
師
大

Mathematical preliminaries and error
analysis

Tsung-Ming Huang

Department of Mathematics
National Taiwan Normal University, Taiwan

September 21, 2014

1 / 116

師
大

Error Algorithms and Convergence

Outline

1 Round-off errors and computer arithmetic
IEEE standard floating-point format
Absolute and Relative Errors
Machine Epsilon
Loss of Significance

2 Algorithms and Convergence
Algorithm
Stability
Rate of convergence

2 / 116

師
大

Error Algorithms and Convergence

Outline

1 Round-off errors and computer arithmetic
IEEE standard floating-point format
Absolute and Relative Errors
Machine Epsilon
Loss of Significance

2 Algorithms and Convergence
Algorithm
Stability
Rate of convergence

3 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

What is the difference for the arithmetic in algebra and
computer?

1 For arithmetic in algebra,

256 + 1 = 257,
(√

256 + 1
)2

= 257

2 For arithmetic in computer (MATLAB),
int8(256) + int8(1) = 127 ???????
int16(256) + int16(1) = 257
sqrt(256+1)ˆ2 = ? The solution is equal to 257 or not.
(single(sqrt(5))+single(sqrt(3)))ˆ2 - (sqrt(3)+sqrt(5))ˆ2

4 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Example 1
Consider the following recurrence algorithm{

x0 = 1, x1 =
1
3

xn+1 =
13
3 xn −

4
3xn−1

for computing the sequence of {xn = (13)
n}.

Matlab program

n = 30; x = zeros(n,1); x(1) = 1; x(2) = 1/3;
for ii = 3:n

x(ii) = 13 / 3 * x(ii-1) - 4 / 3 * x(ii-2);
xn = (1/3)ˆ(ii-1); RelErr = abs(xn-x(ii)) / xn;
fprintf(’x(%2.0f) = %15.8e, x ast(%2.0f) = %14.8e,’, ...

’RelErr(%2.0f) = %11.4e \n’, ii,x(ii),ii,xn,ii,RelErr);
end

5 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Example 2

What is the binary representation of 2
3?

Solution: To determine the binary representation for 2
3 , we write

2

3
= (0.a1a2a3 . . .)2.

Multiply by 2 to obtain

4

3
= (a1.a2a3 . . .)2.

Therefore, we get a1 = 1 by taking the integer part of both
sides.

6 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Example 2

What is the binary representation of 2
3?

Solution: To determine the binary representation for 2
3 , we write

2

3
= (0.a1a2a3 . . .)2.

Multiply by 2 to obtain

4

3
= (a1.a2a3 . . .)2.

Therefore, we get a1 = 1 by taking the integer part of both
sides.

7 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Example 2

What is the binary representation of 2
3?

Solution: To determine the binary representation for 2
3 , we write

2

3
= (0.a1a2a3 . . .)2.

Multiply by 2 to obtain

4

3
= (a1.a2a3 . . .)2.

Therefore, we get a1 = 1 by taking the integer part of both
sides.

8 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Subtracting 1, we have

1

3
= (0.a2a3a4 . . .)2.

Repeating the previous step, we arrive at

2

3
= (0.101010 . . .)2.

9 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Subtracting 1, we have

1

3
= (0.a2a3a4 . . .)2.

Repeating the previous step, we arrive at

2

3
= (0.101010 . . .)2.

10 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

In the computational world, each representable number
has only a fixed and finite number of digits.
For any real number x, let

x = ±1.a1a2 · · · atat+1at+2 · · · × 2m,

denote the normalized scientific binary representation of x.
In 1985, the IEEE (Institute for Electrical and Electronic
Engineers) published a report called Binary Floating Point
Arithmetic Standard 754-1985. In this report, formats were
specified for single, double, and extended precisions, and
these standards are generally followed by microcomputer
manufactures using floating-point hardware.

11 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

In the computational world, each representable number
has only a fixed and finite number of digits.
For any real number x, let

x = ±1.a1a2 · · · atat+1at+2 · · · × 2m,

denote the normalized scientific binary representation of x.
In 1985, the IEEE (Institute for Electrical and Electronic
Engineers) published a report called Binary Floating Point
Arithmetic Standard 754-1985. In this report, formats were
specified for single, double, and extended precisions, and
these standards are generally followed by microcomputer
manufactures using floating-point hardware.

12 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

In the computational world, each representable number
has only a fixed and finite number of digits.
For any real number x, let

x = ±1.a1a2 · · · atat+1at+2 · · · × 2m,

denote the normalized scientific binary representation of x.
In 1985, the IEEE (Institute for Electrical and Electronic
Engineers) published a report called Binary Floating Point
Arithmetic Standard 754-1985. In this report, formats were
specified for single, double, and extended precisions, and
these standards are generally followed by microcomputer
manufactures using floating-point hardware.

13 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Single precision

The single precision IEEE standard floating-point format
allocates 32 bits for the normalized floating-point number
±q × 2m as shown in the following figure.

23 bits

sign of mantissa

normalized mantissaexponent8 bits

0 1 8 9 31

The first bit is a sign indicator, denoted s. This is followed
by an 8-bit exponent c and a 23-bit mantissa f .
The base for the exponent and mantissa is 2, and the
actual exponent is c− 127. The value of c is restricted by
the inequality 0 ≤ c ≤ 255.

14 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Single precision

The single precision IEEE standard floating-point format
allocates 32 bits for the normalized floating-point number
±q × 2m as shown in the following figure.

23 bits

sign of mantissa

normalized mantissaexponent8 bits

0 1 8 9 31

The first bit is a sign indicator, denoted s. This is followed
by an 8-bit exponent c and a 23-bit mantissa f .
The base for the exponent and mantissa is 2, and the
actual exponent is c− 127. The value of c is restricted by
the inequality 0 ≤ c ≤ 255.

15 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Single precision

The single precision IEEE standard floating-point format
allocates 32 bits for the normalized floating-point number
±q × 2m as shown in the following figure.

23 bits

sign of mantissa

normalized mantissaexponent8 bits

0 1 8 9 31

The first bit is a sign indicator, denoted s. This is followed
by an 8-bit exponent c and a 23-bit mantissa f .
The base for the exponent and mantissa is 2, and the
actual exponent is c− 127. The value of c is restricted by
the inequality 0 ≤ c ≤ 255.

16 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

The actual exponent of the number is restricted by the
inequality −127 ≤ c− 127 ≤ 128.
A normalization is imposed that requires that the leading
digit in fraction be 1, and this digit is not stored as part of
the 23-bit mantissa.
Using this system gives a floating-point number of the form

(−1)s2c−127(1 + f).

17 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

The actual exponent of the number is restricted by the
inequality −127 ≤ c− 127 ≤ 128.
A normalization is imposed that requires that the leading
digit in fraction be 1, and this digit is not stored as part of
the 23-bit mantissa.
Using this system gives a floating-point number of the form

(−1)s2c−127(1 + f).

18 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

The actual exponent of the number is restricted by the
inequality −127 ≤ c− 127 ≤ 128.
A normalization is imposed that requires that the leading
digit in fraction be 1, and this digit is not stored as part of
the 23-bit mantissa.
Using this system gives a floating-point number of the form

(−1)s2c−127(1 + f).

19 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Example 3
What is the decimal number of the machine number

01000000101000000000000000000000?

1 The leftmost bit is zero, which indicates that the number is
positive.

2 The next 8 bits, 10000001, are equivalent to

c = 1 · 27 + 0 · 26 + · · ·+ 0 · 21 + 1 · 20 = 129.

The exponential part of the number is 2129−127 = 22.
3 The final 23 bits specify that the mantissa is

f = 0 · (2)−1 + 1 · (2)−2 + 0 · (2)−3 + · · ·+ 0 · (2)−23 = 0.25.

4 Consequently, this machine number precisely represents
the decimal number

(−1)s2c−127(1 + f) = 22 · (1 + 0.25) = 5.
20 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Example 3
What is the decimal number of the machine number

01000000101000000000000000000000?

1 The leftmost bit is zero, which indicates that the number is
positive.

2 The next 8 bits, 10000001, are equivalent to

c = 1 · 27 + 0 · 26 + · · ·+ 0 · 21 + 1 · 20 = 129.

The exponential part of the number is 2129−127 = 22.
3 The final 23 bits specify that the mantissa is

f = 0 · (2)−1 + 1 · (2)−2 + 0 · (2)−3 + · · ·+ 0 · (2)−23 = 0.25.

4 Consequently, this machine number precisely represents
the decimal number

(−1)s2c−127(1 + f) = 22 · (1 + 0.25) = 5.
21 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Example 3
What is the decimal number of the machine number

01000000101000000000000000000000?

1 The leftmost bit is zero, which indicates that the number is
positive.

2 The next 8 bits, 10000001, are equivalent to

c = 1 · 27 + 0 · 26 + · · ·+ 0 · 21 + 1 · 20 = 129.

The exponential part of the number is 2129−127 = 22.
3 The final 23 bits specify that the mantissa is

f = 0 · (2)−1 + 1 · (2)−2 + 0 · (2)−3 + · · ·+ 0 · (2)−23 = 0.25.

4 Consequently, this machine number precisely represents
the decimal number

(−1)s2c−127(1 + f) = 22 · (1 + 0.25) = 5.
22 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Example 3
What is the decimal number of the machine number

01000000101000000000000000000000?

1 The leftmost bit is zero, which indicates that the number is
positive.

2 The next 8 bits, 10000001, are equivalent to

c = 1 · 27 + 0 · 26 + · · ·+ 0 · 21 + 1 · 20 = 129.

The exponential part of the number is 2129−127 = 22.
3 The final 23 bits specify that the mantissa is

f = 0 · (2)−1 + 1 · (2)−2 + 0 · (2)−3 + · · ·+ 0 · (2)−23 = 0.25.

4 Consequently, this machine number precisely represents
the decimal number

(−1)s2c−127(1 + f) = 22 · (1 + 0.25) = 5.
23 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Example 3
What is the decimal number of the machine number

01000000101000000000000000000000?

1 The leftmost bit is zero, which indicates that the number is
positive.

2 The next 8 bits, 10000001, are equivalent to

c = 1 · 27 + 0 · 26 + · · ·+ 0 · 21 + 1 · 20 = 129.

The exponential part of the number is 2129−127 = 22.
3 The final 23 bits specify that the mantissa is

f = 0 · (2)−1 + 1 · (2)−2 + 0 · (2)−3 + · · ·+ 0 · (2)−23 = 0.25.

4 Consequently, this machine number precisely represents
the decimal number

(−1)s2c−127(1 + f) = 22 · (1 + 0.25) = 5.
24 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Example 4
What is the decimal number of the machine number

01000000100111111111111111111111?

1 The final 23 bits specify that the mantissa is

f = 0 · (2)−1 + 0 · (2)−2 + 1 · (2)−3 + · · ·+ 1 · (2)−23

= 0.2499998807907105.

2 Consequently, this machine number precisely represents
the decimal number

(−1)s2c−127(1 + f) = 22 · (1 + 0.2499998807907105)

= 4.999999523162842.

25 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Example 4
What is the decimal number of the machine number

01000000100111111111111111111111?

1 The final 23 bits specify that the mantissa is

f = 0 · (2)−1 + 0 · (2)−2 + 1 · (2)−3 + · · ·+ 1 · (2)−23

= 0.2499998807907105.

2 Consequently, this machine number precisely represents
the decimal number

(−1)s2c−127(1 + f) = 22 · (1 + 0.2499998807907105)

= 4.999999523162842.

26 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Example 4
What is the decimal number of the machine number

01000000100111111111111111111111?

1 The final 23 bits specify that the mantissa is

f = 0 · (2)−1 + 0 · (2)−2 + 1 · (2)−3 + · · ·+ 1 · (2)−23

= 0.2499998807907105.

2 Consequently, this machine number precisely represents
the decimal number

(−1)s2c−127(1 + f) = 22 · (1 + 0.2499998807907105)

= 4.999999523162842.

27 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Example 5
What is the decimal number of the machine number

01000000101000000000000000000001?

1 The final 23 bits specify that the mantissa is

f = 0 · 2−1 + 1 · 2−2 + 0 · 2−3 + · · ·+ 0 · 2−22 + 1 · 2−23

= 0.2500001192092896.

2 Consequently, this machine number precisely represents
the decimal number

(−1)s2c−127(1 + f) = 22 · (1 + 0.2500001192092896)

= 5.000000476837158.

28 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Example 5
What is the decimal number of the machine number

01000000101000000000000000000001?

1 The final 23 bits specify that the mantissa is

f = 0 · 2−1 + 1 · 2−2 + 0 · 2−3 + · · ·+ 0 · 2−22 + 1 · 2−23

= 0.2500001192092896.

2 Consequently, this machine number precisely represents
the decimal number

(−1)s2c−127(1 + f) = 22 · (1 + 0.2500001192092896)

= 5.000000476837158.

29 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Example 5
What is the decimal number of the machine number

01000000101000000000000000000001?

1 The final 23 bits specify that the mantissa is

f = 0 · 2−1 + 1 · 2−2 + 0 · 2−3 + · · ·+ 0 · 2−22 + 1 · 2−23

= 0.2500001192092896.

2 Consequently, this machine number precisely represents
the decimal number

(−1)s2c−127(1 + f) = 22 · (1 + 0.2500001192092896)

= 5.000000476837158.

30 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Summary

Above three examples

01000000100111111111111111111111 ⇒ 4.999999523162842

01000000101000000000000000000000 ⇒ 5

01000000101000000000000000000001 ⇒ 5.000000476837158

Only a relatively small subset of the real number system is
used for the representation of all the real numbers.
This subset, which are called the floating-point numbers,
contains only rational numbers, both positive and negative.
When a number can not be represented exactly with the
fixed finite number of digits in a computer, a near-by
floating-point number is chosen for approximate
representation.

31 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Summary

Above three examples

01000000100111111111111111111111 ⇒ 4.999999523162842

01000000101000000000000000000000 ⇒ 5

01000000101000000000000000000001 ⇒ 5.000000476837158

Only a relatively small subset of the real number system is
used for the representation of all the real numbers.
This subset, which are called the floating-point numbers,
contains only rational numbers, both positive and negative.
When a number can not be represented exactly with the
fixed finite number of digits in a computer, a near-by
floating-point number is chosen for approximate
representation.

32 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Summary

Above three examples

01000000100111111111111111111111 ⇒ 4.999999523162842

01000000101000000000000000000000 ⇒ 5

01000000101000000000000000000001 ⇒ 5.000000476837158

Only a relatively small subset of the real number system is
used for the representation of all the real numbers.
This subset, which are called the floating-point numbers,
contains only rational numbers, both positive and negative.
When a number can not be represented exactly with the
fixed finite number of digits in a computer, a near-by
floating-point number is chosen for approximate
representation.

33 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Summary

Above three examples

01000000100111111111111111111111 ⇒ 4.999999523162842

01000000101000000000000000000000 ⇒ 5

01000000101000000000000000000001 ⇒ 5.000000476837158

Only a relatively small subset of the real number system is
used for the representation of all the real numbers.
This subset, which are called the floating-point numbers,
contains only rational numbers, both positive and negative.
When a number can not be represented exactly with the
fixed finite number of digits in a computer, a near-by
floating-point number is chosen for approximate
representation.

34 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

The smallest positive number
Let s = 0, c = 1 and f = 0 which is equivalent to

2−126 · (1 + 0) ≈ 1.175× 10−38

The largest number

Let s = 0, c = 254 and f = 1− 2−23 which is equivalent to

2127 · (2− 2−23) ≈ 3.403× 1038

Definition 6
If a number x with |x| < 2−126 · (1 + 0), then we say that an
underflow has occurred and is generally set to zero.
If |x| > 2127 · (2− 2−23), then we say that an overflow has
occurred.

35 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

The smallest positive number
Let s = 0, c = 1 and f = 0 which is equivalent to

2−126 · (1 + 0) ≈ 1.175× 10−38

The largest number

Let s = 0, c = 254 and f = 1− 2−23 which is equivalent to

2127 · (2− 2−23) ≈ 3.403× 1038

Definition 6
If a number x with |x| < 2−126 · (1 + 0), then we say that an
underflow has occurred and is generally set to zero.
If |x| > 2127 · (2− 2−23), then we say that an overflow has
occurred.

36 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

The smallest positive number
Let s = 0, c = 1 and f = 0 which is equivalent to

2−126 · (1 + 0) ≈ 1.175× 10−38

The largest number

Let s = 0, c = 254 and f = 1− 2−23 which is equivalent to

2127 · (2− 2−23) ≈ 3.403× 1038

Definition 6
If a number x with |x| < 2−126 · (1 + 0), then we say that an
underflow has occurred and is generally set to zero.
If |x| > 2127 · (2− 2−23), then we say that an overflow has
occurred.

37 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

The smallest positive number
Let s = 0, c = 1 and f = 0 which is equivalent to

2−126 · (1 + 0) ≈ 1.175× 10−38

The largest number

Let s = 0, c = 254 and f = 1− 2−23 which is equivalent to

2127 · (2− 2−23) ≈ 3.403× 1038

Definition 6
If a number x with |x| < 2−126 · (1 + 0), then we say that an
underflow has occurred and is generally set to zero.
If |x| > 2127 · (2− 2−23), then we say that an overflow has
occurred.

38 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Double precision

A floating point number in double precision IEEE standard
format uses two words (64 bits) to store the number as
shown in the following figure.

1

sign of mantissa

normalized mantissa

exponent

52-bit

mantissa

0 1

11-bit

11 12

63

The first bit is a sign indicator, denoted s. This is followed
by an 11-bit exponent c and a 52-bit mantissa f .
The actual exponent is c− 1023.

39 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Double precision

A floating point number in double precision IEEE standard
format uses two words (64 bits) to store the number as
shown in the following figure.

1

sign of mantissa

normalized mantissa

exponent

52-bit

mantissa

0 1

11-bit

11 12

63

The first bit is a sign indicator, denoted s. This is followed
by an 11-bit exponent c and a 52-bit mantissa f .
The actual exponent is c− 1023.

40 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Double precision

A floating point number in double precision IEEE standard
format uses two words (64 bits) to store the number as
shown in the following figure.

1

sign of mantissa

normalized mantissa

exponent

52-bit

mantissa

0 1

11-bit

11 12

63

The first bit is a sign indicator, denoted s. This is followed
by an 11-bit exponent c and a 52-bit mantissa f .
The actual exponent is c− 1023.

41 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Format of floating-point number

(−1)s × (1 + f)× 2c−1023

The smallest positive number
Let s = 0, c = 1 and f = 0 which is equivalent to

2−1022 · (1 + 0) ≈ 2.225× 10−308.

The largest number

Let s = 0, c = 2046 and f = 1− 2−52 which is equivalent to

21023 · (2− 2−52) ≈ 1.798× 10308.

42 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Format of floating-point number

(−1)s × (1 + f)× 2c−1023

The smallest positive number
Let s = 0, c = 1 and f = 0 which is equivalent to

2−1022 · (1 + 0) ≈ 2.225× 10−308.

The largest number

Let s = 0, c = 2046 and f = 1− 2−52 which is equivalent to

21023 · (2− 2−52) ≈ 1.798× 10308.

43 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Format of floating-point number

(−1)s × (1 + f)× 2c−1023

The smallest positive number
Let s = 0, c = 1 and f = 0 which is equivalent to

2−1022 · (1 + 0) ≈ 2.225× 10−308.

The largest number

Let s = 0, c = 2046 and f = 1− 2−52 which is equivalent to

21023 · (2− 2−52) ≈ 1.798× 10308.

44 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Chopping and rounding
For any real number x, let

x = ±1.a1a2 · · · atat+1at+2 · · · × 2m,

denote the normalized scientific binary representation of x.
1 chopping: simply discard the excess bits at+1, at+2, . . . to

obtain

fl(x) = ±1.a1a2 · · · at × 2m.

2 rounding: add 2−(t+1) × 2m to x and then chop the excess
bits to obtain a number of the form

fl(x) = ±1.δ1δ2 · · · δt × 2m.

In this method, if at+1 = 1, we add 1 to at to obtain fl(x),
and if at+1 = 0, we merely chop off all but the first t digits.

45 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Chopping and rounding
For any real number x, let

x = ±1.a1a2 · · · atat+1at+2 · · · × 2m,

denote the normalized scientific binary representation of x.
1 chopping: simply discard the excess bits at+1, at+2, . . . to

obtain

fl(x) = ±1.a1a2 · · · at × 2m.

2 rounding: add 2−(t+1) × 2m to x and then chop the excess
bits to obtain a number of the form

fl(x) = ±1.δ1δ2 · · · δt × 2m.

In this method, if at+1 = 1, we add 1 to at to obtain fl(x),
and if at+1 = 0, we merely chop off all but the first t digits.

46 / 116

師
大

Error Algorithms and Convergence

IEEE standard floating-point format

Chopping and rounding
For any real number x, let

x = ±1.a1a2 · · · atat+1at+2 · · · × 2m,

denote the normalized scientific binary representation of x.
1 chopping: simply discard the excess bits at+1, at+2, . . . to

obtain

fl(x) = ±1.a1a2 · · · at × 2m.

2 rounding: add 2−(t+1) × 2m to x and then chop the excess
bits to obtain a number of the form

fl(x) = ±1.δ1δ2 · · · δt × 2m.

In this method, if at+1 = 1, we add 1 to at to obtain fl(x),
and if at+1 = 0, we merely chop off all but the first t digits.

47 / 116

師
大

Error Algorithms and Convergence

Absolute and Relative Errors

Definition 7 (Roundoff error)
The error results from replacing a number with its floating-point
form is called roundoff error or rounding error.

Definition 8 (Absolute Error and Relative Error)
If x is an approximation to the exact value x∗, the absolute error
is |x∗ − x| and the relative error is |x

∗−x|
|x∗| , provided that x∗ 6= 0.

Example 9

(a) If x∗ = 0.3000× 10−3 and x = 0.3100× 10−3, then the
absolute error is 0.1× 10−4 and the relative error is
0.3333× 10−1.
(b) If x∗ = 0.3000× 104 and x = 0.3100× 104, then the absolute
error is 0.1× 103 and the relative error is 0.3333× 10−1.

48 / 116

師
大

Error Algorithms and Convergence

Absolute and Relative Errors

Definition 7 (Roundoff error)
The error results from replacing a number with its floating-point
form is called roundoff error or rounding error.

Definition 8 (Absolute Error and Relative Error)
If x is an approximation to the exact value x∗, the absolute error
is |x∗ − x| and the relative error is |x

∗−x|
|x∗| , provided that x∗ 6= 0.

Example 9

(a) If x∗ = 0.3000× 10−3 and x = 0.3100× 10−3, then the
absolute error is 0.1× 10−4 and the relative error is
0.3333× 10−1.
(b) If x∗ = 0.3000× 104 and x = 0.3100× 104, then the absolute
error is 0.1× 103 and the relative error is 0.3333× 10−1.

49 / 116

師
大

Error Algorithms and Convergence

Absolute and Relative Errors

Definition 7 (Roundoff error)
The error results from replacing a number with its floating-point
form is called roundoff error or rounding error.

Definition 8 (Absolute Error and Relative Error)
If x is an approximation to the exact value x∗, the absolute error
is |x∗ − x| and the relative error is |x

∗−x|
|x∗| , provided that x∗ 6= 0.

Example 9

(a) If x∗ = 0.3000× 10−3 and x = 0.3100× 10−3, then the
absolute error is 0.1× 10−4 and the relative error is
0.3333× 10−1.
(b) If x∗ = 0.3000× 104 and x = 0.3100× 104, then the absolute
error is 0.1× 103 and the relative error is 0.3333× 10−1.

50 / 116

師
大

Error Algorithms and Convergence

Absolute and Relative Errors

Definition 7 (Roundoff error)
The error results from replacing a number with its floating-point
form is called roundoff error or rounding error.

Definition 8 (Absolute Error and Relative Error)
If x is an approximation to the exact value x∗, the absolute error
is |x∗ − x| and the relative error is |x

∗−x|
|x∗| , provided that x∗ 6= 0.

Example 9

(a) If x∗ = 0.3000× 10−3 and x = 0.3100× 10−3, then the
absolute error is 0.1× 10−4 and the relative error is
0.3333× 10−1.
(b) If x∗ = 0.3000× 104 and x = 0.3100× 104, then the absolute
error is 0.1× 103 and the relative error is 0.3333× 10−1.

51 / 116

師
大

Error Algorithms and Convergence

Absolute and Relative Errors

Remark 1
As a measure of accuracy, the absolute error may be
misleading and the relative error more meaningful.

Definition 10
The number x is said to approximate x∗ to t significant digits if t
is the largest nonnegative integer for which

|x− x∗|
|x∗|

≤ 5× 10−t.

52 / 116

師
大

Error Algorithms and Convergence

Absolute and Relative Errors

Remark 1
As a measure of accuracy, the absolute error may be
misleading and the relative error more meaningful.

Definition 10
The number x is said to approximate x∗ to t significant digits if t
is the largest nonnegative integer for which

|x− x∗|
|x∗|

≤ 5× 10−t.

53 / 116

師
大

Error Algorithms and Convergence

Absolute and Relative Errors

If the floating-point representation fl(x) for the number x is
obtained by using t digits and chopping procedure, then
the relative error is

|x− fl(x)|
|x|

=
|0.00 · · · 0at+1at+2 · · · × 2m|
|1.a1a2 · · · atat+1at+2 · · · × 2m|

=
|0.at+1at+2 · · · |

|1.a1a2 · · · atat+1at+2 · · · |
× 2−t.

The minimal value of the denominator is 1. The numerator
is bounded above by 1. As a consequence∣∣∣∣x− fl(x)x

∣∣∣∣ ≤ 2−t.

54 / 116

師
大

Error Algorithms and Convergence

Absolute and Relative Errors

If the floating-point representation fl(x) for the number x is
obtained by using t digits and chopping procedure, then
the relative error is

|x− fl(x)|
|x|

=
|0.00 · · · 0at+1at+2 · · · × 2m|
|1.a1a2 · · · atat+1at+2 · · · × 2m|

=
|0.at+1at+2 · · · |

|1.a1a2 · · · atat+1at+2 · · · |
× 2−t.

The minimal value of the denominator is 1. The numerator
is bounded above by 1. As a consequence∣∣∣∣x− fl(x)x

∣∣∣∣ ≤ 2−t.

55 / 116

師
大

Error Algorithms and Convergence

Absolute and Relative Errors

If the floating-point representation fl(x) for the number x is
obtained by using t digits and chopping procedure, then
the relative error is

|x− fl(x)|
|x|

=
|0.00 · · · 0at+1at+2 · · · × 2m|
|1.a1a2 · · · atat+1at+2 · · · × 2m|

=
|0.at+1at+2 · · · |

|1.a1a2 · · · atat+1at+2 · · · |
× 2−t.

The minimal value of the denominator is 1. The numerator
is bounded above by 1. As a consequence∣∣∣∣x− fl(x)x

∣∣∣∣ ≤ 2−t.

56 / 116

師
大

Error Algorithms and Convergence

Absolute and Relative Errors

If the floating-point representation fl(x) for the number x is
obtained by using t digits and chopping procedure, then
the relative error is

|x− fl(x)|
|x|

=
|0.00 · · · 0at+1at+2 · · · × 2m|
|1.a1a2 · · · atat+1at+2 · · · × 2m|

=
|0.at+1at+2 · · · |

|1.a1a2 · · · atat+1at+2 · · · |
× 2−t.

The minimal value of the denominator is 1. The numerator
is bounded above by 1. As a consequence∣∣∣∣x− fl(x)x

∣∣∣∣ ≤ 2−t.

57 / 116

師
大

Error Algorithms and Convergence

Absolute and Relative Errors

If t-digit rounding arithmetic is used and
at+1 = 0, then fl(x) = ±1.a1a2 · · · at × 2m. A bound for the
relative error is

|x− fl(x)|
|x|

=
|0.at+1at+2 · · · |

|1.a1a2 · · · atat+1at+2 · · · |
× 2−t ≤ 2−(t+1),

since the numerator is bounded above by 1
2 due to at+1 = 0.

at+1 = 1, then fl(x) = ±(1.a1a2 · · · at + 2−t)× 2m. The
upper bound for relative error becomes

|x− fl(x)|
|x|

=
|1− 0.at+1at+2 · · · |

|1.a1a2 · · · atat+1at+2 · · · |
× 2−t ≤ 2−(t+1),

since the numerator is bounded by 1
2 due to at+1 = 1.

Therefore the relative error for rounding arithmetic is∣∣∣∣x− fl(x)x

∣∣∣∣ ≤ 2−(t+1) =
1

2
× 2−t.

58 / 116

師
大

Error Algorithms and Convergence

Absolute and Relative Errors

If t-digit rounding arithmetic is used and
at+1 = 0, then fl(x) = ±1.a1a2 · · · at × 2m. A bound for the
relative error is

|x− fl(x)|
|x|

=
|0.at+1at+2 · · · |

|1.a1a2 · · · atat+1at+2 · · · |
× 2−t ≤ 2−(t+1),

since the numerator is bounded above by 1
2 due to at+1 = 0.

at+1 = 1, then fl(x) = ±(1.a1a2 · · · at + 2−t)× 2m. The
upper bound for relative error becomes

|x− fl(x)|
|x|

=
|1− 0.at+1at+2 · · · |

|1.a1a2 · · · atat+1at+2 · · · |
× 2−t ≤ 2−(t+1),

since the numerator is bounded by 1
2 due to at+1 = 1.

Therefore the relative error for rounding arithmetic is∣∣∣∣x− fl(x)x

∣∣∣∣ ≤ 2−(t+1) =
1

2
× 2−t.

59 / 116

師
大

Error Algorithms and Convergence

Absolute and Relative Errors

If t-digit rounding arithmetic is used and
at+1 = 0, then fl(x) = ±1.a1a2 · · · at × 2m. A bound for the
relative error is

|x− fl(x)|
|x|

=
|0.at+1at+2 · · · |

|1.a1a2 · · · atat+1at+2 · · · |
× 2−t ≤ 2−(t+1),

since the numerator is bounded above by 1
2 due to at+1 = 0.

at+1 = 1, then fl(x) = ±(1.a1a2 · · · at + 2−t)× 2m. The
upper bound for relative error becomes

|x− fl(x)|
|x|

=
|1− 0.at+1at+2 · · · |

|1.a1a2 · · · atat+1at+2 · · · |
× 2−t ≤ 2−(t+1),

since the numerator is bounded by 1
2 due to at+1 = 1.

Therefore the relative error for rounding arithmetic is∣∣∣∣x− fl(x)x

∣∣∣∣ ≤ 2−(t+1) =
1

2
× 2−t.

60 / 116

師
大

Error Algorithms and Convergence

Absolute and Relative Errors

If t-digit rounding arithmetic is used and
at+1 = 0, then fl(x) = ±1.a1a2 · · · at × 2m. A bound for the
relative error is

|x− fl(x)|
|x|

=
|0.at+1at+2 · · · |

|1.a1a2 · · · atat+1at+2 · · · |
× 2−t ≤ 2−(t+1),

since the numerator is bounded above by 1
2 due to at+1 = 0.

at+1 = 1, then fl(x) = ±(1.a1a2 · · · at + 2−t)× 2m. The
upper bound for relative error becomes

|x− fl(x)|
|x|

=
|1− 0.at+1at+2 · · · |

|1.a1a2 · · · atat+1at+2 · · · |
× 2−t ≤ 2−(t+1),

since the numerator is bounded by 1
2 due to at+1 = 1.

Therefore the relative error for rounding arithmetic is∣∣∣∣x− fl(x)x

∣∣∣∣ ≤ 2−(t+1) =
1

2
× 2−t.

61 / 116

師
大

Error Algorithms and Convergence

Absolute and Relative Errors

If t-digit rounding arithmetic is used and
at+1 = 0, then fl(x) = ±1.a1a2 · · · at × 2m. A bound for the
relative error is

|x− fl(x)|
|x|

=
|0.at+1at+2 · · · |

|1.a1a2 · · · atat+1at+2 · · · |
× 2−t ≤ 2−(t+1),

since the numerator is bounded above by 1
2 due to at+1 = 0.

at+1 = 1, then fl(x) = ±(1.a1a2 · · · at + 2−t)× 2m. The
upper bound for relative error becomes

|x− fl(x)|
|x|

=
|1− 0.at+1at+2 · · · |

|1.a1a2 · · · atat+1at+2 · · · |
× 2−t ≤ 2−(t+1),

since the numerator is bounded by 1
2 due to at+1 = 1.

Therefore the relative error for rounding arithmetic is∣∣∣∣x− fl(x)x

∣∣∣∣ ≤ 2−(t+1) =
1

2
× 2−t.

62 / 116

師
大

Error Algorithms and Convergence

Machine Epsilon

Definition 11 (Machine epsilon)
The floating-point representation, fl(x), of x can be expressed
as

fl(x) = x(1 + δ), |δ| ≤ εM , (1)

where εM ≡ 2−t is referred to as the unit roundoff error or
machine epsilon.

Single precision IEEE standard floating-point format
The mantissa f corresponds to 23 binary digits (i.e., t = 23),
the machine epsilon is

εM = 2−23 ≈ 1.192× 10−7.

This approximately corresponds to 7 accurate decimal digits

63 / 116

師
大

Error Algorithms and Convergence

Machine Epsilon

Definition 11 (Machine epsilon)
The floating-point representation, fl(x), of x can be expressed
as

fl(x) = x(1 + δ), |δ| ≤ εM , (1)

where εM ≡ 2−t is referred to as the unit roundoff error or
machine epsilon.

Single precision IEEE standard floating-point format
The mantissa f corresponds to 23 binary digits (i.e., t = 23),
the machine epsilon is

εM = 2−23 ≈ 1.192× 10−7.

This approximately corresponds to 7 accurate decimal digits

64 / 116

師
大

Error Algorithms and Convergence

Machine Epsilon

Definition 11 (Machine epsilon)
The floating-point representation, fl(x), of x can be expressed
as

fl(x) = x(1 + δ), |δ| ≤ εM , (1)

where εM ≡ 2−t is referred to as the unit roundoff error or
machine epsilon.

Single precision IEEE standard floating-point format
The mantissa f corresponds to 23 binary digits (i.e., t = 23),
the machine epsilon is

εM = 2−23 ≈ 1.192× 10−7.

This approximately corresponds to 7 accurate decimal digits

65 / 116

師
大

Error Algorithms and Convergence

Machine Epsilon

Double precision IEEE standard floating-point format
The mantissa f corresponds to 52 binary digits (i.e., t = 52),
the machine epsilon is

εM = 2−52 ≈ 2.220× 10−16.

which provides between 15 and 16 decimal digits of accuracy.

Summary of IEEE standard floating-point format

single precision double precision
εM 1.192× 10−7 2.220× 10−16

smallest positive number 1.175× 10−38 2.225× 10−308

largest number 3.403× 1038 1.798× 10308

decimal precision 7 16

66 / 116

師
大

Error Algorithms and Convergence

Machine Epsilon

Double precision IEEE standard floating-point format
The mantissa f corresponds to 52 binary digits (i.e., t = 52),
the machine epsilon is

εM = 2−52 ≈ 2.220× 10−16.

which provides between 15 and 16 decimal digits of accuracy.

Summary of IEEE standard floating-point format

single precision double precision
εM 1.192× 10−7 2.220× 10−16

smallest positive number 1.175× 10−38 2.225× 10−308

largest number 3.403× 1038 1.798× 10308

decimal precision 7 16

67 / 116

師
大

Error Algorithms and Convergence

Machine Epsilon

Double precision IEEE standard floating-point format
The mantissa f corresponds to 52 binary digits (i.e., t = 52),
the machine epsilon is

εM = 2−52 ≈ 2.220× 10−16.

which provides between 15 and 16 decimal digits of accuracy.

Summary of IEEE standard floating-point format

single precision double precision
εM 1.192× 10−7 2.220× 10−16

smallest positive number 1.175× 10−38 2.225× 10−308

largest number 3.403× 1038 1.798× 10308

decimal precision 7 16

68 / 116

師
大

Error Algorithms and Convergence

Machine Epsilon

Let � stand for any one of the four basic arithmetic
operators +, −, ?, ÷.
Whenever two machine numbers x and y are to be
combined arithmetically, the computer will produce
fl(x� y) instead of x� y.
Under (1), the relative error of fl(x� y) satisfies

fl(x� y) = (x� y)(1 + δ), δ ≤ εM , (2)

where εM is the unit roundoff.
But if x, y are not machine numbers, then they must first
rounded to floating-point format before the arithmetic
operation and the resulting relative error becomes

fl(fl(x)� fl(y)) = (x(1 + δ1)� y(1 + δ2))(1 + δ3),

where δi ≤ εM , i = 1, 2, 3.
69 / 116

師
大

Error Algorithms and Convergence

Machine Epsilon

Let � stand for any one of the four basic arithmetic
operators +, −, ?, ÷.
Whenever two machine numbers x and y are to be
combined arithmetically, the computer will produce
fl(x� y) instead of x� y.
Under (1), the relative error of fl(x� y) satisfies

fl(x� y) = (x� y)(1 + δ), δ ≤ εM , (2)

where εM is the unit roundoff.
But if x, y are not machine numbers, then they must first
rounded to floating-point format before the arithmetic
operation and the resulting relative error becomes

fl(fl(x)� fl(y)) = (x(1 + δ1)� y(1 + δ2))(1 + δ3),

where δi ≤ εM , i = 1, 2, 3.
70 / 116

師
大

Error Algorithms and Convergence

Machine Epsilon

Let � stand for any one of the four basic arithmetic
operators +, −, ?, ÷.
Whenever two machine numbers x and y are to be
combined arithmetically, the computer will produce
fl(x� y) instead of x� y.
Under (1), the relative error of fl(x� y) satisfies

fl(x� y) = (x� y)(1 + δ), δ ≤ εM , (2)

where εM is the unit roundoff.
But if x, y are not machine numbers, then they must first
rounded to floating-point format before the arithmetic
operation and the resulting relative error becomes

fl(fl(x)� fl(y)) = (x(1 + δ1)� y(1 + δ2))(1 + δ3),

where δi ≤ εM , i = 1, 2, 3.
71 / 116

師
大

Error Algorithms and Convergence

Machine Epsilon

Let � stand for any one of the four basic arithmetic
operators +, −, ?, ÷.
Whenever two machine numbers x and y are to be
combined arithmetically, the computer will produce
fl(x� y) instead of x� y.
Under (1), the relative error of fl(x� y) satisfies

fl(x� y) = (x� y)(1 + δ), δ ≤ εM , (2)

where εM is the unit roundoff.
But if x, y are not machine numbers, then they must first
rounded to floating-point format before the arithmetic
operation and the resulting relative error becomes

fl(fl(x)� fl(y)) = (x(1 + δ1)� y(1 + δ2))(1 + δ3),

where δi ≤ εM , i = 1, 2, 3.
72 / 116

師
大

Error Algorithms and Convergence

Machine Epsilon

Example

Let x = 0.54617 and y = 0.54601. Using rounding and four-digit
arithmetic, then

x∗ = fl(x) = 0.5462 is accurate to four significant digits
since

|x− x∗|
|x|

=
0.00003

0.54617
= 5.5× 10−5 ≤ 5× 10−4.

y∗ = fl(y) = 0.5460 is accurate to five significant digits
since

|y − y∗|
|y|

=
0.00001

0.54601
= 1.8× 10−5 ≤ 5× 10−5.

73 / 116

師
大

Error Algorithms and Convergence

Machine Epsilon

Example

Let x = 0.54617 and y = 0.54601. Using rounding and four-digit
arithmetic, then

x∗ = fl(x) = 0.5462 is accurate to four significant digits
since

|x− x∗|
|x|

=
0.00003

0.54617
= 5.5× 10−5 ≤ 5× 10−4.

y∗ = fl(y) = 0.5460 is accurate to five significant digits
since

|y − y∗|
|y|

=
0.00001

0.54601
= 1.8× 10−5 ≤ 5× 10−5.

74 / 116

師
大

Error Algorithms and Convergence

Machine Epsilon

Example

Let x = 0.54617 and y = 0.54601. Using rounding and four-digit
arithmetic, then

x∗ = fl(x) = 0.5462 is accurate to four significant digits
since

|x− x∗|
|x|

=
0.00003

0.54617
= 5.5× 10−5 ≤ 5× 10−4.

y∗ = fl(y) = 0.5460 is accurate to five significant digits
since

|y − y∗|
|y|

=
0.00001

0.54601
= 1.8× 10−5 ≤ 5× 10−5.

75 / 116

師
大

Error Algorithms and Convergence

Machine Epsilon

The exact value of subtraction is

r = x− y = 0.00016.

But

r∗ ≡ x	 y = fl(fl(x)− fl(y)) = 0.0002.

Since

|r − r∗|
|r|

= 0.25 ≤ 5× 10−1

the result has only one significant digit.
Loss of accuracy

76 / 116

師
大

Error Algorithms and Convergence

Machine Epsilon

The exact value of subtraction is

r = x− y = 0.00016.

But

r∗ ≡ x	 y = fl(fl(x)− fl(y)) = 0.0002.

Since

|r − r∗|
|r|

= 0.25 ≤ 5× 10−1

the result has only one significant digit.
Loss of accuracy

77 / 116

師
大

Error Algorithms and Convergence

Loss of Significance

Loss of Significance
One of the most common error-producing calculations
involves the cancellation of significant digits due to the
subtraction of nearly equal numbers or the addition of one
very large number and one very small number.
Sometimes, loss of significance can be avoided by
rewriting the mathematical formula.

Example 12
The quadratic formulas for computing the roots of
ax2 + bx+ c = 0, when a 6= 0, are

x1 =
−b+

√
b2 − 4ac

2a
and x2 =

−b−
√
b2 − 4ac

2a
.

Consider the quadratic equation x2 + 62.10x+ 1 = 0 and
discuss the numerical results.

78 / 116

師
大

Error Algorithms and Convergence

Loss of Significance

Loss of Significance
One of the most common error-producing calculations
involves the cancellation of significant digits due to the
subtraction of nearly equal numbers or the addition of one
very large number and one very small number.
Sometimes, loss of significance can be avoided by
rewriting the mathematical formula.

Example 12
The quadratic formulas for computing the roots of
ax2 + bx+ c = 0, when a 6= 0, are

x1 =
−b+

√
b2 − 4ac

2a
and x2 =

−b−
√
b2 − 4ac

2a
.

Consider the quadratic equation x2 + 62.10x+ 1 = 0 and
discuss the numerical results.

79 / 116

師
大

Error Algorithms and Convergence

Loss of Significance

Loss of Significance
One of the most common error-producing calculations
involves the cancellation of significant digits due to the
subtraction of nearly equal numbers or the addition of one
very large number and one very small number.
Sometimes, loss of significance can be avoided by
rewriting the mathematical formula.

Example 12
The quadratic formulas for computing the roots of
ax2 + bx+ c = 0, when a 6= 0, are

x1 =
−b+

√
b2 − 4ac

2a
and x2 =

−b−
√
b2 − 4ac

2a
.

Consider the quadratic equation x2 + 62.10x+ 1 = 0 and
discuss the numerical results.

80 / 116

師
大

Error Algorithms and Convergence

Loss of Significance

Solution

Using the quadratic formula and 8-digit rounding
arithmetic, one can obtain

x1 = −0.01610723 and x2 = −62.08390.

Now we perform the calculations with 4-digit rounding
arithmetic. First we have√

b2 − 4ac =
√
62.102 − 4.000 =

√
3856− 4.000 = 62.06,

and

fl(x1) =
−62.10 + 62.06

2.000
=
−0.04000
2.000

= −0.02000.

The relative error in computing x1 is

|fl(x1)− x1|
|x1|

=
| − 0.02000 + 0.01610723|

| − 0.01610723|
≈ 0.2417 ≤ 5×10−1.

81 / 116

師
大

Error Algorithms and Convergence

Loss of Significance

Solution

Using the quadratic formula and 8-digit rounding
arithmetic, one can obtain

x1 = −0.01610723 and x2 = −62.08390.

Now we perform the calculations with 4-digit rounding
arithmetic. First we have√

b2 − 4ac =
√

62.102 − 4.000 =
√
3856− 4.000 = 62.06,

and

fl(x1) =
−62.10 + 62.06

2.000
=
−0.04000
2.000

= −0.02000.

The relative error in computing x1 is

|fl(x1)− x1|
|x1|

=
| − 0.02000 + 0.01610723|

| − 0.01610723|
≈ 0.2417 ≤ 5×10−1.

82 / 116

師
大

Error Algorithms and Convergence

Loss of Significance

Solution

Using the quadratic formula and 8-digit rounding
arithmetic, one can obtain

x1 = −0.01610723 and x2 = −62.08390.

Now we perform the calculations with 4-digit rounding
arithmetic. First we have√

b2 − 4ac =
√

62.102 − 4.000 =
√
3856− 4.000 = 62.06,

and

fl(x1) =
−62.10 + 62.06

2.000
=
−0.04000
2.000

= −0.02000.

The relative error in computing x1 is

|fl(x1)− x1|
|x1|

=
| − 0.02000 + 0.01610723|

| − 0.01610723|
≈ 0.2417 ≤ 5×10−1.

83 / 116

師
大

Error Algorithms and Convergence

Loss of Significance

In calculating x2,

fl(x2) =
−62.10− 62.06

2.000
=
−124.2
2.000

= −62.10,

and the relative error in computing x2 is
|fl(x2)− x2|
|x2|

=
| − 62.10 + 62.08390|
| − 62.08390|

≈ 0.259×10−3 ≤ 5×10−4.

In this equation, b2 = 62.102 is much larger than 4ac = 4.
Hence b and

√
b2 − 4ac become two nearly equal numbers.

The calculation of x1 involves the subtraction of two nearly
equal numbers.
To obtain a more accurate 4-digit rounding approximation
for x1, we change the formulation by rationalizing the
numerator, that is,

x1 =
−2c

b+
√
b2 − 4ac

.

84 / 116

師
大

Error Algorithms and Convergence

Loss of Significance

In calculating x2,

fl(x2) =
−62.10− 62.06

2.000
=
−124.2
2.000

= −62.10,

and the relative error in computing x2 is
|fl(x2)− x2|
|x2|

=
| − 62.10 + 62.08390|
| − 62.08390|

≈ 0.259×10−3 ≤ 5×10−4.

In this equation, b2 = 62.102 is much larger than 4ac = 4.
Hence b and

√
b2 − 4ac become two nearly equal numbers.

The calculation of x1 involves the subtraction of two nearly
equal numbers.
To obtain a more accurate 4-digit rounding approximation
for x1, we change the formulation by rationalizing the
numerator, that is,

x1 =
−2c

b+
√
b2 − 4ac

.

85 / 116

師
大

Error Algorithms and Convergence

Loss of Significance

In calculating x2,

fl(x2) =
−62.10− 62.06

2.000
=
−124.2
2.000

= −62.10,

and the relative error in computing x2 is
|fl(x2)− x2|
|x2|

=
| − 62.10 + 62.08390|
| − 62.08390|

≈ 0.259×10−3 ≤ 5×10−4.

In this equation, b2 = 62.102 is much larger than 4ac = 4.
Hence b and

√
b2 − 4ac become two nearly equal numbers.

The calculation of x1 involves the subtraction of two nearly
equal numbers.
To obtain a more accurate 4-digit rounding approximation
for x1, we change the formulation by rationalizing the
numerator, that is,

x1 =
−2c

b+
√
b2 − 4ac

.

86 / 116

師
大

Error Algorithms and Convergence

Loss of Significance

In calculating x2,

fl(x2) =
−62.10− 62.06

2.000
=
−124.2
2.000

= −62.10,

and the relative error in computing x2 is
|fl(x2)− x2|
|x2|

=
| − 62.10 + 62.08390|
| − 62.08390|

≈ 0.259×10−3 ≤ 5×10−4.

In this equation, b2 = 62.102 is much larger than 4ac = 4.
Hence b and

√
b2 − 4ac become two nearly equal numbers.

The calculation of x1 involves the subtraction of two nearly
equal numbers.
To obtain a more accurate 4-digit rounding approximation
for x1, we change the formulation by rationalizing the
numerator, that is,

x1 =
−2c

b+
√
b2 − 4ac

.

87 / 116

師
大

Error Algorithms and Convergence

Loss of Significance

Then

fl(x1) =
−2.000

62.10 + 62.06
=
−2.000
124.2

= −0.01610.

The relative error in computing x1 is now reduced to 6.2× 10−4

Example 13
Let

p(x) = x3 − 3x2 + 3x− 1,

q(x) = ((x− 3)x+ 3)x− 1.

Compare the function values at x = 2.19 with using three-digit
arithmetic.

88 / 116

師
大

Error Algorithms and Convergence

Loss of Significance

Then

fl(x1) =
−2.000

62.10 + 62.06
=
−2.000
124.2

= −0.01610.

The relative error in computing x1 is now reduced to 6.2× 10−4

Example 13
Let

p(x) = x3 − 3x2 + 3x− 1,

q(x) = ((x− 3)x+ 3)x− 1.

Compare the function values at x = 2.19 with using three-digit
arithmetic.

89 / 116

師
大

Error Algorithms and Convergence

Loss of Significance

Solution

Use 3-digit and rounding for p(2.19) and q(2.19).

p̂(2.19) = ((2.193 − 3× 2.192) + 3× 2.19)− 1

= ((10.5− 14.4) + 3× 2.19)− 1

= (−3.9 + 6.57)− 1

= 2.67− 1 = 1.67

and

q̂(2.19) = ((2.19− 3)× 2.19 + 3)× 2.19− 1

= (−0.81× 2.19 + 3)× 2.19− 1

= (−1.77 + 3)× 2.19− 1

= 1.23× 2.19− 1

= 2.69− 1 = 1.69.

90 / 116

師
大

Error Algorithms and Convergence

Loss of Significance

With more digits, one can have

p(2.19) = g(2.19) = 1.685159

Hence the absolute errors are

|p(2.19)− p̂(2.19)| = 0.015159

and
|q(2.19)− q̂(2.19)| = 0.004841,

respectively. One can observe that the evaluation formula q(x)
is better than p(x).

91 / 116

師
大

Error Algorithms and Convergence

Loss of Significance

With more digits, one can have

p(2.19) = g(2.19) = 1.685159

Hence the absolute errors are

|p(2.19)− p̂(2.19)| = 0.015159

and
|q(2.19)− q̂(2.19)| = 0.004841,

respectively. One can observe that the evaluation formula q(x)
is better than p(x).

92 / 116

師
大

Error Algorithms and Convergence

Loss of Significance

With more digits, one can have

p(2.19) = g(2.19) = 1.685159

Hence the absolute errors are

|p(2.19)− p̂(2.19)| = 0.015159

and
|q(2.19)− q̂(2.19)| = 0.004841,

respectively. One can observe that the evaluation formula q(x)
is better than p(x).

93 / 116

師
大

Error Algorithms and Convergence

Loss of Significance

Exercise
Page 28: 4, 11, 12, 15, 18

94 / 116

師
大

Error Algorithms and Convergence

Algorithm

Definition 14 (Algorithm)
An algorithm is a procedure that describes a finite sequence of
steps to be performed in a specified order.

Example 15

Give an algorithm to compute
∑n

i=1 xi, where n and
x1, x2, . . . , xn are given.

Algorithm

INPUT n, x1, x2, . . . , xn.
OUTPUT SUM =

∑n
i=1 xi.

Step 1. Set SUM = 0. (Initialize accumulator.)
Step 2. For i = 1, 2, . . . , n do

Set SUM = SUM + xi. (Add the next term.)
Step 3. OUTPUT SUM ;

STOP
95 / 116

師
大

Error Algorithms and Convergence

Algorithm

Definition 14 (Algorithm)
An algorithm is a procedure that describes a finite sequence of
steps to be performed in a specified order.

Example 15

Give an algorithm to compute
∑n

i=1 xi, where n and
x1, x2, . . . , xn are given.

Algorithm

INPUT n, x1, x2, . . . , xn.
OUTPUT SUM =

∑n
i=1 xi.

Step 1. Set SUM = 0. (Initialize accumulator.)
Step 2. For i = 1, 2, . . . , n do

Set SUM = SUM + xi. (Add the next term.)
Step 3. OUTPUT SUM ;

STOP
96 / 116

師
大

Error Algorithms and Convergence

Algorithm

Definition 14 (Algorithm)
An algorithm is a procedure that describes a finite sequence of
steps to be performed in a specified order.

Example 15

Give an algorithm to compute
∑n

i=1 xi, where n and
x1, x2, . . . , xn are given.

Algorithm

INPUT n, x1, x2, . . . , xn.
OUTPUT SUM =

∑n
i=1 xi.

Step 1. Set SUM = 0. (Initialize accumulator.)
Step 2. For i = 1, 2, . . . , n do

Set SUM = SUM + xi. (Add the next term.)
Step 3. OUTPUT SUM ;

STOP
97 / 116

師
大

Error Algorithms and Convergence

Stability

Definition 16 (Stable)
An algorithm is called stable if small changes in the initial data
of the algorithm produce correspondingly small changes in the
final results.

Definition 17 (Unstable)
An algorithm is unstable if small errors made at one stage of the
algorithm are magnified and propagated in subsequent stages
and seriously degrade the accuracy of the overall calculation.

Remark
Whether an algorithm is stable or unstable should be decided
on the basis of relative error.

98 / 116

師
大

Error Algorithms and Convergence

Stability

Definition 16 (Stable)
An algorithm is called stable if small changes in the initial data
of the algorithm produce correspondingly small changes in the
final results.

Definition 17 (Unstable)
An algorithm is unstable if small errors made at one stage of the
algorithm are magnified and propagated in subsequent stages
and seriously degrade the accuracy of the overall calculation.

Remark
Whether an algorithm is stable or unstable should be decided
on the basis of relative error.

99 / 116

師
大

Error Algorithms and Convergence

Stability

Definition 16 (Stable)
An algorithm is called stable if small changes in the initial data
of the algorithm produce correspondingly small changes in the
final results.

Definition 17 (Unstable)
An algorithm is unstable if small errors made at one stage of the
algorithm are magnified and propagated in subsequent stages
and seriously degrade the accuracy of the overall calculation.

Remark
Whether an algorithm is stable or unstable should be decided
on the basis of relative error.

100 / 116

師
大

Error Algorithms and Convergence

Stability

Example 18
Consider the following recurrence algorithm{

x0 = 1, x1 =
1
3

xn+1 =
13
3 xn −

4
3xn−1

for computing the sequence of {xn = (13)
n}. This algorithm is

unstable.

A Matlab implementation of the recurrence algorithm gives the
following result.

101 / 116

師
大

Error Algorithms and Convergence

Stability

n xn x∗n RelErr
8 4.57247371e-04 4.57247371e-04 4.4359e-10

10 5.08052602e-05 5.08052634e-05 6.3878e-08
12 5.64497734e-06 5.64502927e-06 9.1984e-06
14 6.26394672e-07 6.27225474e-07 1.3246e-03
15 2.05751947e-07 2.09075158e-07 1.5895e-02
16 5.63988754e-08 6.96917194e-08 1.9074e-01
17 -2.99408028e-08 2.32305731e-08 2.289e+00
20 -3.40210767e-06 8.60391597e-10 3.955e+03
23 -2.17789924e-04 3.18663555e-11 6.835e+06
27 -5.57542287e-02 3.93411796e-13 1.417e+11
30 -3.56827064e+00 1.45708072e-14 2.449e+14

102 / 116

師
大

Error Algorithms and Convergence

Stability

For any constants c1 and c2,

xn = c1

(
1

3

)n

+ c2 (4
n)

is a solution to the recursive equation

xn =
13

3
xn−1 −

4

3
xn−2

since
13

3
xn−1 −

4

3
xn−2

=
13

3

[
c1

(
1

3

)n−1
+ c24

n−1

]
− 4

3

[
c1

(
1

3

)n−2
+ c24

n−2

]

= c1

(
1

3

)n−2(13

3
· 1
3
− 4

3

)
+ c24

n−2
(
13

3
· 4− 4

3

)
= c1

(
1

3

)n

+ c24
n = xn.

103 / 116

師
大

Error Algorithms and Convergence

Stability

For any constants c1 and c2,

xn = c1

(
1

3

)n

+ c2 (4
n)

is a solution to the recursive equation

xn =
13

3
xn−1 −

4

3
xn−2

since
13

3
xn−1 −

4

3
xn−2

=
13

3

[
c1

(
1

3

)n−1
+ c24

n−1

]
− 4

3

[
c1

(
1

3

)n−2
+ c24

n−2

]

= c1

(
1

3

)n−2(13

3
· 1
3
− 4

3

)
+ c24

n−2
(
13

3
· 4− 4

3

)
= c1

(
1

3

)n

+ c24
n = xn.

104 / 116

師
大

Error Algorithms and Convergence

Stability

Take x0 = 1 and x1 = 1
3 . This determine unique values as

c1 = 1 and c2 = 0. Therefore,

xn =

(
1

3

)n

for all n.

In computer arithmetic, x̂0 = 1 and x̂1 = 0.33 · · · 3. The
generated sequence {x̂n} is then given by

x̂n = ĉ1

(
1

3

)n

+ ĉ2 (4
n) ,

where ĉ1 ≈ 1 and |ĉ2| ≈ ε. Therefore, the round-off error is

xn − x̂n = (1− ĉ1)
(
1

3

)n

− ĉ2 (4n)

which grows exponentially with n.
105 / 116

師
大

Error Algorithms and Convergence

Stability

Take x0 = 1 and x1 = 1
3 . This determine unique values as

c1 = 1 and c2 = 0. Therefore,

xn =

(
1

3

)n

for all n.

In computer arithmetic, x̂0 = 1 and x̂1 = 0.33 · · · 3. The
generated sequence {x̂n} is then given by

x̂n = ĉ1

(
1

3

)n

+ ĉ2 (4
n) ,

where ĉ1 ≈ 1 and |ĉ2| ≈ ε. Therefore, the round-off error is

xn − x̂n = (1− ĉ1)
(
1

3

)n

− ĉ2 (4n)

which grows exponentially with n.
106 / 116

師
大

Error Algorithms and Convergence

Stability

Take x0 = 1 and x1 = 1
3 . This determine unique values as

c1 = 1 and c2 = 0. Therefore,

xn =

(
1

3

)n

for all n.

In computer arithmetic, x̂0 = 1 and x̂1 = 0.33 · · · 3. The
generated sequence {x̂n} is then given by

x̂n = ĉ1

(
1

3

)n

+ ĉ2 (4
n) ,

where ĉ1 ≈ 1 and |ĉ2| ≈ ε. Therefore, the round-off error is

xn − x̂n = (1− ĉ1)
(
1

3

)n

− ĉ2 (4n)

which grows exponentially with n.
107 / 116

師
大

Error Algorithms and Convergence

Stability

Matlab program

n = 30;
x = zeros(n,1);
x(1) = 1;
x(2) = 1/3;
for ii = 3:n

x(ii) = 13 / 3 * x(ii-1) - 4 / 3 * x(ii-2);
xn = (1/3)(̂ii-1);
RelErr = abs(xn-x(ii)) / xn;
fprintf(’x(%2.0f) = %20.8d, x ast(%2.0f) = %20.8d,’, ...

’RelErr(%2.0f) = %14.4d \n’, ii,x(ii),ii,xn,ii,RelErr);
end

108 / 116

師
大

Error Algorithms and Convergence

Stability

Example 19
Consider the following recurrence algorithm{

x0 = 1, x1 =
1
3

xn+1 = 2xn − xn−1

for computing the sequence of {xn = 1− 2
3n}. This algorithm is

stable.

For any constants c1 and c2,

xn = c1 + c2n

is a solution to the recursive equation

xn = 2xn−1 − xn−2.

109 / 116

師
大

Error Algorithms and Convergence

Stability

Example 19
Consider the following recurrence algorithm{

x0 = 1, x1 =
1
3

xn+1 = 2xn − xn−1

for computing the sequence of {xn = 1− 2
3n}. This algorithm is

stable.

For any constants c1 and c2,

xn = c1 + c2n

is a solution to the recursive equation

xn = 2xn−1 − xn−2.

110 / 116

師
大

Error Algorithms and Convergence

Stability

Take x0 = 1 and x1 = 1
3 . This determine unique values as

c1 = 1 and c2 = −2
3 . Therefore,

xn = 1− 2

3
n, for all n.

In computer arithmetic, x̂0 = 1 and x̂1 = 0.33 · · · 3. The
generated sequence {x̂n} is then given by

x̂n = ĉ1 − ĉ2n,

where ĉ1 ≈ 1 and |ĉ2| ≈ 2
3 . Therefore, the round-off error is

xn − x̂n = (1− ĉ1)−
(
2

3
− ĉ2

)
n

which grows linearly with n.

111 / 116

師
大

Error Algorithms and Convergence

Stability

Take x0 = 1 and x1 = 1
3 . This determine unique values as

c1 = 1 and c2 = −2
3 . Therefore,

xn = 1− 2

3
n, for all n.

In computer arithmetic, x̂0 = 1 and x̂1 = 0.33 · · · 3. The
generated sequence {x̂n} is then given by

x̂n = ĉ1 − ĉ2n,

where ĉ1 ≈ 1 and |ĉ2| ≈ 2
3 . Therefore, the round-off error is

xn − x̂n = (1− ĉ1)−
(
2

3
− ĉ2

)
n

which grows linearly with n.

112 / 116

師
大

Error Algorithms and Convergence

Stability

Take x0 = 1 and x1 = 1
3 . This determine unique values as

c1 = 1 and c2 = −2
3 . Therefore,

xn = 1− 2

3
n, for all n.

In computer arithmetic, x̂0 = 1 and x̂1 = 0.33 · · · 3. The
generated sequence {x̂n} is then given by

x̂n = ĉ1 − ĉ2n,

where ĉ1 ≈ 1 and |ĉ2| ≈ 2
3 . Therefore, the round-off error is

xn − x̂n = (1− ĉ1)−
(
2

3
− ĉ2

)
n

which grows linearly with n.

113 / 116

師
大

Error Algorithms and Convergence

Rate of convergence

Definition 20
Suppose {βn} → 0 and {xn} → x∗. If ∃ c > 0 and an integer
N > 0 such that

|xn − x∗| ≤ c|βn|, ∀ n ≥ N,

then we say {xn} converges to x∗ with rate of convergence
O(βn), and write xn = x∗ +O(βn).

Example 21
Compare the convergence behavior of {xn} and {yn}, where

xn =
n+ 1

n2
, and yn =

n+ 3

n3
.

114 / 116

師
大

Error Algorithms and Convergence

Rate of convergence

Definition 20
Suppose {βn} → 0 and {xn} → x∗. If ∃ c > 0 and an integer
N > 0 such that

|xn − x∗| ≤ c|βn|, ∀ n ≥ N,

then we say {xn} converges to x∗ with rate of convergence
O(βn), and write xn = x∗ +O(βn).

Example 21
Compare the convergence behavior of {xn} and {yn}, where

xn =
n+ 1

n2
, and yn =

n+ 3

n3
.

115 / 116

師
大

Error Algorithms and Convergence

Rate of convergence

Solution:

Note that both

lim
n→∞

xn = 0 and lim
n→∞

yn = 0.

Let αn = 1
n and βn = 1

n2 . Then

|xn − 0| =
n+ 1

n2
≤ n+ n

n2
=

2

n
= 2αn,

|yn − 0| =
n+ 3

n3
≤ n+ 3n

n3
=

4

n2
= 4βn.

Hence
xn = 0 +O(

1

n
) and yn = 0 +O(

1

n2
).

This shows that {yn} converges to 0 much faster than {xn}.

116 / 116

師
大

Error Algorithms and Convergence

Rate of convergence

Exercise
Page 39: 3.a, 6, 7, 11

117 / 116

	Main Part
	Round-off errors and computer arithmetic
	IEEE standard floating-point format
	Absolute and Relative Errors
	Machine Epsilon
	Loss of Significance

	Algorithms and Convergence
	Algorithm
	Stability
	Rate of convergence

