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Definition 1
‖ · ‖ : Rn → R is a vector norm if

(i) ‖x‖ ≥ 0, ∀ x ∈ Rn,
(ii) ‖x‖ = 0 if and only if x = 0,

(iii) ‖αx| = |α|‖x‖ ∀ α ∈ R and x ∈ Rn,
(iv) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ ∀ x, y ∈ Rn.

Definition 2

The `2 and `∞ norms for x = [x1, x2, · · · , xn]T are defined by

‖x‖2 = (xTx)1/2 =

{
n∑
i=1

x2i

}1/2

and ‖x‖∞ = max
1≤i≤n

|xi|.

The `2 norm is also called the Euclidean norm.
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Theorem 3 (Cauchy-Bunyakovsky-Schwarz inequality)

For each x = [x1, x2, · · · , xn]T and y = [y1, y2, · · · , yn]T in Rn,

xT y =

n∑
i=1

xiyi ≤

{
n∑
i=1

x2i

}1/2{ n∑
i=1

y2i

}1/2

= ‖x‖2 · ‖y‖2.

Proof: If x = 0 or y = 0, the result is immediate.
Suppose x 6= 0 and y 6= 0. For each α ∈ R,

0 ≤ ‖x− αy‖22 =
n∑
i=1

(xi − αyi)2 =
n∑
i=1

x2i − 2α
n∑
i=1

xiyi + α2
n∑
i=1

y2i ,

and

2α
n∑
i=1

xiyi ≤
n∑
i=1

x2i + α2
n∑
i=1

y2i = ‖x‖22 + α2‖y‖22.
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Since ‖x‖2 > 0 and ‖y‖2 > 0, we can let

α =
‖x‖2
‖y‖2

to give(
2
‖x‖2
‖y‖2

)( n∑
i=1

xiyi

)
≤ ‖x‖22 +

‖x‖22
‖y‖22

‖y‖22 = 2‖x‖22.

Thus

xT y =

n∑
i=1

xiyi ≤ ‖x‖2‖y‖2.
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For each x, y ∈ Rn,

‖x+ y‖∞ = max
1≤i≤n

|xi + yi| ≤ max
1≤i≤n

(|xi|+ |yi|)

≤ max
1≤i≤n

|xi|+ max
1≤i≤n

|yi| = ‖x‖∞ + ‖y‖∞

and

‖x+ y‖22 =
n∑
i=1

(xi + yi)
2 =

2∑
i=1

x2i + 2
n∑
i=1

xiyi +
n∑
i=1

y2i

≤ ‖x‖22 + 2‖x‖2‖y‖2 + ‖y‖22 = (‖x‖2 + ‖y‖2)2,

which gives

‖x+ y‖2 ≤ ‖x‖2 + ‖y‖2.
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Definition 4

A sequence {x(k) ∈ Rn}∞k=1 is convergent to x with respect to
the norm ‖ · ‖ if ∀ ε > 0, ∃ an integer N(ε) such that

‖x(k) − x‖ < ε, ∀ k ≥ N(ε).

Theorem 5

{x(k) ∈ Rn}∞k=1 converges to x with respect to ‖ · ‖∞ if and only
if

lim
k→∞

x
(k)
i = xi, ∀ i = 1, 2, . . . , n.

Proof: “⇒” Given any ε > 0, ∃ an integer N(ε) such that

max
1≤i≤n

|x(k)i − xi| = ‖x
(k) − x‖∞ < ε, ∀ k ≥ N(ε).
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This result implies that

|x(k)i − xi| < ε, ∀ i = 1, 2, . . . , n.

Hence

lim
k→∞

x
(k)
i = xi, ∀ i.

“⇐” For a given ε > 0, let Ni(ε) represent an integer with

|x(k)i − xi| < ε, whenever k ≥ Ni(ε).

Define

N(ε) = max
1≤i≤n

Ni(ε).

If k ≥ N(ε), then

max
1≤i≤n

|x(k)i − xi| = ‖x
(k) − x‖∞ < ε.

This implies that {x(k)} converges to x with respect to ‖ · ‖∞.
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Theorem 6
For each x ∈ Rn,

‖x‖∞ ≤ ‖x‖2 ≤
√
n‖x‖∞.

Proof: Let xj be a coordinate of x such that

‖x‖2∞ = |xj |2 ≤
n∑
i=1

x2i = ‖x‖22,

so ‖x‖∞ ≤ ‖x‖2 and

‖x‖22 =

n∑
i=1

x2i ≤
n∑
i=1

x2j = nx2j = n‖x‖2∞,

so ‖x‖2 ≤
√
n‖x‖∞.
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Definition 7
A matrix norm ‖ · ‖ on the set of all n× n matrices is a
real-valued function satisfying for all n× n matrices A and B
and all real number α:

(i) ‖A‖ ≥ 0;
(ii) ‖A‖ = 0 if and only if A = 0;

(iii) ‖αA‖ = |α|‖A‖;
(iv) ‖A+B‖ ≤ ‖A‖+ ‖B‖;
(v) ‖AB‖ ≤ ‖A‖‖B‖;

Theorem 8
If ‖ · ‖ is a vector norm on Rn, then

‖A‖ = max
‖x‖=1

‖Ax‖

is a matrix norm. 10 / 99
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For any z 6= 0, we have x = z/‖z‖ as a unit vector. Hence

‖A‖ = max
‖x‖=1

‖Ax‖ = max
z 6=0

∥∥∥∥A( z

‖z‖

)∥∥∥∥ = max
z 6=0

‖Az‖
‖z‖

.

Corollary 9

‖Az‖ ≤ ‖A‖ · ‖z‖.

Theorem 10
If A = [aij ] is an n× n matrix, then

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij |.
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Proof: Let x be an n-dimension vector with

1 = ‖x‖∞ = max
1≤i≤n

|xi|.

Then

‖Ax‖∞ = max
1≤i≤n

∣∣∣∣∣∣
n∑
j=1

aijxj

∣∣∣∣∣∣
≤ max

1≤i≤n

n∑
j=1

|aij | max
1≤j≤n

|xj | = max
1≤i≤n

n∑
j=1

|aij |.

Consequently,

‖A‖∞ = max
‖x‖∞=1

‖Ax‖∞ ≤ max
1≤i≤n

n∑
j=1

|aij |.

On the other hand, let p be an integer with
n∑
j=1

|apj | = max
1≤i≤n

n∑
j=1

|aij |,
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and x be the vector with

xj =

{
1, if apj ≥ 0,
−1, if apj < 0.

Then

‖x‖∞ = 1 and apjxj = |apj |, ∀ j = 1, 2, . . . , n,

so

‖Ax‖∞ = max
1≤i≤n

∣∣∣∣∣∣
n∑
j=1

aijxj

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣
n∑
j=1

apjxj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∑
j=1

|apj |

∣∣∣∣∣∣ = max
1≤i≤n

n∑
j=1

|aij |.

This result implies that

‖A‖∞ = max
‖x‖∞=1

‖Ax‖∞ ≥ max
1≤i≤n

n∑
j=1

|aij |.

which gives

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij |. 13 / 99
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Exercise
Page 441: 5, 9, 10, 11
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Eigenvalues and eigenvectors

Definition 11 (Characteristic polynomial)

If A is a square matrix, the characteristic polynomial of A is defined by

p(λ) = det(A− λI).

Definition 12 (Eigenvalue and eigenvector)

If p is the characteristic polynomial of the matrix A, the zeros of p are
eigenvalues of the matrix A. If λ is an eigenvalue of A and x 6= 0
satisfies (A− λI)x = 0, then x is an eigenvector of A corresponding
to the eigenvalue λ.

Definition 13 (Spectrum and Spectral Radius)

The set of all eigenvalues of a matrix A is called the spectrum of A.
The spectral radius of A is

ρ(A) = max{|λ|;λ is an eigenvalue ofA}.
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Theorem 14
If A is an n× n matrix, then

(i) ‖A‖2 =
√
ρ(ATA);

(ii) ρ(A) ≤ ‖A‖ for any matrix norm.

Proof: Proof for the second part. Suppose λ is an eigenvalue of
A and x 6= 0 is a corresponding eigenvector such that Ax = λx
and ‖x‖ = 1. Then

|λ| = |λ|‖x‖ = ‖λx‖ = ‖Ax‖ ≤ ‖A‖‖x‖ = ‖A‖,
that is, |λ| ≤ ‖A‖. Since λ is arbitrary, this implies that
ρ(A) = max |λ| ≤ ‖A‖.

Theorem 15
For any A and any ε > 0, there exists a matrix norm ‖ · ‖ such
that

ρ(A) < ‖A‖ < ρ(A) + ε.
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Definition 16
We call an n× n matrix A convergent if

lim
k→∞

(Ak)ij = 0 ∀ i = 1, 2, . . . , n and j = 1, 2, . . . , n.

Theorem 17
The following statements are equivalent.

1 A is a convergent matrix;
2 lim

k→∞
‖Ak‖ = 0 for some matrix norm;

3 lim
k→∞

‖Ak‖ = 0 for all matrix norm;

4 ρ(A) < 1;
5 lim

k→∞
Akx = 0 for any x.
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Exercise
Page 449: 11, 12, 18, 19
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Jacobi and Gauss-Siedel Iterative Techniques

For small dimension of linear systems, it requires for direct
techniques.
For large systems, iterative techniques are efficient in
terms of both computer storage and computation.

The basic idea of iterative techniques is to split the coefficient
matrix A into

A = M − (M −A),

for some matrix M , which is called the splitting matrix. Here we
assume that A and M are both nonsingular. Then the original
problem is rewritten in the equivalent form

Mx = (M −A)x+ b.
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This suggests an iterative process

x(k) = (I −M−1A)x(k−1) +M−1b ≡ Tx(k−1) + c,

where T is usually called the iteration matrix. The initial vector
x(0) can be arbitrary or be chosen according to certain
conditions.
Two criteria for choosing the splitting matrix M are

x(k) is easily computed. More precisely, the system
Mx(k) = y is easy to solve;
the sequence {x(k)} converges rapidly to the exact
solution.

Note that one way to achieve the second goal is to choose M
so that M−1 approximate A−1.
In the following subsections, we will introduce some of the
mostly commonly used classic iterative methods.
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Jacobi Method

If we decompose the coefficient matrix A as

A = L+D + U,

where D is the diagonal part, L is the strictly lower triangular
part, and U is the strictly upper triangular part, of A, and
choose M = D, then we derive the iterative formulation for
Jacobi method:

x(k) = −D−1(L+ U)x(k−1) +D−1b.

With this method, the iteration matrix TJ = −D−1(L+ U) and
c = D−1b. Each component x(k)i can be computed by

x
(k)
i =

bi − i−1∑
j=1

aijx
(k−1)
j −

n∑
j=i+1

aijx
(k−1)
j

/aii.
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a11x
(k)
1 + a12x

(k−1)
2 + a13x

(k−1)
3 + · · ·+ a1nx

(k−1)
n = b1

a21x
(k−1)
1 + a22x

(k)
2 + a23x

(k−1)
3 + · · ·+ a2nx

(k−1)
n = b2

...
an1x

(k−1)
1 + an2x

(k−1)
2 + an3x

(k−1)
3 + · · ·+ annx

(k)
n = bn.

Algorithm 1 (Jacobi Method)

Given x(0), tolerance TOL, maximum number of iteration M .
Set k = 1.
While k ≤M and ‖x− x(0)‖2 ≥ TOL

Set k = k + 1, x(0) = x.
For i = 1, 2, . . . , n

xi =
(
bi −

∑i−1
j=1 aijx

(0)
j −

∑n
j=i+1 aijx

(0)
j

)/
aii

End For
End While 22 / 99
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Example 18
Consider the linear system Ax = b given by

E1 : 10x1 − x2 + 2x3 = 6,
E2 : −x1 + 11x2 − x3 + 3x4 = 25,
E3 : 2x1 − x2 + 10x3 − x4 = −11,
E4 : 3x2 − x3 + 8x4 = 15

which has the unique solution x = [1, 2,−1, 1]T .

Solving equation Ei for xi, for i = 1, 2, 3, 4, we obtain

x1 = 1/10x2 − 1/5x3 + 3/5,
x2 = 1/11x1 + 1/11x3 − 3/11x4 + 25/11,
x3 = −1/5x1 + 1/10x2 + 1/10x4 − 11/10,
x4 = − 3/8x2 + 1/8x3 + 15/8.
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Then Ax = b can be rewritten in the form x = Tx+ c with

T =


0 1/10 −1/5 0

1/11 0 1/11 −3/11
−1/5 1/10 0 1/10

0 −3/8 1/8 0

 and c =


3/5

25/11
−11/10

15/8


and the iterative formulation for Jacobi method is

x(k) = Tx(k−1) + c for k = 1, 2, . . . .

The numerical results of such iteration is list as follows:
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k x1 x2 x3 x4
0 0.0000 0.0000 0.0000 0.0000
1 0.6000 2.2727 -1.1000 1.8750
2 1.0473 1.7159 -0.8052 0.8852
3 0.9326 2.0533 -1.0493 1.1309
4 1.0152 1.9537 -0.9681 0.9738
5 0.9890 2.0114 -1.0103 1.0214
6 1.0032 1.9922 -0.9945 0.9944
7 0.9981 2.0023 -1.0020 1.0036
8 1.0006 1.9987 -0.9990 0.9989
9 0.9997 2.0004 -1.0004 1.0006

10 1.0001 1.9998 -0.9998 0.9998

25 / 99



logo

Norms Eigenvalues and eigenvectors Jacobi and GS SOR Error bounds and iterative refinement CG method

Matlab code of Example

clear all; delete rslt.dat; diary rslt.dat; diary on;
n = 4; xold = zeros(n,1); xnew = zeros(n,1); T = zeros(n,n);
T(1,2) = 1/10; T(1,3) = -1/5; T(2,1) = 1/11;
T(2,3) = 1/11; T(2,4) = -3/11; T(3,1) = -1/5;
T(3,2) = 1/10; T(3,4) = 1/10; T(4,2) = -3/8; T(4,3) = 1/8;
c(1,1) = 3/5; c(2,1) = 25/11; c(3,1) = -11/10; c(4,1) = 15/8;
xnew = T * xold + c; k = 0;
fprintf(’ k x1 x2 x3 x4 \n’);
while ( k <= 100 & norm(xnew-xold) > 1.0d-14 )

xold = xnew; xnew = T * xold + c; k = k + 1;
fprintf(’%3.0f ’,k);
for jj = 1:n

fprintf(’%5.4f ’,xold(jj));
end
fprintf(’\n’);

end
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Gauss-Seidel Method

When computing x(k)i for i > 1, x(k)1 , . . . , x
(k)
i−1 have already been

computed and are likely to be better approximations to the exact
x1, . . . , xi−1 than x(k−1)1 , . . . , x

(k−1)
i−1 . It seems reasonable to compute

x
(k)
i using these most recently computed values. That is

a11x
(k)
1 + a12x

(k−1)
2 + a13x

(k−1)
3 + · · ·+ a1nx

(k−1)
n = b1

a21x
(k)
1 + a22x

(k)
2 + a23x

(k−1)
3 + · · ·+ a2nx

(k−1)
n = b2

a31x
(k)
1 + a32x

(k)
2 + a33x

(k)
3 + · · ·+ a3nx

(k−1)
n = b3

...
an1x

(k)
1 + an2x

(k)
2 + an3x

(k)
3 + · · ·+ annx

(k)
n = bn.

This improvement induce the Gauss-Seidel method.
The Gauss-Seidel method sets M = D + L and defines the iteration
as

x(k) = −(D + L)−1Ux(k−1) + (D + L)−1b.
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That is, Gauss-Seidel method uses TG = −(D + L)−1U as the
iteration matrix. The formulation above can be rewritten as

x(k) = −D−1
(
Lx(k) + Ux(k−1) − b

)
.

Hence each component x(k)i can be computed by

x
(k)
i =

bi − i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j

/aii.

For Jacobi method, only the components of x(k−1) are
used to compute x(k). Hence x(k)i , i = 1, . . . , n, can be
computed in parallel at each iteration k.

At each iteration of Gauss-Seidel method, since x(k)i can
not be computed until x(k)1 , . . . , x

(k)
i−1 are available, the

method is not a parallel algorithm in nature.
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Algorithm 2 (Gauss-Seidel Method)

Given x(0), tolerance TOL, maximum number of iteration M .
Set k = 1.
For i = 1, 2, . . . , n

xi =
(
bi −

∑i−1
j=1 aijxj −

∑n
j=i+1 aijx

(0)
j

)/
aii

End For
While k ≤M and ‖x− x(0)‖2 ≥ TOL

Set k = k + 1, x(0) = x.
For i = 1, 2, . . . , n

xi =
(
bi −

∑i−1
j=1 aijxj −

∑n
j=i+1 aijx

(0)
j

)/
aii

End For
End While
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Example 19
Consider the linear system Ax = b given by

E1 : 10x1 − x2 + 2x3 = 6,
E2 : −x1 + 11x2 − x3 + 3x4 = 25,
E3 : 2x1 − x2 + 10x3 − x4 = −11,
E4 : 3x2 − x3 + 8x4 = 15

which has the unique solution x = [1, 2,−1, 1]T .

Gauss-Seidel method gives the equation

x
(k)
1 = 1

10x
(k−1)
2 − 1

5x
(k−1)
3 + 3

5 ,

x
(k)
2 = 1

11x
(k)
1 + 1

11x
(k−1)
3 − 3

11x
(k−1)
4 + 25

11 ,

x
(k)
3 = −1

5x
(k)
1 + 1

10x
(k)
2 + 1

10x
(k−1)
4 − 11

10 ,

x
(k)
4 = − 3

8x
(k)
2 + 1

8x
(k)
3 + 15

8 .
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The numerical results of such iteration is list as follows:

k x1 x2 x3 x4
0 0.0000 0.0000 0.0000 0.0000
1 0.6000 2.3273 -0.9873 0.8789
2 1.0302 2.0369 -1.0145 0.9843
3 1.0066 2.0036 -1.0025 0.9984
4 1.0009 2.0003 -1.0003 0.9998
5 1.0001 2.0000 -1.0000 1.0000

The results of Example appear to imply that the
Gauss-Seidel method is superior to the Jacobi method.
This is almost always true, but there are linear systems for
which the Jacobi method converges and the Gauss-Seidel
method does not.
See Exercises 17 and 18 (8th edition).
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Matlab code of Example

clear all; delete rslt.dat; diary rslt.dat; diary on;
n = 4; xold = zeros(n,1); xnew = zeros(n,1); A = zeros(n,n);
A(1,1)=10; A(1,2)=-1; A(1,3)=2; A(2,1)=-1; A(2,2)=11; A(2,3)=-1; A(2,4)=3; A(3,1)=2; A(3,2)=-1;
A(3,3)=10; A(3,4)=-1; A(4,2)=3; A(4,3)=-1; A(4,4)=8; b(1)=6; b(2)=25; b(3)=-11; b(4)=15;
for ii = 1:n

xnew(ii) = b(ii);
for jj = 1:ii-1

xnew(ii) = xnew(ii) - A(ii,jj) * xnew(jj);
end
for jj = ii+1:n

xnew(ii) = xnew(ii) - A(ii,jj) * xold(jj);
end
xnew(ii) = xnew(ii) / A(ii,ii);

end
k = 0; fprintf(’ k x1 x2 x3 x4 \n’);
while ( k <= 100 & norm(xnew-xold) > 1.0d-14 )

xold = xnew; k = k + 1;
for ii = 1:n

xnew(ii) = b(ii);
for jj = 1:ii-1

xnew(ii) = xnew(ii) - A(ii,jj) * xnew(jj);
end
for jj = ii+1:n

xnew(ii) = xnew(ii) - A(ii,jj) * xold(jj);
end
xnew(ii) = xnew(ii) / A(ii,ii);

end
fprintf(’%3.0f ’,k);
for jj = 1:n

fprintf(’%5.4f ’,xold(jj));
end
fprintf(’\n’);

end
diary off
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Lemma 20

If ρ(T ) < 1, then (I − T )−1 exists and

(I − T )−1 =

∞∑
i=0

T i = I + T + T 2 + · · · .

Proof: Let λ be an eigenvalue of T , then 1− λ is an eigenvalue
of I − T . But |λ| ≤ ρ(A) < 1, so 1− λ 6= 0 and 0 is not an
eigenvalue of I − T , which means (I − T ) is nonsingular.
Next we show that (I − T )−1 = I + T + T 2 + · · · . Since

(I − T )

(
m∑
i=0

T i

)
= I − Tm+1,

and ρ(T ) < 1 implies ‖Tm‖ → 0 as m→∞, we have

(I − T )

(
lim
m→∞

m∑
i=0

T i

)
= (I − T )

( ∞∑
i=0

T i

)
= I.
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Theorem 21

For any x(0) ∈ Rn , the sequence produced by

x(k) = Tx(k−1) + c, k = 1, 2, . . . ,

converges to the unique solution of x = Tx+ c if and only if

ρ(T ) < 1.

Proof: Suppose ρ(T ) < 1. The sequence of vectors x(k) produced by
the iterative formulation are

x(1) = Tx(0) + c

x(2) = Tx(1) + c = T 2x(0) + (T + I)c

x(3) = Tx(2) + c = T 3x(0) + (T 2 + T + I)c

...

In general

x(k) = T kx(0) + (T k−1 + T k−2 + · · ·+ T + I)c.
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Since ρ(T ) < 1, limk→∞ T
kx(0) = 0 for any x(0) ∈ Rn. By

Lemma 20,

(T k−1 + T k−2 + · · ·+ T + I)c→ (I − T )−1c, as k →∞.

Therefore

lim
k→∞

x(k) = lim
k→∞

T kx(0) +

 ∞∑
j=0

T j

 c = (I − T )−1c.

Conversely, suppose {x(k)} → x = (I − T )−1c. Since

x− x(k) = Tx+ c− Tx(k−1) − c = T (x− x(k−1)) = T 2(x− x(k−2))
= · · · = T k(x− x(0)).

Let z = x− x(0). Then

lim
k→∞

T kz = lim
k→∞

(x− x(k)) = 0.

It follows from theorem ρ(T ) < 1.
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Theorem 22

If ‖T‖ < 1, then the sequence x(k) converges to x for any initial
x(0) and

1 ‖x− x(k)‖ ≤ ‖T‖k‖x− x(0)‖
2 ‖x− x(k)‖ ≤ ‖T‖k

1−‖T‖‖x
(1) − x(0)‖.

Proof: Since x = Tx+ c and x(k) = Tx(k−1) + c,

x− x(k) = Tx+ c− Tx(k−1) − c
= T (x− x(k−1))
= T 2(x− x(k−2)) = · · · = T k(x− x(0)).

The first statement can then be derived

‖x− x(k)‖ = ‖T k(x− x(0))‖ ≤ ‖T‖k‖x− x(0)‖.
For the second result, we first show that

‖x(n) − x(n−1)‖ ≤ ‖T‖n−1‖x(1) − x(0)‖ for any n ≥ 1. 36 / 99
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Since

x(n) − x(n−1) = Tx(n−1) + c− Tx(n−2) − c
= T (x(n−1) − x(n−2))
= T 2(x(n−2) − x(n−3)) = · · · = Tn−1(x(1) − x(0)),

we have

‖x(n) − x(n−1)‖ ≤ ‖T‖n−1‖x(1) − x(0)‖.

Let m ≥ k,

x(m) − x(k)

=
(
x(m) − x(m−1)

)
+
(
x(m−1) − x(m−2)

)
+ · · ·+

(
x(k+1) − x(k)

)
=Tm−1

(
x(1) − x(0)

)
+ Tm−2

(
x(1) − x(0)

)
+ · · ·+ T k

(
x(1) − x(0)

)
=
(
Tm−1 + Tm−2 + · · ·+ T k

)(
x(1) − x(0)

)
,
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hence

‖x(m) − x(k)‖

≤
(
‖T‖m−1 + ‖T‖m−2 + · · ·+ ‖T‖k

)
‖x(1) − x(0)‖

=‖T‖k
(
‖T‖m−k−1 + ‖T‖m−k−2 + · · ·+ 1

)
‖x(1) − x(0)‖.

Since limm→∞ x
(m) = x,

‖x− x(k)‖
= lim
m→∞

‖x(m) − x(k)‖

≤ lim
m→∞

‖T‖k
(
‖T‖m−k−1 + ‖T‖m−k−2 + · · ·+ 1

)
‖x(1) − x(0)‖

=‖T‖k‖x(1) − x(0)‖ lim
m→∞

(
‖T‖m−k−1 + ‖T‖m−k−2 + · · ·+ 1

)
=‖T‖k 1

1− ‖T‖
‖x(1) − x(0)‖.

This proves the second result.
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Theorem 23
If A is strictly diagonal dominant, then both the Jacobi and
Gauss-Seidel methods converges for any initial vector x(0).

Proof: By assumption, A is strictly diagonal dominant, hence aii 6= 0
(otherwise A is singular) and

|aii| >
n∑

j=1,j 6=i

|aij |, i = 1, 2, . . . , n.

For Jacobi method, the iteration matrix TJ = −D−1(L+ U) has
entries

[TJ ]ij =

{
−aijaii , i 6= j,

0, i = j.

Hence

‖TJ‖∞ = max
1≤i≤n

n∑
j=1,j 6=i

∣∣∣∣aijaii
∣∣∣∣ = max

1≤i≤n

1

|aii|

n∑
j=1,j 6=i

|aij | < 1,

and this implies that the Jacobi method converges.
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For Gauss-Seidel method, the iteration matrix
TG = −(D + L)−1U . Let λ be any eigenvalue of TG and y,
‖y‖∞ = 1, is a corresponding eigenvector. Thus

TGy = λy =⇒ −Uy = λ(D + L)y.

Hence for i = 1, . . . , n,

−
n∑

j=i+1

aijyj = λaiiyi + λ

i−1∑
j=1

aijyj .

This gives

λaiiyi = −λ
i−1∑
j=1

aijyj −
n∑

j=i+1

aijyj

and

|λ||aii||yi| ≤ |λ|
i−1∑
j=1

|aij ||yj |+
n∑

j=i+1

|aij ||yj |.
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Choose the index k such that |yk| = 1 ≥ |yj | (this index can
always be found since ‖y‖∞ = 1). Then

|λ||akk| ≤ |λ|
k−1∑
j=1

|akj |+
n∑

j=k+1

|akj |

which gives

|λ| ≤
∑n

j=k+1 |akj |
|akk| −

∑k−1
j=1 |akj |

<

∑n
j=k+1 |akj |∑n
j=k+1 |akj |

= 1

Since λ is arbitrary, ρ(TG) < 1. This means the Gauss-Seidel
method converges.

The rate of convergence depends on the spectral radius of
the matrix associated with the method.
One way to select a procedure to accelerate convergence
is to choose a method whose associated matrix has
minimal spectral radius.
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Exercise
Page 459: 9, 10, 11
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Relaxation Techniques for Solving Linear Systems

Definition 24
Suppose x̃ ∈ Rn is an approximated solution of Ax = b. The residual
vector r for x̃ is r = b−Ax̃.

Let the approximate solution x(k,i) produced by Gauss-Seidel method
be defined by

x(k,i) =
[
x
(k)
1 , . . . , x

(k)
i−1, x

(k−1)
i , . . . , x(k−1)n

]T
and

r
(k)
i =

[
r
(k)
1i , r

(k)
2i , . . . , r

(k)
ni

]T
= b−Ax(k,i)

be the corresponding residual vector. Then the mth component of
r
(k)
i is

r
(k)
mi = bm −

i−1∑
j=1

amjx
(k)
j −

n∑
j=i

amjx
(k−1)
j ,
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or, equivalently,

r
(k)
mi = bm −

i−1∑
j=1

amjx
(k)
j −

n∑
j=i+1

amjx
(k−1)
j − amix(k−1)i ,

for each m = 1, 2, . . . , n.
In particular, the ith component of r(k)i is

r
(k)
ii = bi −

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j − aiix(k−1)i ,

so

aiix
(k−1)
i + r

(k)
ii = bi −

i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j

= aiix
(k)
i .
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Consequently, the Gauss-Seidel method can be characterized
as choosing x(k)i to satisfy

x
(k)
i = x

(k−1)
i +

r
(k)
ii

aii
.

Relaxation method is modified the Gauss-Seidel procedure to

x
(k)
i = x

(k−1)
i + ω

r
(k)
ii

aii

= x
(k−1)
i +

ω

aii

bi − i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j − aiix(k−1)i


= (1− ω)x

(k−1)
i +

ω

aii

bi − i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j

 (1)

for certain choices of positive ω such that the norm of the
residual vector is reduced and the convergence is significantly
faster. 45 / 99
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These methods are called for
ω < 1: under relaxation,
ω = 1: Gauss-Seidel method,
ω > 1: over relaxation.

Over-relaxation methods are called SOR (Successive
over-relaxation). To determine the matrix of the SOR method,
we rewrite (1) as

aiix
(k)
i + ω

i−1∑
j=1

aijx
(k)
j = (1− ω)aiix

(k−1)
i − ω

n∑
j=i+1

aijx
(k−1)
j + ωbi,

so that if A = L+D + U , then we have

(D + ωL)x(k) = [(1− ω)D − ωU ]x(k−1) + ωb

or

x(k) = (D + ωL)−1 [(1− ω)D − ωU ]x(k−1) + ω(D + ωL)−1b

≡ Tωx
(k−1) + cω.
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Example 25

The linear system Ax = b given by

4x1 + 3x2 = 24,
3x1 + 4x2 − x3 = 30,

− x2 + 4x3 = −24,

has the solution [3, 4,−5]T .

Numerical results of Gauss-Seidel method with x(0) = [1, 1, 1]T :

k x1 x2 x3
0 1.0000000 1.0000000 1.0000000
1 5.2500000 3.8125000 -5.0468750
2 3.1406250 3.8828125 -5.0292969
3 3.0878906 3.9267578 -5.0183105
4 3.0549316 3.9542236 -5.0114441
5 3.0343323 3.9713898 -5.0071526
6 3.0214577 3.9821186 -5.0044703
7 3.0134110 3.9888241 -5.0027940 47 / 99
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Numerical results of SOR method with ω = 1.25 and
x(0) = [1, 1, 1]T :

k x1 x2 x3
0 1.0000000 1.0000000 1.0000000
1 6.3125000 3.5195313 -6.6501465
2 2.6223145 3.9585266 -4.6004238
3 3.1333027 4.0102646 -5.0966863
4 2.9570512 4.0074838 -4.9734897
5 3.0037211 4.0029250 -5.0057135
6 2.9963276 4.0009262 -4.9982822
7 3.0000498 4.0002586 -5.0003486
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Numerical results of SOR method with ω = 1.6 and
x(0) = [1, 1, 1]T :

k x1 x2 x3
0 1.0000000 1.0000000 1.0000000
1 7.8000000 2.4400000 -9.2240000
2 1.9920000 4.4560000 -2.2832000
3 3.0576000 4.7440000 -6.3324800
4 2.0726400 4.1334400 -4.1471360
5 3.3962880 3.7855360 -5.5975040
6 3.0195840 3.8661760 -4.6950272
7 3.1488384 4.0236774 -5.1735127
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Matlab code of SOR

clear all; delete rslt.dat; diary rslt.dat; diary on;
n = 3; xold = zeros(n,1); xnew = zeros(n,1); A = zeros(n,n); DL = zeros(n,n); DU = zeros(n,n);
A(1,1)=4; A(1,2)=3; A(2,1)=3; A(2,2)=4; A(2,3)=-1; A(3,2)=-1; A(3,3)=4;
b(1,1)=24; b(2,1)=30; b(3,1)=-24; omega=1.25;
for ii = 1:n

DL(ii,ii) = A(ii,ii);
for jj = 1:ii-1

DL(ii,jj) = omega * A(ii,jj);
end
DU(ii,ii) = (1-omega)*A(ii,ii);
for jj = ii+1:n

DU(ii,jj) = - omega * A(ii,jj);
end

end
c = omega * (DL \ b); xnew = DL \ ( DU * xold ) + c;
k = 0; fprintf(’ k x1 x2 x3 \n’);
while ( k <= 100 & norm(xnew-xold) > 1.0d-14 )

xold = xnew; k = k + 1; xnew = DL \ ( DU * xold ) + c;
fprintf(’%3.0f ’,k);
for jj = 1:n

fprintf(’%5.4f ’,xold(jj));
end
fprintf(’\n’);

end
diary off
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Theorem 26 (Kahan)

If aii 6= 0, for each i = 1, 2, . . . , n, then ρ(Tω) ≥ |ω − 1|. This implies
that the SOR method can converge only if 0 < ω < 2.

Theorem 27 (Ostrowski-Reich)

If A is positive definite and the relaxation parameter ω satisfying
0 < ω < 2, then the SOR iteration converges for any initial vector x(0).

Theorem 28

If A is positive definite and tridiagonal, then ρ(TG) = [ρ(TJ)]
2
< 1 and

the optimal choice of ω for the SOR iteration is

ω =
2

1 +

√
1− [ρ(TJ)]

2
.

With this choice of ω, ρ(Tω) = ω − 1.
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Example 29
The matrix

A =

 4 3 0
3 4 −1
0 −1 4

 ,
given in previous example, is positive definite and tridiagonal.

Since

TJ = −D−1(L+ U) =

 1
4 0 0
0 1

4 0
0 0 1

4

 0 −3 0
−3 0 1

0 1 0


=

 0 −0.75 0
−0.75 0 0.25

0 0.25 0

 ,
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we have

TJ − λI =

 −λ −0.75 0
−0.75 −λ 0.25

0 0.25 −λ

 ,
so

det(TJ − λI) = −λ(λ2 − 0.625).

Thus,

ρ(TJ) =
√

0.625

and

ω =
2

1 +
√

1− [ρ(TJ)]2
=

2

1 +
√

1− 0.625
≈ 1.24.

This explains the rapid convergence obtained in previous
example when using ω = 0.125
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Symmetric Successive Over Relaxation (SSOR)
Method

Let A be symmetric and A = D + L+ LT . The idea is in fact to
implement the SOR formulation twice, one forward and one
backward, at each iteration. That is, SSOR method defines

(D + ωL)x(k−
1
2
) =

[
(1− ω)D − ωLT

]
x(k−1) + ωb, (2)

(D + ωLT )x(k) = [(1− ω)D − ωL]x(k−
1
2
) + ωb. (3)

Define {
Mω : = D + ωL,
Nω : = (1− ω)D − ωLT .

Then from the iterations (2) and (3), it follows that

x(k) =
(
M−Tω NT

ωM
−1
ω Nω

)
x(k−1) + ω

(
M−Tω NT

ωM
−1
ω +M−Tω

)
b

≡ T (ω)x(k−1) +M(ω)−1b.
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But

((1− ω)D − ωL) (D + ωL)−1 + I

= (−ωL−D − ωD + 2D)(D + ωL)−1 + I

= −I + (2− ω)D(D + ωL)−1 + I

= (2− ω)D(D + ωL)−1.

Thus

M(ω)−1 = ω
(
D + ωLT

)−1
(2− ω)D(D + ωL)−1,

then the splitting matrix is

M(ω) =
1

ω(2− ω)
(D + ωL)D−1

(
D + ωLT

)
.

The iteration matrix is

T (ω) = (D + ωLT )−1 [(1− ω)D − ωL] (D + ωL)−1
[
(1− ω)D − ωLT

]
.
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Exercise
Page 467: 2, 8
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Error bounds and iterative refinement

Example 30
The linear system Ax = b given by[

1 2
1.0001 2

] [
x1
x2

]
=

[
3

3.0001

]
has the unique solution x = [1, 1]T .

The poor approximation x̃ = [3, 0]T has the residual vector

r = b−Ax̃ =

[
3

3.0001

]
−
[

1 2
1.0001 2

] [
3
0

]
=

[
0

−0.0002

]
,

so ‖r‖∞ = 0.0002. Although the norm of the residual vector is
small, the approximation x̃ = [3, 0]T is obviously quite poor; in
fact, ‖x− x̃‖∞ = 2.
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The solution of above example represents the intersection of
the lines

`1 : x1 + 2x2 = 3 and `2 : 1.0001x1 + 2x2 = 3.0001.

`1 and `2 are nearly parallel. The point (3, 0) lies on `1 which
implies that (3, 0) also lies close to `2, even though it differs
significantly from the intersection point (1, 1).
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Theorem 31
Suppose that x̃ is an approximate solution of Ax = b, A is nonsingular
matrix and r = b−Ax̃. Then

‖x− x̃‖ ≤ ‖r‖ · ‖A−1‖

and if x 6= 0 and b 6= 0,

‖x− x̃‖
‖x‖

≤ ‖A‖ · ‖A−1‖‖r‖
‖b‖

.

Proof: Since

r = b−Ax̃ = Ax−Ax̃ = A(x− x̃)

and A is nonsingular, we have

‖x− x̃‖ = ‖A−1r‖ ≤ ‖A−1‖ · ‖r‖. (4)

Moreover, since b = Ax, we have

‖b‖ ≤ ‖A‖ · ‖x‖.
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It implies that

1

‖x‖
≤ ‖A‖
‖b‖

. (5)

Combining Equations (4) and (5), we have

‖x− x̃‖
‖x‖

≤ ‖A‖ · ‖A
−1‖

‖b‖
‖r‖.

Definition 32 (Condition number)
The condition number of nonsingular matrix A is

κ(A) = ‖A‖ · ‖A−1‖.

For any nonsingular matrix A,

1 = ‖I‖ = ‖A ·A−1‖ ≤ ‖A‖ · ‖A−1‖ = κ(A).
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Definition 33
A matrix A is well-conditioned if κ(A) is close to 1, and is
ill-conditioned when κ(A) is significantly greater than 1.

In previous example,

A =

[
1 2

1.0001 2

]
.

Since

A−1 =

[
−10000 10000
5000.5 −5000

]
,

we have

κ(A) = ‖A‖∞ · ‖A−1‖∞ = 3.0001× 20000 = 60002� 1.
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How to estimate the effective condition number in t-digit
arithmetic without having to invert the matrix A?

If the approximate solution x̃ of Ax = b is being determined
using t-digit arithmetic and Gaussian elimination, then

‖r‖ = ‖b−Ax̃‖ ≈ 10−t‖A‖ · ‖x̃‖.

All the arithmetic operations in Gaussian elimination
technique are performed using t-digit arithmetic, but the
residual vector r are done in double-precision (i.e., 2t-digit)
arithmetic.
Use the Gaussian elimination method which has already
been calculated to solve

Ay = r.

Let ỹ be the approximate solution.
62 / 99



logo

Norms Eigenvalues and eigenvectors Jacobi and GS SOR Error bounds and iterative refinement CG method

Then

ỹ ≈ A−1r = A−1(b−Ax̃) = x− x̃

and

x ≈ x̃+ ỹ.

Moreover,

‖ỹ‖ ≈ ‖x− x̃‖ = ‖A−1r‖
≤ ‖A−1‖ · ‖r‖ ≈ ‖A−1‖(10−t‖A‖ · ‖x̃‖) = 10−t‖x̃‖κ(A).

It implies that

κ(A) ≈ ‖ỹ‖
‖x̃‖

10t.

Iterative refinement
In general, x̃+ ỹ is a more accurate approximation to the
solution of Ax = b than x̃.
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Algorithm 3 (Iterative refinement)

Given tolerance TOL, maximum number of iteration M , number
of digits of precision t.

Solve Ax = b by using Gaussian elimination in t-digit arithmetic.
Set k = 1
while ( k ≤M )

Compute r = b−Ax in 2t-digit arithmetic.
Solve Ay = r by using Gaussian elimination in t-digit arithmetic.
If ‖y‖∞ < TOL, then stop.
Set k = k + 1 and x = x+ y.

End while
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Example 34

The linear system given by 3.3330 15920 −10.333
2.2220 16.710 9.6120
1.5611 5.1791 1.6852

 x1
x2
x3

 =

 15913
28.544
8.4254


has the exact solution x = [1, 1, 1]T .

Using Gaussian elimination and five-digit rounding arithmetic leads
successively to the augmented matrices 3.3330 15920 −10.333 15913

0 −10596 16.501 −10580
0 −7451.4 6.5250 −7444.9


and  3.3330 15920 −10.333 15913

0 −10596 16.501 −10580
0 0 −5.0790 −4.7000

 .
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The approximate solution is

x̃(1) = [1.2001, 0.99991, 0.92538]T .

The residual vector corresponding to x̃ is computed in double
precision to be

r(1) = b−Ax̃(1)

=

 15913
28.544
8.4254

−
 3.3330 15920 −10.333

2.2220 16.710 9.6120
1.5611 5.1791 1.6852

 1.2001
0.99991
0.92538


=

 15913
28.544
8.4254

−
 15913.00518

28.26987086
8.611560367

 =

 −0.00518
0.27412914
−0.186160367

 .
Hence the solution of Ay = r(1) to be

ỹ(1) = [−0.20008, 8.9987× 10−5, 0.074607]T

and the new approximate solution x(2) is

x(2) = x(1) + ỹ(1) = [1.0000, 1.0000, 0.99999]T .
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Using the suggested stopping technique for the algorithm, we
compute r(2) = b−Ax̃(2) and solve the system Ay(2) = r(2), which
gives

ỹ(2) = [1.5002× 10−9, 2.0951× 10−10, 1.0000× 10−5]T .

Since

‖ỹ(2)‖∞ ≤ 10−5,

we conclude that

x̃(3) = x̃(2) + ỹ(2) = [1.0000, 1.0000, 1.0000]T

is sufficiently accurate.
In the linear system

Ax = b,

A and b can be represented exactly. Realistically, the matrix A and
vector b will be perturbed by δA and δb, respectively, causing the
linear system

(A+ δA)x = b+ δb

to be solved in place of Ax = b. 67 / 99
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Theorem 35
Suppose A is nonsingular and

‖δA‖ < 1

‖A−1‖
.

Then the solution x̃ of (A+ δA)x̃ = b+ δb approximates the
solution x of Ax = b with the error estimate

‖x− x̃‖
‖x‖

≤ κ(A)

1− κ(A)(‖δA‖/‖A‖)

(
‖δb‖
‖b‖

+
‖δA‖
‖A‖

)
.

If A is well-conditioned, then small changes in A and b
produce correspondingly small changes in the solution x.
If A is ill-conditioned, then small changes in A and b may
produce large changes in x.
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Exercise
Page 476: 2, 4, 7, 8
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The conjugate gradient method

Consider the linear systems

Ax = b

where A is large sparse and symmetric positive definite. Define
the inner product notation

< x, y >= xT y for any x, y ∈ Rn.

Theorem 36
Let A be symmetric positive definite. Then x∗ is the solution of
Ax = b if and only if x∗ minimizes

g(x) =< x,Ax > −2 < x, b > .
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Proof:

(“⇒”) Rewrite g(x) as

g(x) = < x− x∗, A(x− x∗) > + < x,Ax∗ > + < x∗, Ax >

− < x∗, Ax∗ > −2 < x, b >

= < x− x∗, A(x− x∗) > − < x∗, Ax∗ >

+2 < x,Ax∗ > −2 < x, b >

= < x− x∗, A(x− x∗) > − < x∗, Ax∗ > +2 < x,Ax∗ − b > .

Suppose that x∗ is the solution of Ax = b, i.e., Ax∗ = b. Then

g(x) =< x− x∗, A(x− x∗) > − < x∗, Ax∗ >

which minimum occurs at x = x∗.
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(“⇐”) Fixed vectors x and v, for any α ∈ R,

f(α) ≡ g(x+ αv)

= < x+ αv,Ax+ αAv > −2 < x+ αv, b >

= < x,Ax > +α < v,Ax > +α < x,Av > +α2 < v,Av >

− 2 < x, b > −2α < v, b >

= < x,Ax > −2 < x, b > +2α < v,Ax > −2α < v, b > +α2 < v,Av >

=g(x) + 2α < v,Ax− b > +α2 < v,Av > .

Because f is a quadratic function of α and < v,Av > is
positive, f has a minimal value when f ′(α) = 0. Since

f ′(α) = 2 < v,Ax− b > +2α < v,Av >,

the minimum occurs at

α̂ = −< v,Ax− b >
< v,Av >

=
< v, b−Ax >
< v,Av >

.
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and

g(x+ α̂v) = f(α̂) = g(x)− 2
< v, b−Ax >
< v,Av >

< v, b−Ax >

+

(
< v, b−Ax >
< v,Av >

)2

< v,Av >

= g(x)− < v, b−Ax >2

< v,Av >
.

So, for any nonzero vector v, we have

g(x+ α̂v) < g(x) if < v, b−Ax >6= 0 (6)

and

g(x+ α̂v) = g(x) if < v, b−Ax >= 0. (7)

Suppose that x∗ is a vector that minimizes g. Then

g(x∗ + α̂v) ≥ g(x∗) for any v. (8)
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From (6), (7) and (8), we have

< v, b−Ax∗ >= 0 for any v,

which implies that Ax∗ = b.
Let

r = b−Ax.

Then

α =
< v, b−Ax >
< v,Av >

=
< v, r >

< v,Av >
.

If r 6= 0 and if v and r are not orthogonal, then

g(x+ αv) < g(x)

which implies that x+ αv is closer to x∗ than is x.
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Let x(0) be an initial approximation to x∗ and v(1) 6= 0 be an
initial search direction. For k = 1, 2, 3, . . ., we compute

αk =
< v(k), b−Ax(k−1) >

< v(k), Av(k) >
,

x(k) = x(k−1) + αkv
(k)

and choose a new search direction v(k+1).
Question: How to choose {v(k)} such that {x(k)} converges
rapidly to x∗?
Let Φ : Rn → R be a differential function on x. Then it holds

Φ(x+ εp)− Φ(x)

ε
= ∇Φ(x)T p+O(ε).

The right hand side takes minimum at

p = − ∇Φ(x)

‖∇Φ(x)‖
(i.e., the largest descent)

for all p with ‖p‖ = 1 (neglect O(ε)).
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Denote x = [x1, x2, . . . , xn]T . Then

g(x) =< x,Ax > −2 < x, b >=

n∑
i=1

n∑
j=1

aijxixj − 2

n∑
i=1

xibi.

It follows that

∂g

∂xk
(x) = 2

n∑
i=1

akixi − 2bk, for k = 1, 2, . . . , n.

Therefore, the gradient of g is

∇g(x) =

[
∂g

∂x1
(x),

∂g

∂x2
, · · · , ∂g

∂xn
(x)

]T
= 2(Ax− b) = −2r.
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Steepest descent method (gradient method)

Given an initial x0 6= 0.
For k = 1, 2, . . .
rk−1 = b−Axk−1
If rk−1 = 0, then stop;

else αk =
rTk−1rk−1

rTk−1Ark−1
, xk = xk−1 + αkrk−1.

End for

Theorem 37

If xk, xk−1 are two approximations of the steepest descent method for
solving Ax = b and λ1 ≥ λ2 ≥ · · · ≥ λn > 0 are the eigenvalues of A,
then it holds:

‖xk − x∗‖A ≤
(
λ1 − λn
λ1 + λn

)
‖xk−1 − x∗‖A,

where ‖x‖A =
√
xTAx. Thus the gradient method is convergent.
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If the condition number of A (= λ1/λn) is large, then
λ1−λn
λ1+λn

≈ 1. The gradient method converges very slowly.
Hence this method is not recommendable.
It is favorable to choose that the search directions {v(i)} as
mutually A-conjugate, where A is symmetric positive
definite.

Definition 38
Two vectors p and q are called A-conjugate (A-orthogonal), if
pTAq = 0.
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Lemma 39

Let v1, . . . , vn 6= 0 be pairwisely A-conjugate. Then they are
linearly independent.

Proof: From

0 =
n∑
j=1

cjvj

follows that

0 = (vk)
TA

 n∑
j=1

cjvj

 =

n∑
j=1

cj(vk)
TAvj = ck(vk)

TAvk,

so ck = 0, for k = 1, . . . , n.
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Theorem 40

Let A be symm. positive definite and v1, . . . , vn ∈ Rn\{0} be
pairwisely A-orthogonal. Give x0 and let r0 = b−Ax0. For
k = 1, . . . , n, let

αk =
< vk, b−Axk−1 >

< vk, Avk >
and xk = xk−1 + αkvk.

Then Axn = b and

< b−Axk, vj >= 0, for each j = 1, 2, . . . , k.

Proof: Since, for each k = 1, 2, . . . , n,

xk = xk−1 + αkvk,

we have

Axn = Axn−1 + αnAvn = (Axn−2 + αn−1Avn−1) + αnAvn = · · ·
= Ax0 + α1Av1 + α2Av2 + · · ·+ αnAvn.
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It implies that

< Axn − b, vk >
= < Ax0 − b, vk > +α1 < Av1, vk > + · · ·+ αn < Avn, vk >

= < Ax0 − b, vk > +α1 < v1, Avk > + · · ·+ αn < vn, Avk >

= < Ax0 − b, vk > +αk < vk, Avk >

= < Ax0 − b, vk > +
< vk, b−Axk−1 >

< vk, Avk >
< vk, Avk >

= < Ax0 − b, vk > + < vk, b−Axk−1 >
= < Ax0 − b, vk >

+ < vk, b−Ax0 +Ax0 −Ax1 + · · · −Axk−2 +Axk−2 −Axk−1 >
= < Ax0 − b, vk > + < vk, b−Ax0 > + < vk, Ax0 −Ax1 >

+ · · ·+ < vk, Axk−2 −Axk−1 >
= < vk, Ax0 −Ax1 > + · · ·+ < vk, Axk−2 −Axk−1 > .
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For any i

xi = xi−1 + αivi and Axi = Axi−1 + αiAvi,

we have

Axi−1 −Axi = −αiAvi.

Thus, for k = 1, . . . , n,

< Axn − b, vk >
= −α1 < vk, Av1 > − · · · − αk−1 < vk, Avk−1 >= 0

which implies that Axn = b.
Suppose that

< rk−1, vj >= 0 for j = 1, 2, . . . , k − 1. (9)

By the result

rk = b−Axk = b−A(xk−1 + αkvk) = rk−1 − αkAvk
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it follows that

< rk, vk > = < rk−1, vk > −αk < Avk, vk >

= < rk−1, vk > −
< vk, b−Axk−1 >

< vk, Avk >
< Avk, vk >

= 0.

From assumption (9) and A-orthogonality, for j = 1, . . . , k − 1

< rk, vj >=< rk−1, vj > −αk < Avk, vj >= 0

which is completed the proof by the mathematic induction.
Method of conjugate directions:
Let A be symmetric positive definite, b, x0 ∈ Rn. Given
v1, . . . , vn ∈ Rn\{0} pairwisely A-orthogonal.

r0 = b−Ax0,
For k = 1, . . . , n,

αk =
<vk,rk−1>
<vk,Avk>

, xk = xk−1 + αkvk,

rk = rk−1 − αkAvk = b−Axk.
End For 83 / 99
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Practical Implementation

In k-th step a direction vk which is A-orthogonal to
v1, . . . , vk−1 must be determined.
It allows for orthogonalization of rk against v1, . . . , vk.
Let rk 6= 0, g(x) decreases strictly in the direction −rk. For
ε > 0 small, we have g(xk − εrk) < g(xk).

If rk−1 = b−Axk−1 6= 0, then we use rk−1 to generate vk by

vk = rk−1 + βk−1vk−1. (10)

Choose βk−1 such that

0 = < vk−1, Avk >=< vk−1, Ark−1 + βk−1Avk−1 >

= < vk−1, Ark−1 > +βk−1 < vk−1, Avk−1 > .
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That is

βk−1 = −< vk−1, Ark−1 >

< vk−1, Avk−1 >
. (11)

Theorem 41
Let vk and βk−1 be defined in (10) and (11), respectively. Then
r0, . . . , rk−1 are mutually orthogonal and

< vk, Avi >= 0, for i = 1, 2, . . . , k − 1.

That is {v1, . . . , vk} is an A-orthogonal set.

Having chosen vk, we compute

αk =
< vk, rk−1 >

< vk, Avk >
=
< rk−1 + βk−1vk−1, rk−1 >

< vk, Avk >

=
< rk−1, rk−1 >

< vk, Avk >
+ βk−1

< vk−1, rk−1 >

< vk, Avk >

=
< rk−1, rk−1 >

< vk, Avk >
. (12)
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Since

rk = rk−1 − αkAvk,

we have

< rk, rk >=< rk−1, rk > −αk < Avk, rk >= −αk < rk, Avk > .

Further, from (12),

< rk−1, rk−1 >= αk < vk, Avk >,

so

βk = −< vk, Ark >

< vk, Avk >
= −< rk, Avk >

< vk, Avk >

=
(1/αk) < rk, rk >

(1/αk) < rk−1, rk−1 >
=

< rk, rk >

< rk−1, rk−1 >
.
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Algorithm 4 (Conjugate Gradient method (CG-method))

Let A be s.p.d., b ∈ Rn, choose x0 ∈ Rn, r0 = b−Ax0 = v0.
If r0 = 0, then N = 0 stop, otherwise for k = 0, 1, . . .

(a). αk = <rk,rk>
<vk,Avk>

,
(b). xk+1 = xk + αkvk,
(c). rk+1 = rk − αkAvk,
(d). If rk+1 = 0, let N = k + 1, stop.
(e). βk =

<rk+1,rk+1>
<rk,rk>

,
(f). vk+1 = rk+1 + βkvk.

Theoretically, the exact solution is obtained in n steps.
If A is well-conditioned, then approximate solution is
obtained in about

√
n steps.

If A is ill-conditioned, then the number of iterations may be
greater than n.
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Theorem 42

CG-method satisfies the following error estimate

‖xk − x∗‖A ≤ 2

(√
κ− 1√
κ+ 1

)k
‖x0 − x∗‖A,

where κ = λ1

λn
and λ1 ≥ · · · ≥ λn > 0 are the eigenvalues of A.

Remark 1 (Compare with Gradient method)

Let xGk be the kth iterate of Gradient method. Then

‖xGk − x∗‖A ≤
∣∣∣∣λ1 − λnλ1 + λn

∣∣∣∣k ‖x0 − x∗‖A.
But

λ1 − λn
λ1 + λn

=
κ− 1

κ+ 1
>

√
κ− 1√
κ+ 1

,

because in general
√
κ� κ. Therefore the CG-method is much

better than Gradient method.
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Select a nonsingular matrix C so that

Ã = C−1AC−T

is better conditioned.
Consider the linear system

Ãx̃ = b̃,

where

x̃ = CTx and b̃ = C−1b.

Then

Ãx̃ = (C−1AC−T )(CTx) = C−1Ax.

Thus,

Ax = b ⇔ Ãx̃ = b̃ and x = C−T x̃.
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Since

x̃k = CTxk,

we have

r̃k = b̃− Ãx̃k = C−1b−
(
C−1AC−T

)
CTxk

= C−1(b−Axk) = C−1rk.

Let

ṽk = CT vk and wk = C−1rk.

Then

β̃k =
< r̃k, r̃k >

< r̃k−1, r̃k−1 >
=

< C−1rk, C
−1rk >

< C−1rk−1, C−1rk−1 >

=
< wk, wk >

< wk−1, wk−1 >
.
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Thus,

α̃k =
< r̃k−1, r̃k−1 >

< ṽk, Ãṽk >
=

< C−1rk−1, C
−1rk−1 >

< CT vk, C−1AC−TCT vk >

=
< wk−1, wk−1 >

< CT vk, C−1Avk >

and, since

< CT vk, C
−1Avk > = (vk)

T CC−1Avk = (vk)
T Avk

= < vk, Avk >,

we have

α̃k =
< wk−1, wk−1 >

< vk, Avk >
.

Further,

x̃k = x̃k−1 + α̃kṽk, so CTxk = CTxk−1 + α̃kC
T vk

and

xk = xk−1 + α̃kvk. 91 / 99
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Continuing,

r̃k = r̃k−1 − α̃kÃṽk,

so

C−1rk = C−1rk−1 − α̃kC−1AC−TCT vk

and

rk = rk−1 − α̃kAvk.

Finally,

ṽk+1 = r̃k + β̃kṽk and CT vk+1 = C−1rk + β̃kC
T vk,

so

vk+1 = C−TC−1rk + β̃kvk = C−Twk + β̃kvk.
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Algorithm 5 (Preconditioned CG-method (PCG-method))

Choose C and x0.
Set r0 = b−Ax0, solve Cw0 = r0 and CT v1 = w0.
If r0 = 0, then N = 0 stop, otherwise for k = 1, 2, . . .

(a). αk =< wk−1, wk−1 > / < vk, Avk >,
(b). xk = xk−1 + αkvk,
(c). rk = rk−1 − αkAvk,
(d). If rk = 0, let N = k + 1, stop.

Otherwise, solve Cwk = rk and CT zk = wk,
(e). βk =< wk, wk > / < wk−1, wk−1 >,
(f). vk+1 = zk + βkvk.
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Simplification: Let

rk = CCT zk ≡Mzk.

Then

β̃k =
< r̃k, r̃k >

< r̃k−1, r̃k−1 >
=

< C−1rk, C
−1rk >

< C−1rk−1, C−1rk−1 >

=
< zk, rk >

< zk−1, rk−1 >
,

α̃k =
< r̃k−1, r̃k−1 >

< ṽk, Ãṽk >
=

< C−1rk−1, C
−1rk−1 >

< CT vk, C−1AC−TCT vk >

=
< zk−1, rk−1 >

< vk, Avk >
,

vk+1 = C−TC−1rk + β̃kvk = zk + β̃kvk.
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Algorithm: CG-method with preconditioner M
Input: Given x0 and r0 = b−Ax0, solve Mz0 = r0. Set v1 = z0

and k = 1.
1: repeat
2: Compute αk = zTk−1rk−1/v

T
k Avk;

3: Compute xk = xk−1 + αkvk;
4: Compute rk = rk−1 − αkAvk;
5: if rk = 0 then
6: Stop;
7: else
8: Solve Mzk = rk;
9: Compute βk = zTk rk/z

T
k−1rk−1;

10: Compute vk+1 = zk + βkvk;
11: end if
12: Set k = k + 1;
13: until rk = 0
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Choices of M (Criterion):

(i) cond(M−1/2AM−1/2) is nearly by 1, i.e.,
M−1/2AM−1/2 ≈ I, A ≈M .

(ii) The linear system Mz = r must be easily solved. e.g.
M = LLT .

(iii) M is symmetric positive definite.
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(i) Jacobi method: A = D − (L+R), M = D

xk+1 = xk +D−1rk

= xk +D−1(b−Axk)
= D−1(L+R)xk +D−1b

(ii) Gauss-Seidel: A = (D − L)−R, M = D − L

xk+1 = xk + zk

= xk + (D − L)−1(b−Axk)
= (D − L)−1Rxk + (D − L)−1b.
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(iii) SOR-method: Write

ωA = (D − ωL)− ((1− ω)D + ωR) ≡M −N.

Then we have

xk+1 = (D − ωL)−1(ωR+ (1− ω)D)xk + (D − ωL)−1ωb

= (D − ωL)−1((D − ωL)− ωA)xk + (D − ωL)−1ωb

= (I − (D − ωL)−1ωA)xk + (D − ωL)−1ωb

= xk + (D − ωL)−1ω(b−Axk)
= xk + ωM−1rk.
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(iv) SSOR: A = D − L− LT . Let{
Mω : = D − ωL,
Nω : = (1− ω)D + ωLT .

Then

xi+1 =
(
M−Tω NT

ωM
−1
ω Nω

)
xi + b̃

≡ Gxi +M(ω)−1b

with

M(ω) =
1

ω(2− ω)
(D − ωL)D−1

(
D − ωLT

)
.
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