\|}\|r\| .
$$

Definition 32 (Condition number)

The condition number of nonsingular matrix A is

$$
\kappa(A)=\|A\| \cdot\left\|A^{-1}\right\| .
$$

For any nonsingular matrix A,

$$
1=\|I\|=\left\|A \cdot A^{-1}\right\| \leq\|A\| \cdot\left\|A^{-1}\right\|=\kappa(A) .
$$

Definition 33

A matrix A is well-conditioned if $\kappa(A)$ is close to 1 , and is ill-conditioned when $\kappa(A)$ is significantly greater than 1 .

Definition 33

A matrix A is well-conditioned if $\kappa(A)$ is close to 1 , and is ill-conditioned when $\kappa(A)$ is significantly greater than 1 .

In previous example,

$$
A=\left[\begin{array}{cc}
1 & 2 \\
1.0001 & 2
\end{array}\right]
$$

Definition 33

A matrix A is well-conditioned if $\kappa(A)$ is close to 1 , and is ill-conditioned when $\kappa(A)$ is significantly greater than 1 .

In previous example,

$$
A=\left[\begin{array}{cc}
1 & 2 \\
1.0001 & 2
\end{array}\right] .
$$

Since

$$
A^{-1}=\left[\begin{array}{cc}
-10000 & 10000 \\
5000.5 & -5000
\end{array}\right],
$$

Definition 33

A matrix A is well-conditioned if $\kappa(A)$ is close to 1 , and is ill-conditioned when $\kappa(A)$ is significantly greater than 1 .

In previous example,

$$
A=\left[\begin{array}{cc}
1 & 2 \\
1.0001 & 2
\end{array}\right]
$$

Since

$$
A^{-1}=\left[\begin{array}{cc}
-10000 & 10000 \\
5000.5 & -5000
\end{array}\right]
$$

we have

$$
\kappa(A)=\|A\|_{\infty} \cdot\left\|A^{-1}\right\|_{\infty}=3.0001 \times 20000=60002 \gg 1 .
$$

How to estimate the effective condition number in t-digit arithmetic without having to invert the matrix A ?

How to estimate the effective condition number in t-digit arithmetic without having to invert the matrix A ?

- If the approximate solution \tilde{x} of $A x=b$ is being determined using t-digit arithmetic and Gaussian elimination, then

$$
\|r\|=\|b-A \tilde{x}\| \approx 10^{-t}\|A\| \cdot\|\tilde{x}\| .
$$

arithmetic.
Use the Gaus sian elimination method which has already
been calculated to solve

How to estimate the effective condition number in t-digit arithmetic without having to invert the matrix A ?

- If the approximate solution \tilde{x} of $A x=b$ is being determined using t-digit arithmetic and Gaussian elimination, then

$$
\|r\|=\|b-A \tilde{x}\| \approx 10^{-t}\|A\| \cdot\|\tilde{x}\|
$$

- All the arithmetic operations in Gaussian elimination technique are performed using t-digit arithmetic, but the residual vector r are done in double-precision (i.e., $2 t$-digit) arithmetic.

How to estimate the effective condition number in t-digit arithmetic without having to invert the matrix A ?

- If the approximate solution \tilde{x} of $A x=b$ is being determined using t-digit arithmetic and Gaussian elimination, then

$$
\|r\|=\|b-A \tilde{x}\| \approx 10^{-t}\|A\| \cdot\|\tilde{x}\| .
$$

- All the arithmetic operations in Gaussian elimination technique are performed using t-digit arithmetic, but the residual vector r are done in double-precision (i.e., $2 t$-digit) arithmetic.
- Use the Gaussian elimination method which has already been calculated to solve

$$
A y=r .
$$

How to estimate the effective condition number in t-digit arithmetic without having to invert the matrix A ?

- If the approximate solution \tilde{x} of $A x=b$ is being determined using t-digit arithmetic and Gaussian elimination, then

$$
\|r\|=\|b-A \tilde{x}\| \approx 10^{-t}\|A\| \cdot\|\tilde{x}\| .
$$

- All the arithmetic operations in Gaussian elimination technique are performed using t-digit arithmetic, but the residual vector r are done in double-precision (i.e., $2 t$-digit) arithmetic.
- Use the Gaussian elimination method which has already been calculated to solve

$$
A y=r .
$$

Let \tilde{y} be the approximate solution.

Then

$$
\tilde{y} \approx A^{-1} r=A^{-1}(b-A \tilde{x})=x-\tilde{x}
$$

and

$$
x \approx \tilde{x}+\tilde{y} .
$$

Then

$$
\tilde{y} \approx A^{-1} r=A^{-1}(b-A \tilde{x})=x-\tilde{x}
$$

and

$$
x \approx \tilde{x}+\tilde{y} .
$$

Moreover,

$$
\begin{aligned}
\|\tilde{y}\| & \approx\|x-\tilde{x}\|=\left\|A^{-1} r\right\| \\
& \leq\left\|A^{-1}\right\| \cdot\|r\| \approx\left\|A^{-1}\right\|\left(10^{-t}\|A\| \cdot\|\tilde{x}\|\right)=10^{-t}\|\tilde{x}\| \kappa(A) .
\end{aligned}
$$

It implies that

Then

$$
\tilde{y} \approx A^{-1} r=A^{-1}(b-A \tilde{x})=x-\tilde{x}
$$

and

$$
x \approx \tilde{x}+\tilde{y} .
$$

Moreover,

$$
\begin{aligned}
\|\tilde{y}\| & \approx\|x-\tilde{x}\|=\left\|A^{-1} r\right\| \\
& \leq\left\|A^{-1}\right\| \cdot\|r\| \approx\left\|A^{-1}\right\|\left(10^{-t}\|A\| \cdot\|\tilde{x}\|\right)=10^{-t}\|\tilde{x}\| \kappa(A) .
\end{aligned}
$$

It implies that

$$
\kappa(A) \approx \frac{\|\tilde{y}\|}{\|\tilde{x}\|} 10^{t} .
$$

Iterative refinement
\qquad

Then

$$
\tilde{y} \approx A^{-1} r=A^{-1}(b-A \tilde{x})=x-\tilde{x}
$$

and

$$
x \approx \tilde{x}+\tilde{y} .
$$

Moreover,

$$
\begin{aligned}
\|\tilde{y}\| & \approx\|x-\tilde{x}\|=\left\|A^{-1} r\right\| \\
& \leq\left\|A^{-1}\right\| \cdot\|r\| \approx\left\|A^{-1}\right\|\left(10^{-t}\|A\| \cdot\|\tilde{x}\|\right)=10^{-t}\|\tilde{x}\| \kappa(A) .
\end{aligned}
$$

It implies that

$$
\kappa(A) \approx \frac{\|\tilde{y}\|}{\|\tilde{x}\|} 10^{t} .
$$

Iterative refinement

In general, $\tilde{x}+\tilde{y}$ is a more accurate approximation to the solution of $A x=b$ than \tilde{x}.

Algorithm 3 (Iterative refinement)

Given tolerance $T O L$, maximum number of iteration M, number of digits of precision t.
Solve $A x=b$ by using Gaussian elimination in t-digit arithmetic. Set $k=1$
while ($k \leq M$)
Compute $r=b-A x$ in $2 t$-digit arithmetic.
Solve $A y=r$ by using Gaussian elimination in t-digit arithmetic.
If $\|y\|_{\infty}<T O L$, then stop.
Set $k=k+1$ and $x=x+y$.
End while

Example 34

The linear system given by

$$
\left[\begin{array}{ccc}
3.3330 & 15920 & -10.333 \\
2.2220 & 16.710 & 9.6120 \\
1.5611 & 5.1791 & 1.6852
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
15913 \\
28.544 \\
8.4254
\end{array}\right]
$$

has the exact solution $x=[1,1,1]^{T}$.
Using Gaussian elimination and five-digit rounding arithmetic leads successively to the augmented matrices

Example 34

The linear system given by

$$
\left[\begin{array}{ccc}
3.3330 & 15920 & -10.333 \\
2.2220 & 16.710 & 9.6120 \\
1.5611 & 5.1791 & 1.6852
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
15913 \\
28.544 \\
8.4254
\end{array}\right]
$$

has the exact solution $x=[1,1,1]^{T}$.
Using Gaussian elimination and five-digit rounding arithmetic leads successively to the augmented matrices

$$
\left[\begin{array}{ccc|c}
3.3330 & 15920 & -10.333 & 15913 \\
0 & -10596 & 16.501 & -10580 \\
0 & -7451.4 & 6.5250 & -7444.9
\end{array}\right]
$$

and

$$
\left[\begin{array}{cccc}
3.3330 & 15920 & -10.333 & 15913 \\
0 & -10596 & 16.501 & -10580 \\
0 & 0 & -5.0790 & -4.7000
\end{array}\right]
$$

The approximate solution is

$$
\tilde{x}^{(1)}=[1.2001,0.99991,0.92538]^{T} .
$$

The approximate solution is

$$
\tilde{x}^{(1)}=[1.2001,0.99991,0.92538]^{T} .
$$

The residual vector corresponding to \tilde{x} is computed in double precision to be

$$
\begin{aligned}
r^{(1)} & =b-A \tilde{x}^{(1)} \\
& =\left[\begin{array}{c}
15913 \\
28.544 \\
8.4254
\end{array}\right]-\left[\begin{array}{ccc}
3.3330 & 15920 & -10.333 \\
2.2220 & 16.710 & 9.6120 \\
1.5611 & 5.1791 & 1.6852
\end{array}\right]\left[\begin{array}{c}
1.2001 \\
0.99991 \\
0.92538
\end{array}\right] \\
& =\left[\begin{array}{l}
15913 \\
28.544 \\
8.4254
\end{array}\right]-\left[\begin{array}{c}
15913.00518 \\
28.26987086 \\
8.611560367
\end{array}\right]=\left[\begin{array}{c}
-0.00518 \\
0.27412914 \\
-0.186160367
\end{array}\right] .
\end{aligned}
$$

and the new approximate solution

The approximate solution is

$$
\tilde{x}^{(1)}=[1.2001,0.99991,0.92538]^{T} .
$$

The residual vector corresponding to \tilde{x} is computed in double precision to be

$$
\begin{aligned}
r^{(1)} & =b-A \tilde{x}^{(1)} \\
& =\left[\begin{array}{c}
15913 \\
28.544 \\
8.4254
\end{array}\right]-\left[\begin{array}{ccc}
3.3330 & 15920 & -10.333 \\
2.2220 & 16.710 & 9.6120 \\
1.5611 & 5.1791 & 1.6852
\end{array}\right]\left[\begin{array}{c}
1.2001 \\
0.99991 \\
0.92538
\end{array}\right] \\
& =\left[\begin{array}{l}
15913 \\
28.544 \\
8.4254
\end{array}\right]-\left[\begin{array}{c}
15913.00518 \\
28.26987086 \\
8.611560367
\end{array}\right]=\left[\begin{array}{c}
-0.00518 \\
0.27412914 \\
-0.186160367
\end{array}\right] .
\end{aligned}
$$

Hence the solution of $A y=r^{(1)}$ to be

$$
\tilde{y}^{(1)}=\left[-0.20008,8.9987 \times 10^{-5}, 0.074607\right]^{T}
$$

and the new approximate solution

The approximate solution is

$$
\tilde{x}^{(1)}=[1.2001,0.99991,0.92538]^{T} .
$$

The residual vector corresponding to \tilde{x} is computed in double precision to be

$$
\begin{aligned}
r^{(1)} & =b-A \tilde{x}^{(1)} \\
& =\left[\begin{array}{c}
15913 \\
28.544 \\
8.4254
\end{array}\right]-\left[\begin{array}{ccc}
3.3330 & 15920 & -10.333 \\
2.2220 & 16.710 & 9.6120 \\
1.5611 & 5.1791 & 1.6852
\end{array}\right]\left[\begin{array}{c}
1.2001 \\
0.99991 \\
0.92538
\end{array}\right] \\
& =\left[\begin{array}{l}
15913 \\
28.544 \\
8.4254
\end{array}\right]-\left[\begin{array}{c}
15913.00518 \\
28.26987086 \\
8.611560367
\end{array}\right]=\left[\begin{array}{c}
-0.00518 \\
0.27412914 \\
-0.186160367
\end{array}\right] .
\end{aligned}
$$

Hence the solution of $A y=r^{(1)}$ to be

$$
\tilde{y}^{(1)}=\left[-0.20008,8.9987 \times 10^{-5}, 0.074607\right]^{T}
$$

and the new approximate solution $x^{(2)}$ is

$$
x^{(2)}=x^{(1)}+\tilde{y}^{(1)}=[1.0000,1.0000,0.99999]^{T} .
$$

Using the suggested stopping technique for the algorithm, we compute $r^{(2)}=b-A \tilde{x}^{(2)}$ and solve the system $A y^{(2)}=r^{(2)}$, which gives

$$
\tilde{y}^{(2)}=\left[1.5002 \times 10^{-9}, 2.0951 \times 10^{-10}, 1.0000 \times 10^{-5}\right]^{T} .
$$

Using the suggested stopping technique for the algorithm, we compute $r^{(2)}=b-A \tilde{x}^{(2)}$ and solve the system $A y^{(2)}=r^{(2)}$, which gives

$$
\tilde{y}^{(2)}=\left[1.5002 \times 10^{-9}, 2.0951 \times 10^{-10}, 1.0000 \times 10^{-5}\right]^{T} .
$$

Since

$$
\left\|\tilde{y}^{(2)}\right\|_{\infty} \leq 10^{-5},
$$

[^0]In the linour syotom

Using the suggested stopping technique for the algorithm, we compute $r^{(2)}=b-A \tilde{x}^{(2)}$ and solve the system $A y^{(2)}=r^{(2)}$, which gives

$$
\tilde{y}^{(2)}=\left[1.5002 \times 10^{-9}, 2.0951 \times 10^{-10}, 1.0000 \times 10^{-5}\right]^{T} .
$$

Since

$$
\left\|\tilde{y}^{(2)}\right\|_{\infty} \leq 10^{-5},
$$

we conclude that

$$
\tilde{x}^{(3)}=\tilde{x}^{(2)}+\tilde{y}^{(2)}=[1.0000,1.0000,1.0000]^{T}
$$

is sufficiently accurate.

Using the suggested stopping technique for the algorithm, we compute $r^{(2)}=b-A \tilde{x}^{(2)}$ and solve the system $A y^{(2)}=r^{(2)}$, which gives

$$
\tilde{y}^{(2)}=\left[1.5002 \times 10^{-9}, 2.0951 \times 10^{-10}, 1.0000 \times 10^{-5}\right]^{T} .
$$

Since

$$
\left\|\tilde{y}^{(2)}\right\|_{\infty} \leq 10^{-5},
$$

we conclude that

$$
\tilde{x}^{(3)}=\tilde{x}^{(2)}+\tilde{y}^{(2)}=[1.0000,1.0000,1.0000]^{T}
$$

is sufficiently accurate.
In the linear system

$$
A x=b,
$$

A and b can be represented exactly.

Using the suggested stopping technique for the algorithm, we compute $r^{(2)}=b-A \tilde{x}^{(2)}$ and solve the system $A y^{(2)}=r^{(2)}$, which gives

$$
\tilde{y}^{(2)}=\left[1.5002 \times 10^{-9}, 2.0951 \times 10^{-10}, 1.0000 \times 10^{-5}\right]^{T} .
$$

Since

$$
\left\|\tilde{y}^{(2)}\right\|_{\infty} \leq 10^{-5},
$$

we conclude that

$$
\tilde{x}^{(3)}=\tilde{x}^{(2)}+\tilde{y}^{(2)}=[1.0000,1.0000,1.0000]^{T}
$$

is sufficiently accurate.
In the linear system

$$
A x=b,
$$

A and b can be represented exactly. Realistically, the matrix A and vector b will be perturbed by δA and δb, respectively, causing the linear system

$$
(A+\delta A) x=b+\delta b
$$

to be solved in place of $A x=b$.

Theorem 35

Suppose A is nonsingular and

$$
\|\delta A\|<\frac{1}{\left\|A^{-1}\right\|}
$$

Then the solution \tilde{x} of $(A+\delta A) \tilde{x}=b+\delta b$ approximates the solution x of $A x=b$ with the error estimate

> If A is well-conditioned, then small changes in A and b produce correspondingly small changes in the solution

Theorem 35

Suppose A is nonsingular and

$$
\|\delta A\|<\frac{1}{\left\|A^{-1}\right\|}
$$

Then the solution \tilde{x} of $(A+\delta A) \tilde{x}=b+\delta b$ approximates the solution x of $A x=b$ with the error estimate

$$
\frac{\|x-\tilde{x}\|}{\|x\|} \leq \frac{\kappa(A)}{1-\kappa(A)(\|\delta A\| /\|A\|)}\left(\frac{\|\delta b\|}{\|b\|}+\frac{\|\delta A\|}{\|A\|}\right) .
$$

If A is well-conditioned, then small changes in A and b produce correspondingly small changes in the solution If A is ill-conditioned, then small changes in A and b may produce large changes in

Theorem 35

Suppose A is nonsingular and

$$
\|\delta A\|<\frac{1}{\left\|A^{-1}\right\|}
$$

Then the solution \tilde{x} of $(A+\delta A) \tilde{x}=b+\delta b$ approximates the solution x of $A x=b$ with the error estimate

$$
\frac{\|x-\tilde{x}\|}{\|x\|} \leq \frac{\kappa(A)}{1-\kappa(A)(\|\delta A\| /\|A\|)}\left(\frac{\|\delta b\|}{\|b\|}+\frac{\|\delta A\|}{\|A\|}\right) .
$$

- If A is well-conditioned, then small changes in A and b produce correspondingly small changes in the solution x.

Theorem 35

Suppose A is nonsingular and

$$
\|\delta A\|<\frac{1}{\left\|A^{-1}\right\|}
$$

Then the solution \tilde{x} of $(A+\delta A) \tilde{x}=b+\delta b$ approximates the solution x of $A x=b$ with the error estimate

$$
\frac{\|x-\tilde{x}\|}{\|x\|} \leq \frac{\kappa(A)}{1-\kappa(A)(\|\delta A\| /\|A\|)}\left(\frac{\|\delta b\|}{\|b\|}+\frac{\|\delta A\|}{\|A\|}\right) .
$$

- If A is well-conditioned, then small changes in A and b produce correspondingly small changes in the solution x.
- If A is ill-conditioned, then small changes in A and b may produce large changes in x.

Exercise

Page 476: 2, 4, 7, 8

The conjugate gradient method

Consider the linear systems

$$
A x=b
$$

where A is large sparse and symmetric positive definite.

The conjugate gradient method

Consider the linear systems

$$
A x=b
$$

where A is large sparse and symmetric positive definite. Define the inner product notation

$$
<x, y>=x^{T} y \text { for any } x, y \in \mathbb{R}^{n} .
$$

The conjugate gradient method

Consider the linear systems

$$
A x=b
$$

where A is large sparse and symmetric positive definite. Define the inner product notation

$$
<x, y>=x^{T} y \text { for any } x, y \in \mathbb{R}^{n} .
$$

Theorem 36

Let A be symmetric positive definite. Then x^{*} is the solution of $A x=b$ if and only if x^{*} minimizes

$$
g(x)=<x, A x>-2<x, b>.
$$

Proof:

(" \Rightarrow ") Rewrite $g(x)$ as
$g(x)=<x-x^{*}, A\left(x-x^{*}\right)>+<x, A x^{*}>+<x^{*}, A x>$
$-<x^{*}, A x^{*}>-2<x, b>$
$=<x-x^{*}, A\left(x-x^{*}\right)>-<x^{*}, A x^{*}>$ $+2<x, A x^{*}>-2<x, b>$
$\left.=<x-x^{*}, A\left(x-x^{*}\right)>-<x^{*}, A x^{*}>+2<x, A x^{*}-b\right\rangle$.
which minimum occurs at $x=x$

Proof:

(" \Rightarrow ") Rewrite $g(x)$ as

$$
\begin{aligned}
g(x)= & <x-x^{*}, A\left(x-x^{*}\right)>+<x, A x^{*}>+<x^{*}, A x> \\
& -<x^{*}, A x^{*}>-2<x, b> \\
= & <x-x^{*}, A\left(x-x^{*}\right)>-<x^{*}, A x^{*}> \\
& +2<x, A x^{*}>-2<x, b> \\
= & <x-x^{*}, A\left(x-x^{*}\right)>-<x^{*}, A x^{*}>+2<x, A x^{*}-b>.
\end{aligned}
$$

Suppose that x^{*} is the solution of $A x=b$, i.e., $A x^{*}=b$.
which minimum occurs at $x=x$

Proof:

(" \Rightarrow ") Rewrite $g(x)$ as

$$
\begin{aligned}
g(x)= & <x-x^{*}, A\left(x-x^{*}\right)>+<x, A x^{*}>+<x^{*}, A x> \\
& -<x^{*}, A x^{*}>-2<x, b> \\
= & <x-x^{*}, A\left(x-x^{*}\right)>-<x^{*}, A x^{*}> \\
& +2<x, A x^{*}>-2<x, b> \\
= & <x-x^{*}, A\left(x-x^{*}\right)>-<x^{*}, A x^{*}>+2<x, A x^{*}-b>.
\end{aligned}
$$

Suppose that x^{*} is the solution of $A x=b$, i.e., $A x^{*}=b$. Then

$$
g(x)=<x-x^{*}, A\left(x-x^{*}\right)>-<x^{*}, A x^{*}>
$$

which minimum occurs at $x=x^{*}$.
(" \Leftarrow ") Fixed vectors x and v, for any $\alpha \in \mathbb{R}$,

$$
\begin{aligned}
& f(\alpha) \equiv g(x+\alpha v) \\
= & <x+\alpha v, A x+\alpha A v>-2<x+\alpha v, b> \\
= & <x, A x>+\alpha<v, A x>+\alpha<x, A v>+\alpha^{2}<v, A v> \\
& -2<x, b>-2 \alpha<v, b> \\
= & <x, A x>-2<x, b>+2 \alpha<v, A x>-2 \alpha<v, b>+\alpha^{2}<v, A v> \\
= & g(x)+2 \alpha<v, A x-b>+\alpha^{2}<v, A v>.
\end{aligned}
$$

(" \Leftarrow ") Fixed vectors x and v, for any $\alpha \in \mathbb{R}$,

$$
\begin{aligned}
& f(\alpha) \equiv g(x+\alpha v) \\
= & <x+\alpha v, A x+\alpha A v>-2<x+\alpha v, b> \\
= & <x, A x>+\alpha<v, A x>+\alpha<x, A v>+\alpha^{2}<v, A v> \\
& -2<x, b>-2 \alpha<v, b> \\
= & <x, A x>-2<x, b>+2 \alpha<v, A x>-2 \alpha<v, b>+\alpha^{2}<v, A v> \\
= & g(x)+2 \alpha<v, A x-b>+\alpha^{2}<v, A v>.
\end{aligned}
$$

Because f is a quadratic function of α and $\langle v, A v\rangle$ is positive, f has a minimal value when $f^{\prime}(\alpha)=0$.
(" \Leftarrow ") Fixed vectors x and v, for any $\alpha \in \mathbb{R}$,

$$
\begin{aligned}
& f(\alpha) \equiv g(x+\alpha v) \\
= & <x+\alpha v, A x+\alpha A v>-2<x+\alpha v, b> \\
= & <x, A x>+\alpha<v, A x>+\alpha<x, A v>+\alpha^{2}<v, A v> \\
& -2<x, b>-2 \alpha<v, b> \\
= & <x, A x>-2<x, b>+2 \alpha<v, A x>-2 \alpha<v, b>+\alpha^{2}<v, A v> \\
= & g(x)+2 \alpha<v, A x-b>+\alpha^{2}<v, A v>.
\end{aligned}
$$

Because f is a quadratic function of α and $\langle v, A v\rangle$ is positive, f has a minimal value when $f^{\prime}(\alpha)=0$. Since

$$
f^{\prime}(\alpha)=2<v, A x-b>+2 \alpha<v, A v>
$$

the minimum occurs at
(" \Leftarrow ") Fixed vectors x and v, for any $\alpha \in \mathbb{R}$,

$$
\begin{aligned}
& f(\alpha) \equiv g(x+\alpha v) \\
= & <x+\alpha v, A x+\alpha A v>-2<x+\alpha v, b> \\
= & <x, A x>+\alpha<v, A x>+\alpha<x, A v>+\alpha^{2}<v, A v> \\
& -2<x, b>-2 \alpha<v, b> \\
= & <x, A x>-2<x, b>+2 \alpha<v, A x>-2 \alpha<v, b>+\alpha^{2}<v, A v> \\
= & g(x)+2 \alpha<v, A x-b>+\alpha^{2}<v, A v>.
\end{aligned}
$$

Because f is a quadratic function of α and $\langle v, A v\rangle$ is positive, f has a minimal value when $f^{\prime}(\alpha)=0$. Since

$$
f^{\prime}(\alpha)=2<v, A x-b>+2 \alpha<v, A v>
$$

the minimum occurs at

$$
\hat{\alpha}=-\frac{\langle v, A x-b\rangle}{\langle v, A v>}=\frac{\langle v, b-A x\rangle}{\langle v, A v\rangle} .
$$

and

$$
\begin{aligned}
g(x+\hat{\alpha} v)= & f(\hat{\alpha})=g(x)-2 \frac{<v, b-A x>}{<v, A v>}<v, b-A x> \\
& +\left(\frac{<v, b-A x>}{<v, A v>}\right)^{2}<v, A v> \\
= & g(x)-\frac{<v, b-A x>^{2}}{<v, A v>}
\end{aligned}
$$

and

$$
\begin{aligned}
g(x+\hat{\alpha} v)= & f(\hat{\alpha})=g(x)-2 \frac{<v, b-A x>}{<v, A v>}<v, b-A x> \\
& +\left(\frac{<v, b-A x>}{<v, A v>}\right)^{2}<v, A v> \\
= & g(x)-\frac{<v, b-A x>^{2}}{<v, A v>} .
\end{aligned}
$$

So, for any nonzero vector v, we have

$$
\begin{equation*}
g(x+\hat{\alpha} v)<g(x) \text { if }<v, b-A x>\neq 0 \tag{6}
\end{equation*}
$$

and

$$
\begin{aligned}
g(x+\hat{\alpha} v)= & f(\hat{\alpha})=g(x)-2 \frac{<v, b-A x>}{<v, A v>}<v, b-A x> \\
& +\left(\frac{<v, b-A x>}{<v, A v>}\right)^{2}<v, A v> \\
= & g(x)-\frac{<v, b-A x>^{2}}{<v, A v>} .
\end{aligned}
$$

So, for any nonzero vector v, we have

$$
\begin{equation*}
g(x+\hat{\alpha} v)<g(x) \text { if }<v, b-A x>\neq 0 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
g(x+\hat{\alpha} v)=g(x) \text { if }<v, b-A x>=0 . \tag{7}
\end{equation*}
$$

Suppose that x^{*} is a vector that minimizes g. Then
and

$$
\begin{aligned}
g(x+\hat{\alpha} v)= & f(\hat{\alpha})=g(x)-2 \frac{<v, b-A x>}{<v, A v>}<v, b-A x> \\
& +\left(\frac{<v, b-A x>}{<v, A v>}\right)^{2}<v, A v> \\
= & g(x)-\frac{<v, b-A x>^{2}}{<v, A v>} .
\end{aligned}
$$

So, for any nonzero vector v, we have

$$
\begin{equation*}
g(x+\hat{\alpha} v)<g(x) \text { if }<v, b-A x>\neq 0 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
g(x+\hat{\alpha} v)=g(x) \text { if }<v, b-A x>=0 . \tag{7}
\end{equation*}
$$

Suppose that x^{*} is a vector that minimizes g.
and

$$
\begin{aligned}
g(x+\hat{\alpha} v)= & f(\hat{\alpha})=g(x)-2 \frac{<v, b-A x>}{<v, A v>}<v, b-A x> \\
& +\left(\frac{<v, b-A x>}{<v, A v>}\right)^{2}<v, A v> \\
= & g(x)-\frac{<v, b-A x>^{2}}{<v, A v>} .
\end{aligned}
$$

So, for any nonzero vector v, we have

$$
\begin{equation*}
g(x+\hat{\alpha} v)<g(x) \text { if }<v, b-A x>\neq 0 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
g(x+\hat{\alpha} v)=g(x) \text { if }<v, b-A x>=0 . \tag{7}
\end{equation*}
$$

Suppose that x^{*} is a vector that minimizes g. Then

$$
\begin{equation*}
g\left(x^{*}+\hat{\alpha} v\right) \geq g\left(x^{*}\right) \text { for any } v . \tag{8}
\end{equation*}
$$

From (6), (7) and (8), we have

$$
<v, b-A x^{*}>=0 \text { for any } v
$$

From (6), (7) and (8), we have

$$
<v, b-A x^{*}>=0 \text { for any } v,
$$

which implies that $A x^{*}=b$.

From (6), (7) and (8), we have

$$
<v, b-A x^{*}>=0 \text { for any } v
$$

which implies that $A x^{*}=b$.
Let

$$
r=b-A x
$$

From (6), (7) and (8), we have

$$
<v, b-A x^{*}>=0 \text { for any } v
$$

which implies that $A x^{*}=b$.
Let

$$
r=b-A x
$$

Then

$$
\alpha=\frac{\langle v, b-A x\rangle}{\langle v, A v>}=\frac{\langle v, r>}{\langle v, A v>} .
$$

From (6), (7) and (8), we have

$$
<v, b-A x^{*}>=0 \text { for any } v
$$

which implies that $A x^{*}=b$.
Let

$$
r=b-A x .
$$

Then

$$
\alpha=\frac{<v, b-A x\rangle}{\langle v, A v>}=\frac{\langle v, r>}{\langle v, A v>} .
$$

If $r \neq 0$ and if v and r are not orthogonal,

From (6), (7) and (8), we have

$$
<v, b-A x^{*}>=0 \text { for any } v
$$

which implies that $A x^{*}=b$.
Let

$$
r=b-A x .
$$

Then

$$
\alpha=\frac{<v, b-A x>}{\langle v, A v>}=\frac{<v, r>}{\langle v, A v>} .
$$

If $r \neq 0$ and if v and r are not orthogonal, then

$$
g(x+\alpha v)<g(x)
$$

From (6), (7) and (8), we have

$$
<v, b-A x^{*}>=0 \text { for any } v
$$

which implies that $A x^{*}=b$.
Let

$$
r=b-A x .
$$

Then

$$
\alpha=\frac{\langle v, b-A x\rangle}{\langle v, A v>}=\frac{\langle v, r>}{\langle v, A v>} .
$$

If $r \neq 0$ and if v and r are not orthogonal, then

$$
g(x+\alpha v)<g(x)
$$

which implies that $x+\alpha v$ is closer to x^{*} than is x.

Let $x^{(0)}$ be an initial approximation to x^{*} and $v^{(1)} \neq 0$ be an initial search direction.

Let $x^{(0)}$ be an initial approximation to x^{*} and $v^{(1)} \neq 0$ be an initial search direction. For $k=1,2,3, \ldots$, we compute

$$
\begin{aligned}
\alpha_{k} & =\frac{<v^{(k)}, b-A x^{(k-1)}>}{<v^{(k)}, A v^{(k)}>} \\
x^{(k)} & =x^{(k-1)}+\alpha_{k} v^{(k)}
\end{aligned}
$$

and choose a new search direction $v^{(k+1)}$.

Let $x^{(0)}$ be an initial approximation to x^{*} and $v^{(1)} \neq 0$ be an initial search direction. For $k=1,2,3, \ldots$, we compute

$$
\begin{aligned}
\alpha_{k} & =\frac{<v^{(k)}, b-A x^{(k-1)}>}{<v^{(k)}, A v^{(k)}>}, \\
x^{(k)} & =x^{(k-1)}+\alpha_{k} v^{(k)}
\end{aligned}
$$

and choose a new search direction $v^{(k+1)}$. Question: How to choose $\left\{v^{(k)}\right\}$ such that $\left\{x^{(k)}\right\}$ converges rapidly to x^{*} ?

Let $x^{(0)}$ be an initial approximation to x^{*} and $v^{(1)} \neq 0$ be an initial search direction. For $k=1,2,3, \ldots$, we compute

$$
\begin{aligned}
\alpha_{k} & =\frac{<v^{(k)}, b-A x^{(k-1)}>}{<v^{(k)}, A v^{(k)}>} \\
x^{(k)} & =x^{(k-1)}+\alpha_{k} v^{(k)}
\end{aligned}
$$

and choose a new search direction $v^{(k+1)}$. Question: How to choose $\left\{v^{(k)}\right\}$ such that $\left\{x^{(k)}\right\}$ converges rapidly to x^{*} ?
Let $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differential function on x.

The right hand side takes minimum at

Let $x^{(0)}$ be an initial approximation to x^{*} and $v^{(1)} \neq 0$ be an initial search direction. For $k=1,2,3, \ldots$, we compute

$$
\begin{aligned}
\alpha_{k} & =\frac{<v^{(k)}, b-A x^{(k-1)}>}{<v^{(k)}, A v^{(k)}>} \\
x^{(k)} & =x^{(k-1)}+\alpha_{k} v^{(k)}
\end{aligned}
$$

and choose a new search direction $v^{(k+1)}$. Question: How to choose $\left\{v^{(k)}\right\}$ such that $\left\{x^{(k)}\right\}$ converges rapidly to x^{*} ?
Let $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differential function on x. Then it holds

$$
\frac{\Phi(x+\varepsilon p)-\Phi(x)}{\varepsilon}=\nabla \Phi(x)^{T} p+O(\varepsilon)
$$

The right hand side takes minimum at

Let $x^{(0)}$ be an initial approximation to x^{*} and $v^{(1)} \neq 0$ be an initial search direction. For $k=1,2,3, \ldots$, we compute

$$
\begin{aligned}
\alpha_{k} & =\frac{<v^{(k)}, b-A x^{(k-1)}>}{<v^{(k)}, A v^{(k)}>} \\
x^{(k)} & =x^{(k-1)}+\alpha_{k} v^{(k)}
\end{aligned}
$$

and choose a new search direction $v^{(k+1)}$.
Question: How to choose $\left\{v^{(k)}\right\}$ such that $\left\{x^{(k)}\right\}$ converges rapidly to x^{*} ?
Let $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differential function on x. Then it holds

$$
\frac{\Phi(x+\varepsilon p)-\Phi(x)}{\varepsilon}=\nabla \Phi(x)^{T} p+O(\varepsilon)
$$

The right hand side takes minimum at

$$
p=-\frac{\nabla \Phi(x)}{\|\nabla \Phi(x)\|} \quad \text { (i.e., the largest descent) }
$$

for all p with $\|p\|=1$ (neglect $O(\varepsilon)$).

Denote $x=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T}$.

Denote $x=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T}$. Then

$$
g(x)=<x, A x>-2<x, b>=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}-2 \sum_{i=1}^{n} x_{i} b_{i} .
$$

Therefore, the gradient of g is

Denote $x=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T}$. Then

$$
g(x)=<x, A x>-2<x, b>=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}-2 \sum_{i=1}^{n} x_{i} b_{i} .
$$

It follows that

$$
\frac{\partial g}{\partial x_{k}}(x)=2 \sum_{i=1}^{n} a_{k i} x_{i}-2 b_{k}, \text { for } k=1,2, \ldots, n
$$

Denote $x=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T}$. Then

$$
g(x)=<x, A x>-2<x, b>=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}-2 \sum_{i=1}^{n} x_{i} b_{i} .
$$

It follows that

$$
\frac{\partial g}{\partial x_{k}}(x)=2 \sum_{i=1}^{n} a_{k i} x_{i}-2 b_{k}, \text { for } k=1,2, \ldots, n
$$

Therefore, the gradient of g is

$$
\nabla g(x)=\left[\frac{\partial g}{\partial x_{1}}(x), \frac{\partial g}{\partial x_{2}}, \cdots, \frac{\partial g}{\partial x_{n}}(x)\right]^{T}=2(A x-b)=-2 r
$$

Steepest descent method (gradient method)

Given an initial $x_{0} \neq 0$.
For $k=1,2, \ldots$
$r_{k-1}=b-A x_{k-1}$
If $r_{k-1}=0$, then stop;
else $\alpha_{k}=\frac{r_{k-1}^{T} r_{k-1}}{r_{k-1}^{T} A r_{k-1}}, x_{k}=x_{k-1}+\alpha_{k} r_{k-1}$.
End for

Theorem 37If x_{k}, x_{k-1} are two approximations of the steepest descent method for solving $A x=b$ and then it holds

Steepest descent method (gradient method)

Given an initial $x_{0} \neq 0$.
For $k=1,2, \ldots$.
$r_{k-1}=b-A x_{k-1}$
If $r_{k-1}=0$, then stop;
else $\alpha_{k}=\frac{r_{k-1}^{T} r_{k-1}}{r_{k-1}^{T} A r_{k-1}}, x_{k}=x_{k-1}+\alpha_{k} r_{k-1}$.
End for

Theorem 37

If x_{k}, x_{k-1} are two approximations of the steepest descent method for solving $A x=b$ and $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}>0$ are the eigenvalues of A, then it holds:

$$
\left\|x_{k}-x^{*}\right\|_{A} \leq\left(\frac{\lambda_{1}-\lambda_{n}}{\lambda_{1}+\lambda_{n}}\right)\left\|x_{k-1}-x^{*}\right\|_{A},
$$

where $\|x\|_{A}=\sqrt{x^{T} A x}$. Thus the gradient method is convergent.

- If the condition number of $A\left(=\lambda_{1} / \lambda_{n}\right)$ is large, then $\frac{\lambda_{1}-\lambda_{n}}{\lambda_{1}+\lambda_{n}} \approx 1$. Hence this method is not recommendable.
- If the condition number of $A\left(=\lambda_{1} / \lambda_{n}\right)$ is large, then $\frac{\lambda_{1}-\lambda_{n}}{\lambda_{1}+\lambda_{n}} \approx 1$. The gradient method converges very slowly. It is favorable to choose that the search directions mutually A-conjugate, where A is symmetric positive definite.
- If the condition number of $A\left(=\lambda_{1} / \lambda_{n}\right)$ is large, then $\frac{\lambda_{1}-\lambda_{n}}{\lambda_{1}+\lambda_{n}} \approx 1$. The gradient method converges very slowly. Hence this method is not recommendable.

definite.
- If the condition number of $A\left(=\lambda_{1} / \lambda_{n}\right)$ is large, then $\frac{\lambda_{1}-\lambda_{n}}{\lambda_{1}+\lambda_{n}} \approx 1$. The gradient method converges very slowly. Hence this method is not recommendable.
- It is favorable to choose that the search directions $\left\{v^{(i)}\right\}$ as mutually A-conjugate, where A is symmetric positive definite.
- If the condition number of $A\left(=\lambda_{1} / \lambda_{n}\right)$ is large, then $\frac{\lambda_{1}-\lambda_{n}}{\lambda_{1}+\lambda_{n}} \approx 1$. The gradient method converges very slowly. Hence this method is not recommendable.
- It is favorable to choose that the search directions $\left\{v^{(i)}\right\}$ as mutually A-conjugate, where A is symmetric positive definite.

Definition 38

Two vectors p and q are called A-conjugate (A-orthogonal), if $p^{T} A q=0$.

Lemma 39

Let $v_{1}, \ldots, v_{n} \neq 0$ be pairwisely A-conjugate.

Lemma 39

Let $v_{1}, \ldots, v_{n} \neq 0$ be pairwisely A-conjugate. Then they are linearly independent.

Proof: From

Lemma 39

Let $v_{1}, \ldots, v_{n} \neq 0$ be pairwisely A-conjugate. Then they are linearly independent.

Proof: From

$$
0=\sum_{j=1}^{n} c_{j} v_{j}
$$

follows that

$$
0=\left(v_{k}\right)^{T} A\left(\sum_{j=1}^{n} c_{j} v_{j}\right)=\sum_{j=1}^{n} c_{j}\left(v_{k}\right)^{T} A v_{j}=c_{k}\left(v_{k}\right)^{T} A v_{k},
$$

so $c_{k}=0$, for $k=1, \ldots, n$.

Theorem 40

Let A be symm. positive definite and $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n} \backslash\{0\}$ be pairwisely A-orthogonal.

Theorem 40

Let A be symm. positive definite and $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n} \backslash\{0\}$ be pairwisely A-orthogonal. Give x_{0} and let $r_{0}=b-A x_{0}$.

Theorem 40

Let A be symm. positive definite and $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n} \backslash\{0\}$ be pairwisely A-orthogonal. Give x_{0} and let $r_{0}=b-A x_{0}$. For $k=1, \ldots, n$, let

$$
\alpha_{k}=\frac{<v_{k}, b-A x_{k-1}>}{<v_{k}, A v_{k}>} \quad \text { and } \quad x_{k}=x_{k-1}+\alpha_{k} v_{k}
$$

Theorem 40

Let A be symm. positive definite and $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n} \backslash\{0\}$ be pairwisely A-orthogonal. Give x_{0} and let $r_{0}=b-A x_{0}$. For $k=1, \ldots, n$, let

$$
\alpha_{k}=\frac{<v_{k}, b-A x_{k-1}>}{<v_{k}, A v_{k}>} \quad \text { and } \quad x_{k}=x_{k-1}+\alpha_{k} v_{k}
$$

Then $A x_{n}=b$ and

Theorem 40

Let A be symm. positive definite and $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n} \backslash\{0\}$ be pairwisely A-orthogonal. Give x_{0} and let $r_{0}=b-A x_{0}$. For $k=1, \ldots, n$, let

$$
\alpha_{k}=\frac{<v_{k}, b-A x_{k-1}>}{<v_{k}, A v_{k}>} \quad \text { and } \quad x_{k}=x_{k-1}+\alpha_{k} v_{k}
$$

Then $A x_{n}=b$ and

$$
<b-A x_{k}, v_{j}>=0, \text { for each } j=1,2, \ldots, k .
$$

Theorem 40

Let A be symm. positive definite and $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n} \backslash\{0\}$ be pairwisely A-orthogonal. Give x_{0} and let $r_{0}=b-A x_{0}$. For $k=1, \ldots, n$, let

$$
\alpha_{k}=\frac{<v_{k}, b-A x_{k-1}>}{<v_{k}, A v_{k}>} \quad \text { and } \quad x_{k}=x_{k-1}+\alpha_{k} v_{k}
$$

Then $A x_{n}=b$ and

$$
<b-A x_{k}, v_{j}>=0, \text { for each } j=1,2, \ldots, k .
$$

Proof: Since, for each $k=1,2, \ldots, n$,

$$
x_{k}=x_{k-1}+\alpha_{k} v_{k}
$$

we have

Theorem 40

Let A be symm. positive definite and $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n} \backslash\{0\}$ be pairwisely A-orthogonal. Give x_{0} and let $r_{0}=b-A x_{0}$. For $k=1, \ldots, n$, let

$$
\alpha_{k}=\frac{<v_{k}, b-A x_{k-1}>}{<v_{k}, A v_{k}>} \quad \text { and } \quad x_{k}=x_{k-1}+\alpha_{k} v_{k}
$$

Then $A x_{n}=b$ and

$$
<b-A x_{k}, v_{j}>=0, \text { for each } j=1,2, \ldots, k .
$$

Proof: Since, for each $k=1,2, \ldots, n$,

$$
x_{k}=x_{k-1}+\alpha_{k} v_{k}
$$

we have

$$
\begin{aligned}
A x_{n} & =A x_{n-1}+\alpha_{n} A v_{n}=\left(A x_{n-2}+\alpha_{n-1} A v_{n-1}\right)+\alpha_{n} A v_{n}=\cdots \\
& =A x_{0}+\alpha_{1} A v_{1}+\alpha_{2} A v_{2}+\cdots+\alpha_{n} A v_{n} .
\end{aligned}
$$

It implies that

$$
\begin{aligned}
& <A x_{n}-b, v_{k}> \\
= & <A x_{0}-b, v_{k}>+\alpha_{1}<A v_{1}, v_{k}>+\cdots+\alpha_{n}<A v_{n}, v_{k}> \\
= & <A x_{0}-b, v_{k}>+\alpha_{1}<v_{1}, A v_{k}>+\cdots+\alpha_{n}<v_{n}, A v_{k}> \\
= & <A x_{0}-b, v_{k}>+\alpha_{k}<v_{k}, A v_{k}> \\
= & <A x_{0}-b, v_{k}>+\frac{<v_{k}, b-A x_{k-1}>}{<v_{k}, A v_{k}>}<v_{k}, A v_{k}> \\
= & <A x_{0}-b, v_{k}>+<v_{k}, b-A x_{k-1}> \\
= & <A x_{0}-b, v_{k}> \\
& +<v_{k}, b-A x_{0}+A x_{0}-A x_{1}+\cdots-A x_{k-2}+A x_{k-2}-A x_{k-1}> \\
= & <A x_{0}-b, v_{k}>+<v_{k}, b-A x_{0}>+<v_{k}, A x_{0}-A x_{1}> \\
& +\cdots+<v_{k}, A x_{k-2}-A x_{k-1}> \\
= & <v_{k}, A x_{0}-A x_{1}>+\cdots+<v_{k}, A x_{k-2}-A x_{k-1}>.
\end{aligned}
$$

For any i

$$
x_{i}=x_{i-1}+\alpha_{i} v_{i} \quad \text { and } \quad A x_{i}=A x_{i-1}+\alpha_{i} A v_{i},
$$

For any i

$$
x_{i}=x_{i-1}+\alpha_{i} v_{i} \quad \text { and } \quad A x_{i}=A x_{i-1}+\alpha_{i} A v_{i}
$$

we have

$$
A x_{i-1}-A x_{i}=-\alpha_{i} A v_{i}
$$

For any i

$$
x_{i}=x_{i-1}+\alpha_{i} v_{i} \quad \text { and } \quad A x_{i}=A x_{i-1}+\alpha_{i} A v_{i}
$$

we have

$$
A x_{i-1}-A x_{i}=-\alpha_{i} A v_{i}
$$

Thus, for $k=1, \ldots, n$,

$$
\begin{aligned}
& <A x_{n}-b, v_{k}> \\
= & -\alpha_{1}<v_{k}, A v_{1}>-\cdots-\alpha_{k-1}<v_{k}, A v_{k-1}>=0
\end{aligned}
$$

For any i

$$
x_{i}=x_{i-1}+\alpha_{i} v_{i} \quad \text { and } \quad A x_{i}=A x_{i-1}+\alpha_{i} A v_{i},
$$

we have

$$
A x_{i-1}-A x_{i}=-\alpha_{i} A v_{i} .
$$

Thus, for $k=1, \ldots, n$,

$$
\begin{aligned}
& <A x_{n}-b, v_{k}> \\
= & -\alpha_{1}<v_{k}, A v_{1}>-\cdots-\alpha_{k-1}<v_{k}, A v_{k-1}>=0
\end{aligned}
$$

which implies that $A x_{n}=b$.

For any i

$$
x_{i}=x_{i-1}+\alpha_{i} v_{i} \quad \text { and } \quad A x_{i}=A x_{i-1}+\alpha_{i} A v_{i}
$$

we have

$$
A x_{i-1}-A x_{i}=-\alpha_{i} A v_{i} .
$$

Thus, for $k=1, \ldots, n$,

$$
\begin{aligned}
& <A x_{n}-b, v_{k}> \\
= & -\alpha_{1}<v_{k}, A v_{1}>-\cdots-\alpha_{k-1}<v_{k}, A v_{k-1}>=0
\end{aligned}
$$

which implies that $A x_{n}=b$.
Suppose that

$$
\begin{equation*}
<r_{k-1}, v_{j}>=0 \text { for } j=1,2, \ldots, k-1 \tag{9}
\end{equation*}
$$

For any i

$$
x_{i}=x_{i-1}+\alpha_{i} v_{i} \quad \text { and } \quad A x_{i}=A x_{i-1}+\alpha_{i} A v_{i}
$$

we have

$$
A x_{i-1}-A x_{i}=-\alpha_{i} A v_{i}
$$

Thus, for $k=1, \ldots, n$,

$$
\begin{aligned}
& <A x_{n}-b, v_{k}> \\
= & -\alpha_{1}<v_{k}, A v_{1}>-\cdots-\alpha_{k-1}<v_{k}, A v_{k-1}>=0
\end{aligned}
$$

which implies that $A x_{n}=b$.
Suppose that

$$
\begin{equation*}
<r_{k-1}, v_{j}>=0 \text { for } j=1,2, \ldots, k-1 \tag{9}
\end{equation*}
$$

By the result

$$
r_{k}=b-A x_{k}=b-A\left(x_{k-1}+\alpha_{k} v_{k}\right)=r_{k-1}-\alpha_{k} A v_{k}
$$

it follows that

$$
\begin{aligned}
<r_{k}, v_{k}> & =<r_{k-1}, v_{k}>-\alpha_{k}<A v_{k}, v_{k}> \\
& =<r_{k-1}, v_{k}>-\frac{<v_{k}, b-A x_{k-1}>}{<v_{k}, A v_{k}>}<A v_{k}, v_{k}> \\
& =0
\end{aligned}
$$

From assumption (9) and A-orthogonality, for $j=1$
it follows that

$$
\begin{aligned}
<r_{k}, v_{k}> & =<r_{k-1}, v_{k}>-\alpha_{k}<A v_{k}, v_{k}> \\
& =<r_{k-1}, v_{k}>-\frac{<v_{k}, b-A x_{k-1}>}{<v_{k}, A v_{k}>}<A v_{k}, v_{k}> \\
& =0
\end{aligned}
$$

From assumption (9) and A-orthogonality, for $j=1, \ldots, k-1$

$$
<r_{k}, v_{j}>=<r_{k-1}, v_{j}>-\alpha_{k}<A v_{k}, v_{j}>=0
$$

which is completed the proof by the mathematic induction.

Let A be symmetric positive definite, $b, x_{0} \in \mathbb{R}^{n}$. Given
it follows that

$$
\begin{aligned}
<r_{k}, v_{k}> & =<r_{k-1}, v_{k}>-\alpha_{k}<A v_{k}, v_{k}> \\
& =<r_{k-1}, v_{k}>-\frac{<v_{k}, b-A x_{k-1}>}{<v_{k}, A v_{k}>}<A v_{k}, v_{k}> \\
& =0
\end{aligned}
$$

From assumption (9) and A-orthogonality, for $j=1, \ldots, k-1$

$$
<r_{k}, v_{j}>=<r_{k-1}, v_{j}>-\alpha_{k}<A v_{k}, v_{j}>=0
$$

which is completed the proof by the mathematic induction.
Method of conjugate directions:
Let A be symmetric positive definite, $b, x_{0} \in \mathbb{R}^{n}$.
it follows that

$$
\begin{aligned}
<r_{k}, v_{k}> & =<r_{k-1}, v_{k}>-\alpha_{k}<A v_{k}, v_{k}> \\
& =<r_{k-1}, v_{k}>-\frac{<v_{k}, b-A x_{k-1}>}{<v_{k}, A v_{k}>}<A v_{k}, v_{k}> \\
& =0
\end{aligned}
$$

From assumption (9) and A-orthogonality, for $j=1, \ldots, k-1$

$$
<r_{k}, v_{j}>=<r_{k-1}, v_{j}>-\alpha_{k}<A v_{k}, v_{j}>=0
$$

which is completed the proof by the mathematic induction.
Method of conjugate directions:
Let A be symmetric positive definite, $b, x_{0} \in \mathbb{R}^{n}$. Given $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n} \backslash\{0\}$ pairwisely A-orthogonal.
it follows that

$$
\begin{aligned}
<r_{k}, v_{k}> & =<r_{k-1}, v_{k}>-\alpha_{k}<A v_{k}, v_{k}> \\
& =<r_{k-1}, v_{k}>-\frac{<v_{k}, b-A x_{k-1}>}{<v_{k}, A v_{k}>}<A v_{k}, v_{k}> \\
& =0
\end{aligned}
$$

From assumption (9) and A-orthogonality, for $j=1, \ldots, k-1$

$$
<r_{k}, v_{j}>=<r_{k-1}, v_{j}>-\alpha_{k}<A v_{k}, v_{j}>=0
$$

which is completed the proof by the mathematic induction.
Method of conjugate directions:
Let A be symmetric positive definite, $b, x_{0} \in \mathbb{R}^{n}$. Given $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n} \backslash\{0\}$ pairwisely A-orthogonal.
$r_{0}=b-A x_{0}$,
For $k=1, \ldots, n$,

$$
\begin{aligned}
& \alpha_{k}=\frac{<v_{k}, r_{k-1}>}{<v_{k}, A v_{k}>}, x_{k}=x_{k-1}+\alpha_{k} v_{k} \\
& r_{k}=r_{k-1}-\alpha_{k} A v_{k}=b-A x_{k}
\end{aligned}
$$

Fnd For

Practical Implementation

- In k-th step a direction v_{k} which is A-orthogonal to v_{1}, \ldots, v_{k-1} must be determined.

Practical Implementation

－In k－th step a direction v_{k} which is A－orthogonal to v_{1}, \ldots, v_{k-1} must be determined．
－It allows for orthogonalization of r_{k} against v_{1}, \ldots, v_{k} ．

Practical Implementation

- In k-th step a direction v_{k} which is A-orthogonal to v_{1}, \ldots, v_{k-1} must be determined.
- It allows for orthogonalization of r_{k} against v_{1}, \ldots, v_{k}.
- Let $r_{k} \neq 0, g(x)$ decreases strictly in the direction $-r_{k}$. For $\varepsilon>0$ small, we have $g\left(x_{k}-\varepsilon r_{k}\right)<g\left(x_{k}\right)$.

Practical Implementation

- In k-th step a direction v_{k} which is A-orthogonal to v_{1}, \ldots, v_{k-1} must be determined.
- It allows for orthogonalization of r_{k} against v_{1}, \ldots, v_{k}.
- Let $r_{k} \neq 0, g(x)$ decreases strictly in the direction $-r_{k}$. For $\varepsilon>0$ small, we have $g\left(x_{k}-\varepsilon r_{k}\right)<g\left(x_{k}\right)$.

If $r_{k-1}=b-A x_{k-1} \neq 0$, then we use r_{k-1} to generate v_{k} by

$$
\begin{equation*}
v_{k}=r_{k-1}+\beta_{k-1} v_{k-1} \tag{10}
\end{equation*}
$$

Practical Implementation

- In k-th step a direction v_{k} which is A-orthogonal to v_{1}, \ldots, v_{k-1} must be determined.
- It allows for orthogonalization of r_{k} against v_{1}, \ldots, v_{k}.
- Let $r_{k} \neq 0, g(x)$ decreases strictly in the direction $-r_{k}$. For $\varepsilon>0$ small, we have $g\left(x_{k}-\varepsilon r_{k}\right)<g\left(x_{k}\right)$.

If $r_{k-1}=b-A x_{k-1} \neq 0$, then we use r_{k-1} to generate v_{k} by

$$
\begin{equation*}
v_{k}=r_{k-1}+\beta_{k-1} v_{k-1} \tag{10}
\end{equation*}
$$

Choose β_{k-1} such that

$$
\begin{aligned}
0 & =<v_{k-1}, A v_{k}>=<v_{k-1}, A r_{k-1}+\beta_{k-1} A v_{k-1}> \\
& =<v_{k-1}, A r_{k-1}>+\beta_{k-1}<v_{k-1}, A v_{k-1}>
\end{aligned}
$$

That is

$$
\begin{equation*}
\beta_{k-1}=-\frac{<v_{k-1}, A r_{k-1}>}{<v_{k-1}, A v_{k-1}>} \tag{11}
\end{equation*}
$$

Theorem 41

Let v_{1}. and β_{1}. , be defined in (10) and (11), respectively. Then r_{0}, \ldots, r_{k-1} are mutually orthogonal and

That is $\left\{v_{1}, \ldots, v_{k}\right\}$ is an A-orthogonal set.

That is

$$
\begin{equation*}
\beta_{k-1}=-\frac{\left\langle v_{k-1}, A r_{k-1}\right\rangle}{\left\langle v_{k-1}, A v_{k-1}\right\rangle} . \tag{11}
\end{equation*}
$$

Theorem 41

Let v_{k} and β_{k-1} be defined in (10) and (11), respectively.

That is

$$
\begin{equation*}
\beta_{k-1}=-\frac{\left\langle v_{k-1}, A r_{k-1}\right\rangle}{\left\langle v_{k-1}, A v_{k-1}\right\rangle} . \tag{11}
\end{equation*}
$$

Theorem 41

Let v_{k} and β_{k-1} be defined in (10) and (11), respectively. Then r_{0}, \ldots, r_{k-1} are mutually orthogonal and

That is

$$
\begin{equation*}
\beta_{k-1}=-\frac{\left\langle v_{k-1}, A r_{k-1}\right\rangle}{\left\langle v_{k-1}, A v_{k-1}\right\rangle} . \tag{11}
\end{equation*}
$$

Theorem 41

Let v_{k} and β_{k-1} be defined in (10) and (11), respectively. Then r_{0}, \ldots, r_{k-1} are mutually orthogonal and

$$
<v_{k}, A v_{i}>=0, \text { for } i=1,2, \ldots, k-1
$$

That is

$$
\begin{equation*}
\beta_{k-1}=-\frac{\left\langle v_{k-1}, A r_{k-1}\right\rangle}{\left\langle v_{k-1}, A v_{k-1}\right\rangle} . \tag{11}
\end{equation*}
$$

Theorem 41

Let v_{k} and β_{k-1} be defined in (10) and (11), respectively. Then r_{0}, \ldots, r_{k-1} are mutually orthogonal and

$$
<v_{k}, A v_{i}>=0, \text { for } i=1,2, \ldots, k-1
$$

That is $\left\{v_{1}, \ldots, v_{k}\right\}$ is an A-orthogonal set.

That is

$$
\begin{equation*}
\beta_{k-1}=-\frac{\left\langle v_{k-1}, A r_{k-1}\right\rangle}{\left\langle v_{k-1}, A v_{k-1}\right\rangle} . \tag{11}
\end{equation*}
$$

Theorem 41

Let v_{k} and β_{k-1} be defined in (10) and (11), respectively. Then r_{0}, \ldots, r_{k-1} are mutually orthogonal and

$$
<v_{k}, A v_{i}>=0, \text { for } i=1,2, \ldots, k-1 .
$$

That is $\left\{v_{1}, \ldots, v_{k}\right\}$ is an A-orthogonal set.
Having chosen v_{k}, we compute

$$
\begin{align*}
\alpha_{k} & =\frac{<v_{k}, r_{k-1}>}{<v_{k}, A v_{k}>}=\frac{<r_{k-1}+\beta_{k-1} v_{k-1}, r_{k-1}>}{<v_{k}, A v_{k}>} \\
& =\frac{<r_{k-1}, r_{k-1}>}{<v_{k}, A v_{k}>}+\beta_{k-1} \frac{<v_{k-1}, r_{k-1}>}{<v_{k}, A v_{k}>} \\
& =\frac{<r_{k-1}, r_{k-1}>}{<v_{k}, A v_{k}>} . \tag{12}
\end{align*}
$$

Since

$$
r_{k}=r_{k-1}-\alpha_{k} A v_{k}
$$

Further, from (12),

Since

$$
r_{k}=r_{k-1}-\alpha_{k} A v_{k}
$$

we have

$<r_{k}, r_{k}>=<r_{k-1}, r_{k}>-\alpha_{k}<A v_{k}, r_{k}>=-\alpha_{k}<r_{k}, A v_{k}>$.
Further, from (12),

Since

$$
r_{k}=r_{k-1}-\alpha_{k} A v_{k}
$$

we have

$<r_{k}, r_{k}>=<r_{k-1}, r_{k}>-\alpha_{k}<A v_{k}, r_{k}>=-\alpha_{k}<r_{k}, A v_{k}>$.
Further, from (12),

$$
<r_{k-1}, r_{k-1}>=\alpha_{k}<v_{k}, A v_{k}>
$$

Since

$$
r_{k}=r_{k-1}-\alpha_{k} A v_{k}
$$

we have

$<r_{k}, r_{k}>=<r_{k-1}, r_{k}>-\alpha_{k}<A v_{k}, r_{k}>=-\alpha_{k}<r_{k}, A v_{k}>$.
Further, from (12),

$$
<r_{k-1}, r_{k-1}>=\alpha_{k}<v_{k}, A v_{k}>
$$

so

$$
\begin{aligned}
\beta_{k} & =-\frac{<v_{k}, A r_{k}>}{<v_{k}, A v_{k}>}=-\frac{<r_{k}, A v_{k}>}{<v_{k}, A v_{k}>} \\
& =\frac{\left(1 / \alpha_{k}\right)<r_{k}, r_{k}>}{\left(1 / \alpha_{k}\right)<r_{k-1}, r_{k-1}>}=\frac{<r_{k}, r_{k}>}{<r_{k-1}, r_{k-1}>} .
\end{aligned}
$$

Algorithm 4 (Conjugate Gradient method (CG-method))

Let A be s.p.d., $b \in \mathbb{R}^{n}$, choose $x_{0} \in \mathbb{R}^{n}, r_{0}=b-A x_{0}=v_{0}$. If $r_{0}=0$, then $N=0$ stop, otherwise for $k=0,1, \ldots$
(a). $\alpha_{k}=\frac{\left\langle r_{k}, r_{k}\right\rangle}{\left\langle v_{k}, A v_{k}\right\rangle}$,
(b). $x_{k+1}=x_{k}+\alpha_{k} v_{k}$,
(c). $r_{k+1}=r_{k}-\alpha_{k} A v_{k}$,
(d). If $r_{k+1}=0$, let $N=k+1$, stop.
(e). $\beta_{k}=\frac{\left\langle r_{k+1}, r_{k+1}\right\rangle}{\left\langle r_{k}, r_{k}\right\rangle}$,
(f). $v_{k+1}=r_{k+1}+\beta_{k} v_{k}$.

$$
\text { Theoretically, the exact solution is obtained in } n \text { steps. }
$$

If A is well-conditioned, then approximate solution is

obtained in about \sqrt{n} steps.

Algorithm 4 (Conjugate Gradient method (CG-method))

Let A be s.p.d., $b \in \mathbb{R}^{n}$, choose $x_{0} \in \mathbb{R}^{n}$, $r_{0}=b-A x_{0}=v_{0}$. If $r_{0}=0$, then $N=0$ stop, otherwise for $k=0,1, \ldots$
(a). $\alpha_{k}=\frac{\left\langle r_{k}, r_{k}\right\rangle}{\left\langle v_{k}, A v_{k}\right\rangle}$,
(b). $x_{k+1}=x_{k}+\alpha_{k} v_{k}$,
(c). $r_{k+1}=r_{k}-\alpha_{k} A v_{k}$,
(d). If $r_{k+1}=0$, let $N=k+1$, stop.
(e). $\beta_{k}=\frac{\left\langle r_{k+1}, r_{k+1}\right\rangle}{\left\langle r_{k}, r_{k}\right\rangle}$,
(f). $v_{k+1}=r_{k+1}+\beta_{k} v_{k}$.

- Theoretically, the exact solution is obtained in n steps.

If A is well-conditioned, then approximate solution is
obtained in about \sqrt{n} steps.
If A is ill-conditioned then the number of iterations may be
greater than

Algorithm 4 (Conjugate Gradient method (CG-method))

Let A be s.p.d., $b \in \mathbb{R}^{n}$, choose $x_{0} \in \mathbb{R}^{n}$, $r_{0}=b-A x_{0}=v_{0}$. If $r_{0}=0$, then $N=0$ stop, otherwise for $k=0,1, \ldots$
(a). $\alpha_{k}=\frac{\left\langle r_{k}, r_{k}\right\rangle}{\left\langle v_{k}, A v_{k}\right\rangle}$,
(b). $x_{k+1}=x_{k}+\alpha_{k} v_{k}$,
(c). $r_{k+1}=r_{k}-\alpha_{k} A v_{k}$,
(d). If $r_{k+1}=0$, let $N=k+1$, stop.
(e). $\beta_{k}=\frac{\left\langle r_{k+1}, r_{k+1}\right\rangle}{\left\langle r_{k}, r_{k}\right\rangle}$,
(f). $v_{k+1}=r_{k+1}+\beta_{k} v_{k}$.

- Theoretically, the exact solution is obtained in n steps.
- If A is well-conditioned, then approximate solution is obtained in about \sqrt{n} steps.

If A is ill-conditioned, then the number of iterations may be
greater than

Algorithm 4 (Conjugate Gradient method (CG-method))

Let A be s.p.d., $b \in \mathbb{R}^{n}$, choose $x_{0} \in \mathbb{R}^{n}$, $r_{0}=b-A x_{0}=v_{0}$. If $r_{0}=0$, then $N=0$ stop, otherwise for $k=0,1, \ldots$
(a). $\alpha_{k}=\frac{\left\langle r_{k}, r_{k}\right\rangle}{\left\langle v_{k}, A v_{k}\right\rangle}$,
(b). $x_{k+1}=x_{k}+\alpha_{k} v_{k}$,
(c). $r_{k+1}=r_{k}-\alpha_{k} A v_{k}$,
(d). If $r_{k+1}=0$, let $N=k+1$, stop.
(e). $\beta_{k}=\frac{\left\langle r_{k+1}, r_{k+1}\right\rangle}{\left\langle r_{k}, r_{k}\right\rangle}$,
(f). $v_{k+1}=r_{k+1}+\beta_{k} v_{k}$.

- Theoretically, the exact solution is obtained in n steps.
- If A is well-conditioned, then approximate solution is obtained in about \sqrt{n} steps.
- If A is ill-conditioned, then the number of iterations may be greater than n.

Theorem 42

CG-method satisfies the following error estimate

$$
\left\|x_{k}-x^{*}\right\|_{A} \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{k}\left\|x_{0}-x^{*}\right\|_{A}
$$

where $\kappa=\frac{\lambda_{1}}{\lambda_{n}}$ and $\lambda_{1} \geq \cdots \geq \lambda_{n}>0$ are the eigenvalues of A.

Remark 1 (Compare with Gradient method)

Let x_{k}^{G} be the k th iterate of Gradient method. Then

$$
\left\|x_{k}^{G}-x^{*}\right\|_{A} \leq\left|\frac{\lambda_{1}-\lambda_{n}}{\lambda_{1}+\lambda_{n}}\right|^{k}\left\|x_{0}-x^{*}\right\|_{A}
$$

But

$$
\frac{\lambda_{1}-\lambda_{n}}{\lambda_{1}+\lambda_{n}}=\frac{\kappa-1}{\kappa+1}>\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1},
$$

because in general $\sqrt{\kappa} \ll \kappa$. Therefore the CG-method is much better than Gradient method.

Select a nonsingular matrix C so that

$$
\tilde{A}=C^{-1} A C^{-T}
$$

is better conditioned.

Select a nonsingular matrix C so that

$$
\tilde{A}=C^{-1} A C^{-T}
$$

is better conditioned.
Consider the linear system

$$
\tilde{A} \tilde{x}=\tilde{b},
$$

where

$$
\tilde{x}=C^{T} x \quad \text { and } \quad \tilde{b}=C^{-1} b
$$

Select a nonsingular matrix C so that

$$
\tilde{A}=C^{-1} A C^{-T}
$$

is better conditioned.
Consider the linear system

$$
\tilde{A} \tilde{x}=\tilde{b},
$$

where

$$
\tilde{x}=C^{T} x \quad \text { and } \quad \tilde{b}=C^{-1} b .
$$

Then

$$
\tilde{A} \tilde{x}=\left(C^{-1} A C^{-T}\right)\left(C^{T} x\right)=C^{-1} A x .
$$

Select a nonsingular matrix C so that

$$
\tilde{A}=C^{-1} A C^{-T}
$$

is better conditioned.
Consider the linear system

$$
\tilde{A} \tilde{x}=\tilde{b},
$$

where

$$
\tilde{x}=C^{T} x \quad \text { and } \quad \tilde{b}=C^{-1} b
$$

Then

$$
\tilde{A} \tilde{x}=\left(C^{-1} A C^{-T}\right)\left(C^{T} x\right)=C^{-1} A x .
$$

Thus,

$$
A x=b \Leftrightarrow \tilde{A} \tilde{x}=\tilde{b} \text { and } x=C^{-T} \tilde{x} .
$$

Since

$$
\tilde{x}_{k}=C^{T} x_{k}
$$

Since

$$
\tilde{x}_{k}=C^{T} x_{k},
$$

we have

$$
\begin{aligned}
\tilde{r}_{k} & =\tilde{b}-\tilde{A} \tilde{x}_{k}=C^{-1} b-\left(C^{-1} A C^{-T}\right) C^{T} x_{k} \\
& =C^{-1}\left(b-A x_{k}\right)=C^{-1} r_{k}
\end{aligned}
$$

Since

$$
\tilde{x}_{k}=C^{T} x_{k}
$$

we have

$$
\begin{aligned}
\tilde{r}_{k} & =\tilde{b}-\tilde{A} \tilde{x}_{k}=C^{-1} b-\left(C^{-1} A C^{-T}\right) C^{T} x_{k} \\
& =C^{-1}\left(b-A x_{k}\right)=C^{-1} r_{k}
\end{aligned}
$$

Let

$$
\tilde{v}_{k}=C^{T} v_{k} \quad \text { and } \quad w_{k}=C^{-1} r_{k}
$$

Since

$$
\tilde{x}_{k}=C^{T} x_{k}
$$

we have

$$
\begin{aligned}
\tilde{r}_{k} & =\tilde{b}-\tilde{A} \tilde{x}_{k}=C^{-1} b-\left(C^{-1} A C^{-T}\right) C^{T} x_{k} \\
& =C^{-1}\left(b-A x_{k}\right)=C^{-1} r_{k}
\end{aligned}
$$

Let

$$
\tilde{v}_{k}=C^{T} v_{k} \quad \text { and } \quad w_{k}=C^{-1} r_{k} .
$$

Then

$$
\begin{aligned}
\tilde{\beta}_{k} & =\frac{<\tilde{r}_{k}, \tilde{r}_{k}>}{<\tilde{r}_{k-1}, \tilde{r}_{k-1}>}=\frac{<C^{-1} r_{k}, C^{-1} r_{k}>}{<C^{-1} r_{k-1}, C^{-1} r_{k-1}>} \\
& =\frac{<w_{k}, w_{k}>}{<w_{k-1}, w_{k-1}>}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\tilde{\alpha}_{k} & =\frac{<\tilde{r}_{k-1}, \tilde{r}_{k-1}>}{<\tilde{v}_{k}, \tilde{A} \tilde{v}_{k}>}=\frac{<C^{-1} r_{k-1}, C^{-1} r_{k-1}>}{<C^{T} v_{k}, C^{-1} A C^{-T} C^{T} v_{k}>} \\
& =\frac{<w_{k-1}, w_{k-1}>}{<C^{T} v_{k}, C^{-1} A v_{k}>}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\tilde{\alpha}_{k} & =\frac{<\tilde{r}_{k-1}, \tilde{r}_{k-1}>}{<\tilde{v}_{k}, \tilde{A} \tilde{v}_{k}>}=\frac{<C^{-1} r_{k-1}, C^{-1} r_{k-1}>}{<C^{T} v_{k}, C^{-1} A C^{-T} C^{T} v_{k}>} \\
& =\frac{<w_{k-1}, w_{k-1}>}{<C^{T} v_{k}, C^{-1} A v_{k}>}
\end{aligned}
$$

and, since

$$
\begin{aligned}
<C^{T} v_{k}, C^{-1} A v_{k}> & =\left(v_{k}\right)^{T} C C^{-1} A v_{k}=\left(v_{k}\right)^{T} A v_{k} \\
& =<v_{k}, A v_{k}>
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\tilde{\alpha}_{k} & =\frac{<\tilde{r}_{k-1}, \tilde{r}_{k-1}>}{<\tilde{v}_{k}, \tilde{A} \tilde{v}_{k}>}=\frac{<C^{-1} r_{k-1}, C^{-1} r_{k-1}>}{<C^{T} v_{k}, C^{-1} A C^{-T} C^{T} v_{k}>} \\
& =\frac{<w_{k-1}, w_{k-1}>}{<C^{T} v_{k}, C^{-1} A v_{k}>}
\end{aligned}
$$

and, since

$$
\begin{aligned}
<C^{T} v_{k}, C^{-1} A v_{k}> & =\left(v_{k}\right)^{T} C C^{-1} A v_{k}=\left(v_{k}\right)^{T} A v_{k} \\
& =<v_{k}, A v_{k}>
\end{aligned}
$$

we have

$$
\tilde{\alpha}_{k}=\frac{<w_{k-1}, w_{k-1}>}{<v_{k}, A v_{k}>}
$$

Thus,

$$
\begin{aligned}
\tilde{\alpha}_{k} & =\frac{<\tilde{r}_{k-1}, \tilde{r}_{k-1}>}{<\tilde{v}_{k}, \tilde{A} \tilde{v}_{k}>}=\frac{<C^{-1} r_{k-1}, C^{-1} r_{k-1}>}{<C^{T} v_{k}, C^{-1} A C^{-T} C^{T} v_{k}>} \\
& =\frac{<w_{k-1}, w_{k-1}>}{<C^{T} v_{k}, C^{-1} A v_{k}>}
\end{aligned}
$$

and, since

$$
\begin{aligned}
<C^{T} v_{k}, C^{-1} A v_{k}> & =\left(v_{k}\right)^{T} C C^{-1} A v_{k}=\left(v_{k}\right)^{T} A v_{k} \\
& =<v_{k}, A v_{k}>
\end{aligned}
$$

we have

$$
\tilde{\alpha}_{k}=\frac{<w_{k-1}, w_{k-1}>}{<v_{k}, A v_{k}>}
$$

Further,

$$
\tilde{x}_{k}=\tilde{x}_{k-1}+\tilde{\alpha}_{k} \tilde{v}_{k}, \text { so } C^{T} x_{k}=C^{T} x_{k-1}+\tilde{\alpha}_{k} C^{T} v_{k}
$$

Thus,

$$
\begin{aligned}
\tilde{\alpha}_{k} & =\frac{<\tilde{r}_{k-1}, \tilde{r}_{k-1}>}{<\tilde{v}_{k}, \tilde{A} \tilde{v}_{k}>}=\frac{<C^{-1} r_{k-1}, C^{-1} r_{k-1}>}{<C^{T} v_{k}, C^{-1} A C^{-T} C^{T} v_{k}>} \\
& =\frac{<w_{k-1}, w_{k-1}>}{<C^{T} v_{k}, C^{-1} A v_{k}>}
\end{aligned}
$$

and, since

$$
\begin{aligned}
<C^{T} v_{k}, C^{-1} A v_{k}> & =\left(v_{k}\right)^{T} C C^{-1} A v_{k}=\left(v_{k}\right)^{T} A v_{k} \\
& =<v_{k}, A v_{k}>
\end{aligned}
$$

we have

$$
\tilde{\alpha}_{k}=\frac{<w_{k-1}, w_{k-1}>}{<v_{k}, A v_{k}>}
$$

Further,

$$
\tilde{x}_{k}=\tilde{x}_{k-1}+\tilde{\alpha}_{k} \tilde{v}_{k}, \text { so } C^{T} x_{k}=C^{T} x_{k-1}+\tilde{\alpha}_{k} C^{T} v_{k}
$$

and

$$
x_{k}=x_{k-1}+\tilde{\alpha}_{k} v_{k}
$$

Continuing,

$$
\tilde{r}_{k}=\tilde{r}_{k-1}-\tilde{\alpha}_{k} \tilde{A} \tilde{v}_{k},
$$

Continuing,

$$
\tilde{r}_{k}=\tilde{r}_{k-1}-\tilde{\alpha}_{k} \tilde{A} \tilde{v}_{k},
$$

SO

$$
C^{-1} r_{k}=C^{-1} r_{k-1}-\tilde{\alpha}_{k} C^{-1} A C^{-T} C^{T} v_{k}
$$

Continuing,

$$
\tilde{r}_{k}=\tilde{r}_{k-1}-\tilde{\alpha}_{k} \tilde{A} \tilde{v}_{k},
$$

so

$$
C^{-1} r_{k}=C^{-1} r_{k-1}-\tilde{\alpha}_{k} C^{-1} A C^{-T} C^{T} v_{k}
$$

and

$$
r_{k}=r_{k-1}-\tilde{\alpha}_{k} A v_{k} .
$$

Continuing,

$$
\tilde{r}_{k}=\tilde{r}_{k-1}-\tilde{\alpha}_{k} \tilde{A} \tilde{v}_{k},
$$

so

$$
C^{-1} r_{k}=C^{-1} r_{k-1}-\tilde{\alpha}_{k} C^{-1} A C^{-T} C^{T} v_{k}
$$

and

$$
r_{k}=r_{k-1}-\tilde{\alpha}_{k} A v_{k}
$$

Finally,

$$
\tilde{v}_{k+1}=\tilde{r}_{k}+\tilde{\beta}_{k} \tilde{v}_{k} \text { and } C^{T} v_{k+1}=C^{-1} r_{k}+\tilde{\beta}_{k} C^{T} v_{k},
$$

Continuing,

$$
\tilde{r}_{k}=\tilde{r}_{k-1}-\tilde{\alpha}_{k} \tilde{A} \tilde{v}_{k},
$$

so

$$
C^{-1} r_{k}=C^{-1} r_{k-1}-\tilde{\alpha}_{k} C^{-1} A C^{-T} C^{T} v_{k}
$$

and

$$
r_{k}=r_{k-1}-\tilde{\alpha}_{k} A v_{k} .
$$

Finally,

$$
\tilde{v}_{k+1}=\tilde{r}_{k}+\tilde{\beta}_{k} \tilde{v}_{k} \text { and } C^{T} v_{k+1}=C^{-1} r_{k}+\tilde{\beta}_{k} C^{T} v_{k},
$$

so

$$
v_{k+1}=C^{-T} C^{-1} r_{k}+\tilde{\beta}_{k} v_{k}=C^{-T} w_{k}+\tilde{\beta}_{k} v_{k} .
$$

Algorithm 5 (Preconditioned CG-method (PCG-method))

Choose C and x_{0}.
Set $r_{0}=b-A x_{0}$, solve $C w_{0}=r_{0}$ and $C^{T} v_{1}=w_{0}$.
If $r_{0}=0$, then $N=0$ stop, otherwise for $k=1,2, \ldots$
(a). $\alpha_{k}=<w_{k-1}, w_{k-1}>/<v_{k}, A v_{k}>$,
(b). $x_{k}=x_{k-1}+\alpha_{k} v_{k}$,
(c). $r_{k}=r_{k-1}-\alpha_{k} A v_{k}$,
(d). If $r_{k}=0$, let $N=k+1$, stop.

Otherwise, solve $C w_{k}=r_{k}$ and $C^{T} z_{k}=w_{k}$,
(e). $\beta_{k}=<w_{k}, w_{k}>/<w_{k-1}, w_{k-1}>$,
(f). $v_{k+1}=z_{k}+\beta_{k} v_{k}$.

Simplification: Let

$$
r_{k}=C C^{T} z_{k} \equiv M z_{k}
$$

Then

$$
\begin{aligned}
\tilde{\beta}_{k} & =\frac{<\tilde{r}_{k}, \tilde{r}_{k}>}{<\tilde{r}_{k-1}, \tilde{r}_{k-1}>}=\frac{<C^{-1} r_{k}, C^{-1} r_{k}>}{<C^{-1} r_{k-1}, C^{-1} r_{k-1}>} \\
& =\frac{<z_{k}, r_{k}>}{<z_{k-1}, r_{k-1}>}, \\
\tilde{\alpha}_{k} & =\frac{<\tilde{r}_{k-1}, \tilde{r}_{k-1}>}{<\tilde{v}_{k}, \tilde{A} \tilde{v}_{k}>}=\frac{<C^{-1} r_{k-1}, C^{-1} r_{k-1}>}{<C^{T} v_{k}, C^{-1} A C^{-T} C^{T} v_{k}>} \\
& =\frac{<z_{k-1}, r_{k-1}>}{<v_{k}, A v_{k}>}, \\
v_{k+1} & =C^{-T} C^{-1} r_{k}+\tilde{\beta}_{k} v_{k}=z_{k}+\tilde{\beta}_{k} v_{k} .
\end{aligned}
$$

Algorithm: CG-method with preconditioner M

Input: Given x_{0} and $r_{0}=b-A x_{0}$, solve $M z_{0}=r_{0}$. Set $v_{1}=z_{0}$ and $k=1$.
1: repeat
2: \quad Compute $\alpha_{k}=z_{k-1}^{T} r_{k-1} / v_{k}^{T} A v_{k}$;
3: \quad Compute $x_{k}=x_{k-1}+\alpha_{k} v_{k}$;
4: Compute $r_{k}=r_{k-1}-\alpha_{k} A v_{k}$;
5: if $r_{k}=0$ then
6: Stop;
7: else
8: \quad Solve $M z_{k}=r_{k}$;
9: \quad Compute $\beta_{k}=z_{k}^{T} r_{k} / z_{k-1}^{T} r_{k-1}$;
10: \quad Compute $v_{k+1}=z_{k}+\beta_{k} v_{k}$;
11: end if
12: \quad Set $k=k+1$;
13: until $r_{k}=0$

Choices of M (Criterion):

(i) cond $\left(M^{-1 / 2} A M^{-1 / 2}\right)$ is nearly by 1 , i.e., $M^{-1 / 2} A M^{-1 / 2} \approx I, A \approx M$.
(ii) The linear system $M z=r$ must be easily solved. e.g. $M=L L^{T}$.
(iii) M is symmetric positive definite.
(i) Jacobi method: $A=D-(L+R), \quad M=D$

$$
\begin{aligned}
x_{k+1} & =x_{k}+D^{-1} r_{k} \\
& =x_{k}+D^{-1}\left(b-A x_{k}\right) \\
& =D^{-1}(L+R) x_{k}+D^{-1} b
\end{aligned}
$$

(ii) Gauss-Seidel: $\quad A=(D-L)-R, \quad M=D-L$

$$
\begin{aligned}
x_{k+1} & =x_{k}+z_{k} \\
& =x_{k}+(D-L)^{-1}\left(b-A x_{k}\right) \\
& =(D-L)^{-1} R x_{k}+(D-L)^{-1} b .
\end{aligned}
$$

(iii) SOR-method: Write

$$
\omega A=(D-\omega L)-((1-\omega) D+\omega R) \equiv M-N .
$$

Then we have

$$
\begin{aligned}
x_{k+1} & =(D-\omega L)^{-1}(\omega R+(1-\omega) D) x_{k}+(D-\omega L)^{-1} \omega b \\
& =(D-\omega L)^{-1}((D-\omega L)-\omega A) x_{k}+(D-\omega L)^{-1} \omega b \\
& =\left(I-(D-\omega L)^{-1} \omega A\right) x_{k}+(D-\omega L)^{-1} \omega b \\
& =x_{k}+(D-\omega L)^{-1} \omega\left(b-A x_{k}\right) \\
& =x_{k}+\omega M^{-1} r_{k} .
\end{aligned}
$$

(iv) SSOR: $A=D-L-L^{T}$. Let

$$
\left\{\begin{array}{l}
M_{\omega}:=D-\omega L \\
N_{\omega}:=(1-\omega) D+\omega L^{T} .
\end{array}\right.
$$

Then

$$
\begin{aligned}
x_{i+1} & =\left(M_{\omega}^{-T} N_{\omega}^{T} M_{\omega}^{-1} N_{\omega}\right) x_{i}+\tilde{b} \\
& \equiv G x_{i}+M(\omega)^{-1} b
\end{aligned}
$$

with

$$
M(\omega)=\frac{1}{\omega(2-\omega)}(D-\omega L) D^{-1}\left(D-\omega L^{T}\right)
$$

[^0]: is sufficiently accurate.

