Mathematical preliminaries and error analysis

Tsung-Ming Huang

Department of Mathematics
National Taiwan Normal University, Taiwan

September 21, 2014

Outline

(1) Round-off errors and computer arithmetic

- IEEE standard floating-point format
- Absolute and Relative Errors
- Machine Epsilon
- Loss of Significance

Outline

(1) Round-off errors and computer arithmetic

- IEEE standard floating-point format
- Absolute and Relative Errors
- Machine Epsilon
- Loss of Significance
(2) Algorithms and Convergence
- Algorithm
- Stability
- Rate of convergence

What is the difference for the arithmetic in algebra and computer?
(1) For arithmetic in algebra,

$$
256+1=257, \quad(\sqrt{256+1})^{2}=257
$$

(2) For arithmetic in computer (MATLAB),

- int8(256) + int8(1) = 127 ???????
- int16(256) + int16(1) $=257$
- $\operatorname{sqrt}(256+1)^{\wedge} 2=$? The solution is equal to 257 or not.
- (single(sqrt(5))+single(sqrt(3)))^2-(sqrt(3)+sqrt(5)) ${ }^{\wedge} 2$

Example 1

Consider the following recurrence algorithm

$$
\left\{\begin{array}{l}
x_{0}=1, \quad x_{1}=\frac{1}{3} \\
x_{n+1}=\frac{13}{3} x_{n}-\frac{4}{3} x_{n-1}
\end{array}\right.
$$

for computing the sequence of $\left\{x_{n}=\left(\frac{1}{3}\right)^{n}\right\}$.

Matlab program

$\mathrm{n}=30 ; \mathrm{x}=\operatorname{zeros}(\mathrm{n}, 1) ; \mathrm{x}(1)=1 ; x(2)=1 / 3$;
for $\mathrm{ii}=3$:n
$x(i i)=13 / 3$ * $x(i i-1)-4 / 3$ * $x(i i-2)$;
$\mathrm{xn}=(1 / 3)^{\wedge}(\mathrm{ii}-1)$; \quad RelErr $=\operatorname{abs}(\mathrm{xn}-\mathrm{x}(\mathrm{ii})) / \mathrm{xn}$; fprintf('x(\%2.0f) $=$ \%15.8e, x_ast(\%2.0f) $=\% 14.8 \mathrm{e}$, ,... 'RelErr(\%2.0f) = \%11.4e \n', ii,x(ii),ii,xn,ii,RelErr);
end

Example 2

What is the binary representation of $\frac{2}{3}$?
Solution: To determine the binary representation for $\frac{2}{3}$, we write

Multiply by 2 to obtain

Therefore, we get $a_{1}=1$ by taking the integer part of both sides

Example 2

What is the binary representation of $\frac{2}{3}$?
Solution: To determine the binary representation for $\frac{2}{3}$, we write

$$
\frac{2}{3}=\left(0 . a_{1} a_{2} a_{3} \ldots\right)_{2}
$$

Example 2

What is the binary representation of $\frac{2}{3}$?
Solution: To determine the binary representation for $\frac{2}{3}$, we write

$$
\frac{2}{3}=\left(0 . a_{1} a_{2} a_{3} \ldots\right)_{2}
$$

Multiply by 2 to obtain

$$
\frac{4}{3}=\left(a_{1} \cdot a_{2} a_{3} \ldots\right)_{2}
$$

Therefore, we get $a_{1}=1$ by taking the integer part of both sides.

Subtracting 1, we have

$$
\frac{1}{3}=\left(0 . a_{2} a_{3} a_{4} \ldots\right)_{2}
$$

Repeating the previous step, we arrive at

Subtracting 1, we have

$$
\frac{1}{3}=\left(0 . a_{2} a_{3} a_{4} \ldots\right)_{2}
$$

Repeating the previous step, we arrive at

$$
\frac{2}{3}=(0.101010 \ldots)_{2}
$$

- In the computational world, each representable number has only a fixed and finite number of digits.
- In the computational world, each representable number has only a fixed and finite number of digits.
- For any real number x, let

$$
x= \pm 1 . a_{1} a_{2} \cdots a_{t} a_{t+1} a_{t+2} \cdots \times 2^{m}
$$

denote the normalized scientific binary representation of x.

- In the computational world, each representable number has only a fixed and finite number of digits.
- For any real number x, let

$$
x= \pm 1 . a_{1} a_{2} \cdots a_{t} a_{t+1} a_{t+2} \cdots \times 2^{m}
$$

denote the normalized scientific binary representation of x.

- In 1985, the IEEE (Institute for Electrical and Electronic Engineers) published a report called Binary Floating Point Arithmetic Standard 754-1985. In this report, formats were specified for single, double, and extended precisions, and these standards are generally followed by microcomputer manufactures using floating-point hardware.

Single precision

- The single precision IEEE standard floating-point format allocates 32 bits for the normalized floating-point number $\pm q \times 2^{m}$ as shown in the following figure.

Single precision

- The single precision IEEE standard floating-point format allocates 32 bits for the normalized floating-point number $\pm q \times 2^{m}$ as shown in the following figure.

- The first bit is a sign indicator, denoted s. This is followed by an 8-bit exponent c and a 23-bit mantissa f.

\qquad

Single precision

- The single precision IEEE standard floating-point format allocates 32 bits for the normalized floating-point number $\pm q \times 2^{m}$ as shown in the following figure.

- The first bit is a sign indicator, denoted s. This is followed by an 8-bit exponent c and a 23-bit mantissa f.
- The base for the exponent and mantissa is 2 , and the actual exponent is $c-127$. The value of c is restricted by the inequality $0 \leq c \leq 255$.
- The actual exponent of the number is restricted by the inequality $-127 \leq c-127 \leq 128$.
A normalization is imposed that requires that the leading digit in fraction be 1, and this digit is not stored as part of the 23-bit mantissa.
- Using this system gives a floating-point number of the form
- The actual exponent of the number is restricted by the inequality $-127 \leq c-127 \leq 128$.
- A normalization is imposed that requires that the leading digit in fraction be 1, and this digit is not stored as part of the 23-bit mantissa.
- Using this system gives a floating-point number of the form
- The actual exponent of the number is restricted by the inequality $-127 \leq c-127 \leq 128$.
- A normalization is imposed that requires that the leading digit in fraction be 1, and this digit is not stored as part of the 23-bit mantissa.
- Using this system gives a floating-point number of the form

$$
(-1)^{s} 2^{c-127}(1+f)
$$

Example 3

What is the decimal number of the machine number

$01000000101000000000000000000000 ?$

\square positive (1) The next 8 bits, 10000001 , are equivalent to The exponential part of the number is 2

Example 3

What is the decimal number of the machine number

01000000101000000000000000000000 ?

(1) The leftmost bit is zero, which indicates that the number is positive.
The next 8 bits, 10000001, are equivalent to The exponential part of the number is 2^{129-1}
The final 23 bits specify that the mantissa is

IEEE standard floating-point format

Example 3

What is the decimal number of the machine number

$01000000101000000000000000000000 ?$

(1) The leftmost bit is zero, which indicates that the number is positive.
(2) The next 8 bits, 10000001 , are equivalent to

$$
c=1 \cdot 2^{7}+0 \cdot 2^{6}+\cdots+0 \cdot 2^{1}+1 \cdot 2^{0}=129 .
$$

The exponential part of the number is $2^{129-127}=2^{2}$.
4. Consequently, this machine number precisely represents the decimal number

Example 3

What is the decimal number of the machine number

$01000000101000000000000000000000 ?$

(1) The leftmost bit is zero, which indicates that the number is positive.
(2) The next 8 bits, 10000001 , are equivalent to

$$
c=1 \cdot 2^{7}+0 \cdot 2^{6}+\cdots+0 \cdot 2^{1}+1 \cdot 2^{0}=129
$$

The exponential part of the number is $2^{129-127}=2^{2}$.
(3) The final 23 bits specify that the mantissa is
$f=0 \cdot(2)^{-1}+1 \cdot(2)^{-2}+0 \cdot(2)^{-3}+\cdots+0 \cdot(2)^{-23}=0.25$.
Consequently, this machine number precisely represents
the decimal number

Example 3

What is the decimal number of the machine number

01000000101000000000000000000000 ?

(1) The leftmost bit is zero, which indicates that the number is positive.
(2) The next 8 bits, 10000001 , are equivalent to

$$
c=1 \cdot 2^{7}+0 \cdot 2^{6}+\cdots+0 \cdot 2^{1}+1 \cdot 2^{0}=129
$$

The exponential part of the number is $2^{129-127}=2^{2}$.
(3) The final 23 bits specify that the mantissa is

$$
f=0 \cdot(2)^{-1}+1 \cdot(2)^{-2}+0 \cdot(2)^{-3}+\cdots+0 \cdot(2)^{-23}=0.25
$$

(4) Consequently, this machine number precisely represents the decimal number

$$
(-1)^{s} 2^{c-127}(1+f)=2^{2} \cdot(1+0.25)=5
$$

Example 4

What is the decimal number of the machine number

$$
0 \underline{10000001001111111111111111111111 ? ~}
$$

(1) The final 23 bits specify that the mantissa is
(2) Consequently, this machine number precisely represents the decimal number

Example 4

What is the decimal number of the machine number

$01000000100111111111111111111111 ?$

(1) The final 23 bits specify that the mantissa is

$$
\begin{aligned}
f & =0 \cdot(2)^{-1}+0 \cdot(2)^{-2}+1 \cdot(2)^{-3}+\cdots+1 \cdot(2)^{-23} \\
& =0.2499998807907105 .
\end{aligned}
$$

(2) Consequently, this machine number precisely represents the decimal number

Example 4

What is the decimal number of the machine number

$01000000100111111111111111111111 ?$

(1) The final 23 bits specify that the mantissa is

$$
\begin{aligned}
f & =0 \cdot(2)^{-1}+0 \cdot(2)^{-2}+1 \cdot(2)^{-3}+\cdots+1 \cdot(2)^{-23} \\
& =0.2499998807907105 .
\end{aligned}
$$

(2) Consequently, this machine number precisely represents the decimal number

$$
\begin{aligned}
(-1)^{s} 2^{c-127}(1+f) & =2^{2} \cdot(1+0.2499998807907105) \\
& =4.999999523162842
\end{aligned}
$$

Example 5

What is the decimal number of the machine number

$01000000101000000000000000000001 ?$

(1) The final 23 bits specify that the mantissa is
2. Consequently, this machine number precisely represents the decimal number

Example 5

What is the decimal number of the machine number

$01000000101000000000000000000001 ?$

(1) The final 23 bits specify that the mantissa is

$$
\begin{aligned}
f & =0 \cdot 2^{-1}+1 \cdot 2^{-2}+0 \cdot 2^{-3}+\cdots+0 \cdot 2^{-22}+1 \cdot 2^{-23} \\
& =0.2500001192092896 .
\end{aligned}
$$

(2) Consequently, this machine number precisely represents the decimal number

Example 5

What is the decimal number of the machine number

$01000000101000000000000000000001 ?$

(1) The final 23 bits specify that the mantissa is

$$
\begin{aligned}
f & =0 \cdot 2^{-1}+1 \cdot 2^{-2}+0 \cdot 2^{-3}+\cdots+0 \cdot 2^{-22}+1 \cdot 2^{-23} \\
& =0.2500001192092896 .
\end{aligned}
$$

(2) Consequently, this machine number precisely represents the decimal number

$$
\begin{aligned}
(-1)^{s} 2^{c-127}(1+f) & =2^{2} \cdot(1+0.2500001192092896) \\
& =5.000000476837158
\end{aligned}
$$

Summary

Above three examples

$01000000100111111111111111111111 \Rightarrow 4.999999523162842$ $01000000101000000000000000000000 \Rightarrow 5$ $01000000101000000000000000000001 \Rightarrow 5.000000476837158$

- Only a relatively small subset of the real number system is used for the representation of all the real numbers. - This subset, which are called the floating-point numbers,

Summary

Above three examples

```
010000001001111111111111111111111 }=>4.99999952316284
01000000101000000000000000000000 }=>=
010000001010000000000000000000001 }=>\mathrm{ F 5.0000000476837158
```

- Only a relatively small subset of the real number system is used for the representation of all the real numbers.

Summary

Above three examples

```
010000001001111111111111111111111 }=>4.99999952316284
010000001010000000000000000000000 => 5
010000001010000000000000000000001 }=>\mathrm{ F 5.0000000476837158
```

- Only a relatively small subset of the real number system is used for the representation of all the real numbers.
- This subset, which are called the floating-point numbers, contains only rational numbers, both positive and negative.

Summary

Above three examples

- Only a relatively small subset of the real number system is used for the representation of all the real numbers.
- This subset, which are called the floating-point numbers, contains only rational numbers, both positive and negative.
- When a number can not be represented exactly with the fixed finite number of digits in a computer, a near-by floating-point number is chosen for approximate representation.

```
010000001001111111111111111111111 }=>4.999999523162842
```

010000001001111111111111111111111 }=>4.999999523162842
010000001010000000000000000000000 }=>
010000001010000000000000000000000 }=>
01000000101000000000000000000001 列 5.000000476837158

```
01000000101000000000000000000001 列 5.000000476837158
```


The smallest positive number

Let $s=0, c=1$ and $f=0$ which is equivalent to

$$
2^{-126} \cdot(1+0) \approx 1.175 \times 10^{-38}
$$

The argest number
Let $s=0, c=254$ and $f=1-2^{-23}$ which is equivalent to
\square
If a number x with $|x|<2^{-126} \cdot(1+0)$, then we say that an
underflow has occurred and is generally set to zero. If $|x|>2^{127} \cdot\left(2-2^{-23}\right)$, then we say that an overflow has
occurred.

The smallest positive number

Let $s=0, c=1$ and $f=0$ which is equivalent to

$$
2^{-126} \cdot(1+0) \approx 1.175 \times 10^{-38}
$$

The largest number

Let $s=0, c=254$ and $f=1-2^{-23}$ which is equivalent to

$$
2^{127} \cdot\left(2-2^{-23}\right) \approx 3.403 \times 10^{38}
$$

Definition 6
If a number x with
underflow has occurred and is generally set to zero.
If $|x|>2^{127} \cdot\left(2-2^{-23}\right)$, then we say that an overflow has
occurred.

The smallest positive number

Let $s=0, c=1$ and $f=0$ which is equivalent to

$$
2^{-126} \cdot(1+0) \approx 1.175 \times 10^{-38}
$$

The largest number

Let $s=0, c=254$ and $f=1-2^{-23}$ which is equivalent to

$$
2^{127} \cdot\left(2-2^{-23}\right) \approx 3.403 \times 10^{38}
$$

Definition 6

If a number x with $|x|<2^{-126} \cdot(1+0)$, then we say that an underflow has occurred and is generally set to zero.

The smallest positive number

Let $s=0, c=1$ and $f=0$ which is equivalent to

$$
2^{-126} \cdot(1+0) \approx 1.175 \times 10^{-38}
$$

The largest number

Let $s=0, c=254$ and $f=1-2^{-23}$ which is equivalent to

$$
2^{127} \cdot\left(2-2^{-23}\right) \approx 3.403 \times 10^{38}
$$

Definition 6

If a number x with $|x|<2^{-126} \cdot(1+0)$, then we say that an underflow has occurred and is generally set to zero. If $|x|>2^{127} \cdot\left(2-2^{-23}\right)$, then we say that an overflow has occurred.

Double precision

- A floating point number in double precision IEEE standard format uses two words (64 bits) to store the number as shown in the following figure.

Double precision

- A floating point number in double precision IEEE standard format uses two words (64 bits) to store the number as shown in the following figure.

63

- The first bit is a sign indicator, denoted s. This is followed by an 11-bit exponent c and a 52-bit mantissa f.

Double precision

- A floating point number in double precision IEEE standard format uses two words (64 bits) to store the number as shown in the following figure.

- The first bit is a sign indicator, denoted s. This is followed by an 11-bit exponent c and a 52-bit mantissa f.
- The actual exponent is $c-1023$.

Format of floating-point number

$$
(-1)^{s} \times(1+f) \times 2^{c-1023}
$$

The largest number

\qquad

Format of floating-point number

$$
(-1)^{s} \times(1+f) \times 2^{c-1023}
$$

The smallest positive number

Let $s=0, c=1$ and $f=0$ which is equivalent to

$$
2^{-1022} \cdot(1+0) \approx 2.225 \times 10^{-308}
$$

Format of floating-point number

$$
(-1)^{s} \times(1+f) \times 2^{c-1023}
$$

The smallest positive number

Let $s=0, c=1$ and $f=0$ which is equivalent to

$$
2^{-1022} \cdot(1+0) \approx 2.225 \times 10^{-308}
$$

The largest number

Let $s=0, c=2046$ and $f=1-2^{-52}$ which is equivalent to

$$
2^{1023} \cdot\left(2-2^{-52}\right) \approx 1.798 \times 10^{308}
$$

IEEE standard floating-point format

Chopping and rounding

For any real number x, let

$$
x= \pm 1 . a_{1} a_{2} \cdots a_{t} a_{t+1} a_{t+2} \cdots \times 2^{m}
$$

denote the normalized scientific binary representation of x.

IEEE standard floating-point format

Chopping and rounding

For any real number x, let

$$
x= \pm 1 . a_{1} a_{2} \cdots a_{t} a_{t+1} a_{t+2} \cdots \times 2^{m}
$$

denote the normalized scientific binary representation of x.
(1) chopping: simply discard the excess bits a_{t+1}, a_{t+2}, \ldots to obtain

$$
f l(x)= \pm 1 \cdot a_{1} a_{2} \cdots a_{t} \times 2^{m}
$$

IEEE standard floating-point format

Chopping and rounding

For any real number x, let

$$
x= \pm 1 . a_{1} a_{2} \cdots a_{t} a_{t+1} a_{t+2} \cdots \times 2^{m}
$$

denote the normalized scientific binary representation of x.
(1) chopping: simply discard the excess bits a_{t+1}, a_{t+2}, \ldots to obtain

$$
f l(x)= \pm 1 \cdot a_{1} a_{2} \cdots a_{t} \times 2^{m}
$$

(2) rounding: add $2^{-(t+1)} \times 2^{m}$ to x and then chop the excess bits to obtain a number of the form

$$
f l(x)= \pm 1 . \delta_{1} \delta_{2} \cdots \delta_{t} \times 2^{m}
$$

In this method, if $a_{t+1}=1$, we add 1 to a_{t} to obtain $f l(x)$, and if $a_{t+1}=0$, we merely chop off all but the first t digits.

Definition 7 (Roundoff error)

The error results from replacing a number with its floating-point form is called roundoff error or rounding error.

Definition 7 (Roundoff error)

The error results from replacing a number with its floating-point form is called roundoff error or rounding error.

Definition 8 (Absolute Error and Relative Error)

If x is an approximation to the exact value x^{*}, the absolute error is $\left|x^{*}-x\right|$ and the relative error is $\frac{\left|x^{*}-x\right|}{\left|x^{*}\right|}$, provided that $x^{*} \neq 0$.

```
(a) If }\mp@subsup{x}{}{*}=0.3000\times1\mp@subsup{0}{}{-3}\mathrm{ and }x=0.3100\times1\mp@subsup{0}{}{-3}\mathrm{ , then the
absolute error is 0.1 }\times1\mp@subsup{0}{}{-4}\mathrm{ and the relative error is
(b) If }\mp@subsup{x}{}{*}=0.3000\times1\mp@subsup{0}{}{4}\mathrm{ and }x=0.3100\times1\mp@subsup{0}{}{4}\mathrm{ , then the absolute
error is 0.1 }\times1\mp@subsup{0}{}{3}\mathrm{ and the relative error is 0.3333 }\times1\mp@subsup{0}{}{-1
```


Definition 7 (Roundoff error)

The error results from replacing a number with its floating-point form is called roundoff error or rounding error.

Definition 8 (Absolute Error and Relative Error)

If x is an approximation to the exact value x^{*}, the absolute error is $\left|x^{*}-x\right|$ and the relative error is $\frac{\left|x^{*}-x\right|}{\left|x^{*}\right|}$, provided that $x^{*} \neq 0$.

Example 9

(a) If $x^{*}=0.3000 \times 10^{-3}$ and $x=0.3100 \times 10^{-3}$, then the absolute error is 0.1×10^{-4} and the relative error is 0.3333×10^{-1}.

Definition 7 (Roundoff error)

The error results from replacing a number with its floating-point form is called roundoff error or rounding error.

Definition 8 (Absolute Error and Relative Error)

If x is an approximation to the exact value x^{*}, the absolute error is $\left|x^{*}-x\right|$ and the relative error is $\frac{\left|x^{*}-x\right|}{\left|x^{*}\right|}$, provided that $x^{*} \neq 0$.

Example 9

(a) If $x^{*}=0.3000 \times 10^{-3}$ and $x=0.3100 \times 10^{-3}$, then the absolute error is 0.1×10^{-4} and the relative error is 0.3333×10^{-1}.
(b) If $x^{*}=0.3000 \times 10^{4}$ and $x=0.3100 \times 10^{4}$, then the absolute error is 0.1×10^{3} and the relative error is 0.3333×10^{-1}.

Remark 1

As a measure of accuracy, the absolute error may be misleading and the relative error more meaningful.

Definition 10
The number x is said to approximate
to
is the largest nonnegative integer for which

Remark 1

As a measure of accuracy, the absolute error may be misleading and the relative error more meaningful.

Definition 10

The number x is said to approximate x^{*} to t significant digits if t is the largest nonnegative integer for which

$$
\frac{\left|x-x^{*}\right|}{\left|x^{*}\right|} \leq 5 \times 10^{-t}
$$

- If the floating-point representation $f l(x)$ for the number x is obtained by using t digits and chopping procedure, then the relative error is

The minimal value of the denominator is 1 . The numerator
is bounded above by 1

- If the floating-point representation $f l(x)$ for the number x is obtained by using t digits and chopping procedure, then the relative error is

$$
\begin{aligned}
\frac{|x-f l(x)|}{|x|} & =\frac{\left|0.00 \cdots 0 a_{t+1} a_{t+2} \cdots \times 2^{m}\right|}{\left|1 . a_{1} a_{2} \cdots a_{t} a_{t+1} a_{t+2} \cdots \times 2^{m}\right|} \\
& =\frac{\left|0 . a_{t+1} a_{t+2} \cdots\right|}{\left|1 . a_{1} a_{2} \cdots a_{t} a_{t+1} a_{t+2} \cdots\right|} \times 2^{-t}
\end{aligned}
$$

The minimal value of the denominator is 1. The numerator
is bounded above by 1 . As a consequence

- If the floating-point representation $f l(x)$ for the number x is obtained by using t digits and chopping procedure, then the relative error is

$$
\begin{aligned}
\frac{|x-f l(x)|}{|x|} & =\frac{\left|0.00 \cdots 0 a_{t+1} a_{t+2} \cdots \times 2^{m}\right|}{\left|1 . a_{1} a_{2} \cdots a_{t} a_{t+1} a_{t+2} \cdots \times 2^{m}\right|} \\
& =\frac{\left|0 \cdot a_{t+1} a_{t+2} \cdots\right|}{\left|1 . a_{1} a_{2} \cdots a_{t} a_{t+1} a_{t+2} \cdots\right|} \times 2^{-t}
\end{aligned}
$$

The minimal value of the denominator is 1 . The numerator is bounded above by 1 .

- If the floating-point representation $f l(x)$ for the number x is obtained by using t digits and chopping procedure, then the relative error is

$$
\begin{aligned}
\frac{|x-f l(x)|}{|x|} & =\frac{\left|0.00 \cdots 0 a_{t+1} a_{t+2} \cdots \times 2^{m}\right|}{\left|1 . a_{1} a_{2} \cdots a_{t} a_{t+1} a_{t+2} \cdots \times 2^{m}\right|} \\
& =\frac{\left|0 \cdot a_{t+1} a_{t+2} \cdots\right|}{\left|1 . a_{1} a_{2} \cdots a_{t} a_{t+1} a_{t+2} \cdots\right|} \times 2^{-t}
\end{aligned}
$$

The minimal value of the denominator is 1 . The numerator is bounded above by 1 . As a consequence

$$
\left|\frac{x-f l(x)}{x}\right| \leq 2^{-t}
$$

Absolute and Relative Errors

- If t-digit rounding arithmetic is used and
- $a_{t+1}=0$, then $f l(x)= \pm 1 . a_{1} a_{2} \cdots a_{t} \times 2^{m}$.
- If t-digit rounding arithmetic is used and
- $a_{t+1}=0$, then $f l(x)= \pm 1 . a_{1} a_{2} \cdots a_{t} \times 2^{m}$. A bound for the relative error is

$$
\frac{|x-f l(x)|}{|x|}=\frac{\left|0 \cdot a_{t+1} a_{t+2} \cdots\right|}{\left|1 \cdot a_{1} a_{2} \cdots a_{t} a_{t+1} a_{t+2} \cdots\right|} \times 2^{-t} \leq 2^{-(t+1)},
$$

since the numerator is bounded above by $\frac{1}{2}$ due to $a_{t+1}=0$.
upper bound for relative error becomes
since the numerator is bounded by $\frac{1}{2}$ due to $a_{t+1}=1$

Absolute and Relative Errors

- If t-digit rounding arithmetic is used and
- $a_{t+1}=0$, then $f l(x)= \pm 1 . a_{1} a_{2} \cdots a_{t} \times 2^{m}$. A bound for the relative error is

$$
\frac{|x-f l(x)|}{|x|}=\frac{\left|0 \cdot a_{t+1} a_{t+2} \cdots\right|}{\left|1 . a_{1} a_{2} \cdots a_{t} a_{t+1} a_{t+2} \cdots\right|} \times 2^{-t} \leq 2^{-(t+1)},
$$

since the numerator is bounded above by $\frac{1}{2}$ due to $a_{t+1}=0$.

- $a_{t+1}=1$, then $f l(x)= \pm\left(1 . a_{1} a_{2} \cdots a_{t}+2^{-t}\right) \times 2^{m}$.

$$
\begin{aligned}
& \text { since the numerator is bounded by } \frac{1}{2} \text { due to } a_{t+1}=1 \\
& \text { Therefore the relative error for rounding arithmetic is }
\end{aligned}
$$

Absolute and Relative Errors

- If t-digit rounding arithmetic is used and
- $a_{t+1}=0$, then $f l(x)= \pm 1 . a_{1} a_{2} \cdots a_{t} \times 2^{m}$. A bound for the relative error is

$$
\frac{|x-f l(x)|}{|x|}=\frac{\left|0 \cdot a_{t+1} a_{t+2} \cdots\right|}{\left|1 . a_{1} a_{2} \cdots a_{t} a_{t+1} a_{t+2} \cdots\right|} \times 2^{-t} \leq 2^{-(t+1)},
$$

since the numerator is bounded above by $\frac{1}{2}$ due to $a_{t+1}=0$.

- $a_{t+1}=1$, then $f l(x)= \pm\left(1 . a_{1} a_{2} \cdots a_{t}+2^{-t}\right) \times 2^{m}$. The upper bound for relative error becomes

$$
\frac{|x-f l(x)|}{|x|}=\frac{\left|1-0 . a_{t+1} a_{t+2} \cdots\right|}{\left|1 . a_{1} a_{2} \cdots a_{t} a_{t+1} a_{t+2} \cdots\right|} \times 2^{-t} \leq 2^{-(t+1)},
$$

since the numerator is bounded by $\frac{1}{2}$ due to $a_{t+1}=1$.

Absolute and Relative Errors

- If t-digit rounding arithmetic is used and
- $a_{t+1}=0$, then $f l(x)= \pm 1 . a_{1} a_{2} \cdots a_{t} \times 2^{m}$. A bound for the relative error is

$$
\frac{|x-f l(x)|}{|x|}=\frac{\left|0 \cdot a_{t+1} a_{t+2} \cdots\right|}{\left|1 . a_{1} a_{2} \cdots a_{t} a_{t+1} a_{t+2} \cdots\right|} \times 2^{-t} \leq 2^{-(t+1)}
$$

since the numerator is bounded above by $\frac{1}{2}$ due to $a_{t+1}=0$.

- $a_{t+1}=1$, then $f l(x)= \pm\left(1 . a_{1} a_{2} \cdots a_{t}+2^{-t}\right) \times 2^{m}$. The upper bound for relative error becomes

$$
\frac{|x-f l(x)|}{|x|}=\frac{\left|1-0 . a_{t+1} a_{t+2} \cdots\right|}{\left|1 . a_{1} a_{2} \cdots a_{t} a_{t+1} a_{t+2} \cdots\right|} \times 2^{-t} \leq 2^{-(t+1)}
$$

since the numerator is bounded by $\frac{1}{2}$ due to $a_{t+1}=1$.
Therefore the relative error for rounding arithmetic is

$$
\left|\frac{x-f l(x)}{x}\right| \leq 2^{-(t+1)}=\frac{1}{2} \times 2^{-t}
$$

Definition 11 (Machine epsilon)

The floating-point representation, $f l(x)$, of x can be expressed as

$$
\begin{equation*}
f l(x)=x(1+\delta), \quad|\delta| \leq \varepsilon_{M} \tag{1}
\end{equation*}
$$

where $\varepsilon_{M} \equiv 2^{-t}$ is referred to as the unit roundoff error or machine epsilon.

Single precision IEEE standard floating-point format
The mantissa f corresponds to 23 binary digits (i.e
the machine epsilon is

This approximately corresponds to 7 accurate decimal digits

Definition 11 (Machine epsilon)

The floating-point representation, $f l(x)$, of x can be expressed as

$$
\begin{equation*}
f l(x)=x(1+\delta), \quad|\delta| \leq \varepsilon_{M}, \tag{1}
\end{equation*}
$$

where $\varepsilon_{M} \equiv 2^{-t}$ is referred to as the unit roundoff error or machine epsilon.

Single precision IEEE standard floating-point format

The mantissa f corresponds to 23 binary digits (i.e., $t=23$), the machine epsilon is

$$
\varepsilon_{M}=2^{-23} \approx 1.192 \times 10^{-7} .
$$

Definition 11 (Machine epsilon)

The floating-point representation, $f l(x)$, of x can be expressed as

$$
\begin{equation*}
f l(x)=x(1+\delta), \quad|\delta| \leq \varepsilon_{M}, \tag{1}
\end{equation*}
$$

where $\varepsilon_{M} \equiv 2^{-t}$ is referred to as the unit roundoff error or machine epsilon.

Single precision IEEE standard floating-point format

The mantissa f corresponds to 23 binary digits (i.e., $t=23$), the machine epsilon is

$$
\varepsilon_{M}=2^{-23} \approx 1.192 \times 10^{-7}
$$

This approximately corresponds to 7 accurate decimal digits

Double precision IEEE standard floating-point format

The mantissa f corresponds to 52 binary digits (i.e., $t=52$), the machine epsilon is

$$
\varepsilon_{M}=2^{-52} \approx 2.220 \times 10^{-16}
$$

\square smallest positive number decimal precision

Double precision IEEE standard floating-point format

The mantissa f corresponds to 52 binary digits (i.e., $t=52$), the machine epsilon is

$$
\varepsilon_{M}=2^{-52} \approx 2.220 \times 10^{-16}
$$

which provides between 15 and 16 decimal digits of accuracy.

Double precision IEEE standard floating-point format

The mantissa f corresponds to 52 binary digits (i.e., $t=52$), the machine epsilon is

$$
\varepsilon_{M}=2^{-52} \approx 2.220 \times 10^{-16}
$$

which provides between 15 and 16 decimal digits of accuracy.

Summary of IEEE standard floating-point format

	single precision	double precision
ε_{M}	1.192×10^{-7}	2.220×10^{-16}
smallest positive number	1.175×10^{-38}	2.225×10^{-308}
largest number	3.403×10^{38}	1.798×10^{308}
decimal precision	7	16

- Let \odot stand for any one of the four basic arithmetic operators $+,-\star, \div$.
where ε_{M} is the unit roundoff.
- Let \odot stand for any one of the four basic arithmetic operators $+,-\star, \div$.
- Whenever two machine numbers x and y are to be combined arithmetically, the computer will produce $f l(x \odot y)$ instead of $x \odot y$.
where ε_{M} is the unit roundoff.
But if x, y are not machine numbers, then they must first
rounded to floating-point format before the arithmetic
operation and the resulting relative error becomes
- Let \odot stand for any one of the four basic arithmetic operators $+,-, \star, \div$.
- Whenever two machine numbers x and y are to be combined arithmetically, the computer will produce $f l(x \odot y)$ instead of $x \odot y$.
- Under (1), the relative error of $f l(x \odot y)$ satisfies

$$
\begin{equation*}
f l(x \odot y)=(x \odot y)(1+\delta), \quad \delta \leq \varepsilon_{M}, \tag{2}
\end{equation*}
$$

where ε_{M} is the unit roundoff.
But if x, y are not machine numbers, then they must first
rounded to floating-point format before the arithmetic
oneration and the resulting relative error hecomes

- Let \odot stand for any one of the four basic arithmetic operators $+,-, \star, \div$.
- Whenever two machine numbers x and y are to be combined arithmetically, the computer will produce $f l(x \odot y)$ instead of $x \odot y$.
- Under (1), the relative error of $f l(x \odot y)$ satisfies

$$
\begin{equation*}
f l(x \odot y)=(x \odot y)(1+\delta), \quad \delta \leq \varepsilon_{M} \tag{2}
\end{equation*}
$$

where ε_{M} is the unit roundoff.

- But if x, y are not machine numbers, then they must first rounded to floating-point format before the arithmetic operation and the resulting relative error becomes

$$
f l(f l(x) \odot f l(y))=\left(x\left(1+\delta_{1}\right) \odot y\left(1+\delta_{2}\right)\right)\left(1+\delta_{3}\right),
$$

where $\delta_{i} \leq \varepsilon_{M}, i=1,2,3$.

Example

Let $x=0.54617$ and $y=0.54601$. Using rounding and four-digit arithmetic, then
.5462 is accurate to four significant digits
since

Machine Epsilon

Example

Let $x=0.54617$ and $y=0.54601$. Using rounding and four-digit arithmetic, then

- $x^{*}=f l(x)=0.5462$ is accurate to four significant digits since

$$
\frac{\left|x-x^{*}\right|}{|x|}=\frac{0.00003}{0.54617}=5.5 \times 10^{-5} \leq 5 \times 10^{-4}
$$

Machine Epsilon

Example

Let $x=0.54617$ and $y=0.54601$. Using rounding and four-digit arithmetic, then

- $x^{*}=f l(x)=0.5462$ is accurate to four significant digits since

$$
\frac{\left|x-x^{*}\right|}{|x|}=\frac{0.00003}{0.54617}=5.5 \times 10^{-5} \leq 5 \times 10^{-4}
$$

- $y^{*}=f l(y)=0.5460$ is accurate to five significant digits since

$$
\frac{\left|y-y^{*}\right|}{|y|}=\frac{0.00001}{0.54601}=1.8 \times 10^{-5} \leq 5 \times 10^{-5}
$$

- The exact value of subtraction is

$$
r=x-y=0.00016
$$

But

$$
r^{*} \equiv x \ominus y=f l(f l(x)-f l(y))=0.0002
$$

Since

$$
\frac{\left|r-r^{*}\right|}{|r|}=0.25 \leq 5 \times 10^{-1}
$$

the result has only one significant digit.

- The exact value of subtraction is

$$
r=x-y=0.00016
$$

But

$$
r^{*} \equiv x \ominus y=f l(f l(x)-f l(y))=0.0002
$$

Since

$$
\frac{\left|r-r^{*}\right|}{|r|}=0.25 \leq 5 \times 10^{-1}
$$

the result has only one significant digit.

- Loss of accuracy

Loss of Significance

- One of the most common error-producing calculations involves the cancellation of significant digits due to the subtraction of nearly equal numbers or the addition of one very large number and one very small number.

Sometimes, loss of significance can be avoided by rewriting the mathematical formula.

The quadratic formulas for computing the roots of

Loss of Significance

- One of the most common error-producing calculations involves the cancellation of significant digits due to the subtraction of nearly equal numbers or the addition of one very large number and one very small number.
- Sometimes, loss of significance can be avoided by rewriting the mathematical formula.

The quadratic formulas for computing the roots of

Consider the quadratic equation and

Loss of Significance

- One of the most common error-producing calculations involves the cancellation of significant digits due to the subtraction of nearly equal numbers or the addition of one very large number and one very small number.
- Sometimes, loss of significance can be avoided by rewriting the mathematical formula.

Example 12

The quadratic formulas for computing the roots of $a x^{2}+b x+c=0$, when $a \neq 0$, are

$$
x_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \quad \text { and } \quad x_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} .
$$

Consider the quadratic equation $x^{2}+62.10 x+1=0$ and discuss the numerical results.

Solution

- Using the quadratic formula and 8-digit rounding arithmetic, one can obtain

$$
x_{1}=-0.01610723 \quad \text { and } \quad x_{2}=-62.08390
$$

- Now we perform the calculations with 4-digit rounding
arithmetic. First we have

Loss of Significance

Solution

- Using the quadratic formula and 8-digit rounding arithmetic, one can obtain

$$
x_{1}=-0.01610723 \quad \text { and } \quad x_{2}=-62.08390
$$

- Now we perform the calculations with 4-digit rounding arithmetic. First we have

$$
\sqrt{b^{2}-4 a c}=\sqrt{62.10^{2}-4.000}=\sqrt{3856-4.000}=62.06
$$

and

$$
f l\left(x_{1}\right)=\frac{-62.10+62.06}{2.000}=\frac{-0.04000}{2.000}=-0.02000
$$

The relative error in computing x_{1} is

Loss of Significance

Solution

- Using the quadratic formula and 8 -digit rounding arithmetic, one can obtain

$$
x_{1}=-0.01610723 \quad \text { and } \quad x_{2}=-62.08390
$$

- Now we perform the calculations with 4-digit rounding arithmetic. First we have

$$
\sqrt{b^{2}-4 a c}=\sqrt{62.10^{2}-4.000}=\sqrt{3856-4.000}=62.06
$$

and

$$
f l\left(x_{1}\right)=\frac{-62.10+62.06}{2.000}=\frac{-0.04000}{2.000}=-0.02000
$$

The relative error in computing x_{1} is

$$
\frac{\left|f l\left(x_{1}\right)-x_{1}\right|}{\left|x_{1}\right|}=\frac{|-0.02000+0.01610723|}{|-0.01610723|} \approx 0.2417 \leq 5 \times 10^{-1,1}
$$

Loss of Significance

- In calculating x_{2},

$$
f l\left(x_{2}\right)=\frac{-62.10-62.06}{2.000}=\frac{-124.2}{2.000}=-62.10,
$$

and the relative error in computing x_{2} is
\square equal numbers.

- In calculating x_{2},

$$
f l\left(x_{2}\right)=\frac{-62.10-62.06}{2.000}=\frac{-124.2}{2.000}=-62.10
$$

and the relative error in computing x_{2} is

$$
\frac{\left|f l\left(x_{2}\right)-x_{2}\right|}{\left|x_{2}\right|}=\frac{|-62.10+62.08390|}{|-62.08390|} \approx 0.259 \times 10^{-3} \leq 5 \times 10^{-4}
$$

Loss of Significance

- In calculating x_{2},

$$
f l\left(x_{2}\right)=\frac{-62.10-62.06}{2.000}=\frac{-124.2}{2.000}=-62.10
$$

and the relative error in computing x_{2} is

$$
\frac{\left|f l\left(x_{2}\right)-x_{2}\right|}{\left|x_{2}\right|}=\frac{|-62.10+62.08390|}{|-62.08390|} \approx 0.259 \times 10^{-3} \leq 5 \times 10^{-4} .
$$

- In this equation, $b^{2}=62.10^{2}$ is much larger than $4 a c=4$. Hence b and $\sqrt{b^{2}-4 a c}$ become two nearly equal numbers. The calculation of x_{1} involves the subtraction of two nearly equal numbers.

numerator, that is,

Loss of Significance

- In calculating x_{2},

$$
f l\left(x_{2}\right)=\frac{-62.10-62.06}{2.000}=\frac{-124.2}{2.000}=-62.10
$$

and the relative error in computing x_{2} is

$$
\frac{\left|f l\left(x_{2}\right)-x_{2}\right|}{\left|x_{2}\right|}=\frac{|-62.10+62.08390|}{|-62.08390|} \approx 0.259 \times 10^{-3} \leq 5 \times 10^{-4} .
$$

- In this equation, $b^{2}=62.10^{2}$ is much larger than $4 a c=4$. Hence b and $\sqrt{b^{2}-4 a c}$ become two nearly equal numbers. The calculation of x_{1} involves the subtraction of two nearly equal numbers.
- To obtain a more accurate 4-digit rounding approximation for x_{1}, we change the formulation by rationalizing the numerator, that is,

$$
x_{1}=\frac{-2 c}{b+\sqrt{b^{2}-4 a c}}
$$

Then

$$
f l\left(x_{1}\right)=\frac{-2.000}{62.10+62.06}=\frac{-2.000}{124.2}=-0.01610
$$

The relative error in computing x_{1} is now reduced to 6.2×10^{-4}

arithmetic.

Then

$$
f l\left(x_{1}\right)=\frac{-2.000}{62.10+62.06}=\frac{-2.000}{124.2}=-0.01610
$$

The relative error in computing x_{1} is now reduced to 6.2×10^{-4}

Example 13

Let

$$
\begin{aligned}
p(x) & =x^{3}-3 x^{2}+3 x-1 \\
q(x) & =((x-3) x+3) x-1
\end{aligned}
$$

Compare the function values at $x=2.19$ with using three-digit arithmetic.

Loss of Significance

Solution

Use 3-digit and rounding for $p(2.19)$ and $q(2.19)$.

$$
\begin{aligned}
\hat{p}(2.19) & =\left(\left(2.19^{3}-3 \times 2.19^{2}\right)+3 \times 2.19\right)-1 \\
& =((10.5-14.4)+3 \times 2.19)-1 \\
& =(-3.9+6.57)-1 \\
& =2.67-1=1.67
\end{aligned}
$$

and

$$
\begin{aligned}
\hat{q}(2.19) & =((2.19-3) \times 2.19+3) \times 2.19-1 \\
& =(-0.81 \times 2.19+3) \times 2.19-1 \\
& =(-1.77+3) \times 2.19-1 \\
& =1.23 \times 2.19-1 \\
& =2.69-1=1.69 .
\end{aligned}
$$

With more digits, one can have

$$
p(2.19)=g(2.19)=1.685159
$$

With more digits, one can have

$$
p(2.19)=g(2.19)=1.685159
$$

Hence the absolute errors are

$$
|p(2.19)-\hat{p}(2.19)|=0.015159
$$

and

$$
|q(2.19)-\hat{q}(2.19)|=0.004841
$$

respectively.

With more digits, one can have

$$
p(2.19)=g(2.19)=1.685159
$$

Hence the absolute errors are

$$
|p(2.19)-\hat{p}(2.19)|=0.015159
$$

and

$$
|q(2.19)-\hat{q}(2.19)|=0.004841
$$

respectively. One can observe that the evaluation formula $q(x)$ is better than $p(x)$.

Exercise

Page 28: 4, 11, 12, 15, 18

Algorithm

Definition 14 (Algorithm)

An algorithm is a procedure that describes a finite sequence of steps to be performed in a specified order.

Algorithm

Definition 14 (Algorithm)

An algorithm is a procedure that describes a finite sequence of steps to be performed in a specified order.

Example 15

Give an algorithm to compute $\sum_{i=1}^{n} x_{i}$, where n and $x_{1}, x_{2}, \ldots, x_{n}$ are given.

Algorithm

Definition 14 (Algorithm)

An algorithm is a procedure that describes a finite sequence of steps to be performed in a specified order.

Example 15

Give an algorithm to compute $\sum_{i=1}^{n} x_{i}$, where n and $x_{1}, x_{2}, \ldots, x_{n}$ are given.

Algorithm

INPUT $\quad n, x_{1}, x_{2}, \ldots, x_{n}$.
OUTPUT $\quad S U M=\sum_{i=1}^{n} x_{i}$.
Step 1. Set $S U M=0$. (Initialize accumulator.)
Step 2. For $i=1,2, \ldots, n$ do
Set $S U M=S U M+x_{i}$. (Add the next term.)
Step 3. OUTPUT $S U M$; STOP

Definition 16 (Stable)

An algorithm is called stable if small changes in the initial data of the algorithm produce correspondingly small changes in the final results.
 on the hacic of relative error

Definition 16 (Stable)

An algorithm is called stable if small changes in the initial data of the algorithm produce correspondingly small changes in the final results.

Definition 17 (Unstable)

An algorithm is unstable if small errors made at one stage of the algorithm are magnified and propagated in subsequent stages and seriously degrade the accuracy of the overall calculation.

Definition 16 (Stable)

An algorithm is called stable if small changes in the initial data of the algorithm produce correspondingly small changes in the final results.

Definition 17 (Unstable)

An algorithm is unstable if small errors made at one stage of the algorithm are magnified and propagated in subsequent stages and seriously degrade the accuracy of the overall calculation.

Remark

Whether an algorithm is stable or unstable should be decided on the basis of relative error.

Example 18

Consider the following recurrence algorithm

$$
\left\{\begin{array}{l}
x_{0}=1, \quad x_{1}=\frac{1}{3} \\
x_{n+1}=\frac{13}{3} x_{n}-\frac{4}{3} x_{n-1}
\end{array}\right.
$$

for computing the sequence of $\left\{x_{n}=\left(\frac{1}{3}\right)^{n}\right\}$. This algorithm is unstable.

A Matlab implementation of the recurrence algorithm gives the following result.

n	x_{n}	x_{n}^{*}	RelErr
8	$4.57247371 \mathrm{e}-04$	$4.57247371 \mathrm{e}-04$	$4.4359 \mathrm{e}-10$
10	$5.08052602 \mathrm{e}-05$	$5.08052634 \mathrm{e}-05$	$6.3878 \mathrm{e}-08$
12	$5.64497734 \mathrm{e}-06$	$5.64502927 \mathrm{e}-06$	$9.1984 \mathrm{e}-06$
14	$6.26394672 \mathrm{e}-07$	$6.27225474 \mathrm{e}-07$	$1.3246 \mathrm{e}-03$
15	$2.05751947 \mathrm{e}-07$	$2.09075158 \mathrm{e}-07$	$1.5895 \mathrm{e}-02$
16	$5.63988754 \mathrm{e}-08$	$6.96917194 \mathrm{e}-08$	$1.9074 \mathrm{e}-01$
17	$-2.99408028 \mathrm{e}-08$	$2.32305731 \mathrm{e}-08$	$2.289 \mathrm{e}+00$
20	$-3.40210767 \mathrm{e}-06$	$8.60391597 \mathrm{e}-10$	$3.955 \mathrm{e}+03$
23	$-2.17789924 \mathrm{e}-04$	$3.18663555 \mathrm{e}-11$	$6.835 \mathrm{e}+06$
27	$-5.57542287 \mathrm{e}-02$	$3.93411796 \mathrm{e}-13$	$1.417 \mathrm{e}+11$
30	$-3.56827064 \mathrm{e}+00$	$1.45708072 \mathrm{e}-14$	$2.449 \mathrm{e}+14$

Stability

For any constants c_{1} and c_{2},

$$
x_{n}=c_{1}\left(\frac{1}{3}\right)^{n}+c_{2}\left(4^{n}\right)
$$

is a solution to the recursive equation

$$
x_{n}=\frac{13}{3} x_{n-1}-\frac{4}{3} x_{n-2}
$$

since

Stability

For any constants c_{1} and c_{2},

$$
x_{n}=c_{1}\left(\frac{1}{3}\right)^{n}+c_{2}\left(4^{n}\right)
$$

is a solution to the recursive equation

$$
x_{n}=\frac{13}{3} x_{n-1}-\frac{4}{3} x_{n-2}
$$

since

$$
\begin{aligned}
& \frac{13}{3} x_{n-1}-\frac{4}{3} x_{n-2} \\
= & \frac{13}{3}\left[c_{1}\left(\frac{1}{3}\right)^{n-1}+c_{2} 4^{n-1}\right]-\frac{4}{3}\left[c_{1}\left(\frac{1}{3}\right)^{n-2}+c_{2} 4^{n-2}\right] \\
= & c_{1}\left(\frac{1}{3}\right)^{n-2}\left(\frac{13}{3} \cdot \frac{1}{3}-\frac{4}{3}\right)+c_{2} 4^{n-2}\left(\frac{13}{3} \cdot 4-\frac{4}{3}\right) \\
= & c_{1}\left(\frac{1}{3}\right)^{n}+c_{2} 4^{n}=x_{n}
\end{aligned}
$$

Take $x_{0}=1$ and $x_{1}=\frac{1}{3}$. This determine unique values as $c_{1}=1$ and $c_{2}=0$. Therefore,

$$
x_{n}=\left(\frac{1}{3}\right)^{n} \text { for all } n
$$

Take $x_{0}=1$ and $x_{1}=\frac{1}{3}$. This determine unique values as $c_{1}=1$ and $c_{2}=0$. Therefore,

$$
x_{n}=\left(\frac{1}{3}\right)^{n} \text { for all } n
$$

In computer arithmetic, $\hat{x}_{0}=1$ and $\hat{x}_{1}=0.33 \cdots 3$. The generated sequence $\left\{\hat{x}_{n}\right\}$ is then given by

$$
\hat{x}_{n}=\hat{c}_{1}\left(\frac{1}{3}\right)^{n}+\hat{c}_{2}\left(4^{n}\right)
$$

where $\hat{c}_{1} \approx 1$ and $\left|\hat{c}_{2}\right| \approx \varepsilon$.

Take $x_{0}=1$ and $x_{1}=\frac{1}{3}$. This determine unique values as $c_{1}=1$ and $c_{2}=0$. Therefore,

$$
x_{n}=\left(\frac{1}{3}\right)^{n} \text { for all } n
$$

In computer arithmetic, $\hat{x}_{0}=1$ and $\hat{x}_{1}=0.33 \cdots 3$. The generated sequence $\left\{\hat{x}_{n}\right\}$ is then given by

$$
\hat{x}_{n}=\hat{c}_{1}\left(\frac{1}{3}\right)^{n}+\hat{c}_{2}\left(4^{n}\right)
$$

where $\hat{c}_{1} \approx 1$ and $\left|\hat{c}_{2}\right| \approx \varepsilon$. Therefore, the round-off error is

$$
x_{n}-\hat{x}_{n}=\left(1-\hat{c}_{1}\right)\left(\frac{1}{3}\right)^{n}-\hat{c}_{2}\left(4^{n}\right)
$$

which grows exponentially with n.

Stability

Matlab program

$$
\begin{aligned}
& \mathrm{n}=30 \\
& \mathrm{x}=\mathrm{zeros}(\mathrm{n}, 1) \\
& \mathrm{x}(1)=1 \\
& \mathrm{x}(2)=1 / 3
\end{aligned}
$$

$$
\text { for } \mathrm{ii}=3: \mathrm{n}
$$

$$
x(i i)=13 / 3^{*} x(i i-1)-4 / 3^{*} x(i i-2) ;
$$

$$
x \mathrm{xn}=(1 / 3)(\hat{i i}-1) ;
$$

RelErr $=\operatorname{abs}(x n-x(i i)) / x n$; fprintf('x(\%2.0f) = \%20.8d, x_ast(\%2.0f) = \%20.8d,', ... 'RelErr(\%2.0f) = \%14.4d $\backslash n$ ', $i i, x(i i), i i, x n, i i, R e l E r r) ;$
end

Stability

Example 19

Consider the following recurrence algorithm

$$
\left\{\begin{array}{l}
x_{0}=1, \quad x_{1}=\frac{1}{3} \\
x_{n+1}=2 x_{n}-x_{n-1}
\end{array}\right.
$$

for computing the sequence of $\left\{x_{n}=1-\frac{2}{3} n\right\}$. This algorithm is stable.

For any constants c_{1} and c_{2},

$$
x_{n}=c_{1}+c_{2} n
$$

is a solution to the recursive equation

Stability

Example 19

Consider the following recurrence algorithm

$$
\left\{\begin{array}{l}
x_{0}=1, \quad x_{1}=\frac{1}{3} \\
x_{n+1}=2 x_{n}-x_{n-1}
\end{array}\right.
$$

for computing the sequence of $\left\{x_{n}=1-\frac{2}{3} n\right\}$. This algorithm is stable.

For any constants c_{1} and c_{2},

$$
x_{n}=c_{1}+c_{2} n
$$

is a solution to the recursive equation

$$
x_{n}=2 x_{n-1}-x_{n-2} .
$$

Take $x_{0}=1$ and $x_{1}=\frac{1}{3}$. This determine unique values as $c_{1}=1$ and $c_{2}=-\frac{2}{3}$. Therefore,

$$
x_{n}=1-\frac{2}{3} n, \text { for all } n
$$

where $\hat{c}_{1} \approx 1$ and $\left|\hat{c}_{2}\right| \approx \frac{2}{3}$. Therefore, the round-off error is

Take $x_{0}=1$ and $x_{1}=\frac{1}{3}$. This determine unique values as $c_{1}=1$ and $c_{2}=-\frac{2}{3}$. Therefore,

$$
x_{n}=1-\frac{2}{3} n, \text { for all } n \text {. }
$$

In computer arithmetic, $\hat{x}_{0}=1$ and $\hat{x}_{1}=0.33 \cdots 3$. The generated sequence $\left\{\hat{x}_{n}\right\}$ is then given by

$$
\hat{x}_{n}=\hat{c}_{1}-\hat{c}_{2} n,
$$

where $\hat{c}_{1} \approx 1$ and $\left|\hat{c}_{2}\right| \approx \frac{2}{3}$.

Take $x_{0}=1$ and $x_{1}=\frac{1}{3}$. This determine unique values as $c_{1}=1$ and $c_{2}=-\frac{2}{3}$. Therefore,

$$
x_{n}=1-\frac{2}{3} n, \text { for all } n \text {. }
$$

In computer arithmetic, $\hat{x}_{0}=1$ and $\hat{x}_{1}=0.33 \cdots 3$. The generated sequence $\left\{\hat{x}_{n}\right\}$ is then given by

$$
\hat{x}_{n}=\hat{c}_{1}-\hat{c}_{2} n,
$$

where $\hat{c}_{1} \approx 1$ and $\left|\hat{c}_{2}\right| \approx \frac{2}{3}$. Therefore, the round-off error is

$$
x_{n}-\hat{x}_{n}=\left(1-\hat{c}_{1}\right)-\left(\frac{2}{3}-\hat{c}_{2}\right) n
$$

which grows linearly with n.

Definition 20

Suppose $\left\{\beta_{n}\right\} \rightarrow 0$ and $\left\{x_{n}\right\} \rightarrow x^{*}$. If $\exists c>0$ and an integer $N>0$ such that

$$
\left|x_{n}-x^{*}\right| \leq c\left|\beta_{n}\right|, \quad \forall n \geq N
$$

then we say $\left\{x_{n}\right\}$ converges to x^{*} with rate of convergence $O\left(\beta_{n}\right)$, and write $x_{n}=x^{*}+O\left(\beta_{n}\right)$.

Definition 20

Suppose $\left\{\beta_{n}\right\} \rightarrow 0$ and $\left\{x_{n}\right\} \rightarrow x^{*}$. If $\exists c>0$ and an integer $N>0$ such that

$$
\left|x_{n}-x^{*}\right| \leq c\left|\beta_{n}\right|, \quad \forall n \geq N
$$

then we say $\left\{x_{n}\right\}$ converges to x^{*} with rate of convergence $O\left(\beta_{n}\right)$, and write $x_{n}=x^{*}+O\left(\beta_{n}\right)$.

Example 21

Compare the convergence behavior of $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$, where

$$
x_{n}=\frac{n+1}{n^{2}}, \quad \text { and } \quad y_{n}=\frac{n+3}{n^{3}}
$$

Rate of convergence

Solution:

Note that both

$$
\lim _{n \rightarrow \infty} x_{n}=0 \quad \text { and } \quad \lim _{n \rightarrow \infty} y_{n}=0
$$

Let $\alpha_{n}=\frac{1}{n}$ and $\beta_{n}=\frac{1}{n^{2}}$. Then

$$
\begin{aligned}
\left|x_{n}-0\right| & =\frac{n+1}{n^{2}} \leq \frac{n+n}{n^{2}}=\frac{2}{n}=2 \alpha_{n} \\
\left|y_{n}-0\right| & =\frac{n+3}{n^{3}} \leq \frac{n+3 n}{n^{3}}=\frac{4}{n^{2}}=4 \beta_{n}
\end{aligned}
$$

Hence

$$
x_{n}=0+O\left(\frac{1}{n}\right) \quad \text { and } \quad y_{n}=0+O\left(\frac{1}{n^{2}}\right)
$$

This shows that $\left\{y_{n}\right\}$ converges to 0 much faster than $\left\{x_{n}\right\}$.

Exercise

Page 39: 3.a, 6, 7, 11

